Searched +hist:0 +hist:b61f8a4 (Results 176 - 194 of 194) sorted by relevance

12345678

/linux-master/fs/xfs/libxfs/
H A Dxfs_btree.hdiff d67790dd Mon May 22 15:18:13 MDT 2023 Kees Cook <keescook@chromium.org> overflow: Add struct_size_t() helper

While struct_size() is normally used in situations where the structure
type already has a pointer instance, there are places where no variable
is available. In the past, this has been worked around by using a typed
NULL first argument, but this is a bit ugly. Add a helper to do this,
and replace the handful of instances of the code pattern with it.

Instances were found with this Coccinelle script:

@struct_size_t@
identifier STRUCT, MEMBER;
expression COUNT;
@@

- struct_size((struct STRUCT *)\(0\|NULL\),
+ struct_size_t(struct STRUCT,
MEMBER, COUNT)

Suggested-by: Christoph Hellwig <hch@infradead.org>
Cc: Jesse Brandeburg <jesse.brandeburg@intel.com>
Cc: Tony Nguyen <anthony.l.nguyen@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Paolo Abeni <pabeni@redhat.com>
Cc: James Smart <james.smart@broadcom.com>
Cc: Keith Busch <kbusch@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Sagi Grimberg <sagi@grimberg.me>
Cc: HighPoint Linux Team <linux@highpoint-tech.com>
Cc: "James E.J. Bottomley" <jejb@linux.ibm.com>
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Kashyap Desai <kashyap.desai@broadcom.com>
Cc: Sumit Saxena <sumit.saxena@broadcom.com>
Cc: Shivasharan S <shivasharan.srikanteshwara@broadcom.com>
Cc: Don Brace <don.brace@microchip.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Guo Xuenan <guoxuenan@huawei.com>
Cc: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Daniel Latypov <dlatypov@google.com>
Cc: kernel test robot <lkp@intel.com>
Cc: intel-wired-lan@lists.osuosl.org
Cc: netdev@vger.kernel.org
Cc: linux-nvme@lists.infradead.org
Cc: linux-scsi@vger.kernel.org
Cc: megaraidlinux.pdl@broadcom.com
Cc: storagedev@microchip.com
Cc: linux-xfs@vger.kernel.org
Cc: linux-hardening@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Link: https://lore.kernel.org/r/20230522211810.never.421-kees@kernel.org
diff 8c25febf Thu Dec 01 10:36:16 MST 2022 Guo Xuenan <guoxuenan@huawei.com> xfs: get rid of assert from xfs_btree_islastblock

xfs_btree_check_block contains debugging knobs. With XFS_DEBUG setting up,
turn on the debugging knob can trigger the assert of xfs_btree_islastblock,
test script as follows:

while true
do
mount $disk $mountpoint
fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null
echo 1 > /sys/fs/xfs/sda/errortag/btree_chk_sblk
sleep 10
umount $mountpoint
done

Kick off fsstress and only *then* turn on the debugging knob. If it
happens that the knob gets turned on after the cntbt lookup succeeds
but before the call to xfs_btree_islastblock, then we *can* end up in
the situation where a previously checked btree block suddenly starts
returning EFSCORRUPTED from xfs_btree_check_block. Kaboom.

Darrick give a very detailed explanation as follows:
Looking back at commit 27d9ee577dcce, I think the point of all this was
to make sure that the cursor has actually performed a lookup, and that
the btree block at whatever level we're asking about is ok.

If the caller hasn't ever done a lookup, the bc_levels array will be
empty, so cur->bc_levels[level].bp pointer will be NULL. The call to
xfs_btree_get_block will crash anyway, so the "ASSERT(block);" part is
pointless.

If the caller did a lookup but the lookup failed due to block
corruption, the corresponding cur->bc_levels[level].bp pointer will also
be NULL, and we'll still crash. The "ASSERT(xfs_btree_check_block);"
logic is also unnecessary.

If the cursor level points to an inode root, the block buffer will be
incore, so it had better always be consistent.

If the caller ignores a failed lookup after a successful one and calls
this function, the cursor state is garbage and the assert wouldn't have
tripped anyway. So get rid of the assert.

Fixes: 27d9ee577dcc ("xfs: actually check xfs_btree_check_block return in xfs_btree_islastblock")
Signed-off-by: Guo Xuenan <guoxuenan@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff e992ae8a Mon Oct 28 17:12:35 MDT 2019 Darrick J. Wong <darrick.wong@oracle.com> xfs: refactor xfs_iread_extents to use xfs_btree_visit_blocks

xfs_iread_extents open-codes everything in xfs_btree_visit_blocks, so
refactor the btree helper to be able to iterate only the records on
level 0, then port iread_extents to use it.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 39ee2239 Wed Aug 28 15:39:46 MDT 2019 Darrick J. Wong <darrick.wong@oracle.com> xfs: remove all *_ITER_CONTINUE values

Iterator functions already use 0 to signal "continue iterating", so get
rid of the #defines and just do it directly.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff f5b999c0 Wed Jun 12 10:00:00 MDT 2019 Eric Sandeen <sandeen@redhat.com> xfs: remove unused flag arguments

There are several functions which take a flag argument that is
only ever passed as "0," so remove these arguments.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
H A Dxfs_bmap_btree.cdiff 0ed5f735 Thu Sep 23 11:32:06 MDT 2021 Darrick J. Wong <djwong@kernel.org> xfs: compute absolute maximum nlevels for each btree type

Add code for all five btree types so that we can compute the absolute
maximum possible btree height for each btree type. This is a setup for
the next patch, which makes every btree type have its own cursor cache.

The functions are exported so that we can have xfs_db report the
absolute maximum btree heights for each btree type, rather than making
everyone run their own ad-hoc computations.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 04fcad80 Wed Aug 18 19:46:57 MDT 2021 Dave Chinner <dchinner@redhat.com> xfs: introduce xfs_buf_daddr()

Introduce a helper function xfs_buf_daddr() to extract the disk
address of the buffer from the struct xfs_buf. This will replace
direct accesses to bp->b_bn and bp->b_maps[0].bm_bn, as well as
the XFS_BUF_ADDR() macro.

This patch introduces the helper function and replaces all uses of
XFS_BUF_ADDR() as this is just a simple sed replacement.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff ebd9027d Wed Aug 18 19:46:55 MDT 2021 Dave Chinner <dchinner@redhat.com> xfs: convert xfs_sb_version_has checks to use mount features

This is a conversion of the remaining xfs_sb_version_has..(sbp)
checks to use xfs_has_..(mp) feature checks.

This was largely done with a vim replacement macro that did:

:0,$s/xfs_sb_version_has\(.*\)&\(.*\)->m_sb/xfs_has_\1\2/g<CR>

A couple of other variants were also used, and the rest touched up
by hand.

$ size -t fs/xfs/built-in.a
text data bss dec hex filename
before 1127533 311352 484 1439369 15f689 (TOTALS)
after 1125360 311352 484 1437196 15ee0c (TOTALS)

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff 0f37d178 Wed Aug 01 08:20:34 MDT 2018 Brian Foster <bfoster@redhat.com> xfs: pass transaction to xfs_defer_add()

The majority of remaining references to struct xfs_defer_ops in XFS
are associated with xfs_defer_add(). At this point, there are no
more external xfs_defer_ops users left. All instances of
xfs_defer_ops are embedded in the transaction, which means we can
safely pass the transaction down to the dfops add interface.

Update xfs_defer_add() to receive the transaction as a parameter.
Various subsystems implement wrappers to allocate and construct the
context specific data structures for the associated deferred
operation type. Update these to also carry the transaction down as
needed and clean up unused dfops parameters along the way.

This removes most of the remaining references to struct
xfs_defer_ops throughout the code and facilitates removal of the
structure.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[darrick: fix unused variable warnings with ftrace disabled]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b04b6b8 Thu Jul 19 01:26:31 MDT 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: trivial xfs_btree_del_cursor cleanups

The error argument to xfs_btree_del_cursor already understands the
"nonzero for error" semantics, so remove pointless error testing in the
callers and pass it directly.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
H A Dxfs_format.hdiff fdbae121 Mon Jul 18 11:13:47 MDT 2022 Xiaole He <hexiaole1994@126.com> xfs: fix comment for start time value of inode with bigtime enabled

The 'ctime', 'mtime', and 'atime' for inode is the type of
'xfs_timestamp_t', which is a 64-bit type:

/* fs/xfs/libxfs/xfs_format.h begin */
typedef __be64 xfs_timestamp_t;
/* fs/xfs/libxfs/xfs_format.h end */

When the 'bigtime' feature is disabled, this 64-bit type is splitted
into two parts of 32-bit, one part is encoded for seconds since
1970-01-01 00:00:00 UTC, the other part is encoded for nanoseconds
above the seconds, this two parts are the type of
'xfs_legacy_timestamp' and the min and max time value of this type are
defined as macros 'XFS_LEGACY_TIME_MIN' and 'XFS_LEGACY_TIME_MAX':

/* fs/xfs/libxfs/xfs_format.h begin */
struct xfs_legacy_timestamp {
__be32 t_sec; /* timestamp seconds */
__be32 t_nsec; /* timestamp nanoseconds */
};
#define XFS_LEGACY_TIME_MIN ((int64_t)S32_MIN)
#define XFS_LEGACY_TIME_MAX ((int64_t)S32_MAX)
/* fs/xfs/libxfs/xfs_format.h end */
/* include/linux/limits.h begin */
#define U32_MAX ((u32)~0U)
#define S32_MAX ((s32)(U32_MAX >> 1))
#define S32_MIN ((s32)(-S32_MAX - 1))
/* include/linux/limits.h end */

'XFS_LEGACY_TIME_MIN' is the min time value of the
'xfs_legacy_timestamp', that is -(2^31) seconds relative to the
1970-01-01 00:00:00 UTC, it can be converted to human-friendly time
value by 'date' command:

/* command begin */
[root@~]# date --utc -d '@0' +'%Y-%m-%d %H:%M:%S'
1970-01-01 00:00:00
[root@~]# date --utc -d "@`echo '-(2^31)'|bc`" +'%Y-%m-%d %H:%M:%S'
1901-12-13 20:45:52
[root@~]#
/* command end */

When 'bigtime' feature is enabled, this 64-bit type becomes a 64-bit
nanoseconds counter, with the start time value is the min time value of
'xfs_legacy_timestamp'(start time means the value of 64-bit nanoseconds
counter is 0). We have already caculated the min time value of
'xfs_legacy_timestamp', that is 1901-12-13 20:45:52 UTC, but the comment
for the start time value of inode with 'bigtime' feature enabled writes
the value is 1901-12-31 20:45:52 UTC:

/* fs/xfs/libxfs/xfs_format.h begin */
/*
* XFS Timestamps
* ==============
* When the bigtime feature is enabled, ondisk inode timestamps become an
* unsigned 64-bit nanoseconds counter. This means that the bigtime inode
* timestamp epoch is the start of the classic timestamp range, which is
* Dec 31 20:45:52 UTC 1901. ...
...
*/
/* fs/xfs/libxfs/xfs_format.h end */

That is a typo, and this patch corrects the typo, from 'Dec 31' to
'Dec 13'.

Suggested-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Xiaole He <hexiaole@kylinos.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff fdbae121 Mon Jul 18 11:13:47 MDT 2022 Xiaole He <hexiaole1994@126.com> xfs: fix comment for start time value of inode with bigtime enabled

The 'ctime', 'mtime', and 'atime' for inode is the type of
'xfs_timestamp_t', which is a 64-bit type:

/* fs/xfs/libxfs/xfs_format.h begin */
typedef __be64 xfs_timestamp_t;
/* fs/xfs/libxfs/xfs_format.h end */

When the 'bigtime' feature is disabled, this 64-bit type is splitted
into two parts of 32-bit, one part is encoded for seconds since
1970-01-01 00:00:00 UTC, the other part is encoded for nanoseconds
above the seconds, this two parts are the type of
'xfs_legacy_timestamp' and the min and max time value of this type are
defined as macros 'XFS_LEGACY_TIME_MIN' and 'XFS_LEGACY_TIME_MAX':

/* fs/xfs/libxfs/xfs_format.h begin */
struct xfs_legacy_timestamp {
__be32 t_sec; /* timestamp seconds */
__be32 t_nsec; /* timestamp nanoseconds */
};
#define XFS_LEGACY_TIME_MIN ((int64_t)S32_MIN)
#define XFS_LEGACY_TIME_MAX ((int64_t)S32_MAX)
/* fs/xfs/libxfs/xfs_format.h end */
/* include/linux/limits.h begin */
#define U32_MAX ((u32)~0U)
#define S32_MAX ((s32)(U32_MAX >> 1))
#define S32_MIN ((s32)(-S32_MAX - 1))
/* include/linux/limits.h end */

'XFS_LEGACY_TIME_MIN' is the min time value of the
'xfs_legacy_timestamp', that is -(2^31) seconds relative to the
1970-01-01 00:00:00 UTC, it can be converted to human-friendly time
value by 'date' command:

/* command begin */
[root@~]# date --utc -d '@0' +'%Y-%m-%d %H:%M:%S'
1970-01-01 00:00:00
[root@~]# date --utc -d "@`echo '-(2^31)'|bc`" +'%Y-%m-%d %H:%M:%S'
1901-12-13 20:45:52
[root@~]#
/* command end */

When 'bigtime' feature is enabled, this 64-bit type becomes a 64-bit
nanoseconds counter, with the start time value is the min time value of
'xfs_legacy_timestamp'(start time means the value of 64-bit nanoseconds
counter is 0). We have already caculated the min time value of
'xfs_legacy_timestamp', that is 1901-12-13 20:45:52 UTC, but the comment
for the start time value of inode with 'bigtime' feature enabled writes
the value is 1901-12-31 20:45:52 UTC:

/* fs/xfs/libxfs/xfs_format.h begin */
/*
* XFS Timestamps
* ==============
* When the bigtime feature is enabled, ondisk inode timestamps become an
* unsigned 64-bit nanoseconds counter. This means that the bigtime inode
* timestamp epoch is the start of the classic timestamp range, which is
* Dec 31 20:45:52 UTC 1901. ...
...
*/
/* fs/xfs/libxfs/xfs_format.h end */

That is a typo, and this patch corrects the typo, from 'Dec 31' to
'Dec 13'.

Suggested-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Xiaole He <hexiaole@kylinos.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff fdbae121 Mon Jul 18 11:13:47 MDT 2022 Xiaole He <hexiaole1994@126.com> xfs: fix comment for start time value of inode with bigtime enabled

The 'ctime', 'mtime', and 'atime' for inode is the type of
'xfs_timestamp_t', which is a 64-bit type:

/* fs/xfs/libxfs/xfs_format.h begin */
typedef __be64 xfs_timestamp_t;
/* fs/xfs/libxfs/xfs_format.h end */

When the 'bigtime' feature is disabled, this 64-bit type is splitted
into two parts of 32-bit, one part is encoded for seconds since
1970-01-01 00:00:00 UTC, the other part is encoded for nanoseconds
above the seconds, this two parts are the type of
'xfs_legacy_timestamp' and the min and max time value of this type are
defined as macros 'XFS_LEGACY_TIME_MIN' and 'XFS_LEGACY_TIME_MAX':

/* fs/xfs/libxfs/xfs_format.h begin */
struct xfs_legacy_timestamp {
__be32 t_sec; /* timestamp seconds */
__be32 t_nsec; /* timestamp nanoseconds */
};
#define XFS_LEGACY_TIME_MIN ((int64_t)S32_MIN)
#define XFS_LEGACY_TIME_MAX ((int64_t)S32_MAX)
/* fs/xfs/libxfs/xfs_format.h end */
/* include/linux/limits.h begin */
#define U32_MAX ((u32)~0U)
#define S32_MAX ((s32)(U32_MAX >> 1))
#define S32_MIN ((s32)(-S32_MAX - 1))
/* include/linux/limits.h end */

'XFS_LEGACY_TIME_MIN' is the min time value of the
'xfs_legacy_timestamp', that is -(2^31) seconds relative to the
1970-01-01 00:00:00 UTC, it can be converted to human-friendly time
value by 'date' command:

/* command begin */
[root@~]# date --utc -d '@0' +'%Y-%m-%d %H:%M:%S'
1970-01-01 00:00:00
[root@~]# date --utc -d "@`echo '-(2^31)'|bc`" +'%Y-%m-%d %H:%M:%S'
1901-12-13 20:45:52
[root@~]#
/* command end */

When 'bigtime' feature is enabled, this 64-bit type becomes a 64-bit
nanoseconds counter, with the start time value is the min time value of
'xfs_legacy_timestamp'(start time means the value of 64-bit nanoseconds
counter is 0). We have already caculated the min time value of
'xfs_legacy_timestamp', that is 1901-12-13 20:45:52 UTC, but the comment
for the start time value of inode with 'bigtime' feature enabled writes
the value is 1901-12-31 20:45:52 UTC:

/* fs/xfs/libxfs/xfs_format.h begin */
/*
* XFS Timestamps
* ==============
* When the bigtime feature is enabled, ondisk inode timestamps become an
* unsigned 64-bit nanoseconds counter. This means that the bigtime inode
* timestamp epoch is the start of the classic timestamp range, which is
* Dec 31 20:45:52 UTC 1901. ...
...
*/
/* fs/xfs/libxfs/xfs_format.h end */

That is a typo, and this patch corrects the typo, from 'Dec 31' to
'Dec 13'.

Suggested-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Xiaole He <hexiaole@kylinos.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff 0d1b9769 Wed Apr 20 18:46:24 MDT 2022 Dave Chinner <dchinner@redhat.com> xfs: convert AGI log flags to unsigned.

5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned
fields to be unsigned.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 43004b2a Wed Dec 12 09:46:24 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: add a block to inode count converter

Add new helpers to convert units of fs blocks into inodes, and AG blocks
into AG inodes, respectively. Convert all the open-coded conversions
and XFS_OFFBNO_TO_AGINO(, , 0) calls to use them, as appropriate. The
OFFBNO_TO_AGINO macro is retained for xfs_repair.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
H A Dxfs_bmap.cdiff 0b3a76e9 Mon Jan 15 15:59:46 MST 2024 Dave Chinner <dchinner@redhat.com> xfs: use GFP_KERNEL in pure transaction contexts

When running in a transaction context, memory allocations are scoped
to GFP_NOFS. Hence we don't need to use GFP_NOFS contexts in pure
transaction context allocations - GFP_KERNEL will automatically get
converted to GFP_NOFS as appropriate.

Go through the code and convert all the obvious GFP_NOFS allocations
in transaction context to use GFP_KERNEL. This further reduces the
explicit use of GFP_NOFS in XFS.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e6af9c98 Mon Dec 04 22:58:58 MST 2023 Jiachen Zhang <zhangjiachen.jaycee@bytedance.com> xfs: ensure logflagsp is initialized in xfs_bmap_del_extent_real

In the case of returning -ENOSPC, ensure logflagsp is initialized by 0.
Otherwise the caller __xfs_bunmapi will set uninitialized illegal
tmp_logflags value into xfs log, which might cause unpredictable error
in the log recovery procedure.

Also, remove the flags variable and set the *logflagsp directly, so that
the code should be more robust in the long run.

Fixes: 1b24b633aafe ("xfs: move some more code into xfs_bmap_del_extent_real")
Signed-off-by: Jiachen Zhang <zhangjiachen.jaycee@bytedance.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b82a5c42 Mon May 01 17:14:27 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: don't unconditionally null args->pag in xfs_bmap_btalloc_at_eof

xfs/170 on a filesystem with su=128k,sw=4 produces this splat:

BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 1 PID: 4022907 Comm: dd Tainted: G W 6.3.0-xfsx #2 6ebeeffbe9577d32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-bu
RIP: 0010:xfs_perag_rele+0x10/0x70 [xfs]
RSP: 0018:ffffc90001e43858 EFLAGS: 00010217
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000100
RDX: ffffffffa054e717 RSI: 0000000000000005 RDI: 0000000000000000
RBP: ffff888194eea000 R08: 0000000000000000 R09: 0000000000000037
R10: ffff888100ac1cb0 R11: 0000000000000018 R12: 0000000000000000
R13: ffffc90001e43a38 R14: ffff888194eea000 R15: ffff888194eea000
FS: 00007f93d1a0e740(0000) GS:ffff88843fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000018a34f000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_bmap_btalloc+0x1a7/0x5d0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_allocate+0xee/0x470 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_bmapi_write+0x539/0x9e0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_iomap_write_direct+0x1bb/0x2b0 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_direct_write_iomap_begin+0x51c/0x710 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
iomap_iter+0x132/0x2f0
__iomap_dio_rw+0x2f8/0x840
iomap_dio_rw+0xe/0x30
xfs_file_dio_write_aligned+0xad/0x180 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
xfs_file_write_iter+0xfb/0x190 [xfs f85291d6841cbb3dc740083f1f331c0327394518]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80

This crash occurs under the "out_low_space" label. We grabbed a perag
reference, passed it via args->pag into xfs_bmap_btalloc_at_eof, and
afterwards args->pag is NULL. Fix the second function not to clobber
args->pag if the caller had passed one in.

Fixes: 85843327094f ("xfs: factor xfs_bmap_btalloc()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
/linux-master/fs/xfs/
H A Dxfs_bmap_util.cdiff 0b3a76e9 Mon Jan 15 15:59:46 MST 2024 Dave Chinner <dchinner@redhat.com> xfs: use GFP_KERNEL in pure transaction contexts

When running in a transaction context, memory allocations are scoped
to GFP_NOFS. Hence we don't need to use GFP_NOFS contexts in pure
transaction context allocations - GFP_KERNEL will automatically get
converted to GFP_NOFS as appropriate.

Go through the code and convert all the obvious GFP_NOFS allocations
in transaction context to use GFP_KERNEL. This further reduces the
explicit use of GFP_NOFS in XFS.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff 35dc55b9 Tue Oct 10 23:16:26 MDT 2023 Christoph Hellwig <hch@lst.de> xfs: handle nimaps=0 from xfs_bmapi_write in xfs_alloc_file_space

If xfs_bmapi_write finds a delalloc extent at the requested range, it
tries to convert the entire delalloc extent to a real allocation.

But if the allocator cannot find a single free extent large enough to
cover the start block of the requested range, xfs_bmapi_write will
return 0 but leave *nimaps set to 0.

In that case we simply need to keep looping with the same startoffset_fsb
so that one of the following allocations will eventually reach the
requested range.

Note that this could affect any caller of xfs_bmapi_write that covers
an existing delayed allocation. As far as I can tell we do not have
any other such caller, though - the regular writeback path uses
xfs_bmapi_convert_delalloc to convert delayed allocations to real ones,
and direct I/O invalidates the page cache first.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff 35dc55b9 Tue Oct 10 23:16:26 MDT 2023 Christoph Hellwig <hch@lst.de> xfs: handle nimaps=0 from xfs_bmapi_write in xfs_alloc_file_space

If xfs_bmapi_write finds a delalloc extent at the requested range, it
tries to convert the entire delalloc extent to a real allocation.

But if the allocator cannot find a single free extent large enough to
cover the start block of the requested range, xfs_bmapi_write will
return 0 but leave *nimaps set to 0.

In that case we simply need to keep looping with the same startoffset_fsb
so that one of the following allocations will eventually reach the
requested range.

Note that this could affect any caller of xfs_bmapi_write that covers
an existing delayed allocation. As far as I can tell we do not have
any other such caller, though - the regular writeback path uses
xfs_bmapi_convert_delalloc to convert delayed allocations to real ones,
and direct I/O invalidates the page cache first.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff 35dc55b9 Tue Oct 10 23:16:26 MDT 2023 Christoph Hellwig <hch@lst.de> xfs: handle nimaps=0 from xfs_bmapi_write in xfs_alloc_file_space

If xfs_bmapi_write finds a delalloc extent at the requested range, it
tries to convert the entire delalloc extent to a real allocation.

But if the allocator cannot find a single free extent large enough to
cover the start block of the requested range, xfs_bmapi_write will
return 0 but leave *nimaps set to 0.

In that case we simply need to keep looping with the same startoffset_fsb
so that one of the following allocations will eventually reach the
requested range.

Note that this could affect any caller of xfs_bmapi_write that covers
an existing delayed allocation. As far as I can tell we do not have
any other such caller, though - the regular writeback path uses
xfs_bmapi_convert_delalloc to convert delayed allocations to real ones,
and direct I/O invalidates the page cache first.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff 8ee81ed5 Tue Apr 11 23:49:44 MDT 2023 Ye Bin <yebin10@huawei.com> xfs: fix BUG_ON in xfs_getbmap()

There's issue as follows:
XFS: Assertion failed: (bmv->bmv_iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c, line: 329
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:102!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14612 Comm: xfs_io Not tainted 6.3.0-rc2-next-20230315-00006-g2729d23ddb3b-dirty #422
RIP: 0010:assfail+0x96/0xa0
RSP: 0018:ffffc9000fa178c0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff888179a18000
RDX: 0000000000000000 RSI: ffff888179a18000 RDI: 0000000000000002
RBP: 0000000000000000 R08: ffffffff8321aab6 R09: 0000000000000000
R10: 0000000000000001 R11: ffffed1105f85139 R12: ffffffff8aacc4c0
R13: 0000000000000149 R14: ffff888269f58000 R15: 000000000000000c
FS: 00007f42f27a4740(0000) GS:ffff88882fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000b92388 CR3: 000000024f006000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xfs_getbmap+0x1a5b/0x1e40
xfs_ioc_getbmap+0x1fd/0x5b0
xfs_file_ioctl+0x2cb/0x1d50
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Above issue may happen as follows:
ThreadA ThreadB
do_shared_fault
__do_fault
xfs_filemap_fault
__xfs_filemap_fault
filemap_fault
xfs_ioc_getbmap -> Without BMV_IF_DELALLOC flag
xfs_getbmap
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait
do_page_mkwrite
xfs_filemap_page_mkwrite
__xfs_filemap_fault
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
iomap_page_mkwrite
...
xfs_buffered_write_iomap_begin
xfs_bmapi_reserve_delalloc -> Allocate delay extent
xfs_ilock_data_map_shared(ip)
xfs_getbmap_report_one
ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0)
-> trigger BUG_ON

As xfs_filemap_page_mkwrite() only hold XFS_MMAPLOCK_SHARED lock, there's
small window mkwrite can produce delay extent after file write in xfs_getbmap().
To solve above issue, just skip delalloc extents.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8ee81ed5 Tue Apr 11 23:49:44 MDT 2023 Ye Bin <yebin10@huawei.com> xfs: fix BUG_ON in xfs_getbmap()

There's issue as follows:
XFS: Assertion failed: (bmv->bmv_iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c, line: 329
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:102!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14612 Comm: xfs_io Not tainted 6.3.0-rc2-next-20230315-00006-g2729d23ddb3b-dirty #422
RIP: 0010:assfail+0x96/0xa0
RSP: 0018:ffffc9000fa178c0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff888179a18000
RDX: 0000000000000000 RSI: ffff888179a18000 RDI: 0000000000000002
RBP: 0000000000000000 R08: ffffffff8321aab6 R09: 0000000000000000
R10: 0000000000000001 R11: ffffed1105f85139 R12: ffffffff8aacc4c0
R13: 0000000000000149 R14: ffff888269f58000 R15: 000000000000000c
FS: 00007f42f27a4740(0000) GS:ffff88882fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000b92388 CR3: 000000024f006000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xfs_getbmap+0x1a5b/0x1e40
xfs_ioc_getbmap+0x1fd/0x5b0
xfs_file_ioctl+0x2cb/0x1d50
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Above issue may happen as follows:
ThreadA ThreadB
do_shared_fault
__do_fault
xfs_filemap_fault
__xfs_filemap_fault
filemap_fault
xfs_ioc_getbmap -> Without BMV_IF_DELALLOC flag
xfs_getbmap
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait
do_page_mkwrite
xfs_filemap_page_mkwrite
__xfs_filemap_fault
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
iomap_page_mkwrite
...
xfs_buffered_write_iomap_begin
xfs_bmapi_reserve_delalloc -> Allocate delay extent
xfs_ilock_data_map_shared(ip)
xfs_getbmap_report_one
ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0)
-> trigger BUG_ON

As xfs_filemap_page_mkwrite() only hold XFS_MMAPLOCK_SHARED lock, there's
small window mkwrite can produce delay extent after file write in xfs_getbmap().
To solve above issue, just skip delalloc extents.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8ee81ed5 Tue Apr 11 23:49:44 MDT 2023 Ye Bin <yebin10@huawei.com> xfs: fix BUG_ON in xfs_getbmap()

There's issue as follows:
XFS: Assertion failed: (bmv->bmv_iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c, line: 329
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:102!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14612 Comm: xfs_io Not tainted 6.3.0-rc2-next-20230315-00006-g2729d23ddb3b-dirty #422
RIP: 0010:assfail+0x96/0xa0
RSP: 0018:ffffc9000fa178c0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff888179a18000
RDX: 0000000000000000 RSI: ffff888179a18000 RDI: 0000000000000002
RBP: 0000000000000000 R08: ffffffff8321aab6 R09: 0000000000000000
R10: 0000000000000001 R11: ffffed1105f85139 R12: ffffffff8aacc4c0
R13: 0000000000000149 R14: ffff888269f58000 R15: 000000000000000c
FS: 00007f42f27a4740(0000) GS:ffff88882fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000b92388 CR3: 000000024f006000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xfs_getbmap+0x1a5b/0x1e40
xfs_ioc_getbmap+0x1fd/0x5b0
xfs_file_ioctl+0x2cb/0x1d50
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Above issue may happen as follows:
ThreadA ThreadB
do_shared_fault
__do_fault
xfs_filemap_fault
__xfs_filemap_fault
filemap_fault
xfs_ioc_getbmap -> Without BMV_IF_DELALLOC flag
xfs_getbmap
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait
do_page_mkwrite
xfs_filemap_page_mkwrite
__xfs_filemap_fault
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
iomap_page_mkwrite
...
xfs_buffered_write_iomap_begin
xfs_bmapi_reserve_delalloc -> Allocate delay extent
xfs_ilock_data_map_shared(ip)
xfs_getbmap_report_one
ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0)
-> trigger BUG_ON

As xfs_filemap_page_mkwrite() only hold XFS_MMAPLOCK_SHARED lock, there's
small window mkwrite can produce delay extent after file write in xfs_getbmap().
To solve above issue, just skip delalloc extents.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8ee81ed5 Tue Apr 11 23:49:44 MDT 2023 Ye Bin <yebin10@huawei.com> xfs: fix BUG_ON in xfs_getbmap()

There's issue as follows:
XFS: Assertion failed: (bmv->bmv_iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c, line: 329
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:102!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14612 Comm: xfs_io Not tainted 6.3.0-rc2-next-20230315-00006-g2729d23ddb3b-dirty #422
RIP: 0010:assfail+0x96/0xa0
RSP: 0018:ffffc9000fa178c0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff888179a18000
RDX: 0000000000000000 RSI: ffff888179a18000 RDI: 0000000000000002
RBP: 0000000000000000 R08: ffffffff8321aab6 R09: 0000000000000000
R10: 0000000000000001 R11: ffffed1105f85139 R12: ffffffff8aacc4c0
R13: 0000000000000149 R14: ffff888269f58000 R15: 000000000000000c
FS: 00007f42f27a4740(0000) GS:ffff88882fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000b92388 CR3: 000000024f006000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xfs_getbmap+0x1a5b/0x1e40
xfs_ioc_getbmap+0x1fd/0x5b0
xfs_file_ioctl+0x2cb/0x1d50
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Above issue may happen as follows:
ThreadA ThreadB
do_shared_fault
__do_fault
xfs_filemap_fault
__xfs_filemap_fault
filemap_fault
xfs_ioc_getbmap -> Without BMV_IF_DELALLOC flag
xfs_getbmap
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait
do_page_mkwrite
xfs_filemap_page_mkwrite
__xfs_filemap_fault
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
iomap_page_mkwrite
...
xfs_buffered_write_iomap_begin
xfs_bmapi_reserve_delalloc -> Allocate delay extent
xfs_ilock_data_map_shared(ip)
xfs_getbmap_report_one
ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0)
-> trigger BUG_ON

As xfs_filemap_page_mkwrite() only hold XFS_MMAPLOCK_SHARED lock, there's
small window mkwrite can produce delay extent after file write in xfs_getbmap().
To solve above issue, just skip delalloc extents.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8ee81ed5 Tue Apr 11 23:49:44 MDT 2023 Ye Bin <yebin10@huawei.com> xfs: fix BUG_ON in xfs_getbmap()

There's issue as follows:
XFS: Assertion failed: (bmv->bmv_iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c, line: 329
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:102!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14612 Comm: xfs_io Not tainted 6.3.0-rc2-next-20230315-00006-g2729d23ddb3b-dirty #422
RIP: 0010:assfail+0x96/0xa0
RSP: 0018:ffffc9000fa178c0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff888179a18000
RDX: 0000000000000000 RSI: ffff888179a18000 RDI: 0000000000000002
RBP: 0000000000000000 R08: ffffffff8321aab6 R09: 0000000000000000
R10: 0000000000000001 R11: ffffed1105f85139 R12: ffffffff8aacc4c0
R13: 0000000000000149 R14: ffff888269f58000 R15: 000000000000000c
FS: 00007f42f27a4740(0000) GS:ffff88882fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000b92388 CR3: 000000024f006000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xfs_getbmap+0x1a5b/0x1e40
xfs_ioc_getbmap+0x1fd/0x5b0
xfs_file_ioctl+0x2cb/0x1d50
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Above issue may happen as follows:
ThreadA ThreadB
do_shared_fault
__do_fault
xfs_filemap_fault
__xfs_filemap_fault
filemap_fault
xfs_ioc_getbmap -> Without BMV_IF_DELALLOC flag
xfs_getbmap
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait
do_page_mkwrite
xfs_filemap_page_mkwrite
__xfs_filemap_fault
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
iomap_page_mkwrite
...
xfs_buffered_write_iomap_begin
xfs_bmapi_reserve_delalloc -> Allocate delay extent
xfs_ilock_data_map_shared(ip)
xfs_getbmap_report_one
ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0)
-> trigger BUG_ON

As xfs_filemap_page_mkwrite() only hold XFS_MMAPLOCK_SHARED lock, there's
small window mkwrite can produce delay extent after file write in xfs_getbmap().
To solve above issue, just skip delalloc extents.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8ee81ed5 Tue Apr 11 23:49:44 MDT 2023 Ye Bin <yebin10@huawei.com> xfs: fix BUG_ON in xfs_getbmap()

There's issue as follows:
XFS: Assertion failed: (bmv->bmv_iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c, line: 329
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:102!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14612 Comm: xfs_io Not tainted 6.3.0-rc2-next-20230315-00006-g2729d23ddb3b-dirty #422
RIP: 0010:assfail+0x96/0xa0
RSP: 0018:ffffc9000fa178c0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff888179a18000
RDX: 0000000000000000 RSI: ffff888179a18000 RDI: 0000000000000002
RBP: 0000000000000000 R08: ffffffff8321aab6 R09: 0000000000000000
R10: 0000000000000001 R11: ffffed1105f85139 R12: ffffffff8aacc4c0
R13: 0000000000000149 R14: ffff888269f58000 R15: 000000000000000c
FS: 00007f42f27a4740(0000) GS:ffff88882fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000b92388 CR3: 000000024f006000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xfs_getbmap+0x1a5b/0x1e40
xfs_ioc_getbmap+0x1fd/0x5b0
xfs_file_ioctl+0x2cb/0x1d50
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Above issue may happen as follows:
ThreadA ThreadB
do_shared_fault
__do_fault
xfs_filemap_fault
__xfs_filemap_fault
filemap_fault
xfs_ioc_getbmap -> Without BMV_IF_DELALLOC flag
xfs_getbmap
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait
do_page_mkwrite
xfs_filemap_page_mkwrite
__xfs_filemap_fault
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
iomap_page_mkwrite
...
xfs_buffered_write_iomap_begin
xfs_bmapi_reserve_delalloc -> Allocate delay extent
xfs_ilock_data_map_shared(ip)
xfs_getbmap_report_one
ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0)
-> trigger BUG_ON

As xfs_filemap_page_mkwrite() only hold XFS_MMAPLOCK_SHARED lock, there's
small window mkwrite can produce delay extent after file write in xfs_getbmap().
To solve above issue, just skip delalloc extents.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8ee81ed5 Tue Apr 11 23:49:44 MDT 2023 Ye Bin <yebin10@huawei.com> xfs: fix BUG_ON in xfs_getbmap()

There's issue as follows:
XFS: Assertion failed: (bmv->bmv_iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c, line: 329
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:102!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14612 Comm: xfs_io Not tainted 6.3.0-rc2-next-20230315-00006-g2729d23ddb3b-dirty #422
RIP: 0010:assfail+0x96/0xa0
RSP: 0018:ffffc9000fa178c0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff888179a18000
RDX: 0000000000000000 RSI: ffff888179a18000 RDI: 0000000000000002
RBP: 0000000000000000 R08: ffffffff8321aab6 R09: 0000000000000000
R10: 0000000000000001 R11: ffffed1105f85139 R12: ffffffff8aacc4c0
R13: 0000000000000149 R14: ffff888269f58000 R15: 000000000000000c
FS: 00007f42f27a4740(0000) GS:ffff88882fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000b92388 CR3: 000000024f006000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xfs_getbmap+0x1a5b/0x1e40
xfs_ioc_getbmap+0x1fd/0x5b0
xfs_file_ioctl+0x2cb/0x1d50
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Above issue may happen as follows:
ThreadA ThreadB
do_shared_fault
__do_fault
xfs_filemap_fault
__xfs_filemap_fault
filemap_fault
xfs_ioc_getbmap -> Without BMV_IF_DELALLOC flag
xfs_getbmap
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait
do_page_mkwrite
xfs_filemap_page_mkwrite
__xfs_filemap_fault
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
iomap_page_mkwrite
...
xfs_buffered_write_iomap_begin
xfs_bmapi_reserve_delalloc -> Allocate delay extent
xfs_ilock_data_map_shared(ip)
xfs_getbmap_report_one
ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0)
-> trigger BUG_ON

As xfs_filemap_page_mkwrite() only hold XFS_MMAPLOCK_SHARED lock, there's
small window mkwrite can produce delay extent after file write in xfs_getbmap().
To solve above issue, just skip delalloc extents.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8ee81ed5 Tue Apr 11 23:49:44 MDT 2023 Ye Bin <yebin10@huawei.com> xfs: fix BUG_ON in xfs_getbmap()

There's issue as follows:
XFS: Assertion failed: (bmv->bmv_iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c, line: 329
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:102!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14612 Comm: xfs_io Not tainted 6.3.0-rc2-next-20230315-00006-g2729d23ddb3b-dirty #422
RIP: 0010:assfail+0x96/0xa0
RSP: 0018:ffffc9000fa178c0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff888179a18000
RDX: 0000000000000000 RSI: ffff888179a18000 RDI: 0000000000000002
RBP: 0000000000000000 R08: ffffffff8321aab6 R09: 0000000000000000
R10: 0000000000000001 R11: ffffed1105f85139 R12: ffffffff8aacc4c0
R13: 0000000000000149 R14: ffff888269f58000 R15: 000000000000000c
FS: 00007f42f27a4740(0000) GS:ffff88882fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000b92388 CR3: 000000024f006000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xfs_getbmap+0x1a5b/0x1e40
xfs_ioc_getbmap+0x1fd/0x5b0
xfs_file_ioctl+0x2cb/0x1d50
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Above issue may happen as follows:
ThreadA ThreadB
do_shared_fault
__do_fault
xfs_filemap_fault
__xfs_filemap_fault
filemap_fault
xfs_ioc_getbmap -> Without BMV_IF_DELALLOC flag
xfs_getbmap
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait
do_page_mkwrite
xfs_filemap_page_mkwrite
__xfs_filemap_fault
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
iomap_page_mkwrite
...
xfs_buffered_write_iomap_begin
xfs_bmapi_reserve_delalloc -> Allocate delay extent
xfs_ilock_data_map_shared(ip)
xfs_getbmap_report_one
ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0)
-> trigger BUG_ON

As xfs_filemap_page_mkwrite() only hold XFS_MMAPLOCK_SHARED lock, there's
small window mkwrite can produce delay extent after file write in xfs_getbmap().
To solve above issue, just skip delalloc extents.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8ee81ed5 Tue Apr 11 23:49:44 MDT 2023 Ye Bin <yebin10@huawei.com> xfs: fix BUG_ON in xfs_getbmap()

There's issue as follows:
XFS: Assertion failed: (bmv->bmv_iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c, line: 329
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:102!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14612 Comm: xfs_io Not tainted 6.3.0-rc2-next-20230315-00006-g2729d23ddb3b-dirty #422
RIP: 0010:assfail+0x96/0xa0
RSP: 0018:ffffc9000fa178c0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff888179a18000
RDX: 0000000000000000 RSI: ffff888179a18000 RDI: 0000000000000002
RBP: 0000000000000000 R08: ffffffff8321aab6 R09: 0000000000000000
R10: 0000000000000001 R11: ffffed1105f85139 R12: ffffffff8aacc4c0
R13: 0000000000000149 R14: ffff888269f58000 R15: 000000000000000c
FS: 00007f42f27a4740(0000) GS:ffff88882fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000b92388 CR3: 000000024f006000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xfs_getbmap+0x1a5b/0x1e40
xfs_ioc_getbmap+0x1fd/0x5b0
xfs_file_ioctl+0x2cb/0x1d50
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Above issue may happen as follows:
ThreadA ThreadB
do_shared_fault
__do_fault
xfs_filemap_fault
__xfs_filemap_fault
filemap_fault
xfs_ioc_getbmap -> Without BMV_IF_DELALLOC flag
xfs_getbmap
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait
do_page_mkwrite
xfs_filemap_page_mkwrite
__xfs_filemap_fault
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
iomap_page_mkwrite
...
xfs_buffered_write_iomap_begin
xfs_bmapi_reserve_delalloc -> Allocate delay extent
xfs_ilock_data_map_shared(ip)
xfs_getbmap_report_one
ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0)
-> trigger BUG_ON

As xfs_filemap_page_mkwrite() only hold XFS_MMAPLOCK_SHARED lock, there's
small window mkwrite can produce delay extent after file write in xfs_getbmap().
To solve above issue, just skip delalloc extents.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8ee81ed5 Tue Apr 11 23:49:44 MDT 2023 Ye Bin <yebin10@huawei.com> xfs: fix BUG_ON in xfs_getbmap()

There's issue as follows:
XFS: Assertion failed: (bmv->bmv_iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c, line: 329
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:102!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14612 Comm: xfs_io Not tainted 6.3.0-rc2-next-20230315-00006-g2729d23ddb3b-dirty #422
RIP: 0010:assfail+0x96/0xa0
RSP: 0018:ffffc9000fa178c0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff888179a18000
RDX: 0000000000000000 RSI: ffff888179a18000 RDI: 0000000000000002
RBP: 0000000000000000 R08: ffffffff8321aab6 R09: 0000000000000000
R10: 0000000000000001 R11: ffffed1105f85139 R12: ffffffff8aacc4c0
R13: 0000000000000149 R14: ffff888269f58000 R15: 000000000000000c
FS: 00007f42f27a4740(0000) GS:ffff88882fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000b92388 CR3: 000000024f006000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xfs_getbmap+0x1a5b/0x1e40
xfs_ioc_getbmap+0x1fd/0x5b0
xfs_file_ioctl+0x2cb/0x1d50
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Above issue may happen as follows:
ThreadA ThreadB
do_shared_fault
__do_fault
xfs_filemap_fault
__xfs_filemap_fault
filemap_fault
xfs_ioc_getbmap -> Without BMV_IF_DELALLOC flag
xfs_getbmap
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait
do_page_mkwrite
xfs_filemap_page_mkwrite
__xfs_filemap_fault
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
iomap_page_mkwrite
...
xfs_buffered_write_iomap_begin
xfs_bmapi_reserve_delalloc -> Allocate delay extent
xfs_ilock_data_map_shared(ip)
xfs_getbmap_report_one
ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0)
-> trigger BUG_ON

As xfs_filemap_page_mkwrite() only hold XFS_MMAPLOCK_SHARED lock, there's
small window mkwrite can produce delay extent after file write in xfs_getbmap().
To solve above issue, just skip delalloc extents.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8ee81ed5 Tue Apr 11 23:49:44 MDT 2023 Ye Bin <yebin10@huawei.com> xfs: fix BUG_ON in xfs_getbmap()

There's issue as follows:
XFS: Assertion failed: (bmv->bmv_iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c, line: 329
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:102!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14612 Comm: xfs_io Not tainted 6.3.0-rc2-next-20230315-00006-g2729d23ddb3b-dirty #422
RIP: 0010:assfail+0x96/0xa0
RSP: 0018:ffffc9000fa178c0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff888179a18000
RDX: 0000000000000000 RSI: ffff888179a18000 RDI: 0000000000000002
RBP: 0000000000000000 R08: ffffffff8321aab6 R09: 0000000000000000
R10: 0000000000000001 R11: ffffed1105f85139 R12: ffffffff8aacc4c0
R13: 0000000000000149 R14: ffff888269f58000 R15: 000000000000000c
FS: 00007f42f27a4740(0000) GS:ffff88882fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000b92388 CR3: 000000024f006000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xfs_getbmap+0x1a5b/0x1e40
xfs_ioc_getbmap+0x1fd/0x5b0
xfs_file_ioctl+0x2cb/0x1d50
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Above issue may happen as follows:
ThreadA ThreadB
do_shared_fault
__do_fault
xfs_filemap_fault
__xfs_filemap_fault
filemap_fault
xfs_ioc_getbmap -> Without BMV_IF_DELALLOC flag
xfs_getbmap
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait
do_page_mkwrite
xfs_filemap_page_mkwrite
__xfs_filemap_fault
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
iomap_page_mkwrite
...
xfs_buffered_write_iomap_begin
xfs_bmapi_reserve_delalloc -> Allocate delay extent
xfs_ilock_data_map_shared(ip)
xfs_getbmap_report_one
ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0)
-> trigger BUG_ON

As xfs_filemap_page_mkwrite() only hold XFS_MMAPLOCK_SHARED lock, there's
small window mkwrite can produce delay extent after file write in xfs_getbmap().
To solve above issue, just skip delalloc extents.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8ee81ed5 Tue Apr 11 23:49:44 MDT 2023 Ye Bin <yebin10@huawei.com> xfs: fix BUG_ON in xfs_getbmap()

There's issue as follows:
XFS: Assertion failed: (bmv->bmv_iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c, line: 329
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:102!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14612 Comm: xfs_io Not tainted 6.3.0-rc2-next-20230315-00006-g2729d23ddb3b-dirty #422
RIP: 0010:assfail+0x96/0xa0
RSP: 0018:ffffc9000fa178c0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff888179a18000
RDX: 0000000000000000 RSI: ffff888179a18000 RDI: 0000000000000002
RBP: 0000000000000000 R08: ffffffff8321aab6 R09: 0000000000000000
R10: 0000000000000001 R11: ffffed1105f85139 R12: ffffffff8aacc4c0
R13: 0000000000000149 R14: ffff888269f58000 R15: 000000000000000c
FS: 00007f42f27a4740(0000) GS:ffff88882fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000b92388 CR3: 000000024f006000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xfs_getbmap+0x1a5b/0x1e40
xfs_ioc_getbmap+0x1fd/0x5b0
xfs_file_ioctl+0x2cb/0x1d50
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Above issue may happen as follows:
ThreadA ThreadB
do_shared_fault
__do_fault
xfs_filemap_fault
__xfs_filemap_fault
filemap_fault
xfs_ioc_getbmap -> Without BMV_IF_DELALLOC flag
xfs_getbmap
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait
do_page_mkwrite
xfs_filemap_page_mkwrite
__xfs_filemap_fault
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
iomap_page_mkwrite
...
xfs_buffered_write_iomap_begin
xfs_bmapi_reserve_delalloc -> Allocate delay extent
xfs_ilock_data_map_shared(ip)
xfs_getbmap_report_one
ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0)
-> trigger BUG_ON

As xfs_filemap_page_mkwrite() only hold XFS_MMAPLOCK_SHARED lock, there's
small window mkwrite can produce delay extent after file write in xfs_getbmap().
To solve above issue, just skip delalloc extents.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8ee81ed5 Tue Apr 11 23:49:44 MDT 2023 Ye Bin <yebin10@huawei.com> xfs: fix BUG_ON in xfs_getbmap()

There's issue as follows:
XFS: Assertion failed: (bmv->bmv_iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c, line: 329
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:102!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14612 Comm: xfs_io Not tainted 6.3.0-rc2-next-20230315-00006-g2729d23ddb3b-dirty #422
RIP: 0010:assfail+0x96/0xa0
RSP: 0018:ffffc9000fa178c0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff888179a18000
RDX: 0000000000000000 RSI: ffff888179a18000 RDI: 0000000000000002
RBP: 0000000000000000 R08: ffffffff8321aab6 R09: 0000000000000000
R10: 0000000000000001 R11: ffffed1105f85139 R12: ffffffff8aacc4c0
R13: 0000000000000149 R14: ffff888269f58000 R15: 000000000000000c
FS: 00007f42f27a4740(0000) GS:ffff88882fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000b92388 CR3: 000000024f006000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xfs_getbmap+0x1a5b/0x1e40
xfs_ioc_getbmap+0x1fd/0x5b0
xfs_file_ioctl+0x2cb/0x1d50
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Above issue may happen as follows:
ThreadA ThreadB
do_shared_fault
__do_fault
xfs_filemap_fault
__xfs_filemap_fault
filemap_fault
xfs_ioc_getbmap -> Without BMV_IF_DELALLOC flag
xfs_getbmap
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait
do_page_mkwrite
xfs_filemap_page_mkwrite
__xfs_filemap_fault
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
iomap_page_mkwrite
...
xfs_buffered_write_iomap_begin
xfs_bmapi_reserve_delalloc -> Allocate delay extent
xfs_ilock_data_map_shared(ip)
xfs_getbmap_report_one
ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0)
-> trigger BUG_ON

As xfs_filemap_page_mkwrite() only hold XFS_MMAPLOCK_SHARED lock, there's
small window mkwrite can produce delay extent after file write in xfs_getbmap().
To solve above issue, just skip delalloc extents.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8ee81ed5 Tue Apr 11 23:49:44 MDT 2023 Ye Bin <yebin10@huawei.com> xfs: fix BUG_ON in xfs_getbmap()

There's issue as follows:
XFS: Assertion failed: (bmv->bmv_iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c, line: 329
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:102!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14612 Comm: xfs_io Not tainted 6.3.0-rc2-next-20230315-00006-g2729d23ddb3b-dirty #422
RIP: 0010:assfail+0x96/0xa0
RSP: 0018:ffffc9000fa178c0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff888179a18000
RDX: 0000000000000000 RSI: ffff888179a18000 RDI: 0000000000000002
RBP: 0000000000000000 R08: ffffffff8321aab6 R09: 0000000000000000
R10: 0000000000000001 R11: ffffed1105f85139 R12: ffffffff8aacc4c0
R13: 0000000000000149 R14: ffff888269f58000 R15: 000000000000000c
FS: 00007f42f27a4740(0000) GS:ffff88882fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000b92388 CR3: 000000024f006000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xfs_getbmap+0x1a5b/0x1e40
xfs_ioc_getbmap+0x1fd/0x5b0
xfs_file_ioctl+0x2cb/0x1d50
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Above issue may happen as follows:
ThreadA ThreadB
do_shared_fault
__do_fault
xfs_filemap_fault
__xfs_filemap_fault
filemap_fault
xfs_ioc_getbmap -> Without BMV_IF_DELALLOC flag
xfs_getbmap
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait
do_page_mkwrite
xfs_filemap_page_mkwrite
__xfs_filemap_fault
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
iomap_page_mkwrite
...
xfs_buffered_write_iomap_begin
xfs_bmapi_reserve_delalloc -> Allocate delay extent
xfs_ilock_data_map_shared(ip)
xfs_getbmap_report_one
ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0)
-> trigger BUG_ON

As xfs_filemap_page_mkwrite() only hold XFS_MMAPLOCK_SHARED lock, there's
small window mkwrite can produce delay extent after file write in xfs_getbmap().
To solve above issue, just skip delalloc extents.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8ee81ed5 Tue Apr 11 23:49:44 MDT 2023 Ye Bin <yebin10@huawei.com> xfs: fix BUG_ON in xfs_getbmap()

There's issue as follows:
XFS: Assertion failed: (bmv->bmv_iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c, line: 329
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:102!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14612 Comm: xfs_io Not tainted 6.3.0-rc2-next-20230315-00006-g2729d23ddb3b-dirty #422
RIP: 0010:assfail+0x96/0xa0
RSP: 0018:ffffc9000fa178c0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff888179a18000
RDX: 0000000000000000 RSI: ffff888179a18000 RDI: 0000000000000002
RBP: 0000000000000000 R08: ffffffff8321aab6 R09: 0000000000000000
R10: 0000000000000001 R11: ffffed1105f85139 R12: ffffffff8aacc4c0
R13: 0000000000000149 R14: ffff888269f58000 R15: 000000000000000c
FS: 00007f42f27a4740(0000) GS:ffff88882fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000b92388 CR3: 000000024f006000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xfs_getbmap+0x1a5b/0x1e40
xfs_ioc_getbmap+0x1fd/0x5b0
xfs_file_ioctl+0x2cb/0x1d50
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Above issue may happen as follows:
ThreadA ThreadB
do_shared_fault
__do_fault
xfs_filemap_fault
__xfs_filemap_fault
filemap_fault
xfs_ioc_getbmap -> Without BMV_IF_DELALLOC flag
xfs_getbmap
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait
do_page_mkwrite
xfs_filemap_page_mkwrite
__xfs_filemap_fault
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
iomap_page_mkwrite
...
xfs_buffered_write_iomap_begin
xfs_bmapi_reserve_delalloc -> Allocate delay extent
xfs_ilock_data_map_shared(ip)
xfs_getbmap_report_one
ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0)
-> trigger BUG_ON

As xfs_filemap_page_mkwrite() only hold XFS_MMAPLOCK_SHARED lock, there's
small window mkwrite can produce delay extent after file write in xfs_getbmap().
To solve above issue, just skip delalloc extents.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8ee81ed5 Tue Apr 11 23:49:44 MDT 2023 Ye Bin <yebin10@huawei.com> xfs: fix BUG_ON in xfs_getbmap()

There's issue as follows:
XFS: Assertion failed: (bmv->bmv_iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c, line: 329
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:102!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14612 Comm: xfs_io Not tainted 6.3.0-rc2-next-20230315-00006-g2729d23ddb3b-dirty #422
RIP: 0010:assfail+0x96/0xa0
RSP: 0018:ffffc9000fa178c0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff888179a18000
RDX: 0000000000000000 RSI: ffff888179a18000 RDI: 0000000000000002
RBP: 0000000000000000 R08: ffffffff8321aab6 R09: 0000000000000000
R10: 0000000000000001 R11: ffffed1105f85139 R12: ffffffff8aacc4c0
R13: 0000000000000149 R14: ffff888269f58000 R15: 000000000000000c
FS: 00007f42f27a4740(0000) GS:ffff88882fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000b92388 CR3: 000000024f006000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xfs_getbmap+0x1a5b/0x1e40
xfs_ioc_getbmap+0x1fd/0x5b0
xfs_file_ioctl+0x2cb/0x1d50
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Above issue may happen as follows:
ThreadA ThreadB
do_shared_fault
__do_fault
xfs_filemap_fault
__xfs_filemap_fault
filemap_fault
xfs_ioc_getbmap -> Without BMV_IF_DELALLOC flag
xfs_getbmap
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait
do_page_mkwrite
xfs_filemap_page_mkwrite
__xfs_filemap_fault
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
iomap_page_mkwrite
...
xfs_buffered_write_iomap_begin
xfs_bmapi_reserve_delalloc -> Allocate delay extent
xfs_ilock_data_map_shared(ip)
xfs_getbmap_report_one
ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0)
-> trigger BUG_ON

As xfs_filemap_page_mkwrite() only hold XFS_MMAPLOCK_SHARED lock, there's
small window mkwrite can produce delay extent after file write in xfs_getbmap().
To solve above issue, just skip delalloc extents.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8ee81ed5 Tue Apr 11 23:49:44 MDT 2023 Ye Bin <yebin10@huawei.com> xfs: fix BUG_ON in xfs_getbmap()

There's issue as follows:
XFS: Assertion failed: (bmv->bmv_iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c, line: 329
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:102!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14612 Comm: xfs_io Not tainted 6.3.0-rc2-next-20230315-00006-g2729d23ddb3b-dirty #422
RIP: 0010:assfail+0x96/0xa0
RSP: 0018:ffffc9000fa178c0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff888179a18000
RDX: 0000000000000000 RSI: ffff888179a18000 RDI: 0000000000000002
RBP: 0000000000000000 R08: ffffffff8321aab6 R09: 0000000000000000
R10: 0000000000000001 R11: ffffed1105f85139 R12: ffffffff8aacc4c0
R13: 0000000000000149 R14: ffff888269f58000 R15: 000000000000000c
FS: 00007f42f27a4740(0000) GS:ffff88882fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000b92388 CR3: 000000024f006000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xfs_getbmap+0x1a5b/0x1e40
xfs_ioc_getbmap+0x1fd/0x5b0
xfs_file_ioctl+0x2cb/0x1d50
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Above issue may happen as follows:
ThreadA ThreadB
do_shared_fault
__do_fault
xfs_filemap_fault
__xfs_filemap_fault
filemap_fault
xfs_ioc_getbmap -> Without BMV_IF_DELALLOC flag
xfs_getbmap
xfs_ilock(ip, XFS_IOLOCK_SHARED);
filemap_write_and_wait
do_page_mkwrite
xfs_filemap_page_mkwrite
__xfs_filemap_fault
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
iomap_page_mkwrite
...
xfs_buffered_write_iomap_begin
xfs_bmapi_reserve_delalloc -> Allocate delay extent
xfs_ilock_data_map_shared(ip)
xfs_getbmap_report_one
ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0)
-> trigger BUG_ON

As xfs_filemap_page_mkwrite() only hold XFS_MMAPLOCK_SHARED lock, there's
small window mkwrite can produce delay extent after file write in xfs_getbmap().
To solve above issue, just skip delalloc extents.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
H A Dxfs_trans_buf.cdiff 0dc63c8a Thu Feb 22 01:43:36 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: launder in-memory btree buffers before transaction commit

As we've noted in various places, all current users of in-memory btrees
are online fsck. Online fsck only stages a btree long enough to rebuild
an ondisk data structure, which means that the in-memory btree is
ephemeral. Furthermore, if we encounter /any/ errors while updating an
in-memory btree, all we do is tear down all the staged data and return
an errno to userspace. In-memory btrees need not be transactional, so
their buffers should not be committed to the ondisk log, nor should they
be checkpointed by the AIL. That's just as well since the ephemeral
nature of the btree means that the buftarg and the buffers may disappear
quickly anyway.

Therefore, we need a way to launder the btree buffers that get attached
to the transaction by the generic btree code. Because the buffers are
directly mapped to backing file pages, there's no need to bwrite them
back to the tmpfs file. All we need to do is clean enough of the buffer
log item state so that the bli can be detached from the buffer, remove
the bli from the transaction's log item list, and reset the transaction
dirty state as if the laundered items had never been there.

For simplicity, create xfbtree transaction commit and cancel helpers
that launder the in-memory btree buffers for callers. Once laundered,
call the write verifier on non-stale buffers to avoid integrity issues,
or punch a hole in the backing file for stale buffers.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 04fcad80 Wed Aug 18 19:46:57 MDT 2021 Dave Chinner <dchinner@redhat.com> xfs: introduce xfs_buf_daddr()

Introduce a helper function xfs_buf_daddr() to extract the disk
address of the buffer from the struct xfs_buf. This will replace
direct accesses to bp->b_bn and bp->b_maps[0].bm_bn, as well as
the XFS_BUF_ADDR() macro.

This patch introduces the helper function and replaces all uses of
XFS_BUF_ADDR() as this is just a simple sed replacement.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff 0c7e5afb Mon Jun 29 15:48:46 MDT 2020 Dave Chinner <david@fromorbit.com> xfs: mark dquot buffers in cache

dquot buffers always have write IO callbacks, so by marking them
directly we can avoid needing to attach ->b_iodone functions to
them. This avoids an indirect call, and makes future modifications
much simpler.

This is largely a rearrangement of the code at this point - no IO
completion functionality changes at this point, just how the
code is run is modified.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 8c9ce2f7 Wed Jun 12 09:59:58 MDT 2019 Eric Sandeen <sandeen@sandeen.net> xfs: remove unused flags arg from getsb interfaces

The flags value is always passed as 0 so remove the argument.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
H A Dxfs.hdiff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b1b213f Mon Dec 14 16:14:59 MST 2009 Christoph Hellwig <hch@infradead.org> xfs: event tracing support

Convert the old xfs tracing support that could only be used with the
out of tree kdb and xfsidbg patches to use the generic event tracer.

To use it make sure CONFIG_EVENT_TRACING is enabled and then enable
all xfs trace channels by:

echo 1 > /sys/kernel/debug/tracing/events/xfs/enable

or alternatively enable single events by just doing the same in one
event subdirectory, e.g.

echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable

or set more complex filters, etc. In Documentation/trace/events.txt
all this is desctribed in more detail. To reads the events do a

cat /sys/kernel/debug/tracing/trace

Compared to the last posting this patch converts the tracing mostly to
the one tracepoint per callsite model that other users of the new
tracing facility also employ. This allows a very fine-grained control
of the tracing, a cleaner output of the traces and also enables the
perf tool to use each tracepoint as a virtual performance counter,
allowing us to e.g. count how often certain workloads git various
spots in XFS. Take a look at

http://lwn.net/Articles/346470/

for some examples.

Also the btree tracing isn't included at all yet, as it will require
additional core tracing features not in mainline yet, I plan to
deliver it later.

And the really nice thing about this patch is that it actually removes
many lines of code while adding this nice functionality:

fs/xfs/Makefile | 8
fs/xfs/linux-2.6/xfs_acl.c | 1
fs/xfs/linux-2.6/xfs_aops.c | 52 -
fs/xfs/linux-2.6/xfs_aops.h | 2
fs/xfs/linux-2.6/xfs_buf.c | 117 +--
fs/xfs/linux-2.6/xfs_buf.h | 33
fs/xfs/linux-2.6/xfs_fs_subr.c | 3
fs/xfs/linux-2.6/xfs_ioctl.c | 1
fs/xfs/linux-2.6/xfs_ioctl32.c | 1
fs/xfs/linux-2.6/xfs_iops.c | 1
fs/xfs/linux-2.6/xfs_linux.h | 1
fs/xfs/linux-2.6/xfs_lrw.c | 87 --
fs/xfs/linux-2.6/xfs_lrw.h | 45 -
fs/xfs/linux-2.6/xfs_super.c | 104 ---
fs/xfs/linux-2.6/xfs_super.h | 7
fs/xfs/linux-2.6/xfs_sync.c | 1
fs/xfs/linux-2.6/xfs_trace.c | 75 ++
fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++
fs/xfs/linux-2.6/xfs_vnode.h | 4
fs/xfs/quota/xfs_dquot.c | 110 ---
fs/xfs/quota/xfs_dquot.h | 21
fs/xfs/quota/xfs_qm.c | 40 -
fs/xfs/quota/xfs_qm_syscalls.c | 4
fs/xfs/support/ktrace.c | 323 ---------
fs/xfs/support/ktrace.h | 85 --
fs/xfs/xfs.h | 16
fs/xfs/xfs_ag.h | 14
fs/xfs/xfs_alloc.c | 230 +-----
fs/xfs/xfs_alloc.h | 27
fs/xfs/xfs_alloc_btree.c | 1
fs/xfs/xfs_attr.c | 107 ---
fs/xfs/xfs_attr.h | 10
fs/xfs/xfs_attr_leaf.c | 14
fs/xfs/xfs_attr_sf.h | 40 -
fs/xfs/xfs_bmap.c | 507 +++------------
fs/xfs/xfs_bmap.h | 49 -
fs/xfs/xfs_bmap_btree.c | 6
fs/xfs/xfs_btree.c | 5
fs/xfs/xfs_btree_trace.h | 17
fs/xfs/xfs_buf_item.c | 87 --
fs/xfs/xfs_buf_item.h | 20
fs/xfs/xfs_da_btree.c | 3
fs/xfs/xfs_da_btree.h | 7
fs/xfs/xfs_dfrag.c | 2
fs/xfs/xfs_dir2.c | 8
fs/xfs/xfs_dir2_block.c | 20
fs/xfs/xfs_dir2_leaf.c | 21
fs/xfs/xfs_dir2_node.c | 27
fs/xfs/xfs_dir2_sf.c | 26
fs/xfs/xfs_dir2_trace.c | 216 ------
fs/xfs/xfs_dir2_trace.h | 72 --
fs/xfs/xfs_filestream.c | 8
fs/xfs/xfs_fsops.c | 2
fs/xfs/xfs_iget.c | 111 ---
fs/xfs/xfs_inode.c | 67 --
fs/xfs/xfs_inode.h | 76 --
fs/xfs/xfs_inode_item.c | 5
fs/xfs/xfs_iomap.c | 85 --
fs/xfs/xfs_iomap.h | 8
fs/xfs/xfs_log.c | 181 +----
fs/xfs/xfs_log_priv.h | 20
fs/xfs/xfs_log_recover.c | 1
fs/xfs/xfs_mount.c | 2
fs/xfs/xfs_quota.h | 8
fs/xfs/xfs_rename.c | 1
fs/xfs/xfs_rtalloc.c | 1
fs/xfs/xfs_rw.c | 3
fs/xfs/xfs_trans.h | 47 +
fs/xfs/xfs_trans_buf.c | 62 -
fs/xfs/xfs_vnodeops.c | 8
70 files changed, 2151 insertions(+), 2592 deletions(-)

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
H A Dxfs_trace.hdiff 0dc63c8a Thu Feb 22 01:43:36 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: launder in-memory btree buffers before transaction commit

As we've noted in various places, all current users of in-memory btrees
are online fsck. Online fsck only stages a btree long enough to rebuild
an ondisk data structure, which means that the in-memory btree is
ephemeral. Furthermore, if we encounter /any/ errors while updating an
in-memory btree, all we do is tear down all the staged data and return
an errno to userspace. In-memory btrees need not be transactional, so
their buffers should not be committed to the ondisk log, nor should they
be checkpointed by the AIL. That's just as well since the ephemeral
nature of the btree means that the buftarg and the buffers may disappear
quickly anyway.

Therefore, we need a way to launder the btree buffers that get attached
to the transaction by the generic btree code. Because the buffers are
directly mapped to backing file pages, there's no need to bwrite them
back to the tmpfs file. All we need to do is clean enough of the buffer
log item state so that the bli can be detached from the buffer, remove
the bli from the transaction's log item list, and reset the transaction
dirty state as if the laundered items had never been there.

For simplicity, create xfbtree transaction commit and cancel helpers
that launder the in-memory btree buffers for callers. Once laundered,
call the write verifier on non-stale buffers to avoid integrity issues,
or punch a hole in the backing file for stale buffers.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 0e24ec3c Thu Feb 22 01:33:03 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: remember sick inodes that get inactivated

If an unhealthy inode gets inactivated, remember this fact in the
per-fs health summary.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 0b8686f1 Thu Feb 22 01:31:01 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: separate the marking of sick and checked metadata

Split the setting of the sick and checked masks into separate functions
as part of preparing to add the ability for regular runtime fs code
(i.e. not scrub) to mark metadata structures sick when corruptions are
found. Improve the documentation of libxfs' requirements for helper
behavior.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 68b957f6 Mon Sep 11 09:39:06 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: load uncached unlinked inodes into memory on demand

shrikanth hegde reports that filesystems fail shortly after mount with
the following failure:

WARNING: CPU: 56 PID: 12450 at fs/xfs/xfs_inode.c:1839 xfs_iunlink_lookup+0x58/0x80 [xfs]

This of course is the WARN_ON_ONCE in xfs_iunlink_lookup:

ip = radix_tree_lookup(&pag->pag_ici_root, agino);
if (WARN_ON_ONCE(!ip || !ip->i_ino)) { ... }

From diagnostic data collected by the bug reporters, it would appear
that we cleanly mounted a filesystem that contained unlinked inodes.
Unlinked inodes are only processed as a final step of log recovery,
which means that clean mounts do not process the unlinked list at all.

Prior to the introduction of the incore unlinked lists, this wasn't a
problem because the unlink code would (very expensively) traverse the
entire ondisk metadata iunlink chain to keep things up to date.
However, the incore unlinked list code complains when it realizes that
it is out of sync with the ondisk metadata and shuts down the fs, which
is bad.

Ritesh proposed to solve this problem by unconditionally parsing the
unlinked lists at mount time, but this imposes a mount time cost for
every filesystem to catch something that should be very infrequent.
Instead, let's target the places where we can encounter a next_unlinked
pointer that refers to an inode that is not in cache, and load it into
cache.

Note: This patch does not address the problem of iget loading an inode
from the middle of the iunlink list and needing to set i_prev_unlinked
correctly.

Reported-by: shrikanth hegde <sshegde@linux.vnet.ibm.com>
Triaged-by: Ritesh Harjani <ritesh.list@gmail.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 68b957f6 Mon Sep 11 09:39:06 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: load uncached unlinked inodes into memory on demand

shrikanth hegde reports that filesystems fail shortly after mount with
the following failure:

WARNING: CPU: 56 PID: 12450 at fs/xfs/xfs_inode.c:1839 xfs_iunlink_lookup+0x58/0x80 [xfs]

This of course is the WARN_ON_ONCE in xfs_iunlink_lookup:

ip = radix_tree_lookup(&pag->pag_ici_root, agino);
if (WARN_ON_ONCE(!ip || !ip->i_ino)) { ... }

From diagnostic data collected by the bug reporters, it would appear
that we cleanly mounted a filesystem that contained unlinked inodes.
Unlinked inodes are only processed as a final step of log recovery,
which means that clean mounts do not process the unlinked list at all.

Prior to the introduction of the incore unlinked lists, this wasn't a
problem because the unlink code would (very expensively) traverse the
entire ondisk metadata iunlink chain to keep things up to date.
However, the incore unlinked list code complains when it realizes that
it is out of sync with the ondisk metadata and shuts down the fs, which
is bad.

Ritesh proposed to solve this problem by unconditionally parsing the
unlinked lists at mount time, but this imposes a mount time cost for
every filesystem to catch something that should be very infrequent.
Instead, let's target the places where we can encounter a next_unlinked
pointer that refers to an inode that is not in cache, and load it into
cache.

Note: This patch does not address the problem of iget loading an inode
from the middle of the iunlink list and needing to set i_prev_unlinked
correctly.

Reported-by: shrikanth hegde <sshegde@linux.vnet.ibm.com>
Triaged-by: Ritesh Harjani <ritesh.list@gmail.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff f045dd00 Thu Jun 29 18:39:44 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: clean up the rtbitmap fsmap backend

The rtbitmap fsmap backend doesn't query the rmapbt, so it's wasteful to
spend time initializing the rmap_irec objects. Worse yet, the logic to
query the rtbitmap is spread across three separate functions, which is
unnecessarily difficult to follow.

Compute the start rtextent that we want from keys[0] directly and
combine the functions to avoid passing parameters around everywhere, and
consolidate all the logic into a single function. At one point many
years ago I intended to use __xfs_getfsmap_rtdev as the launching point
for realtime rmapbt queries, but this hasn't been the case for a long
time.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 0b11553e Wed Feb 01 11:16:04 MST 2023 Darrick J. Wong <djwong@kernel.org> xfs: pass refcount intent directly through the log intent code

Pass the incore refcount intent through the CUI logging code instead of
repeatedly boxing and unboxing parameters.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff 8838dafe Sun Sep 18 14:51:14 MDT 2022 Zeng Heng <zengheng4@huawei.com> xfs: missing space in xfs trace log

Add space between arguments would help someone
to locate the key words they want, so break
quoted strings at a space character.

Such as below:
[Before]
kworker/1:0-280 [001] ..... 600.782135: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffffflags ATTRFORK ...

[After]
kworker/1:2-564 [001] ..... 23817.906160: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffff flags ATTRFORK ...

Signed-off-by: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8838dafe Sun Sep 18 14:51:14 MDT 2022 Zeng Heng <zengheng4@huawei.com> xfs: missing space in xfs trace log

Add space between arguments would help someone
to locate the key words they want, so break
quoted strings at a space character.

Such as below:
[Before]
kworker/1:0-280 [001] ..... 600.782135: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffffflags ATTRFORK ...

[After]
kworker/1:2-564 [001] ..... 23817.906160: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffff flags ATTRFORK ...

Signed-off-by: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8838dafe Sun Sep 18 14:51:14 MDT 2022 Zeng Heng <zengheng4@huawei.com> xfs: missing space in xfs trace log

Add space between arguments would help someone
to locate the key words they want, so break
quoted strings at a space character.

Such as below:
[Before]
kworker/1:0-280 [001] ..... 600.782135: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffffflags ATTRFORK ...

[After]
kworker/1:2-564 [001] ..... 23817.906160: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffff flags ATTRFORK ...

Signed-off-by: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8838dafe Sun Sep 18 14:51:14 MDT 2022 Zeng Heng <zengheng4@huawei.com> xfs: missing space in xfs trace log

Add space between arguments would help someone
to locate the key words they want, so break
quoted strings at a space character.

Such as below:
[Before]
kworker/1:0-280 [001] ..... 600.782135: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffffflags ATTRFORK ...

[After]
kworker/1:2-564 [001] ..... 23817.906160: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffff flags ATTRFORK ...

Signed-off-by: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8838dafe Sun Sep 18 14:51:14 MDT 2022 Zeng Heng <zengheng4@huawei.com> xfs: missing space in xfs trace log

Add space between arguments would help someone
to locate the key words they want, so break
quoted strings at a space character.

Such as below:
[Before]
kworker/1:0-280 [001] ..... 600.782135: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffffflags ATTRFORK ...

[After]
kworker/1:2-564 [001] ..... 23817.906160: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffff flags ATTRFORK ...

Signed-off-by: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8838dafe Sun Sep 18 14:51:14 MDT 2022 Zeng Heng <zengheng4@huawei.com> xfs: missing space in xfs trace log

Add space between arguments would help someone
to locate the key words they want, so break
quoted strings at a space character.

Such as below:
[Before]
kworker/1:0-280 [001] ..... 600.782135: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffffflags ATTRFORK ...

[After]
kworker/1:2-564 [001] ..... 23817.906160: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffff flags ATTRFORK ...

Signed-off-by: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8838dafe Sun Sep 18 14:51:14 MDT 2022 Zeng Heng <zengheng4@huawei.com> xfs: missing space in xfs trace log

Add space between arguments would help someone
to locate the key words they want, so break
quoted strings at a space character.

Such as below:
[Before]
kworker/1:0-280 [001] ..... 600.782135: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffffflags ATTRFORK ...

[After]
kworker/1:2-564 [001] ..... 23817.906160: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffff flags ATTRFORK ...

Signed-off-by: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8838dafe Sun Sep 18 14:51:14 MDT 2022 Zeng Heng <zengheng4@huawei.com> xfs: missing space in xfs trace log

Add space between arguments would help someone
to locate the key words they want, so break
quoted strings at a space character.

Such as below:
[Before]
kworker/1:0-280 [001] ..... 600.782135: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffffflags ATTRFORK ...

[After]
kworker/1:2-564 [001] ..... 23817.906160: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffff flags ATTRFORK ...

Signed-off-by: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8838dafe Sun Sep 18 14:51:14 MDT 2022 Zeng Heng <zengheng4@huawei.com> xfs: missing space in xfs trace log

Add space between arguments would help someone
to locate the key words they want, so break
quoted strings at a space character.

Such as below:
[Before]
kworker/1:0-280 [001] ..... 600.782135: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffffflags ATTRFORK ...

[After]
kworker/1:2-564 [001] ..... 23817.906160: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffff flags ATTRFORK ...

Signed-off-by: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8838dafe Sun Sep 18 14:51:14 MDT 2022 Zeng Heng <zengheng4@huawei.com> xfs: missing space in xfs trace log

Add space between arguments would help someone
to locate the key words they want, so break
quoted strings at a space character.

Such as below:
[Before]
kworker/1:0-280 [001] ..... 600.782135: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffffflags ATTRFORK ...

[After]
kworker/1:2-564 [001] ..... 23817.906160: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffff flags ATTRFORK ...

Signed-off-by: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 8838dafe Sun Sep 18 14:51:14 MDT 2022 Zeng Heng <zengheng4@huawei.com> xfs: missing space in xfs trace log

Add space between arguments would help someone
to locate the key words they want, so break
quoted strings at a space character.

Such as below:
[Before]
kworker/1:0-280 [001] ..... 600.782135: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffffflags ATTRFORK ...

[After]
kworker/1:2-564 [001] ..... 23817.906160: xfs_bunmap:
dev 7:0 ino 0x85 disize 0x0 fileoff 0x0 fsbcount 0x400000001fffff flags ATTRFORK ...

Signed-off-by: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
H A Dxfs_log_recover.cdiff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff e4c3b72a Wed Jan 17 05:31:26 MST 2024 Long Li <leo.lilong@huawei.com> xfs: ensure submit buffers on LSN boundaries in error handlers

While performing the IO fault injection test, I caught the following data
corruption report:

XFS (dm-0): Internal error ltbno + ltlen > bno at line 1957 of file fs/xfs/libxfs/xfs_alloc.c. Caller xfs_free_ag_extent+0x79c/0x1130
CPU: 3 PID: 33 Comm: kworker/3:0 Not tainted 6.5.0-rc7-next-20230825-00001-g7f8666926889 #214
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
Workqueue: xfs-inodegc/dm-0 xfs_inodegc_worker
Call Trace:
<TASK>
dump_stack_lvl+0x50/0x70
xfs_corruption_error+0x134/0x150
xfs_free_ag_extent+0x7d3/0x1130
__xfs_free_extent+0x201/0x3c0
xfs_trans_free_extent+0x29b/0xa10
xfs_extent_free_finish_item+0x2a/0xb0
xfs_defer_finish_noroll+0x8d1/0x1b40
xfs_defer_finish+0x21/0x200
xfs_itruncate_extents_flags+0x1cb/0x650
xfs_free_eofblocks+0x18f/0x250
xfs_inactive+0x485/0x570
xfs_inodegc_worker+0x207/0x530
process_scheduled_works+0x24a/0xe10
worker_thread+0x5ac/0xc60
kthread+0x2cd/0x3c0
ret_from_fork+0x4a/0x80
ret_from_fork_asm+0x11/0x20
</TASK>
XFS (dm-0): Corruption detected. Unmount and run xfs_repair

After analyzing the disk image, it was found that the corruption was
triggered by the fact that extent was recorded in both inode datafork
and AGF btree blocks. After a long time of reproduction and analysis,
we found that the reason of free sapce btree corruption was that the
AGF btree was not recovered correctly.

Consider the following situation, Checkpoint A and Checkpoint B are in
the same record and share the same start LSN1, buf items of same object
(AGF btree block) is included in both Checkpoint A and Checkpoint B. If
the buf item in Checkpoint A has been recovered and updates metadata LSN
permanently, then the buf item in Checkpoint B cannot be recovered,
because log recovery skips items with a metadata LSN >= the current LSN
of the recovery item. If there is still an inode item in Checkpoint B
that records the Extent X, the Extent X will be recorded in both inode
datafork and AGF btree block after Checkpoint B is recovered. Such
transaction can be seen when allocing enxtent for inode bmap, it record
both the addition of extent to the inode extent list and the removing
extent from the AGF.

|------------Record (LSN1)------------------|---Record (LSN2)---|
|-------Checkpoint A----------|----------Checkpoint B-----------|
| Buf Item(Extent X) | Buf Item / Inode item(Extent X) |
| Extent X is freed | Extent X is allocated |

After commit 12818d24db8a ("xfs: rework log recovery to submit buffers
on LSN boundaries") was introduced, we submit buffers on lsn boundaries
during log recovery. The above problem can be avoided under normal paths,
but it's not guaranteed under abnormal paths. Consider the following
process, if an error was encountered after recover buf item in Checkpoint
A and before recover buf item in Checkpoint B, buffers that have been
added to the buffer_list will still be submitted, this violates the
submits rule on lsn boundaries. So buf item in Checkpoint B cannot be
recovered on the next mount due to current lsn of transaction equal to
metadata lsn on disk. The detailed process of the problem is as follows.

First Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint A */
xlog_recover_buf_commit_pass2
xlog_recover_do_reg_buffer
/* add buffer of agf btree block to buffer_list */
xfs_buf_delwri_queue(bp, buffer_list)
...
==> Encounter read IO error and return
/* submit buffers regardless of error */
if (!list_empty(&buffer_list))
xfs_buf_delwri_submit(&buffer_list);

<buf items of agf btree block in Checkpoint A recovery success>

Second Mount:

xlog_do_recovery_pass
error = xlog_recover_process
xlog_recover_process_data
xlog_recover_process_ophdr
xlog_recovery_process_trans
...
/* recover buf item in Checkpoint B */
xlog_recover_buf_commit_pass2
/* buffer of agf btree block wouldn't added to
buffer_list due to lsn equal to current_lsn */
if (XFS_LSN_CMP(lsn, current_lsn) >= 0)
goto out_release

<buf items of agf btree block in Checkpoint B wouldn't recovery>

In order to make sure that submits buffers on lsn boundaries in the
abnormal paths, we need to check error status before submit buffers that
have been added from the last record processed. If error status exist,
buffers in the bufffer_list should not be writen to disk.

Canceling the buffers in the buffer_list directly isn't correct, unlike
any other place where write list was canceled, these buffers has been
initialized by xfs_buf_item_init() during recovery and held by buf item,
buf items will not be released in xfs_buf_delwri_cancel(), it's not easy
to solve.

If the filesystem has been shut down, then delwri list submission will
error out all buffers on the list via IO submission/completion and do
all the correct cleanup automatically. So shutting down the filesystem
could prevents buffers in the bufffer_list from being written to disk.

Fixes: 50d5c8d8e938 ("xfs: check LSN ordering for v5 superblocks during recovery")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
H A Dxfs_log_priv.hdiff ecd49f7a Mon Sep 11 09:39:02 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: fix per-cpu CIL structure aggregation racing with dying cpus

In commit 7c8ade2121200 ("xfs: implement percpu cil space used
calculation"), the XFS committed (log) item list code was converted to
use per-cpu lists and space tracking to reduce cpu contention when
multiple threads are modifying different parts of the filesystem and
hence end up contending on the log structures during transaction commit.
Each CPU tracks its own commit items and space usage, and these do not
have to be merged into the main CIL until either someone wants to push
the CIL items, or we run over a soft threshold and switch to slower (but
more accurate) accounting with atomics.

Unfortunately, the for_each_cpu iteration suffers from the same race
with cpu dying problem that was identified in commit 8b57b11cca88f
("pcpcntrs: fix dying cpu summation race") -- CPUs are removed from
cpu_online_mask before the CPUHP_XFS_DEAD callback gets called. As a
result, both CIL percpu structure aggregation functions fail to collect
the items and accounted space usage at the correct point in time.

If we're lucky, the items that are collected from the online cpus exceed
the space given to those cpus, and the log immediately shuts down in
xlog_cil_insert_items due to the (apparent) log reservation overrun.
This happens periodically with generic/650, which exercises cpu hotplug
vs. the filesystem code:

smpboot: CPU 3 is now offline
XFS (sda3): ctx ticket reservation ran out. Need to up reservation
XFS (sda3): ticket reservation summary:
XFS (sda3): unit res = 9268 bytes
XFS (sda3): current res = -40 bytes
XFS (sda3): original count = 1
XFS (sda3): remaining count = 1
XFS (sda3): Filesystem has been shut down due to log error (0x2).

Applying the same sort of fix from 8b57b11cca88f to the CIL code seems
to make the generic/650 problem go away, but I've been told that tglx
was not happy when he saw:

"...the only thing we actually need to care about is that
percpu_counter_sum() iterates dying CPUs. That's trivial to do, and when
there are no CPUs dying, it has no addition overhead except for a
cpumask_or() operation."

The CPU hotplug code is rather complex and difficult to understand and I
don't want to try to understand the cpu hotplug locking well enough to
use cpu_dying mask. Furthermore, there's a performance improvement that
could be had here. Attach a private cpu mask to the CIL structure so
that we can track exactly which cpus have accessed the percpu data at
all. It doesn't matter if the cpu has since gone offline; log item
aggregation will still find the items. Better yet, we skip cpus that
have not recently logged anything.

Worse yet, Ritesh Harjani and Eric Sandeen both reported today that CPU
hot remove racing with an xfs mount can crash if the cpu_dead notifier
tries to access the log but the mount hasn't yet set up the log.

Link: https://lore.kernel.org/linux-xfs/ZOLzgBOuyWHapOyZ@dread.disaster.area/T/
Link: https://lore.kernel.org/lkml/877cuj1mt1.ffs@tglx/
Link: https://lore.kernel.org/lkml/20230414162755.281993820@linutronix.de/
Link: https://lore.kernel.org/linux-xfs/ZOVkjxWZq0YmjrJu@dread.disaster.area/T/
Cc: tglx@linutronix.de
Cc: peterz@infradead.org
Reported-by: ritesh.list@gmail.com
Reported-by: sandeen@sandeen.net
Fixes: af1c2146a50b ("xfs: introduce per-cpu CIL tracking structure")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 45ff8b47 Wed May 11 23:12:57 MDT 2022 Dave Chinner <dchinner@redhat.com> xfs: can't use kmem_zalloc() for attribute buffers

Because heap allocation of 64kB buffers will fail:

....
XFS: fs_mark(8414) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8417) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8409) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8428) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8430) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8437) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8433) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8406) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8412) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8432) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8424) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
....

I'd use kvmalloc() instead, but....

- 48.19% xfs_attr_create_intent
- 46.89% xfs_attri_init
- kvmalloc_node
- 46.04% __kmalloc_node
- kmalloc_large_node
- 45.99% __alloc_pages
- 39.39% __alloc_pages_slowpath.constprop.0
- 38.89% __alloc_pages_direct_compact
- 38.71% try_to_compact_pages
- compact_zone_order
- compact_zone
- 21.09% isolate_migratepages_block
10.31% PageHuge
5.82% set_pfnblock_flags_mask
0.86% get_pfnblock_flags_mask
- 4.48% __reset_isolation_suitable
4.44% __reset_isolation_pfn
- 3.56% __pageblock_pfn_to_page
1.33% pfn_to_online_page
2.83% get_pfnblock_flags_mask
- 0.87% migrate_pages
0.86% compaction_alloc
0.84% find_suitable_fallback
- 6.60% get_page_from_freelist
4.99% clear_page_erms
- 1.19% _raw_spin_lock_irqsave
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.86% __vmalloc_node_range
0.65% __alloc_pages_bulk

.... this is just yet another reminder of how much kvmalloc() sucks.
So lift xlog_cil_kvmalloc(), rename it to xlog_kvmalloc() and use
that instead....

We also clean up the attribute name and value lengths as they no
longer need to be rounded out to sizes compatible with log vectors.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 45ff8b47 Wed May 11 23:12:57 MDT 2022 Dave Chinner <dchinner@redhat.com> xfs: can't use kmem_zalloc() for attribute buffers

Because heap allocation of 64kB buffers will fail:

....
XFS: fs_mark(8414) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8417) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8409) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8428) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8430) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8437) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8433) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8406) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8412) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8432) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8424) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
....

I'd use kvmalloc() instead, but....

- 48.19% xfs_attr_create_intent
- 46.89% xfs_attri_init
- kvmalloc_node
- 46.04% __kmalloc_node
- kmalloc_large_node
- 45.99% __alloc_pages
- 39.39% __alloc_pages_slowpath.constprop.0
- 38.89% __alloc_pages_direct_compact
- 38.71% try_to_compact_pages
- compact_zone_order
- compact_zone
- 21.09% isolate_migratepages_block
10.31% PageHuge
5.82% set_pfnblock_flags_mask
0.86% get_pfnblock_flags_mask
- 4.48% __reset_isolation_suitable
4.44% __reset_isolation_pfn
- 3.56% __pageblock_pfn_to_page
1.33% pfn_to_online_page
2.83% get_pfnblock_flags_mask
- 0.87% migrate_pages
0.86% compaction_alloc
0.84% find_suitable_fallback
- 6.60% get_page_from_freelist
4.99% clear_page_erms
- 1.19% _raw_spin_lock_irqsave
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.86% __vmalloc_node_range
0.65% __alloc_pages_bulk

.... this is just yet another reminder of how much kvmalloc() sucks.
So lift xlog_cil_kvmalloc(), rename it to xlog_kvmalloc() and use
that instead....

We also clean up the attribute name and value lengths as they no
longer need to be rounded out to sizes compatible with log vectors.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 45ff8b47 Wed May 11 23:12:57 MDT 2022 Dave Chinner <dchinner@redhat.com> xfs: can't use kmem_zalloc() for attribute buffers

Because heap allocation of 64kB buffers will fail:

....
XFS: fs_mark(8414) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8417) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8409) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8428) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8430) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8437) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8433) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8406) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8412) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8432) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8424) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
....

I'd use kvmalloc() instead, but....

- 48.19% xfs_attr_create_intent
- 46.89% xfs_attri_init
- kvmalloc_node
- 46.04% __kmalloc_node
- kmalloc_large_node
- 45.99% __alloc_pages
- 39.39% __alloc_pages_slowpath.constprop.0
- 38.89% __alloc_pages_direct_compact
- 38.71% try_to_compact_pages
- compact_zone_order
- compact_zone
- 21.09% isolate_migratepages_block
10.31% PageHuge
5.82% set_pfnblock_flags_mask
0.86% get_pfnblock_flags_mask
- 4.48% __reset_isolation_suitable
4.44% __reset_isolation_pfn
- 3.56% __pageblock_pfn_to_page
1.33% pfn_to_online_page
2.83% get_pfnblock_flags_mask
- 0.87% migrate_pages
0.86% compaction_alloc
0.84% find_suitable_fallback
- 6.60% get_page_from_freelist
4.99% clear_page_erms
- 1.19% _raw_spin_lock_irqsave
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.86% __vmalloc_node_range
0.65% __alloc_pages_bulk

.... this is just yet another reminder of how much kvmalloc() sucks.
So lift xlog_cil_kvmalloc(), rename it to xlog_kvmalloc() and use
that instead....

We also clean up the attribute name and value lengths as they no
longer need to be rounded out to sizes compatible with log vectors.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 45ff8b47 Wed May 11 23:12:57 MDT 2022 Dave Chinner <dchinner@redhat.com> xfs: can't use kmem_zalloc() for attribute buffers

Because heap allocation of 64kB buffers will fail:

....
XFS: fs_mark(8414) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8417) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8409) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8428) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8430) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8437) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8433) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8406) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8412) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8432) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8424) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
....

I'd use kvmalloc() instead, but....

- 48.19% xfs_attr_create_intent
- 46.89% xfs_attri_init
- kvmalloc_node
- 46.04% __kmalloc_node
- kmalloc_large_node
- 45.99% __alloc_pages
- 39.39% __alloc_pages_slowpath.constprop.0
- 38.89% __alloc_pages_direct_compact
- 38.71% try_to_compact_pages
- compact_zone_order
- compact_zone
- 21.09% isolate_migratepages_block
10.31% PageHuge
5.82% set_pfnblock_flags_mask
0.86% get_pfnblock_flags_mask
- 4.48% __reset_isolation_suitable
4.44% __reset_isolation_pfn
- 3.56% __pageblock_pfn_to_page
1.33% pfn_to_online_page
2.83% get_pfnblock_flags_mask
- 0.87% migrate_pages
0.86% compaction_alloc
0.84% find_suitable_fallback
- 6.60% get_page_from_freelist
4.99% clear_page_erms
- 1.19% _raw_spin_lock_irqsave
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.86% __vmalloc_node_range
0.65% __alloc_pages_bulk

.... this is just yet another reminder of how much kvmalloc() sucks.
So lift xlog_cil_kvmalloc(), rename it to xlog_kvmalloc() and use
that instead....

We also clean up the attribute name and value lengths as they no
longer need to be rounded out to sizes compatible with log vectors.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 45ff8b47 Wed May 11 23:12:57 MDT 2022 Dave Chinner <dchinner@redhat.com> xfs: can't use kmem_zalloc() for attribute buffers

Because heap allocation of 64kB buffers will fail:

....
XFS: fs_mark(8414) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8417) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8409) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8428) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8430) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8437) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8433) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8406) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8412) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8432) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8424) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
....

I'd use kvmalloc() instead, but....

- 48.19% xfs_attr_create_intent
- 46.89% xfs_attri_init
- kvmalloc_node
- 46.04% __kmalloc_node
- kmalloc_large_node
- 45.99% __alloc_pages
- 39.39% __alloc_pages_slowpath.constprop.0
- 38.89% __alloc_pages_direct_compact
- 38.71% try_to_compact_pages
- compact_zone_order
- compact_zone
- 21.09% isolate_migratepages_block
10.31% PageHuge
5.82% set_pfnblock_flags_mask
0.86% get_pfnblock_flags_mask
- 4.48% __reset_isolation_suitable
4.44% __reset_isolation_pfn
- 3.56% __pageblock_pfn_to_page
1.33% pfn_to_online_page
2.83% get_pfnblock_flags_mask
- 0.87% migrate_pages
0.86% compaction_alloc
0.84% find_suitable_fallback
- 6.60% get_page_from_freelist
4.99% clear_page_erms
- 1.19% _raw_spin_lock_irqsave
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.86% __vmalloc_node_range
0.65% __alloc_pages_bulk

.... this is just yet another reminder of how much kvmalloc() sucks.
So lift xlog_cil_kvmalloc(), rename it to xlog_kvmalloc() and use
that instead....

We also clean up the attribute name and value lengths as they no
longer need to be rounded out to sizes compatible with log vectors.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 45ff8b47 Wed May 11 23:12:57 MDT 2022 Dave Chinner <dchinner@redhat.com> xfs: can't use kmem_zalloc() for attribute buffers

Because heap allocation of 64kB buffers will fail:

....
XFS: fs_mark(8414) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8417) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8409) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8428) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8430) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8437) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8433) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8406) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8412) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8432) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8424) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
....

I'd use kvmalloc() instead, but....

- 48.19% xfs_attr_create_intent
- 46.89% xfs_attri_init
- kvmalloc_node
- 46.04% __kmalloc_node
- kmalloc_large_node
- 45.99% __alloc_pages
- 39.39% __alloc_pages_slowpath.constprop.0
- 38.89% __alloc_pages_direct_compact
- 38.71% try_to_compact_pages
- compact_zone_order
- compact_zone
- 21.09% isolate_migratepages_block
10.31% PageHuge
5.82% set_pfnblock_flags_mask
0.86% get_pfnblock_flags_mask
- 4.48% __reset_isolation_suitable
4.44% __reset_isolation_pfn
- 3.56% __pageblock_pfn_to_page
1.33% pfn_to_online_page
2.83% get_pfnblock_flags_mask
- 0.87% migrate_pages
0.86% compaction_alloc
0.84% find_suitable_fallback
- 6.60% get_page_from_freelist
4.99% clear_page_erms
- 1.19% _raw_spin_lock_irqsave
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.86% __vmalloc_node_range
0.65% __alloc_pages_bulk

.... this is just yet another reminder of how much kvmalloc() sucks.
So lift xlog_cil_kvmalloc(), rename it to xlog_kvmalloc() and use
that instead....

We also clean up the attribute name and value lengths as they no
longer need to be rounded out to sizes compatible with log vectors.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 45ff8b47 Wed May 11 23:12:57 MDT 2022 Dave Chinner <dchinner@redhat.com> xfs: can't use kmem_zalloc() for attribute buffers

Because heap allocation of 64kB buffers will fail:

....
XFS: fs_mark(8414) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8417) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8409) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8428) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8430) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8437) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8433) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8406) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8412) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8432) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8424) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
....

I'd use kvmalloc() instead, but....

- 48.19% xfs_attr_create_intent
- 46.89% xfs_attri_init
- kvmalloc_node
- 46.04% __kmalloc_node
- kmalloc_large_node
- 45.99% __alloc_pages
- 39.39% __alloc_pages_slowpath.constprop.0
- 38.89% __alloc_pages_direct_compact
- 38.71% try_to_compact_pages
- compact_zone_order
- compact_zone
- 21.09% isolate_migratepages_block
10.31% PageHuge
5.82% set_pfnblock_flags_mask
0.86% get_pfnblock_flags_mask
- 4.48% __reset_isolation_suitable
4.44% __reset_isolation_pfn
- 3.56% __pageblock_pfn_to_page
1.33% pfn_to_online_page
2.83% get_pfnblock_flags_mask
- 0.87% migrate_pages
0.86% compaction_alloc
0.84% find_suitable_fallback
- 6.60% get_page_from_freelist
4.99% clear_page_erms
- 1.19% _raw_spin_lock_irqsave
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.86% __vmalloc_node_range
0.65% __alloc_pages_bulk

.... this is just yet another reminder of how much kvmalloc() sucks.
So lift xlog_cil_kvmalloc(), rename it to xlog_kvmalloc() and use
that instead....

We also clean up the attribute name and value lengths as they no
longer need to be rounded out to sizes compatible with log vectors.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 45ff8b47 Wed May 11 23:12:57 MDT 2022 Dave Chinner <dchinner@redhat.com> xfs: can't use kmem_zalloc() for attribute buffers

Because heap allocation of 64kB buffers will fail:

....
XFS: fs_mark(8414) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8417) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8409) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8428) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8430) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8437) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8433) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8406) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8412) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8432) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8424) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
....

I'd use kvmalloc() instead, but....

- 48.19% xfs_attr_create_intent
- 46.89% xfs_attri_init
- kvmalloc_node
- 46.04% __kmalloc_node
- kmalloc_large_node
- 45.99% __alloc_pages
- 39.39% __alloc_pages_slowpath.constprop.0
- 38.89% __alloc_pages_direct_compact
- 38.71% try_to_compact_pages
- compact_zone_order
- compact_zone
- 21.09% isolate_migratepages_block
10.31% PageHuge
5.82% set_pfnblock_flags_mask
0.86% get_pfnblock_flags_mask
- 4.48% __reset_isolation_suitable
4.44% __reset_isolation_pfn
- 3.56% __pageblock_pfn_to_page
1.33% pfn_to_online_page
2.83% get_pfnblock_flags_mask
- 0.87% migrate_pages
0.86% compaction_alloc
0.84% find_suitable_fallback
- 6.60% get_page_from_freelist
4.99% clear_page_erms
- 1.19% _raw_spin_lock_irqsave
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.86% __vmalloc_node_range
0.65% __alloc_pages_bulk

.... this is just yet another reminder of how much kvmalloc() sucks.
So lift xlog_cil_kvmalloc(), rename it to xlog_kvmalloc() and use
that instead....

We also clean up the attribute name and value lengths as they no
longer need to be rounded out to sizes compatible with log vectors.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 45ff8b47 Wed May 11 23:12:57 MDT 2022 Dave Chinner <dchinner@redhat.com> xfs: can't use kmem_zalloc() for attribute buffers

Because heap allocation of 64kB buffers will fail:

....
XFS: fs_mark(8414) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8417) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8409) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8428) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8430) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8437) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8433) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8406) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8412) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8432) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8424) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
....

I'd use kvmalloc() instead, but....

- 48.19% xfs_attr_create_intent
- 46.89% xfs_attri_init
- kvmalloc_node
- 46.04% __kmalloc_node
- kmalloc_large_node
- 45.99% __alloc_pages
- 39.39% __alloc_pages_slowpath.constprop.0
- 38.89% __alloc_pages_direct_compact
- 38.71% try_to_compact_pages
- compact_zone_order
- compact_zone
- 21.09% isolate_migratepages_block
10.31% PageHuge
5.82% set_pfnblock_flags_mask
0.86% get_pfnblock_flags_mask
- 4.48% __reset_isolation_suitable
4.44% __reset_isolation_pfn
- 3.56% __pageblock_pfn_to_page
1.33% pfn_to_online_page
2.83% get_pfnblock_flags_mask
- 0.87% migrate_pages
0.86% compaction_alloc
0.84% find_suitable_fallback
- 6.60% get_page_from_freelist
4.99% clear_page_erms
- 1.19% _raw_spin_lock_irqsave
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.86% __vmalloc_node_range
0.65% __alloc_pages_bulk

.... this is just yet another reminder of how much kvmalloc() sucks.
So lift xlog_cil_kvmalloc(), rename it to xlog_kvmalloc() and use
that instead....

We also clean up the attribute name and value lengths as they no
longer need to be rounded out to sizes compatible with log vectors.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 45ff8b47 Wed May 11 23:12:57 MDT 2022 Dave Chinner <dchinner@redhat.com> xfs: can't use kmem_zalloc() for attribute buffers

Because heap allocation of 64kB buffers will fail:

....
XFS: fs_mark(8414) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8417) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8409) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8428) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8430) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8437) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8433) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8406) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8412) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8432) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8424) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
....

I'd use kvmalloc() instead, but....

- 48.19% xfs_attr_create_intent
- 46.89% xfs_attri_init
- kvmalloc_node
- 46.04% __kmalloc_node
- kmalloc_large_node
- 45.99% __alloc_pages
- 39.39% __alloc_pages_slowpath.constprop.0
- 38.89% __alloc_pages_direct_compact
- 38.71% try_to_compact_pages
- compact_zone_order
- compact_zone
- 21.09% isolate_migratepages_block
10.31% PageHuge
5.82% set_pfnblock_flags_mask
0.86% get_pfnblock_flags_mask
- 4.48% __reset_isolation_suitable
4.44% __reset_isolation_pfn
- 3.56% __pageblock_pfn_to_page
1.33% pfn_to_online_page
2.83% get_pfnblock_flags_mask
- 0.87% migrate_pages
0.86% compaction_alloc
0.84% find_suitable_fallback
- 6.60% get_page_from_freelist
4.99% clear_page_erms
- 1.19% _raw_spin_lock_irqsave
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.86% __vmalloc_node_range
0.65% __alloc_pages_bulk

.... this is just yet another reminder of how much kvmalloc() sucks.
So lift xlog_cil_kvmalloc(), rename it to xlog_kvmalloc() and use
that instead....

We also clean up the attribute name and value lengths as they no
longer need to be rounded out to sizes compatible with log vectors.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 45ff8b47 Wed May 11 23:12:57 MDT 2022 Dave Chinner <dchinner@redhat.com> xfs: can't use kmem_zalloc() for attribute buffers

Because heap allocation of 64kB buffers will fail:

....
XFS: fs_mark(8414) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8417) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8409) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8428) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8430) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8437) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8433) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8406) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8412) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8432) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8424) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
....

I'd use kvmalloc() instead, but....

- 48.19% xfs_attr_create_intent
- 46.89% xfs_attri_init
- kvmalloc_node
- 46.04% __kmalloc_node
- kmalloc_large_node
- 45.99% __alloc_pages
- 39.39% __alloc_pages_slowpath.constprop.0
- 38.89% __alloc_pages_direct_compact
- 38.71% try_to_compact_pages
- compact_zone_order
- compact_zone
- 21.09% isolate_migratepages_block
10.31% PageHuge
5.82% set_pfnblock_flags_mask
0.86% get_pfnblock_flags_mask
- 4.48% __reset_isolation_suitable
4.44% __reset_isolation_pfn
- 3.56% __pageblock_pfn_to_page
1.33% pfn_to_online_page
2.83% get_pfnblock_flags_mask
- 0.87% migrate_pages
0.86% compaction_alloc
0.84% find_suitable_fallback
- 6.60% get_page_from_freelist
4.99% clear_page_erms
- 1.19% _raw_spin_lock_irqsave
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.86% __vmalloc_node_range
0.65% __alloc_pages_bulk

.... this is just yet another reminder of how much kvmalloc() sucks.
So lift xlog_cil_kvmalloc(), rename it to xlog_kvmalloc() and use
that instead....

We also clean up the attribute name and value lengths as they no
longer need to be rounded out to sizes compatible with log vectors.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 45ff8b47 Wed May 11 23:12:57 MDT 2022 Dave Chinner <dchinner@redhat.com> xfs: can't use kmem_zalloc() for attribute buffers

Because heap allocation of 64kB buffers will fail:

....
XFS: fs_mark(8414) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8417) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8409) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8428) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8430) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8437) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8433) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8406) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8412) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8432) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
XFS: fs_mark(8424) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40)
....

I'd use kvmalloc() instead, but....

- 48.19% xfs_attr_create_intent
- 46.89% xfs_attri_init
- kvmalloc_node
- 46.04% __kmalloc_node
- kmalloc_large_node
- 45.99% __alloc_pages
- 39.39% __alloc_pages_slowpath.constprop.0
- 38.89% __alloc_pages_direct_compact
- 38.71% try_to_compact_pages
- compact_zone_order
- compact_zone
- 21.09% isolate_migratepages_block
10.31% PageHuge
5.82% set_pfnblock_flags_mask
0.86% get_pfnblock_flags_mask
- 4.48% __reset_isolation_suitable
4.44% __reset_isolation_pfn
- 3.56% __pageblock_pfn_to_page
1.33% pfn_to_online_page
2.83% get_pfnblock_flags_mask
- 0.87% migrate_pages
0.86% compaction_alloc
0.84% find_suitable_fallback
- 6.60% get_page_from_freelist
4.99% clear_page_erms
- 1.19% _raw_spin_lock_irqsave
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.86% __vmalloc_node_range
0.65% __alloc_pages_bulk

.... this is just yet another reminder of how much kvmalloc() sucks.
So lift xlog_cil_kvmalloc(), rename it to xlog_kvmalloc() and use
that instead....

We also clean up the attribute name and value lengths as they no
longer need to be rounded out to sizes compatible with log vectors.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
H A Dxfs_reflink.cdiff d6211330 Thu Aug 04 09:59:27 MDT 2022 Chandan Babu R <chandan.babu@oracle.com> xfs: Fix false ENOSPC when performing direct write on a delalloc extent in cow fork

On a higly fragmented filesystem a Direct IO write can fail with -ENOSPC error
even though the filesystem has sufficient number of free blocks.

This occurs if the file offset range on which the write operation is being
performed has a delalloc extent in the cow fork and this delalloc extent
begins much before the Direct IO range.

In such a scenario, xfs_reflink_allocate_cow() invokes xfs_bmapi_write() to
allocate the blocks mapped by the delalloc extent. The extent thus allocated
may not cover the beginning of file offset range on which the Direct IO write
was issued. Hence xfs_reflink_allocate_cow() ends up returning -ENOSPC.

The following script reliably recreates the bug described above.

#!/usr/bin/bash

device=/dev/loop0
shortdev=$(basename $device)

mntpnt=/mnt/
file1=${mntpnt}/file1
file2=${mntpnt}/file2
fragmentedfile=${mntpnt}/fragmentedfile
punchprog=/root/repos/xfstests-dev/src/punch-alternating

errortag=/sys/fs/xfs/${shortdev}/errortag/bmap_alloc_minlen_extent

umount $device > /dev/null 2>&1

echo "Create FS"
mkfs.xfs -f -m reflink=1 $device > /dev/null 2>&1
if [[ $? != 0 ]]; then
echo "mkfs failed."
exit 1
fi

echo "Mount FS"
mount $device $mntpnt > /dev/null 2>&1
if [[ $? != 0 ]]; then
echo "mount failed."
exit 1
fi

echo "Create source file"
xfs_io -f -c "pwrite 0 32M" $file1 > /dev/null 2>&1

sync

echo "Create Reflinked file"
xfs_io -f -c "reflink $file1" $file2 &>/dev/null

echo "Set cowextsize"
xfs_io -c "cowextsize 16M" $file1 > /dev/null 2>&1

echo "Fragment FS"
xfs_io -f -c "pwrite 0 64M" $fragmentedfile > /dev/null 2>&1
sync
$punchprog $fragmentedfile

echo "Allocate block sized extent from now onwards"
echo -n 1 > $errortag

echo "Create 16MiB delalloc extent in CoW fork"
xfs_io -c "pwrite 0 4k" $file1 > /dev/null 2>&1

sync

echo "Direct I/O write at offset 12k"
xfs_io -d -c "pwrite 12k 8k" $file1

This commit fixes the bug by invoking xfs_bmapi_write() in a loop until disk
blocks are allocated for atleast the starting file offset of the Direct IO
write range.

Fixes: 3c68d44a2b49 ("xfs: allocate direct I/O COW blocks in iomap_begin")
Reported-and-Root-caused-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
[djwong: slight editing to make the locking less grody, and fix some style things]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff d6211330 Thu Aug 04 09:59:27 MDT 2022 Chandan Babu R <chandan.babu@oracle.com> xfs: Fix false ENOSPC when performing direct write on a delalloc extent in cow fork

On a higly fragmented filesystem a Direct IO write can fail with -ENOSPC error
even though the filesystem has sufficient number of free blocks.

This occurs if the file offset range on which the write operation is being
performed has a delalloc extent in the cow fork and this delalloc extent
begins much before the Direct IO range.

In such a scenario, xfs_reflink_allocate_cow() invokes xfs_bmapi_write() to
allocate the blocks mapped by the delalloc extent. The extent thus allocated
may not cover the beginning of file offset range on which the Direct IO write
was issued. Hence xfs_reflink_allocate_cow() ends up returning -ENOSPC.

The following script reliably recreates the bug described above.

#!/usr/bin/bash

device=/dev/loop0
shortdev=$(basename $device)

mntpnt=/mnt/
file1=${mntpnt}/file1
file2=${mntpnt}/file2
fragmentedfile=${mntpnt}/fragmentedfile
punchprog=/root/repos/xfstests-dev/src/punch-alternating

errortag=/sys/fs/xfs/${shortdev}/errortag/bmap_alloc_minlen_extent

umount $device > /dev/null 2>&1

echo "Create FS"
mkfs.xfs -f -m reflink=1 $device > /dev/null 2>&1
if [[ $? != 0 ]]; then
echo "mkfs failed."
exit 1
fi

echo "Mount FS"
mount $device $mntpnt > /dev/null 2>&1
if [[ $? != 0 ]]; then
echo "mount failed."
exit 1
fi

echo "Create source file"
xfs_io -f -c "pwrite 0 32M" $file1 > /dev/null 2>&1

sync

echo "Create Reflinked file"
xfs_io -f -c "reflink $file1" $file2 &>/dev/null

echo "Set cowextsize"
xfs_io -c "cowextsize 16M" $file1 > /dev/null 2>&1

echo "Fragment FS"
xfs_io -f -c "pwrite 0 64M" $fragmentedfile > /dev/null 2>&1
sync
$punchprog $fragmentedfile

echo "Allocate block sized extent from now onwards"
echo -n 1 > $errortag

echo "Create 16MiB delalloc extent in CoW fork"
xfs_io -c "pwrite 0 4k" $file1 > /dev/null 2>&1

sync

echo "Direct I/O write at offset 12k"
xfs_io -d -c "pwrite 12k 8k" $file1

This commit fixes the bug by invoking xfs_bmapi_write() in a loop until disk
blocks are allocated for atleast the starting file offset of the Direct IO
write range.

Fixes: 3c68d44a2b49 ("xfs: allocate direct I/O COW blocks in iomap_begin")
Reported-and-Root-caused-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
[djwong: slight editing to make the locking less grody, and fix some style things]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff d6211330 Thu Aug 04 09:59:27 MDT 2022 Chandan Babu R <chandan.babu@oracle.com> xfs: Fix false ENOSPC when performing direct write on a delalloc extent in cow fork

On a higly fragmented filesystem a Direct IO write can fail with -ENOSPC error
even though the filesystem has sufficient number of free blocks.

This occurs if the file offset range on which the write operation is being
performed has a delalloc extent in the cow fork and this delalloc extent
begins much before the Direct IO range.

In such a scenario, xfs_reflink_allocate_cow() invokes xfs_bmapi_write() to
allocate the blocks mapped by the delalloc extent. The extent thus allocated
may not cover the beginning of file offset range on which the Direct IO write
was issued. Hence xfs_reflink_allocate_cow() ends up returning -ENOSPC.

The following script reliably recreates the bug described above.

#!/usr/bin/bash

device=/dev/loop0
shortdev=$(basename $device)

mntpnt=/mnt/
file1=${mntpnt}/file1
file2=${mntpnt}/file2
fragmentedfile=${mntpnt}/fragmentedfile
punchprog=/root/repos/xfstests-dev/src/punch-alternating

errortag=/sys/fs/xfs/${shortdev}/errortag/bmap_alloc_minlen_extent

umount $device > /dev/null 2>&1

echo "Create FS"
mkfs.xfs -f -m reflink=1 $device > /dev/null 2>&1
if [[ $? != 0 ]]; then
echo "mkfs failed."
exit 1
fi

echo "Mount FS"
mount $device $mntpnt > /dev/null 2>&1
if [[ $? != 0 ]]; then
echo "mount failed."
exit 1
fi

echo "Create source file"
xfs_io -f -c "pwrite 0 32M" $file1 > /dev/null 2>&1

sync

echo "Create Reflinked file"
xfs_io -f -c "reflink $file1" $file2 &>/dev/null

echo "Set cowextsize"
xfs_io -c "cowextsize 16M" $file1 > /dev/null 2>&1

echo "Fragment FS"
xfs_io -f -c "pwrite 0 64M" $fragmentedfile > /dev/null 2>&1
sync
$punchprog $fragmentedfile

echo "Allocate block sized extent from now onwards"
echo -n 1 > $errortag

echo "Create 16MiB delalloc extent in CoW fork"
xfs_io -c "pwrite 0 4k" $file1 > /dev/null 2>&1

sync

echo "Direct I/O write at offset 12k"
xfs_io -d -c "pwrite 12k 8k" $file1

This commit fixes the bug by invoking xfs_bmapi_write() in a loop until disk
blocks are allocated for atleast the starting file offset of the Direct IO
write range.

Fixes: 3c68d44a2b49 ("xfs: allocate direct I/O COW blocks in iomap_begin")
Reported-and-Root-caused-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
[djwong: slight editing to make the locking less grody, and fix some style things]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff d6211330 Thu Aug 04 09:59:27 MDT 2022 Chandan Babu R <chandan.babu@oracle.com> xfs: Fix false ENOSPC when performing direct write on a delalloc extent in cow fork

On a higly fragmented filesystem a Direct IO write can fail with -ENOSPC error
even though the filesystem has sufficient number of free blocks.

This occurs if the file offset range on which the write operation is being
performed has a delalloc extent in the cow fork and this delalloc extent
begins much before the Direct IO range.

In such a scenario, xfs_reflink_allocate_cow() invokes xfs_bmapi_write() to
allocate the blocks mapped by the delalloc extent. The extent thus allocated
may not cover the beginning of file offset range on which the Direct IO write
was issued. Hence xfs_reflink_allocate_cow() ends up returning -ENOSPC.

The following script reliably recreates the bug described above.

#!/usr/bin/bash

device=/dev/loop0
shortdev=$(basename $device)

mntpnt=/mnt/
file1=${mntpnt}/file1
file2=${mntpnt}/file2
fragmentedfile=${mntpnt}/fragmentedfile
punchprog=/root/repos/xfstests-dev/src/punch-alternating

errortag=/sys/fs/xfs/${shortdev}/errortag/bmap_alloc_minlen_extent

umount $device > /dev/null 2>&1

echo "Create FS"
mkfs.xfs -f -m reflink=1 $device > /dev/null 2>&1
if [[ $? != 0 ]]; then
echo "mkfs failed."
exit 1
fi

echo "Mount FS"
mount $device $mntpnt > /dev/null 2>&1
if [[ $? != 0 ]]; then
echo "mount failed."
exit 1
fi

echo "Create source file"
xfs_io -f -c "pwrite 0 32M" $file1 > /dev/null 2>&1

sync

echo "Create Reflinked file"
xfs_io -f -c "reflink $file1" $file2 &>/dev/null

echo "Set cowextsize"
xfs_io -c "cowextsize 16M" $file1 > /dev/null 2>&1

echo "Fragment FS"
xfs_io -f -c "pwrite 0 64M" $fragmentedfile > /dev/null 2>&1
sync
$punchprog $fragmentedfile

echo "Allocate block sized extent from now onwards"
echo -n 1 > $errortag

echo "Create 16MiB delalloc extent in CoW fork"
xfs_io -c "pwrite 0 4k" $file1 > /dev/null 2>&1

sync

echo "Direct I/O write at offset 12k"
xfs_io -d -c "pwrite 12k 8k" $file1

This commit fixes the bug by invoking xfs_bmapi_write() in a loop until disk
blocks are allocated for atleast the starting file offset of the Direct IO
write range.

Fixes: 3c68d44a2b49 ("xfs: allocate direct I/O COW blocks in iomap_begin")
Reported-and-Root-caused-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
[djwong: slight editing to make the locking less grody, and fix some style things]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff d6211330 Thu Aug 04 09:59:27 MDT 2022 Chandan Babu R <chandan.babu@oracle.com> xfs: Fix false ENOSPC when performing direct write on a delalloc extent in cow fork

On a higly fragmented filesystem a Direct IO write can fail with -ENOSPC error
even though the filesystem has sufficient number of free blocks.

This occurs if the file offset range on which the write operation is being
performed has a delalloc extent in the cow fork and this delalloc extent
begins much before the Direct IO range.

In such a scenario, xfs_reflink_allocate_cow() invokes xfs_bmapi_write() to
allocate the blocks mapped by the delalloc extent. The extent thus allocated
may not cover the beginning of file offset range on which the Direct IO write
was issued. Hence xfs_reflink_allocate_cow() ends up returning -ENOSPC.

The following script reliably recreates the bug described above.

#!/usr/bin/bash

device=/dev/loop0
shortdev=$(basename $device)

mntpnt=/mnt/
file1=${mntpnt}/file1
file2=${mntpnt}/file2
fragmentedfile=${mntpnt}/fragmentedfile
punchprog=/root/repos/xfstests-dev/src/punch-alternating

errortag=/sys/fs/xfs/${shortdev}/errortag/bmap_alloc_minlen_extent

umount $device > /dev/null 2>&1

echo "Create FS"
mkfs.xfs -f -m reflink=1 $device > /dev/null 2>&1
if [[ $? != 0 ]]; then
echo "mkfs failed."
exit 1
fi

echo "Mount FS"
mount $device $mntpnt > /dev/null 2>&1
if [[ $? != 0 ]]; then
echo "mount failed."
exit 1
fi

echo "Create source file"
xfs_io -f -c "pwrite 0 32M" $file1 > /dev/null 2>&1

sync

echo "Create Reflinked file"
xfs_io -f -c "reflink $file1" $file2 &>/dev/null

echo "Set cowextsize"
xfs_io -c "cowextsize 16M" $file1 > /dev/null 2>&1

echo "Fragment FS"
xfs_io -f -c "pwrite 0 64M" $fragmentedfile > /dev/null 2>&1
sync
$punchprog $fragmentedfile

echo "Allocate block sized extent from now onwards"
echo -n 1 > $errortag

echo "Create 16MiB delalloc extent in CoW fork"
xfs_io -c "pwrite 0 4k" $file1 > /dev/null 2>&1

sync

echo "Direct I/O write at offset 12k"
xfs_io -d -c "pwrite 12k 8k" $file1

This commit fixes the bug by invoking xfs_bmapi_write() in a loop until disk
blocks are allocated for atleast the starting file offset of the Direct IO
write range.

Fixes: 3c68d44a2b49 ("xfs: allocate direct I/O COW blocks in iomap_begin")
Reported-and-Root-caused-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
[djwong: slight editing to make the locking less grody, and fix some style things]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff 7993f1a4 Wed Dec 15 12:52:23 MST 2021 Darrick J. Wong <djwong@kernel.org> xfs: only run COW extent recovery when there are no live extents

As part of multiple customer escalations due to file data corruption
after copy on write operations, I wrote some fstests that use fsstress
to hammer on COW to shake things loose. Regrettably, I caught some
filesystem shutdowns due to incorrect rmap operations with the following
loop:

mount <filesystem> # (0)
fsstress <run only readonly ops> & # (1)
while true; do
fsstress <run all ops>
mount -o remount,ro # (2)
fsstress <run only readonly ops>
mount -o remount,rw # (3)
done

When (2) happens, notice that (1) is still running. xfs_remount_ro will
call xfs_blockgc_stop to walk the inode cache to free all the COW
extents, but the blockgc mechanism races with (1)'s reader threads to
take IOLOCKs and loses, which means that it doesn't clean them all out.
Call such a file (A).

When (3) happens, xfs_remount_rw calls xfs_reflink_recover_cow, which
walks the ondisk refcount btree and frees any COW extent that it finds.
This function does not check the inode cache, which means that incore
COW forks of inode (A) is now inconsistent with the ondisk metadata. If
one of those former COW extents are allocated and mapped into another
file (B) and someone triggers a COW to the stale reservation in (A), A's
dirty data will be written into (B) and once that's done, those blocks
will be transferred to (A)'s data fork without bumping the refcount.

The results are catastrophic -- file (B) and the refcount btree are now
corrupt. In the first patch, we fixed the race condition in (2) so that
(A) will always flush the COW fork. In this second patch, we move the
_recover_cow call to the initial mount call in (0) for safety.

As mentioned previously, xfs_reflink_recover_cow walks the refcount
btree looking for COW staging extents, and frees them. This was
intended to be run at mount time (when we know there are no live inodes)
to clean up any leftover staging events that may have been left behind
during an unclean shutdown. As a time "optimization" for readonly
mounts, we deferred this to the ro->rw transition, not realizing that
any failure to clean all COW forks during a rw->ro transition would
result in catastrophic corruption.

Therefore, remove this optimization and only run the recovery routine
when we're guaranteed not to have any COW staging extents anywhere,
which means we always run this at mount time. While we're at it, move
the callsite to xfs_log_mount_finish because any refcount btree
expansion (however unlikely given that we're removing records from the
right side of the index) must be fed by a per-AG reservation, which
doesn't exist in its current location.

Fixes: 174edb0e46e5 ("xfs: store in-progress CoW allocations in the refcount btree")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 7993f1a4 Wed Dec 15 12:52:23 MST 2021 Darrick J. Wong <djwong@kernel.org> xfs: only run COW extent recovery when there are no live extents

As part of multiple customer escalations due to file data corruption
after copy on write operations, I wrote some fstests that use fsstress
to hammer on COW to shake things loose. Regrettably, I caught some
filesystem shutdowns due to incorrect rmap operations with the following
loop:

mount <filesystem> # (0)
fsstress <run only readonly ops> & # (1)
while true; do
fsstress <run all ops>
mount -o remount,ro # (2)
fsstress <run only readonly ops>
mount -o remount,rw # (3)
done

When (2) happens, notice that (1) is still running. xfs_remount_ro will
call xfs_blockgc_stop to walk the inode cache to free all the COW
extents, but the blockgc mechanism races with (1)'s reader threads to
take IOLOCKs and loses, which means that it doesn't clean them all out.
Call such a file (A).

When (3) happens, xfs_remount_rw calls xfs_reflink_recover_cow, which
walks the ondisk refcount btree and frees any COW extent that it finds.
This function does not check the inode cache, which means that incore
COW forks of inode (A) is now inconsistent with the ondisk metadata. If
one of those former COW extents are allocated and mapped into another
file (B) and someone triggers a COW to the stale reservation in (A), A's
dirty data will be written into (B) and once that's done, those blocks
will be transferred to (A)'s data fork without bumping the refcount.

The results are catastrophic -- file (B) and the refcount btree are now
corrupt. In the first patch, we fixed the race condition in (2) so that
(A) will always flush the COW fork. In this second patch, we move the
_recover_cow call to the initial mount call in (0) for safety.

As mentioned previously, xfs_reflink_recover_cow walks the refcount
btree looking for COW staging extents, and frees them. This was
intended to be run at mount time (when we know there are no live inodes)
to clean up any leftover staging events that may have been left behind
during an unclean shutdown. As a time "optimization" for readonly
mounts, we deferred this to the ro->rw transition, not realizing that
any failure to clean all COW forks during a rw->ro transition would
result in catastrophic corruption.

Therefore, remove this optimization and only run the recovery routine
when we're guaranteed not to have any COW staging extents anywhere,
which means we always run this at mount time. While we're at it, move
the callsite to xfs_log_mount_finish because any refcount btree
expansion (however unlikely given that we're removing records from the
right side of the index) must be fed by a per-AG reservation, which
doesn't exist in its current location.

Fixes: 174edb0e46e5 ("xfs: store in-progress CoW allocations in the refcount btree")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff aa124436 Mon Jan 20 15:34:47 MST 2020 zhengbin <zhengbin13@huawei.com> xfs: change return value of xfs_inode_need_cow to int

Fixes coccicheck warning:

fs/xfs/xfs_reflink.c:236:9-10: WARNING: return of 0/1 in function 'xfs_inode_need_cow' with return type bool

Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: zhengbin <zhengbin13@huawei.com>
[darrick: rename the function so it doesn't sound like a predicate]
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 66ae56a5 Mon Feb 18 10:38:49 MST 2019 Christoph Hellwig <hch@lst.de> xfs: introduce an always_cow mode

Add a mode where XFS never overwrites existing blocks in place. This
is to aid debugging our COW code, and also put infatructure in place
for things like possible future support for zoned block devices, which
can't support overwrites.

This mode is enabled globally by doing a:

echo 1 > /sys/fs/xfs/debug/always_cow

Note that the parameter is global to allow running all tests in xfstests
easily in this mode, which would not easily be possible with a per-fs
sysfs file.

In always_cow mode persistent preallocations are disabled, and fallocate
will fail when called with a 0 mode (with our without
FALLOC_FL_KEEP_SIZE), and not create unwritten extent for zeroed space
when called with FALLOC_FL_ZERO_RANGE or FALLOC_FL_UNSHARE_RANGE.

There are a few interesting xfstests failures when run in always_cow
mode:

- generic/392 fails because the bytes used in the file used to test
hole punch recovery are less after the log replay. This is
because the blocks written and then punched out are only freed
with a delay due to the logging mechanism.
- xfs/170 will fail as the already fragile file streams mechanism
doesn't seem to interact well with the COW allocator
- xfs/180 xfs/182 xfs/192 xfs/198 xfs/204 and xfs/208 will claim
the file system is badly fragmented, but there is not much we
can do to avoid that when always writing out of place
- xfs/205 fails because overwriting a file in always_cow mode
will require new space allocation and the assumption in the
test thus don't work anymore.
- xfs/326 fails to modify the file at all in always_cow mode after
injecting the refcount error, leading to an unexpected md5sum
after the remount, but that again is expected

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff d6f215f3 Wed Dec 12 09:46:19 MST 2018 Darrick J. Wong <darrick.wong@oracle.com> xfs: split up the xfs_reflink_end_cow work into smaller transactions

In xfs_reflink_end_cow, we allocate a single transaction for the entire
end_cow operation and then loop the CoW fork mappings to move them to
the data fork. This design fails on a heavily fragmented filesystem
where an inode's data fork has exactly one more extent than would fit in
an extents-format fork, because the unmap can collapse the data fork
into extents format (freeing the bmbt block) but the remap can expand
the data fork back into a (newly allocated) bmbt block. If the number
of extents we end up remapping is large, we can overflow the block
reservation because we reserved blocks assuming that we were adding
mappings into an already-cleared area of the data fork.

Let's say we have 8 extents in the data fork, 8 extents in the CoW fork,
and the data fork can hold at most 7 extents before needing to convert
to btree format; and that blocks A-P are discontiguous single-block
extents:

0......7
D: ABCDEFGH
C: IJKLMNOP

When a write to file blocks 0-7 completes, we must remap I-P into the
data fork. We start by removing H from the btree-format data fork. Now
we have 7 extents, so we convert the fork to extents format, freeing the
bmbt block. We then move P into the data fork and it now has 8 extents
again. We must convert the data fork back to btree format, requiring a
block allocation. If we repeat this sequence for blocks 6-5-4-3-2-1-0,
we'll need a total of 8 block allocations to remap all 8 blocks. We
reserved only enough blocks to handle one btree split (5 blocks on a 4k
block filesystem), which means we overflow the block reservation.

To fix this issue, create a separate helper function to remap a single
extent, and change _reflink_end_cow to call it in a tight loop over the
entire range we're completing. As a side effect this also removes the
size restrictions on how many extents we can end_cow at a time, though
nobody ever hit that. It is not reasonable to reserve N blocks to remap
N blocks.

Note that this can be reproduced after ~320 million fsx ops while
running generic/938 (long soak directio fsx exerciser):

XFS: Assertion failed: tp->t_blk_res >= tp->t_blk_res_used, file: fs/xfs/xfs_trans.c, line: 116
<machine registers snipped>
Call Trace:
xfs_trans_dup+0x211/0x250 [xfs]
xfs_trans_roll+0x6d/0x180 [xfs]
xfs_defer_trans_roll+0x10c/0x3b0 [xfs]
xfs_defer_finish_noroll+0xdf/0x740 [xfs]
xfs_defer_finish+0x13/0x70 [xfs]
xfs_reflink_end_cow+0x2c6/0x680 [xfs]
xfs_dio_write_end_io+0x115/0x220 [xfs]
iomap_dio_complete+0x3f/0x130
iomap_dio_rw+0x3c3/0x420
xfs_file_dio_aio_write+0x132/0x3c0 [xfs]
xfs_file_write_iter+0x8b/0xc0 [xfs]
__vfs_write+0x193/0x1f0
vfs_write+0xba/0x1c0
ksys_write+0x52/0xc0
do_syscall_64+0x50/0x160
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
H A Dxfs_iops.cdiff cbc06310 Fri Sep 29 12:43:18 MDT 2023 Jeff Layton <jlayton@kernel.org> xfs: reinstate the old i_version counter as STATX_CHANGE_COOKIE

The handling of STATX_CHANGE_COOKIE was moved into generic_fillattr in
commit 0d72b92883c6 (fs: pass the request_mask to generic_fillattr), but
we didn't account for the fact that xfs doesn't call generic_fillattr at
all.

Make XFS report its i_version as the STATX_CHANGE_COOKIE.

Fixes: 0d72b92883c6 (fs: pass the request_mask to generic_fillattr)
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff cbc06310 Fri Sep 29 12:43:18 MDT 2023 Jeff Layton <jlayton@kernel.org> xfs: reinstate the old i_version counter as STATX_CHANGE_COOKIE

The handling of STATX_CHANGE_COOKIE was moved into generic_fillattr in
commit 0d72b92883c6 (fs: pass the request_mask to generic_fillattr), but
we didn't account for the fact that xfs doesn't call generic_fillattr at
all.

Make XFS report its i_version as the STATX_CHANGE_COOKIE.

Fixes: 0d72b92883c6 (fs: pass the request_mask to generic_fillattr)
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff 0dbe12f2 Thu Jan 12 16:49:29 MST 2023 Christian Brauner <brauner@kernel.org> fs: port i_{g,u}id_{needs_}update() to mnt_idmap

Convert to struct mnt_idmap.

Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.

Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.

Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.

Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
diff e6a688c3 Mon Mar 22 10:52:03 MDT 2021 Dave Chinner <dchinner@redhat.com> xfs: initialise attr fork on inode create

When we allocate a new inode, we often need to add an attribute to
the inode as part of the create. This can happen as a result of
needing to add default ACLs or security labels before the inode is
made visible to userspace.

This is highly inefficient right now. We do the create transaction
to allocate the inode, then we do an "add attr fork" transaction to
modify the just created empty inode to set the inode fork offset to
allow attributes to be stored, then we go and do the attribute
creation.

This means 3 transactions instead of 1 to allocate an inode, and
this greatly increases the load on the CIL commit code, resulting in
excessive contention on the CIL spin locks and performance
degradation:

18.99% [kernel] [k] __pv_queued_spin_lock_slowpath
3.57% [kernel] [k] do_raw_spin_lock
2.51% [kernel] [k] __raw_callee_save___pv_queued_spin_unlock
2.48% [kernel] [k] memcpy
2.34% [kernel] [k] xfs_log_commit_cil

The typical profile resulting from running fsmark on a selinux enabled
filesytem is adds this overhead to the create path:

- 15.30% xfs_init_security
- 15.23% security_inode_init_security
- 13.05% xfs_initxattrs
- 12.94% xfs_attr_set
- 6.75% xfs_bmap_add_attrfork
- 5.51% xfs_trans_commit
- 5.48% __xfs_trans_commit
- 5.35% xfs_log_commit_cil
- 3.86% _raw_spin_lock
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.70% xfs_trans_alloc
0.52% xfs_trans_reserve
- 5.41% xfs_attr_set_args
- 5.39% xfs_attr_set_shortform.constprop.0
- 4.46% xfs_trans_commit
- 4.46% __xfs_trans_commit
- 4.33% xfs_log_commit_cil
- 2.74% _raw_spin_lock
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
0.60% xfs_inode_item_format
0.90% xfs_attr_try_sf_addname
- 1.99% selinux_inode_init_security
- 1.02% security_sid_to_context_force
- 1.00% security_sid_to_context_core
- 0.92% sidtab_entry_to_string
- 0.90% sidtab_sid2str_get
0.59% sidtab_sid2str_put.part.0
- 0.82% selinux_determine_inode_label
- 0.77% security_transition_sid
0.70% security_compute_sid.part.0

And fsmark creation rate performance drops by ~25%. The key point to
note here is that half the additional overhead comes from adding the
attribute fork to the newly created inode. That's crazy, considering
we can do this same thing at inode create time with a couple of
lines of code and no extra overhead.

So, if we know we are going to add an attribute immediately after
creating the inode, let's just initialise the attribute fork inside
the create transaction and chop that whole chunk of code out of
the create fast path. This completely removes the performance
drop caused by enabling SELinux, and the profile looks like:

- 8.99% xfs_init_security
- 9.00% security_inode_init_security
- 6.43% xfs_initxattrs
- 6.37% xfs_attr_set
- 5.45% xfs_attr_set_args
- 5.42% xfs_attr_set_shortform.constprop.0
- 4.51% xfs_trans_commit
- 4.54% __xfs_trans_commit
- 4.59% xfs_log_commit_cil
- 2.67% _raw_spin_lock
- 3.28% do_raw_spin_lock
3.08% __pv_queued_spin_lock_slowpath
0.66% xfs_inode_item_format
- 0.90% xfs_attr_try_sf_addname
- 0.60% xfs_trans_alloc
- 2.35% selinux_inode_init_security
- 1.25% security_sid_to_context_force
- 1.21% security_sid_to_context_core
- 1.19% sidtab_entry_to_string
- 1.20% sidtab_sid2str_get
- 0.86% sidtab_sid2str_put.part.0
- 0.62% _raw_spin_lock_irqsave
- 0.77% do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.84% selinux_determine_inode_label
- 0.83% security_transition_sid
0.86% security_compute_sid.part.0

Which indicates the XFS overhead of creating the selinux xattr has
been halved. This doesn't fix the CIL lock contention problem, just
means it's not a limiting factor for this workload. Lock contention
in the security subsystems is going to be an issue soon, though...

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[djwong: fix compilation error when CONFIG_SECURITY=n]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gao Xiang <hsiangkao@redhat.com>
diff e6a688c3 Mon Mar 22 10:52:03 MDT 2021 Dave Chinner <dchinner@redhat.com> xfs: initialise attr fork on inode create

When we allocate a new inode, we often need to add an attribute to
the inode as part of the create. This can happen as a result of
needing to add default ACLs or security labels before the inode is
made visible to userspace.

This is highly inefficient right now. We do the create transaction
to allocate the inode, then we do an "add attr fork" transaction to
modify the just created empty inode to set the inode fork offset to
allow attributes to be stored, then we go and do the attribute
creation.

This means 3 transactions instead of 1 to allocate an inode, and
this greatly increases the load on the CIL commit code, resulting in
excessive contention on the CIL spin locks and performance
degradation:

18.99% [kernel] [k] __pv_queued_spin_lock_slowpath
3.57% [kernel] [k] do_raw_spin_lock
2.51% [kernel] [k] __raw_callee_save___pv_queued_spin_unlock
2.48% [kernel] [k] memcpy
2.34% [kernel] [k] xfs_log_commit_cil

The typical profile resulting from running fsmark on a selinux enabled
filesytem is adds this overhead to the create path:

- 15.30% xfs_init_security
- 15.23% security_inode_init_security
- 13.05% xfs_initxattrs
- 12.94% xfs_attr_set
- 6.75% xfs_bmap_add_attrfork
- 5.51% xfs_trans_commit
- 5.48% __xfs_trans_commit
- 5.35% xfs_log_commit_cil
- 3.86% _raw_spin_lock
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.70% xfs_trans_alloc
0.52% xfs_trans_reserve
- 5.41% xfs_attr_set_args
- 5.39% xfs_attr_set_shortform.constprop.0
- 4.46% xfs_trans_commit
- 4.46% __xfs_trans_commit
- 4.33% xfs_log_commit_cil
- 2.74% _raw_spin_lock
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
0.60% xfs_inode_item_format
0.90% xfs_attr_try_sf_addname
- 1.99% selinux_inode_init_security
- 1.02% security_sid_to_context_force
- 1.00% security_sid_to_context_core
- 0.92% sidtab_entry_to_string
- 0.90% sidtab_sid2str_get
0.59% sidtab_sid2str_put.part.0
- 0.82% selinux_determine_inode_label
- 0.77% security_transition_sid
0.70% security_compute_sid.part.0

And fsmark creation rate performance drops by ~25%. The key point to
note here is that half the additional overhead comes from adding the
attribute fork to the newly created inode. That's crazy, considering
we can do this same thing at inode create time with a couple of
lines of code and no extra overhead.

So, if we know we are going to add an attribute immediately after
creating the inode, let's just initialise the attribute fork inside
the create transaction and chop that whole chunk of code out of
the create fast path. This completely removes the performance
drop caused by enabling SELinux, and the profile looks like:

- 8.99% xfs_init_security
- 9.00% security_inode_init_security
- 6.43% xfs_initxattrs
- 6.37% xfs_attr_set
- 5.45% xfs_attr_set_args
- 5.42% xfs_attr_set_shortform.constprop.0
- 4.51% xfs_trans_commit
- 4.54% __xfs_trans_commit
- 4.59% xfs_log_commit_cil
- 2.67% _raw_spin_lock
- 3.28% do_raw_spin_lock
3.08% __pv_queued_spin_lock_slowpath
0.66% xfs_inode_item_format
- 0.90% xfs_attr_try_sf_addname
- 0.60% xfs_trans_alloc
- 2.35% selinux_inode_init_security
- 1.25% security_sid_to_context_force
- 1.21% security_sid_to_context_core
- 1.19% sidtab_entry_to_string
- 1.20% sidtab_sid2str_get
- 0.86% sidtab_sid2str_put.part.0
- 0.62% _raw_spin_lock_irqsave
- 0.77% do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.84% selinux_determine_inode_label
- 0.83% security_transition_sid
0.86% security_compute_sid.part.0

Which indicates the XFS overhead of creating the selinux xattr has
been halved. This doesn't fix the CIL lock contention problem, just
means it's not a limiting factor for this workload. Lock contention
in the security subsystems is going to be an issue soon, though...

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[djwong: fix compilation error when CONFIG_SECURITY=n]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gao Xiang <hsiangkao@redhat.com>
diff e6a688c3 Mon Mar 22 10:52:03 MDT 2021 Dave Chinner <dchinner@redhat.com> xfs: initialise attr fork on inode create

When we allocate a new inode, we often need to add an attribute to
the inode as part of the create. This can happen as a result of
needing to add default ACLs or security labels before the inode is
made visible to userspace.

This is highly inefficient right now. We do the create transaction
to allocate the inode, then we do an "add attr fork" transaction to
modify the just created empty inode to set the inode fork offset to
allow attributes to be stored, then we go and do the attribute
creation.

This means 3 transactions instead of 1 to allocate an inode, and
this greatly increases the load on the CIL commit code, resulting in
excessive contention on the CIL spin locks and performance
degradation:

18.99% [kernel] [k] __pv_queued_spin_lock_slowpath
3.57% [kernel] [k] do_raw_spin_lock
2.51% [kernel] [k] __raw_callee_save___pv_queued_spin_unlock
2.48% [kernel] [k] memcpy
2.34% [kernel] [k] xfs_log_commit_cil

The typical profile resulting from running fsmark on a selinux enabled
filesytem is adds this overhead to the create path:

- 15.30% xfs_init_security
- 15.23% security_inode_init_security
- 13.05% xfs_initxattrs
- 12.94% xfs_attr_set
- 6.75% xfs_bmap_add_attrfork
- 5.51% xfs_trans_commit
- 5.48% __xfs_trans_commit
- 5.35% xfs_log_commit_cil
- 3.86% _raw_spin_lock
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.70% xfs_trans_alloc
0.52% xfs_trans_reserve
- 5.41% xfs_attr_set_args
- 5.39% xfs_attr_set_shortform.constprop.0
- 4.46% xfs_trans_commit
- 4.46% __xfs_trans_commit
- 4.33% xfs_log_commit_cil
- 2.74% _raw_spin_lock
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
0.60% xfs_inode_item_format
0.90% xfs_attr_try_sf_addname
- 1.99% selinux_inode_init_security
- 1.02% security_sid_to_context_force
- 1.00% security_sid_to_context_core
- 0.92% sidtab_entry_to_string
- 0.90% sidtab_sid2str_get
0.59% sidtab_sid2str_put.part.0
- 0.82% selinux_determine_inode_label
- 0.77% security_transition_sid
0.70% security_compute_sid.part.0

And fsmark creation rate performance drops by ~25%. The key point to
note here is that half the additional overhead comes from adding the
attribute fork to the newly created inode. That's crazy, considering
we can do this same thing at inode create time with a couple of
lines of code and no extra overhead.

So, if we know we are going to add an attribute immediately after
creating the inode, let's just initialise the attribute fork inside
the create transaction and chop that whole chunk of code out of
the create fast path. This completely removes the performance
drop caused by enabling SELinux, and the profile looks like:

- 8.99% xfs_init_security
- 9.00% security_inode_init_security
- 6.43% xfs_initxattrs
- 6.37% xfs_attr_set
- 5.45% xfs_attr_set_args
- 5.42% xfs_attr_set_shortform.constprop.0
- 4.51% xfs_trans_commit
- 4.54% __xfs_trans_commit
- 4.59% xfs_log_commit_cil
- 2.67% _raw_spin_lock
- 3.28% do_raw_spin_lock
3.08% __pv_queued_spin_lock_slowpath
0.66% xfs_inode_item_format
- 0.90% xfs_attr_try_sf_addname
- 0.60% xfs_trans_alloc
- 2.35% selinux_inode_init_security
- 1.25% security_sid_to_context_force
- 1.21% security_sid_to_context_core
- 1.19% sidtab_entry_to_string
- 1.20% sidtab_sid2str_get
- 0.86% sidtab_sid2str_put.part.0
- 0.62% _raw_spin_lock_irqsave
- 0.77% do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.84% selinux_determine_inode_label
- 0.83% security_transition_sid
0.86% security_compute_sid.part.0

Which indicates the XFS overhead of creating the selinux xattr has
been halved. This doesn't fix the CIL lock contention problem, just
means it's not a limiting factor for this workload. Lock contention
in the security subsystems is going to be an issue soon, though...

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[djwong: fix compilation error when CONFIG_SECURITY=n]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gao Xiang <hsiangkao@redhat.com>
diff e6a688c3 Mon Mar 22 10:52:03 MDT 2021 Dave Chinner <dchinner@redhat.com> xfs: initialise attr fork on inode create

When we allocate a new inode, we often need to add an attribute to
the inode as part of the create. This can happen as a result of
needing to add default ACLs or security labels before the inode is
made visible to userspace.

This is highly inefficient right now. We do the create transaction
to allocate the inode, then we do an "add attr fork" transaction to
modify the just created empty inode to set the inode fork offset to
allow attributes to be stored, then we go and do the attribute
creation.

This means 3 transactions instead of 1 to allocate an inode, and
this greatly increases the load on the CIL commit code, resulting in
excessive contention on the CIL spin locks and performance
degradation:

18.99% [kernel] [k] __pv_queued_spin_lock_slowpath
3.57% [kernel] [k] do_raw_spin_lock
2.51% [kernel] [k] __raw_callee_save___pv_queued_spin_unlock
2.48% [kernel] [k] memcpy
2.34% [kernel] [k] xfs_log_commit_cil

The typical profile resulting from running fsmark on a selinux enabled
filesytem is adds this overhead to the create path:

- 15.30% xfs_init_security
- 15.23% security_inode_init_security
- 13.05% xfs_initxattrs
- 12.94% xfs_attr_set
- 6.75% xfs_bmap_add_attrfork
- 5.51% xfs_trans_commit
- 5.48% __xfs_trans_commit
- 5.35% xfs_log_commit_cil
- 3.86% _raw_spin_lock
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.70% xfs_trans_alloc
0.52% xfs_trans_reserve
- 5.41% xfs_attr_set_args
- 5.39% xfs_attr_set_shortform.constprop.0
- 4.46% xfs_trans_commit
- 4.46% __xfs_trans_commit
- 4.33% xfs_log_commit_cil
- 2.74% _raw_spin_lock
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
0.60% xfs_inode_item_format
0.90% xfs_attr_try_sf_addname
- 1.99% selinux_inode_init_security
- 1.02% security_sid_to_context_force
- 1.00% security_sid_to_context_core
- 0.92% sidtab_entry_to_string
- 0.90% sidtab_sid2str_get
0.59% sidtab_sid2str_put.part.0
- 0.82% selinux_determine_inode_label
- 0.77% security_transition_sid
0.70% security_compute_sid.part.0

And fsmark creation rate performance drops by ~25%. The key point to
note here is that half the additional overhead comes from adding the
attribute fork to the newly created inode. That's crazy, considering
we can do this same thing at inode create time with a couple of
lines of code and no extra overhead.

So, if we know we are going to add an attribute immediately after
creating the inode, let's just initialise the attribute fork inside
the create transaction and chop that whole chunk of code out of
the create fast path. This completely removes the performance
drop caused by enabling SELinux, and the profile looks like:

- 8.99% xfs_init_security
- 9.00% security_inode_init_security
- 6.43% xfs_initxattrs
- 6.37% xfs_attr_set
- 5.45% xfs_attr_set_args
- 5.42% xfs_attr_set_shortform.constprop.0
- 4.51% xfs_trans_commit
- 4.54% __xfs_trans_commit
- 4.59% xfs_log_commit_cil
- 2.67% _raw_spin_lock
- 3.28% do_raw_spin_lock
3.08% __pv_queued_spin_lock_slowpath
0.66% xfs_inode_item_format
- 0.90% xfs_attr_try_sf_addname
- 0.60% xfs_trans_alloc
- 2.35% selinux_inode_init_security
- 1.25% security_sid_to_context_force
- 1.21% security_sid_to_context_core
- 1.19% sidtab_entry_to_string
- 1.20% sidtab_sid2str_get
- 0.86% sidtab_sid2str_put.part.0
- 0.62% _raw_spin_lock_irqsave
- 0.77% do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.84% selinux_determine_inode_label
- 0.83% security_transition_sid
0.86% security_compute_sid.part.0

Which indicates the XFS overhead of creating the selinux xattr has
been halved. This doesn't fix the CIL lock contention problem, just
means it's not a limiting factor for this workload. Lock contention
in the security subsystems is going to be an issue soon, though...

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[djwong: fix compilation error when CONFIG_SECURITY=n]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gao Xiang <hsiangkao@redhat.com>
diff e6a688c3 Mon Mar 22 10:52:03 MDT 2021 Dave Chinner <dchinner@redhat.com> xfs: initialise attr fork on inode create

When we allocate a new inode, we often need to add an attribute to
the inode as part of the create. This can happen as a result of
needing to add default ACLs or security labels before the inode is
made visible to userspace.

This is highly inefficient right now. We do the create transaction
to allocate the inode, then we do an "add attr fork" transaction to
modify the just created empty inode to set the inode fork offset to
allow attributes to be stored, then we go and do the attribute
creation.

This means 3 transactions instead of 1 to allocate an inode, and
this greatly increases the load on the CIL commit code, resulting in
excessive contention on the CIL spin locks and performance
degradation:

18.99% [kernel] [k] __pv_queued_spin_lock_slowpath
3.57% [kernel] [k] do_raw_spin_lock
2.51% [kernel] [k] __raw_callee_save___pv_queued_spin_unlock
2.48% [kernel] [k] memcpy
2.34% [kernel] [k] xfs_log_commit_cil

The typical profile resulting from running fsmark on a selinux enabled
filesytem is adds this overhead to the create path:

- 15.30% xfs_init_security
- 15.23% security_inode_init_security
- 13.05% xfs_initxattrs
- 12.94% xfs_attr_set
- 6.75% xfs_bmap_add_attrfork
- 5.51% xfs_trans_commit
- 5.48% __xfs_trans_commit
- 5.35% xfs_log_commit_cil
- 3.86% _raw_spin_lock
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.70% xfs_trans_alloc
0.52% xfs_trans_reserve
- 5.41% xfs_attr_set_args
- 5.39% xfs_attr_set_shortform.constprop.0
- 4.46% xfs_trans_commit
- 4.46% __xfs_trans_commit
- 4.33% xfs_log_commit_cil
- 2.74% _raw_spin_lock
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
0.60% xfs_inode_item_format
0.90% xfs_attr_try_sf_addname
- 1.99% selinux_inode_init_security
- 1.02% security_sid_to_context_force
- 1.00% security_sid_to_context_core
- 0.92% sidtab_entry_to_string
- 0.90% sidtab_sid2str_get
0.59% sidtab_sid2str_put.part.0
- 0.82% selinux_determine_inode_label
- 0.77% security_transition_sid
0.70% security_compute_sid.part.0

And fsmark creation rate performance drops by ~25%. The key point to
note here is that half the additional overhead comes from adding the
attribute fork to the newly created inode. That's crazy, considering
we can do this same thing at inode create time with a couple of
lines of code and no extra overhead.

So, if we know we are going to add an attribute immediately after
creating the inode, let's just initialise the attribute fork inside
the create transaction and chop that whole chunk of code out of
the create fast path. This completely removes the performance
drop caused by enabling SELinux, and the profile looks like:

- 8.99% xfs_init_security
- 9.00% security_inode_init_security
- 6.43% xfs_initxattrs
- 6.37% xfs_attr_set
- 5.45% xfs_attr_set_args
- 5.42% xfs_attr_set_shortform.constprop.0
- 4.51% xfs_trans_commit
- 4.54% __xfs_trans_commit
- 4.59% xfs_log_commit_cil
- 2.67% _raw_spin_lock
- 3.28% do_raw_spin_lock
3.08% __pv_queued_spin_lock_slowpath
0.66% xfs_inode_item_format
- 0.90% xfs_attr_try_sf_addname
- 0.60% xfs_trans_alloc
- 2.35% selinux_inode_init_security
- 1.25% security_sid_to_context_force
- 1.21% security_sid_to_context_core
- 1.19% sidtab_entry_to_string
- 1.20% sidtab_sid2str_get
- 0.86% sidtab_sid2str_put.part.0
- 0.62% _raw_spin_lock_irqsave
- 0.77% do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.84% selinux_determine_inode_label
- 0.83% security_transition_sid
0.86% security_compute_sid.part.0

Which indicates the XFS overhead of creating the selinux xattr has
been halved. This doesn't fix the CIL lock contention problem, just
means it's not a limiting factor for this workload. Lock contention
in the security subsystems is going to be an issue soon, though...

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[djwong: fix compilation error when CONFIG_SECURITY=n]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gao Xiang <hsiangkao@redhat.com>
diff e6a688c3 Mon Mar 22 10:52:03 MDT 2021 Dave Chinner <dchinner@redhat.com> xfs: initialise attr fork on inode create

When we allocate a new inode, we often need to add an attribute to
the inode as part of the create. This can happen as a result of
needing to add default ACLs or security labels before the inode is
made visible to userspace.

This is highly inefficient right now. We do the create transaction
to allocate the inode, then we do an "add attr fork" transaction to
modify the just created empty inode to set the inode fork offset to
allow attributes to be stored, then we go and do the attribute
creation.

This means 3 transactions instead of 1 to allocate an inode, and
this greatly increases the load on the CIL commit code, resulting in
excessive contention on the CIL spin locks and performance
degradation:

18.99% [kernel] [k] __pv_queued_spin_lock_slowpath
3.57% [kernel] [k] do_raw_spin_lock
2.51% [kernel] [k] __raw_callee_save___pv_queued_spin_unlock
2.48% [kernel] [k] memcpy
2.34% [kernel] [k] xfs_log_commit_cil

The typical profile resulting from running fsmark on a selinux enabled
filesytem is adds this overhead to the create path:

- 15.30% xfs_init_security
- 15.23% security_inode_init_security
- 13.05% xfs_initxattrs
- 12.94% xfs_attr_set
- 6.75% xfs_bmap_add_attrfork
- 5.51% xfs_trans_commit
- 5.48% __xfs_trans_commit
- 5.35% xfs_log_commit_cil
- 3.86% _raw_spin_lock
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.70% xfs_trans_alloc
0.52% xfs_trans_reserve
- 5.41% xfs_attr_set_args
- 5.39% xfs_attr_set_shortform.constprop.0
- 4.46% xfs_trans_commit
- 4.46% __xfs_trans_commit
- 4.33% xfs_log_commit_cil
- 2.74% _raw_spin_lock
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
0.60% xfs_inode_item_format
0.90% xfs_attr_try_sf_addname
- 1.99% selinux_inode_init_security
- 1.02% security_sid_to_context_force
- 1.00% security_sid_to_context_core
- 0.92% sidtab_entry_to_string
- 0.90% sidtab_sid2str_get
0.59% sidtab_sid2str_put.part.0
- 0.82% selinux_determine_inode_label
- 0.77% security_transition_sid
0.70% security_compute_sid.part.0

And fsmark creation rate performance drops by ~25%. The key point to
note here is that half the additional overhead comes from adding the
attribute fork to the newly created inode. That's crazy, considering
we can do this same thing at inode create time with a couple of
lines of code and no extra overhead.

So, if we know we are going to add an attribute immediately after
creating the inode, let's just initialise the attribute fork inside
the create transaction and chop that whole chunk of code out of
the create fast path. This completely removes the performance
drop caused by enabling SELinux, and the profile looks like:

- 8.99% xfs_init_security
- 9.00% security_inode_init_security
- 6.43% xfs_initxattrs
- 6.37% xfs_attr_set
- 5.45% xfs_attr_set_args
- 5.42% xfs_attr_set_shortform.constprop.0
- 4.51% xfs_trans_commit
- 4.54% __xfs_trans_commit
- 4.59% xfs_log_commit_cil
- 2.67% _raw_spin_lock
- 3.28% do_raw_spin_lock
3.08% __pv_queued_spin_lock_slowpath
0.66% xfs_inode_item_format
- 0.90% xfs_attr_try_sf_addname
- 0.60% xfs_trans_alloc
- 2.35% selinux_inode_init_security
- 1.25% security_sid_to_context_force
- 1.21% security_sid_to_context_core
- 1.19% sidtab_entry_to_string
- 1.20% sidtab_sid2str_get
- 0.86% sidtab_sid2str_put.part.0
- 0.62% _raw_spin_lock_irqsave
- 0.77% do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.84% selinux_determine_inode_label
- 0.83% security_transition_sid
0.86% security_compute_sid.part.0

Which indicates the XFS overhead of creating the selinux xattr has
been halved. This doesn't fix the CIL lock contention problem, just
means it's not a limiting factor for this workload. Lock contention
in the security subsystems is going to be an issue soon, though...

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[djwong: fix compilation error when CONFIG_SECURITY=n]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gao Xiang <hsiangkao@redhat.com>
diff 869ae85d Thu Oct 29 15:30:48 MDT 2020 Brian Foster <bfoster@redhat.com> xfs: flush new eof page on truncate to avoid post-eof corruption

It is possible to expose non-zeroed post-EOF data in XFS if the new
EOF page is dirty, backed by an unwritten block and the truncate
happens to race with writeback. iomap_truncate_page() will not zero
the post-EOF portion of the page if the underlying block is
unwritten. The subsequent call to truncate_setsize() will, but
doesn't dirty the page. Therefore, if writeback happens to complete
after iomap_truncate_page() (so it still sees the unwritten block)
but before truncate_setsize(), the cached page becomes inconsistent
with the on-disk block. A mapped read after the associated page is
reclaimed or invalidated exposes non-zero post-EOF data.

For example, consider the following sequence when run on a kernel
modified to explicitly flush the new EOF page within the race
window:

$ xfs_io -fc "falloc 0 4k" -c fsync /mnt/file
$ xfs_io -c "pwrite 0 4k" -c "truncate 1k" /mnt/file
...
$ xfs_io -c "mmap 0 4k" -c "mread -v 1k 8" /mnt/file
00000400: 00 00 00 00 00 00 00 00 ........
$ umount /mnt/; mount <dev> /mnt/
$ xfs_io -c "mmap 0 4k" -c "mread -v 1k 8" /mnt/file
00000400: cd cd cd cd cd cd cd cd ........

Update xfs_setattr_size() to explicitly flush the new EOF page prior
to the page truncate to ensure iomap has the latest state of the
underlying block.

Fixes: 68a9f5e7007c ("xfs: implement iomap based buffered write path")
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 869ae85d Thu Oct 29 15:30:48 MDT 2020 Brian Foster <bfoster@redhat.com> xfs: flush new eof page on truncate to avoid post-eof corruption

It is possible to expose non-zeroed post-EOF data in XFS if the new
EOF page is dirty, backed by an unwritten block and the truncate
happens to race with writeback. iomap_truncate_page() will not zero
the post-EOF portion of the page if the underlying block is
unwritten. The subsequent call to truncate_setsize() will, but
doesn't dirty the page. Therefore, if writeback happens to complete
after iomap_truncate_page() (so it still sees the unwritten block)
but before truncate_setsize(), the cached page becomes inconsistent
with the on-disk block. A mapped read after the associated page is
reclaimed or invalidated exposes non-zero post-EOF data.

For example, consider the following sequence when run on a kernel
modified to explicitly flush the new EOF page within the race
window:

$ xfs_io -fc "falloc 0 4k" -c fsync /mnt/file
$ xfs_io -c "pwrite 0 4k" -c "truncate 1k" /mnt/file
...
$ xfs_io -c "mmap 0 4k" -c "mread -v 1k 8" /mnt/file
00000400: 00 00 00 00 00 00 00 00 ........
$ umount /mnt/; mount <dev> /mnt/
$ xfs_io -c "mmap 0 4k" -c "mread -v 1k 8" /mnt/file
00000400: cd cd cd cd cd cd cd cd ........

Update xfs_setattr_size() to explicitly flush the new EOF page prior
to the page truncate to ensure iomap has the latest state of the
underlying block.

Fixes: 68a9f5e7007c ("xfs: implement iomap based buffered write path")
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 869ae85d Thu Oct 29 15:30:48 MDT 2020 Brian Foster <bfoster@redhat.com> xfs: flush new eof page on truncate to avoid post-eof corruption

It is possible to expose non-zeroed post-EOF data in XFS if the new
EOF page is dirty, backed by an unwritten block and the truncate
happens to race with writeback. iomap_truncate_page() will not zero
the post-EOF portion of the page if the underlying block is
unwritten. The subsequent call to truncate_setsize() will, but
doesn't dirty the page. Therefore, if writeback happens to complete
after iomap_truncate_page() (so it still sees the unwritten block)
but before truncate_setsize(), the cached page becomes inconsistent
with the on-disk block. A mapped read after the associated page is
reclaimed or invalidated exposes non-zero post-EOF data.

For example, consider the following sequence when run on a kernel
modified to explicitly flush the new EOF page within the race
window:

$ xfs_io -fc "falloc 0 4k" -c fsync /mnt/file
$ xfs_io -c "pwrite 0 4k" -c "truncate 1k" /mnt/file
...
$ xfs_io -c "mmap 0 4k" -c "mread -v 1k 8" /mnt/file
00000400: 00 00 00 00 00 00 00 00 ........
$ umount /mnt/; mount <dev> /mnt/
$ xfs_io -c "mmap 0 4k" -c "mread -v 1k 8" /mnt/file
00000400: cd cd cd cd cd cd cd cd ........

Update xfs_setattr_size() to explicitly flush the new EOF page prior
to the page truncate to ensure iomap has the latest state of the
underlying block.

Fixes: 68a9f5e7007c ("xfs: implement iomap based buffered write path")
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 869ae85d Thu Oct 29 15:30:48 MDT 2020 Brian Foster <bfoster@redhat.com> xfs: flush new eof page on truncate to avoid post-eof corruption

It is possible to expose non-zeroed post-EOF data in XFS if the new
EOF page is dirty, backed by an unwritten block and the truncate
happens to race with writeback. iomap_truncate_page() will not zero
the post-EOF portion of the page if the underlying block is
unwritten. The subsequent call to truncate_setsize() will, but
doesn't dirty the page. Therefore, if writeback happens to complete
after iomap_truncate_page() (so it still sees the unwritten block)
but before truncate_setsize(), the cached page becomes inconsistent
with the on-disk block. A mapped read after the associated page is
reclaimed or invalidated exposes non-zero post-EOF data.

For example, consider the following sequence when run on a kernel
modified to explicitly flush the new EOF page within the race
window:

$ xfs_io -fc "falloc 0 4k" -c fsync /mnt/file
$ xfs_io -c "pwrite 0 4k" -c "truncate 1k" /mnt/file
...
$ xfs_io -c "mmap 0 4k" -c "mread -v 1k 8" /mnt/file
00000400: 00 00 00 00 00 00 00 00 ........
$ umount /mnt/; mount <dev> /mnt/
$ xfs_io -c "mmap 0 4k" -c "mread -v 1k 8" /mnt/file
00000400: cd cd cd cd cd cd cd cd ........

Update xfs_setattr_size() to explicitly flush the new EOF page prior
to the page truncate to ensure iomap has the latest state of the
underlying block.

Fixes: 68a9f5e7007c ("xfs: implement iomap based buffered write path")
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
H A Dxfs_inode.cdiff e23d7e82 Thu Mar 14 11:07:02 MDT 2024 Andrey Albershteyn <aalbersh@redhat.com> xfs: allow cross-linking special files without project quota

There's an issue that if special files is created before quota
project is enabled, then it's not possible to link this file. This
works fine for normal files. This happens because xfs_quota skips
special files (no ioctls to set necessary flags). The check for
having the same project ID for source and destination then fails as
source file doesn't have any ID.

mkfs.xfs -f /dev/sda
mount -o prjquota /dev/sda /mnt/test

mkdir /mnt/test/foo
mkfifo /mnt/test/foo/fifo1

xfs_quota -xc "project -sp /mnt/test/foo 9" /mnt/test
> Setting up project 9 (path /mnt/test/foo)...
> xfs_quota: skipping special file /mnt/test/foo/fifo1
> Processed 1 (/etc/projects and cmdline) paths for project 9 with recursion depth infinite (-1).

ln /mnt/test/foo/fifo1 /mnt/test/foo/fifo1_link
> ln: failed to create hard link '/mnt/test/testdir/fifo1_link' => '/mnt/test/testdir/fifo1': Invalid cross-device link

mkfifo /mnt/test/foo/fifo2
ln /mnt/test/foo/fifo2 /mnt/test/foo/fifo2_link

Fix this by allowing linking of special files to the project quota
if special files doesn't have any ID set (ID = 0).

Signed-off-by: Andrey Albershteyn <aalbersh@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff 0e24ec3c Thu Feb 22 01:33:03 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: remember sick inodes that get inactivated

If an unhealthy inode gets inactivated, remember this fact in the
per-fs health summary.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff de6077ec Thu Feb 22 01:31:03 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: report ag header corruption errors to the health tracking system

Whenever we encounter a corrupt AG header, we should report that to the
health monitoring system for later reporting. Buffer readers that don't
respond to corruption events with a _mark_sick call can be detected with
the following script:

#!/bin/bash

# Detect missing calls to xfs_*_mark_sick

filter=cat
tty -s && filter=less

git grep -A10 -E '( = xfs_trans_read_buf| = xfs_buf_read\()' fs/xfs/*.[ch] fs/xfs/libxfs/*.[ch] | awk '
BEGIN {
ignore = 0;
lineno = 0;
delete lines;
}
{
if ($0 == "--") {
if (!ignore) {
for (i = 0; i < lineno; i++) {
print(lines[i]);
}
printf("--\n");
}
delete lines;
lineno = 0;
ignore = 0;
} else if ($0 ~ /mark_sick/) {
ignore = 1;
} else {
lines[lineno++] = $0;
}
}
' | $filter

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff de6077ec Thu Feb 22 01:31:03 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: report ag header corruption errors to the health tracking system

Whenever we encounter a corrupt AG header, we should report that to the
health monitoring system for later reporting. Buffer readers that don't
respond to corruption events with a _mark_sick call can be detected with
the following script:

#!/bin/bash

# Detect missing calls to xfs_*_mark_sick

filter=cat
tty -s && filter=less

git grep -A10 -E '( = xfs_trans_read_buf| = xfs_buf_read\()' fs/xfs/*.[ch] fs/xfs/libxfs/*.[ch] | awk '
BEGIN {
ignore = 0;
lineno = 0;
delete lines;
}
{
if ($0 == "--") {
if (!ignore) {
for (i = 0; i < lineno; i++) {
print(lines[i]);
}
printf("--\n");
}
delete lines;
lineno = 0;
ignore = 0;
} else if ($0 ~ /mark_sick/) {
ignore = 1;
} else {
lines[lineno++] = $0;
}
}
' | $filter

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff de6077ec Thu Feb 22 01:31:03 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: report ag header corruption errors to the health tracking system

Whenever we encounter a corrupt AG header, we should report that to the
health monitoring system for later reporting. Buffer readers that don't
respond to corruption events with a _mark_sick call can be detected with
the following script:

#!/bin/bash

# Detect missing calls to xfs_*_mark_sick

filter=cat
tty -s && filter=less

git grep -A10 -E '( = xfs_trans_read_buf| = xfs_buf_read\()' fs/xfs/*.[ch] fs/xfs/libxfs/*.[ch] | awk '
BEGIN {
ignore = 0;
lineno = 0;
delete lines;
}
{
if ($0 == "--") {
if (!ignore) {
for (i = 0; i < lineno; i++) {
print(lines[i]);
}
printf("--\n");
}
delete lines;
lineno = 0;
ignore = 0;
} else if ($0 ~ /mark_sick/) {
ignore = 1;
} else {
lines[lineno++] = $0;
}
}
' | $filter

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff de6077ec Thu Feb 22 01:31:03 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: report ag header corruption errors to the health tracking system

Whenever we encounter a corrupt AG header, we should report that to the
health monitoring system for later reporting. Buffer readers that don't
respond to corruption events with a _mark_sick call can be detected with
the following script:

#!/bin/bash

# Detect missing calls to xfs_*_mark_sick

filter=cat
tty -s && filter=less

git grep -A10 -E '( = xfs_trans_read_buf| = xfs_buf_read\()' fs/xfs/*.[ch] fs/xfs/libxfs/*.[ch] | awk '
BEGIN {
ignore = 0;
lineno = 0;
delete lines;
}
{
if ($0 == "--") {
if (!ignore) {
for (i = 0; i < lineno; i++) {
print(lines[i]);
}
printf("--\n");
}
delete lines;
lineno = 0;
ignore = 0;
} else if ($0 ~ /mark_sick/) {
ignore = 1;
} else {
lines[lineno++] = $0;
}
}
' | $filter

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff de6077ec Thu Feb 22 01:31:03 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: report ag header corruption errors to the health tracking system

Whenever we encounter a corrupt AG header, we should report that to the
health monitoring system for later reporting. Buffer readers that don't
respond to corruption events with a _mark_sick call can be detected with
the following script:

#!/bin/bash

# Detect missing calls to xfs_*_mark_sick

filter=cat
tty -s && filter=less

git grep -A10 -E '( = xfs_trans_read_buf| = xfs_buf_read\()' fs/xfs/*.[ch] fs/xfs/libxfs/*.[ch] | awk '
BEGIN {
ignore = 0;
lineno = 0;
delete lines;
}
{
if ($0 == "--") {
if (!ignore) {
for (i = 0; i < lineno; i++) {
print(lines[i]);
}
printf("--\n");
}
delete lines;
lineno = 0;
ignore = 0;
} else if ($0 ~ /mark_sick/) {
ignore = 1;
} else {
lines[lineno++] = $0;
}
}
' | $filter

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff de6077ec Thu Feb 22 01:31:03 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: report ag header corruption errors to the health tracking system

Whenever we encounter a corrupt AG header, we should report that to the
health monitoring system for later reporting. Buffer readers that don't
respond to corruption events with a _mark_sick call can be detected with
the following script:

#!/bin/bash

# Detect missing calls to xfs_*_mark_sick

filter=cat
tty -s && filter=less

git grep -A10 -E '( = xfs_trans_read_buf| = xfs_buf_read\()' fs/xfs/*.[ch] fs/xfs/libxfs/*.[ch] | awk '
BEGIN {
ignore = 0;
lineno = 0;
delete lines;
}
{
if ($0 == "--") {
if (!ignore) {
for (i = 0; i < lineno; i++) {
print(lines[i]);
}
printf("--\n");
}
delete lines;
lineno = 0;
ignore = 0;
} else if ($0 ~ /mark_sick/) {
ignore = 1;
} else {
lines[lineno++] = $0;
}
}
' | $filter

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff de6077ec Thu Feb 22 01:31:03 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: report ag header corruption errors to the health tracking system

Whenever we encounter a corrupt AG header, we should report that to the
health monitoring system for later reporting. Buffer readers that don't
respond to corruption events with a _mark_sick call can be detected with
the following script:

#!/bin/bash

# Detect missing calls to xfs_*_mark_sick

filter=cat
tty -s && filter=less

git grep -A10 -E '( = xfs_trans_read_buf| = xfs_buf_read\()' fs/xfs/*.[ch] fs/xfs/libxfs/*.[ch] | awk '
BEGIN {
ignore = 0;
lineno = 0;
delete lines;
}
{
if ($0 == "--") {
if (!ignore) {
for (i = 0; i < lineno; i++) {
print(lines[i]);
}
printf("--\n");
}
delete lines;
lineno = 0;
ignore = 0;
} else if ($0 ~ /mark_sick/) {
ignore = 1;
} else {
lines[lineno++] = $0;
}
}
' | $filter

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff de6077ec Thu Feb 22 01:31:03 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: report ag header corruption errors to the health tracking system

Whenever we encounter a corrupt AG header, we should report that to the
health monitoring system for later reporting. Buffer readers that don't
respond to corruption events with a _mark_sick call can be detected with
the following script:

#!/bin/bash

# Detect missing calls to xfs_*_mark_sick

filter=cat
tty -s && filter=less

git grep -A10 -E '( = xfs_trans_read_buf| = xfs_buf_read\()' fs/xfs/*.[ch] fs/xfs/libxfs/*.[ch] | awk '
BEGIN {
ignore = 0;
lineno = 0;
delete lines;
}
{
if ($0 == "--") {
if (!ignore) {
for (i = 0; i < lineno; i++) {
print(lines[i]);
}
printf("--\n");
}
delete lines;
lineno = 0;
ignore = 0;
} else if ($0 ~ /mark_sick/) {
ignore = 1;
} else {
lines[lineno++] = $0;
}
}
' | $filter

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
H A Dxfs_ioctl.cdiff 29d650f7 Mon Jan 24 16:48:31 MST 2022 Darrick J. Wong <djwong@kernel.org> xfs: reject crazy array sizes being fed to XFS_IOC_GETBMAP*

Syzbot tripped over the following complaint from the kernel:

WARNING: CPU: 2 PID: 15402 at mm/util.c:597 kvmalloc_node+0x11e/0x125 mm/util.c:597

While trying to run XFS_IOC_GETBMAP against the following structure:

struct getbmap fubar = {
.bmv_count = 0x22dae649,
};

Obviously, this is a crazy huge value since the next thing that the
ioctl would do is allocate 37GB of memory. This is enough to make
kvmalloc mad, but isn't large enough to trip the validation functions.
In other words, I'm fussing with checks that were **already sufficient**
because that's easier than dealing with 644 internal bug reports. Yes,
that's right, six hundred and forty-four.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Catherine Hoang <catherine.hoang@oracle.com>
diff 29d650f7 Mon Jan 24 16:48:31 MST 2022 Darrick J. Wong <djwong@kernel.org> xfs: reject crazy array sizes being fed to XFS_IOC_GETBMAP*

Syzbot tripped over the following complaint from the kernel:

WARNING: CPU: 2 PID: 15402 at mm/util.c:597 kvmalloc_node+0x11e/0x125 mm/util.c:597

While trying to run XFS_IOC_GETBMAP against the following structure:

struct getbmap fubar = {
.bmv_count = 0x22dae649,
};

Obviously, this is a crazy huge value since the next thing that the
ioctl would do is allocate 37GB of memory. This is enough to make
kvmalloc mad, but isn't large enough to trip the validation functions.
In other words, I'm fussing with checks that were **already sufficient**
because that's easier than dealing with 644 internal bug reports. Yes,
that's right, six hundred and forty-four.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Catherine Hoang <catherine.hoang@oracle.com>
diff 29d650f7 Mon Jan 24 16:48:31 MST 2022 Darrick J. Wong <djwong@kernel.org> xfs: reject crazy array sizes being fed to XFS_IOC_GETBMAP*

Syzbot tripped over the following complaint from the kernel:

WARNING: CPU: 2 PID: 15402 at mm/util.c:597 kvmalloc_node+0x11e/0x125 mm/util.c:597

While trying to run XFS_IOC_GETBMAP against the following structure:

struct getbmap fubar = {
.bmv_count = 0x22dae649,
};

Obviously, this is a crazy huge value since the next thing that the
ioctl would do is allocate 37GB of memory. This is enough to make
kvmalloc mad, but isn't large enough to trip the validation functions.
In other words, I'm fussing with checks that were **already sufficient**
because that's easier than dealing with 644 internal bug reports. Yes,
that's right, six hundred and forty-four.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Catherine Hoang <catherine.hoang@oracle.com>
diff 0eb81a5f Wed Feb 26 18:30:29 MST 2020 Christoph Hellwig <hch@lst.de> xfs: merge xfs_attr_remove into xfs_attr_set

The Linux xattr and acl APIs use a single call for set and remove.
Modify the high-level XFS API to match that and let xfs_attr_set handle
removing attributes as well. With a little bit of reordering this
removes a lot of code.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Rajendra <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 707e0dda Mon Aug 26 01:06:22 MDT 2019 Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> fs: xfs: Remove KM_NOSLEEP and KM_SLEEP.

Since no caller is using KM_NOSLEEP and no callee branches on KM_SLEEP,
we can remove KM_NOSLEEP and replace KM_SLEEP with 0.

Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff bf3cb394 Wed Jul 03 21:36:29 MDT 2019 Darrick J. Wong <darrick.wong@oracle.com> xfs: allow single bulkstat of special inodes

Create a new bulk ireq flag that enables userspace to ask us for a
special inode number instead of interpreting @ino as a literal inode
number. This enables us to query the root inode easily.

The reason for adding the ability to query specifically the root
directory inode is that certain programs (xfsdump and xfsrestore) want
to confirm when they've been pointed to the root directory. The
userspace code assumes the root directory is always the first result
from calling bulkstat with lastino == 0, but this isn't true if the
(initial btree roots + initial AGFL + inode alignment padding) is itself
long enough to be allocated to new inodes if all of those blocks should
happen to be free at the same time. Rather than make userspace guess
at internal filesystem state, we provide a direct query.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff 132bf672 Tue Nov 06 08:50:50 MST 2018 Christophe JAILLET <christophe.jaillet@wanadoo.fr> xfs: Fix error code in 'xfs_ioc_getbmap()'

In this function, once 'buf' has been allocated, we unconditionally
return 0.
However, 'error' is set to some error codes in several error handling
paths.
Before commit 232b51948b99 ("xfs: simplify the xfs_getbmap interface")
this was not an issue because all error paths were returning directly,
but now that some cleanup at the end may be needed, we must propagate the
error code.

Fixes: 232b51948b99 ("xfs: simplify the xfs_getbmap interface")
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 4bb8b65a Tue Jun 05 20:42:45 MDT 2018 Arnd Bergmann <arnd@arndb.de> xfs: fix string handling in label get/set functions

[sandeen: fix subject, avoid copy-out of uninit data in getlabel]

gcc-8 reports two warnings for the newly added getlabel/setlabel code:

fs/xfs/xfs_ioctl.c: In function 'xfs_ioc_getlabel':
fs/xfs/xfs_ioctl.c:1822:38: error: argument to 'sizeof' in 'strncpy' call is the same expression as the source; did you mean to use the size of the destination? [-Werror=sizeof-pointer-memaccess]
strncpy(label, sbp->sb_fname, sizeof(sbp->sb_fname));
^
In function 'strncpy',
inlined from 'xfs_ioc_setlabel' at /git/arm-soc/fs/xfs/xfs_ioctl.c:1863:2,
inlined from 'xfs_file_ioctl' at /git/arm-soc/fs/xfs/xfs_ioctl.c:1918:10:
include/linux/string.h:254:9: error: '__builtin_strncpy' output may be truncated copying 12 bytes from a string of length 12 [-Werror=stringop-truncation]
return __builtin_strncpy(p, q, size);

In both cases, part of the problem is that one of the strncpy()
arguments is a fixed-length character array with zero-padding rather
than a zero-terminated string. In the first one case, we also get an
odd warning about sizeof-pointer-memaccess, which doesn't seem right
(the sizeof is for an array that happens to be the same as the second
strncpy argument).

To work around the bogus warning, I use a plain 'XFSLABEL_MAX' for
the strncpy() length when copying the label in getlabel. For setlabel(),
using memcpy() with the correct length that is already known avoids
the second warning and is slightly simpler.

In a related issue, it appears that we accidentally skip the trailing
\0 when copying a 12-character label back to user space in getlabel().
Using the correct sizeof() argument here copies the extra character.

Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85602
Fixes: f7664b31975b ("xfs: implement online get/set fs label")
Cc: Eric Sandeen <sandeen@redhat.com>
Cc: Martin Sebor <msebor@gmail.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
H A Dxfs_trans.hdiff 0dc63c8a Thu Feb 22 01:43:36 MST 2024 Darrick J. Wong <djwong@kernel.org> xfs: launder in-memory btree buffers before transaction commit

As we've noted in various places, all current users of in-memory btrees
are online fsck. Online fsck only stages a btree long enough to rebuild
an ondisk data structure, which means that the in-memory btree is
ephemeral. Furthermore, if we encounter /any/ errors while updating an
in-memory btree, all we do is tear down all the staged data and return
an errno to userspace. In-memory btrees need not be transactional, so
their buffers should not be committed to the ondisk log, nor should they
be checkpointed by the AIL. That's just as well since the ephemeral
nature of the btree means that the buftarg and the buffers may disappear
quickly anyway.

Therefore, we need a way to launder the btree buffers that get attached
to the transaction by the generic btree code. Because the buffers are
directly mapped to backing file pages, there's no need to bwrite them
back to the tmpfs file. All we need to do is clean enough of the buffer
log item state so that the bli can be detached from the buffer, remove
the bli from the transaction's log item list, and reset the transaction
dirty state as if the laundered items had never been there.

For simplicity, create xfbtree transaction commit and cancel helpers
that launder the in-memory btree buffers for callers. Once laundered,
call the write verifier on non-stale buffers to avoid integrity issues,
or punch a hole in the backing file for stale buffers.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 0d227466 Tue May 03 19:50:29 MDT 2022 Dave Chinner <dchinner@redhat.com> xfs: intent item whiteouts

When we log modifications based on intents, we add both intent
and intent done items to the modification being made. These get
written to the log to ensure that the operation is re-run if the
intent done is not found in the log.

However, for operations that complete wholly within a single
checkpoint, the change in the checkpoint is atomic and will never
need replay. In this case, we don't need to actually write the
intent and intent done items to the journal because log recovery
will never need to manually restart this modification.

Log recovery currently handles intent/intent done matching by
inserting the intent into the AIL, then removing it when a matching
intent done item is found. Hence for all the intent-based operations
that complete within a checkpoint, we spend all that time parsing
the intent/intent done items just to cancel them and do nothing with
them.

Hence it follows that the only time we actually need intents in the
log is when the modification crosses checkpoint boundaries in the
log and so may only be partially complete in the journal. Hence if
we commit and intent done item to the CIL and the intent item is in
the same checkpoint, we don't actually have to write them to the
journal because log recovery will always cancel the intents.

We've never really worried about the overhead of logging intents
unnecessarily like this because the intents we log are generally
very much smaller than the change being made. e.g. freeing an extent
involves modifying at lease two freespace btree blocks and the AGF,
so the EFI/EFD overhead is only a small increase in space and
processing time compared to the overall cost of freeing an extent.

However, delayed attributes change this cost equation dramatically,
especially for inline attributes. In the case of adding an inline
attribute, we only log the inode core and attribute fork at present.
With delayed attributes, we now log the attr intent which includes
the name and value, the inode core adn attr fork, and finally the
attr intent done item. We increase the number of items we log from 1
to 3, and the number of log vectors (regions) goes up from 3 to 7.
Hence we tripple the number of objects that the CIL has to process,
and more than double the number of log vectors that need to be
written to the journal.

At scale, this means delayed attributes cause a non-pipelined CIL to
become CPU bound processing all the extra items, resulting in a > 40%
performance degradation on 16-way file+xattr create worklaods.
Pipelining the CIL (as per 5.15) reduces the performance degradation
to 20%, but now the limitation is the rate at which the log items
can be written to the iclogs and iclogs be dispatched for IO and
completed.

Even log IO completion is slowed down by these intents, because it
now has to process 3x the number of items in the checkpoint.
Processing completed intents is especially inefficient here, because
we first insert the intent into the AIL, then remove it from the AIL
when the intent done is processed. IOWs, we are also doing expensive
operations in log IO completion we could completely avoid if we
didn't log completed intent/intent done pairs.

Enter log item whiteouts.

When an intent done is committed, we can check to see if the
associated intent is in the same checkpoint as we are currently
committing the intent done to. If so, we can mark the intent log
item with a whiteout and immediately free the intent done item
rather than committing it to the CIL. We can basically skip the
entire formatting and CIL insertion steps for the intent done item.

However, we cannot remove the intent item from the CIL at this point
because the unlocked per-cpu CIL item lists do not permit removal
without holding the CIL context lock exclusively. Transaction commit
only holds the context lock shared, hence the best we can do is mark
the intent item with a whiteout so that the CIL push can release it
rather than writing it to the log.

This means we never write the intent to the log if the intent done
has also been committed to the same checkpoint, but we'll always
write the intent if the intent done has not been committed or has
been committed to a different checkpoint. This will result in
correct log recovery behaviour in all cases, without the overhead of
logging unnecessary intents.

This intent whiteout concept is generic - we can apply it to all
intent/intent done pairs that have a direct 1:1 relationship. The
way deferred ops iterate and relog intents mean that all intents
currently have a 1:1 relationship with their done intent, and hence
we can apply this cancellation to all existing intent/intent done
implementations.

For delayed attributes with a 16-way 64kB xattr create workload,
whiteouts reduce the amount of journalled metadata from ~2.5GB/s
down to ~600MB/s and improve the creation rate from 9000/s to
14000/s.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b9b3fe15 Wed Apr 20 16:44:59 MDT 2022 Dave Chinner <david@fromorbit.com> xfs: convert buffer flags to unsigned.

5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned
fields to be unsigned. This manifests as a compiler error such as:

/kisskb/src/fs/xfs/./xfs_trace.h:432:2: note: in expansion of macro 'TP_printk'
TP_printk("dev %d:%d daddr 0x%llx bbcount 0x%x hold %d pincount %d "
^
/kisskb/src/fs/xfs/./xfs_trace.h:440:5: note: in expansion of macro '__print_flags'
__print_flags(__entry->flags, "|", XFS_BUF_FLAGS),
^
/kisskb/src/fs/xfs/xfs_buf.h:67:4: note: in expansion of macro 'XBF_UNMAPPED'
{ XBF_UNMAPPED, "UNMAPPED" }
^
/kisskb/src/fs/xfs/./xfs_trace.h:440:40: note: in expansion of macro 'XFS_BUF_FLAGS'
__print_flags(__entry->flags, "|", XFS_BUF_FLAGS),
^
/kisskb/src/fs/xfs/./xfs_trace.h: In function 'trace_raw_output_xfs_buf_flags_class':
/kisskb/src/fs/xfs/xfs_buf.h:46:23: error: initializer element is not constant
#define XBF_UNMAPPED (1 << 31)/* do not map the buffer */

as __print_flags assigns XFS_BUF_FLAGS to a structure that uses an
unsigned long for the flag. Since this results in the value of
XBF_UNMAPPED causing a signed integer overflow, the result is
technically undefined behavior, which gcc-5 does not accept as an
integer constant.

This is based on a patch from Arnd Bergman <arnd@arndb.de>.

Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff b9b3fe15 Wed Apr 20 16:44:59 MDT 2022 Dave Chinner <david@fromorbit.com> xfs: convert buffer flags to unsigned.

5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned
fields to be unsigned. This manifests as a compiler error such as:

/kisskb/src/fs/xfs/./xfs_trace.h:432:2: note: in expansion of macro 'TP_printk'
TP_printk("dev %d:%d daddr 0x%llx bbcount 0x%x hold %d pincount %d "
^
/kisskb/src/fs/xfs/./xfs_trace.h:440:5: note: in expansion of macro '__print_flags'
__print_flags(__entry->flags, "|", XFS_BUF_FLAGS),
^
/kisskb/src/fs/xfs/xfs_buf.h:67:4: note: in expansion of macro 'XBF_UNMAPPED'
{ XBF_UNMAPPED, "UNMAPPED" }
^
/kisskb/src/fs/xfs/./xfs_trace.h:440:40: note: in expansion of macro 'XFS_BUF_FLAGS'
__print_flags(__entry->flags, "|", XFS_BUF_FLAGS),
^
/kisskb/src/fs/xfs/./xfs_trace.h: In function 'trace_raw_output_xfs_buf_flags_class':
/kisskb/src/fs/xfs/xfs_buf.h:46:23: error: initializer element is not constant
#define XBF_UNMAPPED (1 << 31)/* do not map the buffer */

as __print_flags assigns XFS_BUF_FLAGS to a structure that uses an
unsigned long for the flag. Since this results in the value of
XBF_UNMAPPED causing a signed integer overflow, the result is
technically undefined behavior, which gcc-5 does not accept as an
integer constant.

This is based on a patch from Arnd Bergman <arnd@arndb.de>.

Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
diff 1aec7c3d Fri Apr 23 17:02:00 MDT 2021 Darrick J. Wong <djwong@kernel.org> xfs: remove obsolete AGF counter debugging

In commit f8f2835a9cf3 we changed the behavior of XFS to use EFIs to
remove blocks from an overfilled AGFL because there were complaints
about transaction overruns that stemmed from trying to free multiple
blocks in a single transaction.

Unfortunately, that commit missed a subtlety in the debug-mode
transaction accounting when a realtime volume is attached. If a
realtime file undergoes a data fork mapping change such that realtime
extents are allocated (or freed) in the same transaction that a data
device block is also allocated (or freed), we can trip a debugging
assertion. This can happen (for example) if a realtime extent is
allocated and it is necessary to reshape the bmbt to hold the new
mapping.

When we go to allocate a bmbt block from an AG, the first thing the data
device block allocator does is ensure that the freelist is the proper
length. If the freelist is too long, it will trim the freelist to the
proper length.

In debug mode, trimming the freelist calls xfs_trans_agflist_delta() to
record the decrement in the AG free list count. Prior to f8f28 we would
put the free block back in the free space btrees in the same
transaction, which calls xfs_trans_agblocks_delta() to record the
increment in the AG free block count. Since AGFL blocks are included in
the global free block count (fdblocks), there is no corresponding
fdblocks update, so the AGFL free satisfies the following condition in
xfs_trans_apply_sb_deltas:

/*
* Check that superblock mods match the mods made to AGF counters.
*/
ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
(tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
tp->t_ag_btree_delta));

The comparison here used to be: (X + 0) == ((X+1) + -1 + 0), where X is
the number blocks that were allocated.

After commit f8f28 we defer the block freeing to the next chained
transaction, which means that the calls to xfs_trans_agflist_delta and
xfs_trans_agblocks_delta occur in separate transactions. The (first)
transaction that shortens the free list trips on the comparison, which
has now become:

(X + 0) == ((X) + -1 + 0)

because we haven't freed the AGFL block yet; we've only logged an
intention to free it. When the second transaction (the deferred free)
commits, it will evaluate the expression as:

(0 + 0) == (1 + 0 + 0)

and trip over that in turn.

At this point, the astute reader may note that the two commits tagged by
this patch have been in the kernel for a long time but haven't generated
any bug reports. How is it that the author became aware of this bug?

This originally surfaced as an intermittent failure when I was testing
realtime rmap, but a different bug report by Zorro Lang reveals the same
assertion occuring on !lazysbcount filesystems.

The common factor to both reports (and why this problem wasn't
previously reported) becomes apparent if we consider when
xfs_trans_apply_sb_deltas is called by __xfs_trans_commit():

if (tp->t_flags & XFS_TRANS_SB_DIRTY)
xfs_trans_apply_sb_deltas(tp);

With a modern lazysbcount filesystem, transactions update only the
percpu counters, so they don't need to set XFS_TRANS_SB_DIRTY, hence
xfs_trans_apply_sb_deltas is rarely called.

However, updates to the count of free realtime extents are not part of
lazysbcount, so XFS_TRANS_SB_DIRTY will be set on transactions adding or
removing data fork mappings to realtime files; similarly,
XFS_TRANS_SB_DIRTY is always set on !lazysbcount filesystems.

Dave mentioned in response to an earlier version of this patch:

"IIUC, what you are saying is that this debug code is simply not
exercised in normal testing and hasn't been for the past decade? And it
still won't be exercised on anything other than realtime device testing?

"...it was debugging code from 1994 that was largely turned into dead
code when lazysbcounters were introduced in 2007. Hence I'm not sure it
holds any value anymore."

This debugging code isn't especially helpful - you can modify the
flcount on one AG and the freeblks of another AG, and it won't trigger.
Add the fact that nobody noticed for a decade, and let's just get rid of
it (and start testing realtime :P).

This bug was found by running generic/051 on either a V4 filesystem
lacking lazysbcount; or a V5 filesystem with a realtime volume.

Cc: bfoster@redhat.com, zlang@redhat.com
Fixes: f8f2835a9cf3 ("xfs: defer agfl block frees when dfops is available")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff 1aec7c3d Fri Apr 23 17:02:00 MDT 2021 Darrick J. Wong <djwong@kernel.org> xfs: remove obsolete AGF counter debugging

In commit f8f2835a9cf3 we changed the behavior of XFS to use EFIs to
remove blocks from an overfilled AGFL because there were complaints
about transaction overruns that stemmed from trying to free multiple
blocks in a single transaction.

Unfortunately, that commit missed a subtlety in the debug-mode
transaction accounting when a realtime volume is attached. If a
realtime file undergoes a data fork mapping change such that realtime
extents are allocated (or freed) in the same transaction that a data
device block is also allocated (or freed), we can trip a debugging
assertion. This can happen (for example) if a realtime extent is
allocated and it is necessary to reshape the bmbt to hold the new
mapping.

When we go to allocate a bmbt block from an AG, the first thing the data
device block allocator does is ensure that the freelist is the proper
length. If the freelist is too long, it will trim the freelist to the
proper length.

In debug mode, trimming the freelist calls xfs_trans_agflist_delta() to
record the decrement in the AG free list count. Prior to f8f28 we would
put the free block back in the free space btrees in the same
transaction, which calls xfs_trans_agblocks_delta() to record the
increment in the AG free block count. Since AGFL blocks are included in
the global free block count (fdblocks), there is no corresponding
fdblocks update, so the AGFL free satisfies the following condition in
xfs_trans_apply_sb_deltas:

/*
* Check that superblock mods match the mods made to AGF counters.
*/
ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
(tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
tp->t_ag_btree_delta));

The comparison here used to be: (X + 0) == ((X+1) + -1 + 0), where X is
the number blocks that were allocated.

After commit f8f28 we defer the block freeing to the next chained
transaction, which means that the calls to xfs_trans_agflist_delta and
xfs_trans_agblocks_delta occur in separate transactions. The (first)
transaction that shortens the free list trips on the comparison, which
has now become:

(X + 0) == ((X) + -1 + 0)

because we haven't freed the AGFL block yet; we've only logged an
intention to free it. When the second transaction (the deferred free)
commits, it will evaluate the expression as:

(0 + 0) == (1 + 0 + 0)

and trip over that in turn.

At this point, the astute reader may note that the two commits tagged by
this patch have been in the kernel for a long time but haven't generated
any bug reports. How is it that the author became aware of this bug?

This originally surfaced as an intermittent failure when I was testing
realtime rmap, but a different bug report by Zorro Lang reveals the same
assertion occuring on !lazysbcount filesystems.

The common factor to both reports (and why this problem wasn't
previously reported) becomes apparent if we consider when
xfs_trans_apply_sb_deltas is called by __xfs_trans_commit():

if (tp->t_flags & XFS_TRANS_SB_DIRTY)
xfs_trans_apply_sb_deltas(tp);

With a modern lazysbcount filesystem, transactions update only the
percpu counters, so they don't need to set XFS_TRANS_SB_DIRTY, hence
xfs_trans_apply_sb_deltas is rarely called.

However, updates to the count of free realtime extents are not part of
lazysbcount, so XFS_TRANS_SB_DIRTY will be set on transactions adding or
removing data fork mappings to realtime files; similarly,
XFS_TRANS_SB_DIRTY is always set on !lazysbcount filesystems.

Dave mentioned in response to an earlier version of this patch:

"IIUC, what you are saying is that this debug code is simply not
exercised in normal testing and hasn't been for the past decade? And it
still won't be exercised on anything other than realtime device testing?

"...it was debugging code from 1994 that was largely turned into dead
code when lazysbcounters were introduced in 2007. Hence I'm not sure it
holds any value anymore."

This debugging code isn't especially helpful - you can modify the
flcount on one AG and the freeblks of another AG, and it won't trigger.
Add the fact that nobody noticed for a decade, and let's just get rid of
it (and start testing realtime :P).

This bug was found by running generic/051 on either a V4 filesystem
lacking lazysbcount; or a V5 filesystem with a realtime volume.

Cc: bfoster@redhat.com, zlang@redhat.com
Fixes: f8f2835a9cf3 ("xfs: defer agfl block frees when dfops is available")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff 1aec7c3d Fri Apr 23 17:02:00 MDT 2021 Darrick J. Wong <djwong@kernel.org> xfs: remove obsolete AGF counter debugging

In commit f8f2835a9cf3 we changed the behavior of XFS to use EFIs to
remove blocks from an overfilled AGFL because there were complaints
about transaction overruns that stemmed from trying to free multiple
blocks in a single transaction.

Unfortunately, that commit missed a subtlety in the debug-mode
transaction accounting when a realtime volume is attached. If a
realtime file undergoes a data fork mapping change such that realtime
extents are allocated (or freed) in the same transaction that a data
device block is also allocated (or freed), we can trip a debugging
assertion. This can happen (for example) if a realtime extent is
allocated and it is necessary to reshape the bmbt to hold the new
mapping.

When we go to allocate a bmbt block from an AG, the first thing the data
device block allocator does is ensure that the freelist is the proper
length. If the freelist is too long, it will trim the freelist to the
proper length.

In debug mode, trimming the freelist calls xfs_trans_agflist_delta() to
record the decrement in the AG free list count. Prior to f8f28 we would
put the free block back in the free space btrees in the same
transaction, which calls xfs_trans_agblocks_delta() to record the
increment in the AG free block count. Since AGFL blocks are included in
the global free block count (fdblocks), there is no corresponding
fdblocks update, so the AGFL free satisfies the following condition in
xfs_trans_apply_sb_deltas:

/*
* Check that superblock mods match the mods made to AGF counters.
*/
ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
(tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
tp->t_ag_btree_delta));

The comparison here used to be: (X + 0) == ((X+1) + -1 + 0), where X is
the number blocks that were allocated.

After commit f8f28 we defer the block freeing to the next chained
transaction, which means that the calls to xfs_trans_agflist_delta and
xfs_trans_agblocks_delta occur in separate transactions. The (first)
transaction that shortens the free list trips on the comparison, which
has now become:

(X + 0) == ((X) + -1 + 0)

because we haven't freed the AGFL block yet; we've only logged an
intention to free it. When the second transaction (the deferred free)
commits, it will evaluate the expression as:

(0 + 0) == (1 + 0 + 0)

and trip over that in turn.

At this point, the astute reader may note that the two commits tagged by
this patch have been in the kernel for a long time but haven't generated
any bug reports. How is it that the author became aware of this bug?

This originally surfaced as an intermittent failure when I was testing
realtime rmap, but a different bug report by Zorro Lang reveals the same
assertion occuring on !lazysbcount filesystems.

The common factor to both reports (and why this problem wasn't
previously reported) becomes apparent if we consider when
xfs_trans_apply_sb_deltas is called by __xfs_trans_commit():

if (tp->t_flags & XFS_TRANS_SB_DIRTY)
xfs_trans_apply_sb_deltas(tp);

With a modern lazysbcount filesystem, transactions update only the
percpu counters, so they don't need to set XFS_TRANS_SB_DIRTY, hence
xfs_trans_apply_sb_deltas is rarely called.

However, updates to the count of free realtime extents are not part of
lazysbcount, so XFS_TRANS_SB_DIRTY will be set on transactions adding or
removing data fork mappings to realtime files; similarly,
XFS_TRANS_SB_DIRTY is always set on !lazysbcount filesystems.

Dave mentioned in response to an earlier version of this patch:

"IIUC, what you are saying is that this debug code is simply not
exercised in normal testing and hasn't been for the past decade? And it
still won't be exercised on anything other than realtime device testing?

"...it was debugging code from 1994 that was largely turned into dead
code when lazysbcounters were introduced in 2007. Hence I'm not sure it
holds any value anymore."

This debugging code isn't especially helpful - you can modify the
flcount on one AG and the freeblks of another AG, and it won't trigger.
Add the fact that nobody noticed for a decade, and let's just get rid of
it (and start testing realtime :P).

This bug was found by running generic/051 on either a V4 filesystem
lacking lazysbcount; or a V5 filesystem with a realtime volume.

Cc: bfoster@redhat.com, zlang@redhat.com
Fixes: f8f2835a9cf3 ("xfs: defer agfl block frees when dfops is available")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff 1aec7c3d Fri Apr 23 17:02:00 MDT 2021 Darrick J. Wong <djwong@kernel.org> xfs: remove obsolete AGF counter debugging

In commit f8f2835a9cf3 we changed the behavior of XFS to use EFIs to
remove blocks from an overfilled AGFL because there were complaints
about transaction overruns that stemmed from trying to free multiple
blocks in a single transaction.

Unfortunately, that commit missed a subtlety in the debug-mode
transaction accounting when a realtime volume is attached. If a
realtime file undergoes a data fork mapping change such that realtime
extents are allocated (or freed) in the same transaction that a data
device block is also allocated (or freed), we can trip a debugging
assertion. This can happen (for example) if a realtime extent is
allocated and it is necessary to reshape the bmbt to hold the new
mapping.

When we go to allocate a bmbt block from an AG, the first thing the data
device block allocator does is ensure that the freelist is the proper
length. If the freelist is too long, it will trim the freelist to the
proper length.

In debug mode, trimming the freelist calls xfs_trans_agflist_delta() to
record the decrement in the AG free list count. Prior to f8f28 we would
put the free block back in the free space btrees in the same
transaction, which calls xfs_trans_agblocks_delta() to record the
increment in the AG free block count. Since AGFL blocks are included in
the global free block count (fdblocks), there is no corresponding
fdblocks update, so the AGFL free satisfies the following condition in
xfs_trans_apply_sb_deltas:

/*
* Check that superblock mods match the mods made to AGF counters.
*/
ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
(tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
tp->t_ag_btree_delta));

The comparison here used to be: (X + 0) == ((X+1) + -1 + 0), where X is
the number blocks that were allocated.

After commit f8f28 we defer the block freeing to the next chained
transaction, which means that the calls to xfs_trans_agflist_delta and
xfs_trans_agblocks_delta occur in separate transactions. The (first)
transaction that shortens the free list trips on the comparison, which
has now become:

(X + 0) == ((X) + -1 + 0)

because we haven't freed the AGFL block yet; we've only logged an
intention to free it. When the second transaction (the deferred free)
commits, it will evaluate the expression as:

(0 + 0) == (1 + 0 + 0)

and trip over that in turn.

At this point, the astute reader may note that the two commits tagged by
this patch have been in the kernel for a long time but haven't generated
any bug reports. How is it that the author became aware of this bug?

This originally surfaced as an intermittent failure when I was testing
realtime rmap, but a different bug report by Zorro Lang reveals the same
assertion occuring on !lazysbcount filesystems.

The common factor to both reports (and why this problem wasn't
previously reported) becomes apparent if we consider when
xfs_trans_apply_sb_deltas is called by __xfs_trans_commit():

if (tp->t_flags & XFS_TRANS_SB_DIRTY)
xfs_trans_apply_sb_deltas(tp);

With a modern lazysbcount filesystem, transactions update only the
percpu counters, so they don't need to set XFS_TRANS_SB_DIRTY, hence
xfs_trans_apply_sb_deltas is rarely called.

However, updates to the count of free realtime extents are not part of
lazysbcount, so XFS_TRANS_SB_DIRTY will be set on transactions adding or
removing data fork mappings to realtime files; similarly,
XFS_TRANS_SB_DIRTY is always set on !lazysbcount filesystems.

Dave mentioned in response to an earlier version of this patch:

"IIUC, what you are saying is that this debug code is simply not
exercised in normal testing and hasn't been for the past decade? And it
still won't be exercised on anything other than realtime device testing?

"...it was debugging code from 1994 that was largely turned into dead
code when lazysbcounters were introduced in 2007. Hence I'm not sure it
holds any value anymore."

This debugging code isn't especially helpful - you can modify the
flcount on one AG and the freeblks of another AG, and it won't trigger.
Add the fact that nobody noticed for a decade, and let's just get rid of
it (and start testing realtime :P).

This bug was found by running generic/051 on either a V4 filesystem
lacking lazysbcount; or a V5 filesystem with a realtime volume.

Cc: bfoster@redhat.com, zlang@redhat.com
Fixes: f8f2835a9cf3 ("xfs: defer agfl block frees when dfops is available")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff 1aec7c3d Fri Apr 23 17:02:00 MDT 2021 Darrick J. Wong <djwong@kernel.org> xfs: remove obsolete AGF counter debugging

In commit f8f2835a9cf3 we changed the behavior of XFS to use EFIs to
remove blocks from an overfilled AGFL because there were complaints
about transaction overruns that stemmed from trying to free multiple
blocks in a single transaction.

Unfortunately, that commit missed a subtlety in the debug-mode
transaction accounting when a realtime volume is attached. If a
realtime file undergoes a data fork mapping change such that realtime
extents are allocated (or freed) in the same transaction that a data
device block is also allocated (or freed), we can trip a debugging
assertion. This can happen (for example) if a realtime extent is
allocated and it is necessary to reshape the bmbt to hold the new
mapping.

When we go to allocate a bmbt block from an AG, the first thing the data
device block allocator does is ensure that the freelist is the proper
length. If the freelist is too long, it will trim the freelist to the
proper length.

In debug mode, trimming the freelist calls xfs_trans_agflist_delta() to
record the decrement in the AG free list count. Prior to f8f28 we would
put the free block back in the free space btrees in the same
transaction, which calls xfs_trans_agblocks_delta() to record the
increment in the AG free block count. Since AGFL blocks are included in
the global free block count (fdblocks), there is no corresponding
fdblocks update, so the AGFL free satisfies the following condition in
xfs_trans_apply_sb_deltas:

/*
* Check that superblock mods match the mods made to AGF counters.
*/
ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
(tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
tp->t_ag_btree_delta));

The comparison here used to be: (X + 0) == ((X+1) + -1 + 0), where X is
the number blocks that were allocated.

After commit f8f28 we defer the block freeing to the next chained
transaction, which means that the calls to xfs_trans_agflist_delta and
xfs_trans_agblocks_delta occur in separate transactions. The (first)
transaction that shortens the free list trips on the comparison, which
has now become:

(X + 0) == ((X) + -1 + 0)

because we haven't freed the AGFL block yet; we've only logged an
intention to free it. When the second transaction (the deferred free)
commits, it will evaluate the expression as:

(0 + 0) == (1 + 0 + 0)

and trip over that in turn.

At this point, the astute reader may note that the two commits tagged by
this patch have been in the kernel for a long time but haven't generated
any bug reports. How is it that the author became aware of this bug?

This originally surfaced as an intermittent failure when I was testing
realtime rmap, but a different bug report by Zorro Lang reveals the same
assertion occuring on !lazysbcount filesystems.

The common factor to both reports (and why this problem wasn't
previously reported) becomes apparent if we consider when
xfs_trans_apply_sb_deltas is called by __xfs_trans_commit():

if (tp->t_flags & XFS_TRANS_SB_DIRTY)
xfs_trans_apply_sb_deltas(tp);

With a modern lazysbcount filesystem, transactions update only the
percpu counters, so they don't need to set XFS_TRANS_SB_DIRTY, hence
xfs_trans_apply_sb_deltas is rarely called.

However, updates to the count of free realtime extents are not part of
lazysbcount, so XFS_TRANS_SB_DIRTY will be set on transactions adding or
removing data fork mappings to realtime files; similarly,
XFS_TRANS_SB_DIRTY is always set on !lazysbcount filesystems.

Dave mentioned in response to an earlier version of this patch:

"IIUC, what you are saying is that this debug code is simply not
exercised in normal testing and hasn't been for the past decade? And it
still won't be exercised on anything other than realtime device testing?

"...it was debugging code from 1994 that was largely turned into dead
code when lazysbcounters were introduced in 2007. Hence I'm not sure it
holds any value anymore."

This debugging code isn't especially helpful - you can modify the
flcount on one AG and the freeblks of another AG, and it won't trigger.
Add the fact that nobody noticed for a decade, and let's just get rid of
it (and start testing realtime :P).

This bug was found by running generic/051 on either a V4 filesystem
lacking lazysbcount; or a V5 filesystem with a realtime volume.

Cc: bfoster@redhat.com, zlang@redhat.com
Fixes: f8f2835a9cf3 ("xfs: defer agfl block frees when dfops is available")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff 1aec7c3d Fri Apr 23 17:02:00 MDT 2021 Darrick J. Wong <djwong@kernel.org> xfs: remove obsolete AGF counter debugging

In commit f8f2835a9cf3 we changed the behavior of XFS to use EFIs to
remove blocks from an overfilled AGFL because there were complaints
about transaction overruns that stemmed from trying to free multiple
blocks in a single transaction.

Unfortunately, that commit missed a subtlety in the debug-mode
transaction accounting when a realtime volume is attached. If a
realtime file undergoes a data fork mapping change such that realtime
extents are allocated (or freed) in the same transaction that a data
device block is also allocated (or freed), we can trip a debugging
assertion. This can happen (for example) if a realtime extent is
allocated and it is necessary to reshape the bmbt to hold the new
mapping.

When we go to allocate a bmbt block from an AG, the first thing the data
device block allocator does is ensure that the freelist is the proper
length. If the freelist is too long, it will trim the freelist to the
proper length.

In debug mode, trimming the freelist calls xfs_trans_agflist_delta() to
record the decrement in the AG free list count. Prior to f8f28 we would
put the free block back in the free space btrees in the same
transaction, which calls xfs_trans_agblocks_delta() to record the
increment in the AG free block count. Since AGFL blocks are included in
the global free block count (fdblocks), there is no corresponding
fdblocks update, so the AGFL free satisfies the following condition in
xfs_trans_apply_sb_deltas:

/*
* Check that superblock mods match the mods made to AGF counters.
*/
ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
(tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
tp->t_ag_btree_delta));

The comparison here used to be: (X + 0) == ((X+1) + -1 + 0), where X is
the number blocks that were allocated.

After commit f8f28 we defer the block freeing to the next chained
transaction, which means that the calls to xfs_trans_agflist_delta and
xfs_trans_agblocks_delta occur in separate transactions. The (first)
transaction that shortens the free list trips on the comparison, which
has now become:

(X + 0) == ((X) + -1 + 0)

because we haven't freed the AGFL block yet; we've only logged an
intention to free it. When the second transaction (the deferred free)
commits, it will evaluate the expression as:

(0 + 0) == (1 + 0 + 0)

and trip over that in turn.

At this point, the astute reader may note that the two commits tagged by
this patch have been in the kernel for a long time but haven't generated
any bug reports. How is it that the author became aware of this bug?

This originally surfaced as an intermittent failure when I was testing
realtime rmap, but a different bug report by Zorro Lang reveals the same
assertion occuring on !lazysbcount filesystems.

The common factor to both reports (and why this problem wasn't
previously reported) becomes apparent if we consider when
xfs_trans_apply_sb_deltas is called by __xfs_trans_commit():

if (tp->t_flags & XFS_TRANS_SB_DIRTY)
xfs_trans_apply_sb_deltas(tp);

With a modern lazysbcount filesystem, transactions update only the
percpu counters, so they don't need to set XFS_TRANS_SB_DIRTY, hence
xfs_trans_apply_sb_deltas is rarely called.

However, updates to the count of free realtime extents are not part of
lazysbcount, so XFS_TRANS_SB_DIRTY will be set on transactions adding or
removing data fork mappings to realtime files; similarly,
XFS_TRANS_SB_DIRTY is always set on !lazysbcount filesystems.

Dave mentioned in response to an earlier version of this patch:

"IIUC, what you are saying is that this debug code is simply not
exercised in normal testing and hasn't been for the past decade? And it
still won't be exercised on anything other than realtime device testing?

"...it was debugging code from 1994 that was largely turned into dead
code when lazysbcounters were introduced in 2007. Hence I'm not sure it
holds any value anymore."

This debugging code isn't especially helpful - you can modify the
flcount on one AG and the freeblks of another AG, and it won't trigger.
Add the fact that nobody noticed for a decade, and let's just get rid of
it (and start testing realtime :P).

This bug was found by running generic/051 on either a V4 filesystem
lacking lazysbcount; or a V5 filesystem with a realtime volume.

Cc: bfoster@redhat.com, zlang@redhat.com
Fixes: f8f2835a9cf3 ("xfs: defer agfl block frees when dfops is available")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff 1aec7c3d Fri Apr 23 17:02:00 MDT 2021 Darrick J. Wong <djwong@kernel.org> xfs: remove obsolete AGF counter debugging

In commit f8f2835a9cf3 we changed the behavior of XFS to use EFIs to
remove blocks from an overfilled AGFL because there were complaints
about transaction overruns that stemmed from trying to free multiple
blocks in a single transaction.

Unfortunately, that commit missed a subtlety in the debug-mode
transaction accounting when a realtime volume is attached. If a
realtime file undergoes a data fork mapping change such that realtime
extents are allocated (or freed) in the same transaction that a data
device block is also allocated (or freed), we can trip a debugging
assertion. This can happen (for example) if a realtime extent is
allocated and it is necessary to reshape the bmbt to hold the new
mapping.

When we go to allocate a bmbt block from an AG, the first thing the data
device block allocator does is ensure that the freelist is the proper
length. If the freelist is too long, it will trim the freelist to the
proper length.

In debug mode, trimming the freelist calls xfs_trans_agflist_delta() to
record the decrement in the AG free list count. Prior to f8f28 we would
put the free block back in the free space btrees in the same
transaction, which calls xfs_trans_agblocks_delta() to record the
increment in the AG free block count. Since AGFL blocks are included in
the global free block count (fdblocks), there is no corresponding
fdblocks update, so the AGFL free satisfies the following condition in
xfs_trans_apply_sb_deltas:

/*
* Check that superblock mods match the mods made to AGF counters.
*/
ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
(tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
tp->t_ag_btree_delta));

The comparison here used to be: (X + 0) == ((X+1) + -1 + 0), where X is
the number blocks that were allocated.

After commit f8f28 we defer the block freeing to the next chained
transaction, which means that the calls to xfs_trans_agflist_delta and
xfs_trans_agblocks_delta occur in separate transactions. The (first)
transaction that shortens the free list trips on the comparison, which
has now become:

(X + 0) == ((X) + -1 + 0)

because we haven't freed the AGFL block yet; we've only logged an
intention to free it. When the second transaction (the deferred free)
commits, it will evaluate the expression as:

(0 + 0) == (1 + 0 + 0)

and trip over that in turn.

At this point, the astute reader may note that the two commits tagged by
this patch have been in the kernel for a long time but haven't generated
any bug reports. How is it that the author became aware of this bug?

This originally surfaced as an intermittent failure when I was testing
realtime rmap, but a different bug report by Zorro Lang reveals the same
assertion occuring on !lazysbcount filesystems.

The common factor to both reports (and why this problem wasn't
previously reported) becomes apparent if we consider when
xfs_trans_apply_sb_deltas is called by __xfs_trans_commit():

if (tp->t_flags & XFS_TRANS_SB_DIRTY)
xfs_trans_apply_sb_deltas(tp);

With a modern lazysbcount filesystem, transactions update only the
percpu counters, so they don't need to set XFS_TRANS_SB_DIRTY, hence
xfs_trans_apply_sb_deltas is rarely called.

However, updates to the count of free realtime extents are not part of
lazysbcount, so XFS_TRANS_SB_DIRTY will be set on transactions adding or
removing data fork mappings to realtime files; similarly,
XFS_TRANS_SB_DIRTY is always set on !lazysbcount filesystems.

Dave mentioned in response to an earlier version of this patch:

"IIUC, what you are saying is that this debug code is simply not
exercised in normal testing and hasn't been for the past decade? And it
still won't be exercised on anything other than realtime device testing?

"...it was debugging code from 1994 that was largely turned into dead
code when lazysbcounters were introduced in 2007. Hence I'm not sure it
holds any value anymore."

This debugging code isn't especially helpful - you can modify the
flcount on one AG and the freeblks of another AG, and it won't trigger.
Add the fact that nobody noticed for a decade, and let's just get rid of
it (and start testing realtime :P).

This bug was found by running generic/051 on either a V4 filesystem
lacking lazysbcount; or a V5 filesystem with a realtime volume.

Cc: bfoster@redhat.com, zlang@redhat.com
Fixes: f8f2835a9cf3 ("xfs: defer agfl block frees when dfops is available")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
diff 1aec7c3d Fri Apr 23 17:02:00 MDT 2021 Darrick J. Wong <djwong@kernel.org> xfs: remove obsolete AGF counter debugging

In commit f8f2835a9cf3 we changed the behavior of XFS to use EFIs to
remove blocks from an overfilled AGFL because there were complaints
about transaction overruns that stemmed from trying to free multiple
blocks in a single transaction.

Unfortunately, that commit missed a subtlety in the debug-mode
transaction accounting when a realtime volume is attached. If a
realtime file undergoes a data fork mapping change such that realtime
extents are allocated (or freed) in the same transaction that a data
device block is also allocated (or freed), we can trip a debugging
assertion. This can happen (for example) if a realtime extent is
allocated and it is necessary to reshape the bmbt to hold the new
mapping.

When we go to allocate a bmbt block from an AG, the first thing the data
device block allocator does is ensure that the freelist is the proper
length. If the freelist is too long, it will trim the freelist to the
proper length.

In debug mode, trimming the freelist calls xfs_trans_agflist_delta() to
record the decrement in the AG free list count. Prior to f8f28 we would
put the free block back in the free space btrees in the same
transaction, which calls xfs_trans_agblocks_delta() to record the
increment in the AG free block count. Since AGFL blocks are included in
the global free block count (fdblocks), there is no corresponding
fdblocks update, so the AGFL free satisfies the following condition in
xfs_trans_apply_sb_deltas:

/*
* Check that superblock mods match the mods made to AGF counters.
*/
ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
(tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
tp->t_ag_btree_delta));

The comparison here used to be: (X + 0) == ((X+1) + -1 + 0), where X is
the number blocks that were allocated.

After commit f8f28 we defer the block freeing to the next chained
transaction, which means that the calls to xfs_trans_agflist_delta and
xfs_trans_agblocks_delta occur in separate transactions. The (first)
transaction that shortens the free list trips on the comparison, which
has now become:

(X + 0) == ((X) + -1 + 0)

because we haven't freed the AGFL block yet; we've only logged an
intention to free it. When the second transaction (the deferred free)
commits, it will evaluate the expression as:

(0 + 0) == (1 + 0 + 0)

and trip over that in turn.

At this point, the astute reader may note that the two commits tagged by
this patch have been in the kernel for a long time but haven't generated
any bug reports. How is it that the author became aware of this bug?

This originally surfaced as an intermittent failure when I was testing
realtime rmap, but a different bug report by Zorro Lang reveals the same
assertion occuring on !lazysbcount filesystems.

The common factor to both reports (and why this problem wasn't
previously reported) becomes apparent if we consider when
xfs_trans_apply_sb_deltas is called by __xfs_trans_commit():

if (tp->t_flags & XFS_TRANS_SB_DIRTY)
xfs_trans_apply_sb_deltas(tp);

With a modern lazysbcount filesystem, transactions update only the
percpu counters, so they don't need to set XFS_TRANS_SB_DIRTY, hence
xfs_trans_apply_sb_deltas is rarely called.

However, updates to the count of free realtime extents are not part of
lazysbcount, so XFS_TRANS_SB_DIRTY will be set on transactions adding or
removing data fork mappings to realtime files; similarly,
XFS_TRANS_SB_DIRTY is always set on !lazysbcount filesystems.

Dave mentioned in response to an earlier version of this patch:

"IIUC, what you are saying is that this debug code is simply not
exercised in normal testing and hasn't been for the past decade? And it
still won't be exercised on anything other than realtime device testing?

"...it was debugging code from 1994 that was largely turned into dead
code when lazysbcounters were introduced in 2007. Hence I'm not sure it
holds any value anymore."

This debugging code isn't especially helpful - you can modify the
flcount on one AG and the freeblks of another AG, and it won't trigger.
Add the fact that nobody noticed for a decade, and let's just get rid of
it (and start testing realtime :P).

This bug was found by running generic/051 on either a V4 filesystem
lacking lazysbcount; or a V5 filesystem with a realtime volume.

Cc: bfoster@redhat.com, zlang@redhat.com
Fixes: f8f2835a9cf3 ("xfs: defer agfl block frees when dfops is available")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
H A Dxfs_mount.hdiff e23aaf45 Mon Oct 16 11:41:55 MDT 2023 Omar Sandoval <osandov@fb.com> xfs: invert the realtime summary cache

In commit 355e3532132b ("xfs: cache minimum realtime summary level"), I
added a cache of the minimum level of the realtime summary that has any
free extents. However, it turns out that the _maximum_ level is more
useful for upcoming optimizations, and basically equivalent for the
existing usage. So, let's change the meaning of the cache to be the
maximum level + 1, or 0 if there are no free extents.

For example, if the cache contains:

{0, 4}

then there are no free extents starting in realtime bitmap block 0, and
there are no free extents larger than or equal to 2^4 blocks starting in
realtime bitmap block 1. The cache is a loose upper bound, so there may
or may not be free extents smaller than 2^4 blocks in realtime bitmap
block 1.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff e23aaf45 Mon Oct 16 11:41:55 MDT 2023 Omar Sandoval <osandov@fb.com> xfs: invert the realtime summary cache

In commit 355e3532132b ("xfs: cache minimum realtime summary level"), I
added a cache of the minimum level of the realtime summary that has any
free extents. However, it turns out that the _maximum_ level is more
useful for upcoming optimizations, and basically equivalent for the
existing usage. So, let's change the meaning of the cache to be the
maximum level + 1, or 0 if there are no free extents.

For example, if the cache contains:

{0, 4}

then there are no free extents starting in realtime bitmap block 0, and
there are no free extents larger than or equal to 2^4 blocks starting in
realtime bitmap block 1. The cache is a loose upper bound, so there may
or may not be free extents smaller than 2^4 blocks in realtime bitmap
block 1.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff e23aaf45 Mon Oct 16 11:41:55 MDT 2023 Omar Sandoval <osandov@fb.com> xfs: invert the realtime summary cache

In commit 355e3532132b ("xfs: cache minimum realtime summary level"), I
added a cache of the minimum level of the realtime summary that has any
free extents. However, it turns out that the _maximum_ level is more
useful for upcoming optimizations, and basically equivalent for the
existing usage. So, let's change the meaning of the cache to be the
maximum level + 1, or 0 if there are no free extents.

For example, if the cache contains:

{0, 4}

then there are no free extents starting in realtime bitmap block 0, and
there are no free extents larger than or equal to 2^4 blocks starting in
realtime bitmap block 1. The cache is a loose upper bound, so there may
or may not be free extents smaller than 2^4 blocks in realtime bitmap
block 1.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff f5bfa695 Mon Sep 11 09:39:04 MDT 2023 Darrick J. Wong <djwong@kernel.org> xfs: remove the all-mounts list

Revert commit 0ed17f01c8540 ("xfs: introduce all-mounts list for cpu
hotplug notifications") because the cpu hotplug hooks are now pointless,
so we don't need this list anymore.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
diff 0ed17f01 Fri Aug 06 12:05:38 MDT 2021 Dave Chinner <dchinner@redhat.com> xfs: introduce all-mounts list for cpu hotplug notifications

The inode inactivation and CIL tracking percpu structures are
per-xfs_mount structures. That means when we get a CPU dead
notification, we need to then iterate all the per-cpu structure
instances to process them. Rather than keeping linked lists of
per-cpu structures in each subsystem, add a list of all xfs_mounts
that the generic xfs_cpu_dead() function will iterate and call into
each subsystem appropriately.

This allows us to handle both per-mount and global XFS percpu state
from xfs_cpu_dead(), and avoids the need to link subsystem
structures that can be easily found from the xfs_mount into their
own global lists.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
[djwong: expand some comments about mount list setup ordering rules]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff 0e8e2c63 Mon Jun 29 15:49:16 MDT 2020 Dave Chinner <dchinner@redhat.com> xfs: allow multiple reclaimers per AG

Inode reclaim will still throttle direct reclaim on the per-ag
reclaim locks. This is no longer necessary as reclaim can run
non-blocking now. Hence we can remove these locks so that we don't
arbitrarily block reclaimers just because there are more direct
reclaimers than there are AGs.

This can result in multiple reclaimers working on the same range of
an AG, but this doesn't cause any apparent issues. Optimising the
spread of concurrent reclaimers for best efficiency can be done in a
future patchset.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff b0dff466 Wed May 20 14:17:11 MDT 2020 Dave Chinner <dchinner@redhat.com> xfs: separate read-only variables in struct xfs_mount

Seeing massive cpu usage from xfs_agino_range() on one machine;
instruction level profiles look similar to another machine running
the same workload, only one machine is consuming 10x as much CPU as
the other and going much slower. The only real difference between
the two machines is core count per socket. Both are running
identical 16p/16GB virtual machine configurations

Machine A:

25.83% [k] xfs_agino_range
12.68% [k] __xfs_dir3_data_check
6.95% [k] xfs_verify_ino
6.78% [k] xfs_dir2_data_entry_tag_p
3.56% [k] xfs_buf_find
2.31% [k] xfs_verify_dir_ino
2.02% [k] xfs_dabuf_map.constprop.0
1.65% [k] xfs_ag_block_count

And takes around 13 minutes to remove 50 million inodes.

Machine B:

13.90% [k] __pv_queued_spin_lock_slowpath
3.76% [k] do_raw_spin_lock
2.83% [k] xfs_dir3_leaf_check_int
2.75% [k] xfs_agino_range
2.51% [k] __raw_callee_save___pv_queued_spin_unlock
2.18% [k] __xfs_dir3_data_check
2.02% [k] xfs_log_commit_cil

And takes around 5m30s to remove 50 million inodes.

Suspect is cacheline contention on m_sectbb_log which is used in one
of the macros in xfs_agino_range. This is a read-only variable but
shares a cacheline with m_active_trans which is a global atomic that
gets bounced all around the machine.

The workload is trying to run hundreds of thousands of transactions
per second and hence cacheline contention will be occurring on this
atomic counter. Hence xfs_agino_range() is likely just be an
innocent bystander as the cache coherency protocol fights over the
cacheline between CPU cores and sockets.

On machine A, this rearrangement of the struct xfs_mount
results in the profile changing to:

9.77% [kernel] [k] xfs_agino_range
6.27% [kernel] [k] __xfs_dir3_data_check
5.31% [kernel] [k] __pv_queued_spin_lock_slowpath
4.54% [kernel] [k] xfs_buf_find
3.79% [kernel] [k] do_raw_spin_lock
3.39% [kernel] [k] xfs_verify_ino
2.73% [kernel] [k] __raw_callee_save___pv_queued_spin_unlock

Vastly less CPU usage in xfs_agino_range(), but still 3x the amount
of machine B and still runs substantially slower than it should.

Current rm -rf of 50 million files:

vanilla patched
machine A 13m20s 6m42s
machine B 5m30s 5m02s

It's an improvement, hence indicating that separation and further
optimisation of read-only global filesystem data is worthwhile, but
it clearly isn't the underlying issue causing this specific
performance degradation.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 2fcddee8 Mon Oct 28 09:41:45 MDT 2019 Christoph Hellwig <hch@lst.de> xfs: simplify parsing of allocsize mount option

Rework xfs_parseargs to fill out the default value and then parse the
option directly into the mount structure, similar to what we do for
other updates, and open code the now trivial updates based on on the
on-disk superblock directly into xfs_mountfs.

Note that this change rejects the allocsize=0 mount option that has been
documented as invalid for a long time instead of just ignoring it.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0ad95687 Mon Aug 26 01:08:10 MDT 2019 Dave Chinner <dchinner@redhat.com> xfs: add kmem allocation trace points

When trying to correlate XFS kernel allocations to memory reclaim
behaviour, it is useful to know what allocations XFS is actually
attempting. This information is not directly available from
tracepoints in the generic memory allocation and reclaim
tracepoints, so these new trace points provide a high level
indication of what the XFS memory demand actually is.

There is no per-filesystem context in this code, so we just trace
the type of allocation, the size and the allocation constraints.
The kmem code also doesn't include much of the common XFS headers,
so there are a few definitions that need to be added to the trace
headers and a couple of types that need to be made common to avoid
needing to include the whole world in the kmem code.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 8c9ce2f7 Wed Jun 12 09:59:58 MDT 2019 Eric Sandeen <sandeen@sandeen.net> xfs: remove unused flags arg from getsb interfaces

The flags value is always passed as 0 so remove the argument.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
H A Dxfs_file.cdiff 0d625446 Thu Jun 01 08:58:53 MDT 2023 Christoph Hellwig <hch@lst.de> backing_dev: remove current->backing_dev_info

Patch series "cleanup the filemap / direct I/O interaction", v4.

This series cleans up some of the generic write helper calling conventions
and the page cache writeback / invalidation for direct I/O. This is a
spinoff from the no-bufferhead kernel project, for which we'll want to an
use iomap based buffered write path in the block layer.


This patch (of 12):

The last user of current->backing_dev_info disappeared in commit
b9b1335e6403 ("remove bdi_congested() and wb_congested() and related
functions"). Remove the field and all assignments to it.

Link: https://lkml.kernel.org/r/20230601145904.1385409-1-hch@lst.de
Link: https://lkml.kernel.org/r/20230601145904.1385409-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Acked-by: Theodore Ts'o <tytso@mit.edu>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Anna Schumaker <anna@kernel.org>
Cc: Chao Yu <chao@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Xiubo Li <xiubli@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff 0b02c8c0 Mon Jan 31 14:20:09 MST 2022 Dave Chinner <dchinner@redhat.com> xfs: set prealloc flag in xfs_alloc_file_space()

Now that we only call xfs_update_prealloc_flags() from
xfs_file_fallocate() in the case where we need to set the
preallocation flag, do this in xfs_alloc_file_space() where we
already have the inode joined into a transaction and get
rid of the call to xfs_update_prealloc_flags() from the fallocate
code.

This also means that we now correctly avoid setting the
XFS_DIFLAG_PREALLOC flag when xfs_is_always_cow_inode() is true, as
these inodes will never have preallocated extents.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff 66ae56a5 Mon Feb 18 10:38:49 MST 2019 Christoph Hellwig <hch@lst.de> xfs: introduce an always_cow mode

Add a mode where XFS never overwrites existing blocks in place. This
is to aid debugging our COW code, and also put infatructure in place
for things like possible future support for zoned block devices, which
can't support overwrites.

This mode is enabled globally by doing a:

echo 1 > /sys/fs/xfs/debug/always_cow

Note that the parameter is global to allow running all tests in xfstests
easily in this mode, which would not easily be possible with a per-fs
sysfs file.

In always_cow mode persistent preallocations are disabled, and fallocate
will fail when called with a 0 mode (with our without
FALLOC_FL_KEEP_SIZE), and not create unwritten extent for zeroed space
when called with FALLOC_FL_ZERO_RANGE or FALLOC_FL_UNSHARE_RANGE.

There are a few interesting xfstests failures when run in always_cow
mode:

- generic/392 fails because the bytes used in the file used to test
hole punch recovery are less after the log replay. This is
because the blocks written and then punched out are only freed
with a delay due to the logging mechanism.
- xfs/170 will fail as the already fragile file streams mechanism
doesn't seem to interact well with the COW allocator
- xfs/180 xfs/182 xfs/192 xfs/198 xfs/204 and xfs/208 will claim
the file system is badly fragmented, but there is not much we
can do to avoid that when always writing out of place
- xfs/205 fails because overwriting a file in always_cow mode
will require new space allocation and the assumption in the
test thus don't work anymore.
- xfs/326 fails to modify the file at all in always_cow mode after
injecting the refcount error, leading to an unexpected md5sum
after the remount, but that again is expected

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
diff 0b61f8a4 Tue Jun 05 20:42:14 MDT 2018 Dave Chinner <dchinner@redhat.com> xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
H A Dxfs_super.cdiff d8d222e0 Mon Jan 15 21:33:07 MST 2024 Dave Chinner <dchinner@redhat.com> xfs: read only mounts with fsopen mount API are busted

Recently xfs/513 started failing on my test machines testing "-o
ro,norecovery" mount options. This was being emitted in dmesg:

[ 9906.932724] XFS (pmem0): no-recovery mounts must be read-only.

Turns out, readonly mounts with the fsopen()/fsconfig() mount API
have been busted since day zero. It's only taken 5 years for debian
unstable to start using this "new" mount API, and shortly after this
I noticed xfs/513 had started to fail as per above.

The syscall trace is:

fsopen("xfs", FSOPEN_CLOEXEC) = 3
mount_setattr(-1, NULL, 0, NULL, 0) = -1 EINVAL (Invalid argument)
.....
fsconfig(3, FSCONFIG_SET_STRING, "source", "/dev/pmem0", 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "ro", NULL, 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "norecovery", NULL, 0) = 0
fsconfig(3, FSCONFIG_CMD_CREATE, NULL, NULL, 0) = -1 EINVAL (Invalid argument)
close(3) = 0

Showing that the actual mount instantiation (FSCONFIG_CMD_CREATE) is
what threw out the error.

During mount instantiation, we call xfs_fs_validate_params() which
does:

/* No recovery flag requires a read-only mount */
if (xfs_has_norecovery(mp) && !xfs_is_readonly(mp)) {
xfs_warn(mp, "no-recovery mounts must be read-only.");
return -EINVAL;
}

and xfs_is_readonly() checks internal mount flags for read only
state. This state is set in xfs_init_fs_context() from the
context superblock flag state:

/*
* Copy binary VFS mount flags we are interested in.
*/
if (fc->sb_flags & SB_RDONLY)
set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);

With the old mount API, all of the VFS specific superblock flags
had already been parsed and set before xfs_init_fs_context() is
called, so this all works fine.

However, in the brave new fsopen/fsconfig world,
xfs_init_fs_context() is called from fsopen() context, before any
VFS superblock have been set or parsed. Hence if we use fsopen(),
the internal XFS readonly state is *never set*. Hence anything that
depends on xfs_is_readonly() actually returning true for read only
mounts is broken if fsopen() has been used to mount the filesystem.

Fix this by moving this internal state initialisation to
xfs_fs_fill_super() before we attempt to validate the parameters
that have been set prior to the FSCONFIG_CMD_CREATE call being made.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Fixes: 73e5fff98b64 ("xfs: switch to use the new mount-api")
cc: stable@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff d8d222e0 Mon Jan 15 21:33:07 MST 2024 Dave Chinner <dchinner@redhat.com> xfs: read only mounts with fsopen mount API are busted

Recently xfs/513 started failing on my test machines testing "-o
ro,norecovery" mount options. This was being emitted in dmesg:

[ 9906.932724] XFS (pmem0): no-recovery mounts must be read-only.

Turns out, readonly mounts with the fsopen()/fsconfig() mount API
have been busted since day zero. It's only taken 5 years for debian
unstable to start using this "new" mount API, and shortly after this
I noticed xfs/513 had started to fail as per above.

The syscall trace is:

fsopen("xfs", FSOPEN_CLOEXEC) = 3
mount_setattr(-1, NULL, 0, NULL, 0) = -1 EINVAL (Invalid argument)
.....
fsconfig(3, FSCONFIG_SET_STRING, "source", "/dev/pmem0", 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "ro", NULL, 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "norecovery", NULL, 0) = 0
fsconfig(3, FSCONFIG_CMD_CREATE, NULL, NULL, 0) = -1 EINVAL (Invalid argument)
close(3) = 0

Showing that the actual mount instantiation (FSCONFIG_CMD_CREATE) is
what threw out the error.

During mount instantiation, we call xfs_fs_validate_params() which
does:

/* No recovery flag requires a read-only mount */
if (xfs_has_norecovery(mp) && !xfs_is_readonly(mp)) {
xfs_warn(mp, "no-recovery mounts must be read-only.");
return -EINVAL;
}

and xfs_is_readonly() checks internal mount flags for read only
state. This state is set in xfs_init_fs_context() from the
context superblock flag state:

/*
* Copy binary VFS mount flags we are interested in.
*/
if (fc->sb_flags & SB_RDONLY)
set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);

With the old mount API, all of the VFS specific superblock flags
had already been parsed and set before xfs_init_fs_context() is
called, so this all works fine.

However, in the brave new fsopen/fsconfig world,
xfs_init_fs_context() is called from fsopen() context, before any
VFS superblock have been set or parsed. Hence if we use fsopen(),
the internal XFS readonly state is *never set*. Hence anything that
depends on xfs_is_readonly() actually returning true for read only
mounts is broken if fsopen() has been used to mount the filesystem.

Fix this by moving this internal state initialisation to
xfs_fs_fill_super() before we attempt to validate the parameters
that have been set prior to the FSCONFIG_CMD_CREATE call being made.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Fixes: 73e5fff98b64 ("xfs: switch to use the new mount-api")
cc: stable@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff d8d222e0 Mon Jan 15 21:33:07 MST 2024 Dave Chinner <dchinner@redhat.com> xfs: read only mounts with fsopen mount API are busted

Recently xfs/513 started failing on my test machines testing "-o
ro,norecovery" mount options. This was being emitted in dmesg:

[ 9906.932724] XFS (pmem0): no-recovery mounts must be read-only.

Turns out, readonly mounts with the fsopen()/fsconfig() mount API
have been busted since day zero. It's only taken 5 years for debian
unstable to start using this "new" mount API, and shortly after this
I noticed xfs/513 had started to fail as per above.

The syscall trace is:

fsopen("xfs", FSOPEN_CLOEXEC) = 3
mount_setattr(-1, NULL, 0, NULL, 0) = -1 EINVAL (Invalid argument)
.....
fsconfig(3, FSCONFIG_SET_STRING, "source", "/dev/pmem0", 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "ro", NULL, 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "norecovery", NULL, 0) = 0
fsconfig(3, FSCONFIG_CMD_CREATE, NULL, NULL, 0) = -1 EINVAL (Invalid argument)
close(3) = 0

Showing that the actual mount instantiation (FSCONFIG_CMD_CREATE) is
what threw out the error.

During mount instantiation, we call xfs_fs_validate_params() which
does:

/* No recovery flag requires a read-only mount */
if (xfs_has_norecovery(mp) && !xfs_is_readonly(mp)) {
xfs_warn(mp, "no-recovery mounts must be read-only.");
return -EINVAL;
}

and xfs_is_readonly() checks internal mount flags for read only
state. This state is set in xfs_init_fs_context() from the
context superblock flag state:

/*
* Copy binary VFS mount flags we are interested in.
*/
if (fc->sb_flags & SB_RDONLY)
set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);

With the old mount API, all of the VFS specific superblock flags
had already been parsed and set before xfs_init_fs_context() is
called, so this all works fine.

However, in the brave new fsopen/fsconfig world,
xfs_init_fs_context() is called from fsopen() context, before any
VFS superblock have been set or parsed. Hence if we use fsopen(),
the internal XFS readonly state is *never set*. Hence anything that
depends on xfs_is_readonly() actually returning true for read only
mounts is broken if fsopen() has been used to mount the filesystem.

Fix this by moving this internal state initialisation to
xfs_fs_fill_super() before we attempt to validate the parameters
that have been set prior to the FSCONFIG_CMD_CREATE call being made.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Fixes: 73e5fff98b64 ("xfs: switch to use the new mount-api")
cc: stable@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff d8d222e0 Mon Jan 15 21:33:07 MST 2024 Dave Chinner <dchinner@redhat.com> xfs: read only mounts with fsopen mount API are busted

Recently xfs/513 started failing on my test machines testing "-o
ro,norecovery" mount options. This was being emitted in dmesg:

[ 9906.932724] XFS (pmem0): no-recovery mounts must be read-only.

Turns out, readonly mounts with the fsopen()/fsconfig() mount API
have been busted since day zero. It's only taken 5 years for debian
unstable to start using this "new" mount API, and shortly after this
I noticed xfs/513 had started to fail as per above.

The syscall trace is:

fsopen("xfs", FSOPEN_CLOEXEC) = 3
mount_setattr(-1, NULL, 0, NULL, 0) = -1 EINVAL (Invalid argument)
.....
fsconfig(3, FSCONFIG_SET_STRING, "source", "/dev/pmem0", 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "ro", NULL, 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "norecovery", NULL, 0) = 0
fsconfig(3, FSCONFIG_CMD_CREATE, NULL, NULL, 0) = -1 EINVAL (Invalid argument)
close(3) = 0

Showing that the actual mount instantiation (FSCONFIG_CMD_CREATE) is
what threw out the error.

During mount instantiation, we call xfs_fs_validate_params() which
does:

/* No recovery flag requires a read-only mount */
if (xfs_has_norecovery(mp) && !xfs_is_readonly(mp)) {
xfs_warn(mp, "no-recovery mounts must be read-only.");
return -EINVAL;
}

and xfs_is_readonly() checks internal mount flags for read only
state. This state is set in xfs_init_fs_context() from the
context superblock flag state:

/*
* Copy binary VFS mount flags we are interested in.
*/
if (fc->sb_flags & SB_RDONLY)
set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);

With the old mount API, all of the VFS specific superblock flags
had already been parsed and set before xfs_init_fs_context() is
called, so this all works fine.

However, in the brave new fsopen/fsconfig world,
xfs_init_fs_context() is called from fsopen() context, before any
VFS superblock have been set or parsed. Hence if we use fsopen(),
the internal XFS readonly state is *never set*. Hence anything that
depends on xfs_is_readonly() actually returning true for read only
mounts is broken if fsopen() has been used to mount the filesystem.

Fix this by moving this internal state initialisation to
xfs_fs_fill_super() before we attempt to validate the parameters
that have been set prior to the FSCONFIG_CMD_CREATE call being made.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Fixes: 73e5fff98b64 ("xfs: switch to use the new mount-api")
cc: stable@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff d8d222e0 Mon Jan 15 21:33:07 MST 2024 Dave Chinner <dchinner@redhat.com> xfs: read only mounts with fsopen mount API are busted

Recently xfs/513 started failing on my test machines testing "-o
ro,norecovery" mount options. This was being emitted in dmesg:

[ 9906.932724] XFS (pmem0): no-recovery mounts must be read-only.

Turns out, readonly mounts with the fsopen()/fsconfig() mount API
have been busted since day zero. It's only taken 5 years for debian
unstable to start using this "new" mount API, and shortly after this
I noticed xfs/513 had started to fail as per above.

The syscall trace is:

fsopen("xfs", FSOPEN_CLOEXEC) = 3
mount_setattr(-1, NULL, 0, NULL, 0) = -1 EINVAL (Invalid argument)
.....
fsconfig(3, FSCONFIG_SET_STRING, "source", "/dev/pmem0", 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "ro", NULL, 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "norecovery", NULL, 0) = 0
fsconfig(3, FSCONFIG_CMD_CREATE, NULL, NULL, 0) = -1 EINVAL (Invalid argument)
close(3) = 0

Showing that the actual mount instantiation (FSCONFIG_CMD_CREATE) is
what threw out the error.

During mount instantiation, we call xfs_fs_validate_params() which
does:

/* No recovery flag requires a read-only mount */
if (xfs_has_norecovery(mp) && !xfs_is_readonly(mp)) {
xfs_warn(mp, "no-recovery mounts must be read-only.");
return -EINVAL;
}

and xfs_is_readonly() checks internal mount flags for read only
state. This state is set in xfs_init_fs_context() from the
context superblock flag state:

/*
* Copy binary VFS mount flags we are interested in.
*/
if (fc->sb_flags & SB_RDONLY)
set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);

With the old mount API, all of the VFS specific superblock flags
had already been parsed and set before xfs_init_fs_context() is
called, so this all works fine.

However, in the brave new fsopen/fsconfig world,
xfs_init_fs_context() is called from fsopen() context, before any
VFS superblock have been set or parsed. Hence if we use fsopen(),
the internal XFS readonly state is *never set*. Hence anything that
depends on xfs_is_readonly() actually returning true for read only
mounts is broken if fsopen() has been used to mount the filesystem.

Fix this by moving this internal state initialisation to
xfs_fs_fill_super() before we attempt to validate the parameters
that have been set prior to the FSCONFIG_CMD_CREATE call being made.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Fixes: 73e5fff98b64 ("xfs: switch to use the new mount-api")
cc: stable@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff d8d222e0 Mon Jan 15 21:33:07 MST 2024 Dave Chinner <dchinner@redhat.com> xfs: read only mounts with fsopen mount API are busted

Recently xfs/513 started failing on my test machines testing "-o
ro,norecovery" mount options. This was being emitted in dmesg:

[ 9906.932724] XFS (pmem0): no-recovery mounts must be read-only.

Turns out, readonly mounts with the fsopen()/fsconfig() mount API
have been busted since day zero. It's only taken 5 years for debian
unstable to start using this "new" mount API, and shortly after this
I noticed xfs/513 had started to fail as per above.

The syscall trace is:

fsopen("xfs", FSOPEN_CLOEXEC) = 3
mount_setattr(-1, NULL, 0, NULL, 0) = -1 EINVAL (Invalid argument)
.....
fsconfig(3, FSCONFIG_SET_STRING, "source", "/dev/pmem0", 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "ro", NULL, 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "norecovery", NULL, 0) = 0
fsconfig(3, FSCONFIG_CMD_CREATE, NULL, NULL, 0) = -1 EINVAL (Invalid argument)
close(3) = 0

Showing that the actual mount instantiation (FSCONFIG_CMD_CREATE) is
what threw out the error.

During mount instantiation, we call xfs_fs_validate_params() which
does:

/* No recovery flag requires a read-only mount */
if (xfs_has_norecovery(mp) && !xfs_is_readonly(mp)) {
xfs_warn(mp, "no-recovery mounts must be read-only.");
return -EINVAL;
}

and xfs_is_readonly() checks internal mount flags for read only
state. This state is set in xfs_init_fs_context() from the
context superblock flag state:

/*
* Copy binary VFS mount flags we are interested in.
*/
if (fc->sb_flags & SB_RDONLY)
set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);

With the old mount API, all of the VFS specific superblock flags
had already been parsed and set before xfs_init_fs_context() is
called, so this all works fine.

However, in the brave new fsopen/fsconfig world,
xfs_init_fs_context() is called from fsopen() context, before any
VFS superblock have been set or parsed. Hence if we use fsopen(),
the internal XFS readonly state is *never set*. Hence anything that
depends on xfs_is_readonly() actually returning true for read only
mounts is broken if fsopen() has been used to mount the filesystem.

Fix this by moving this internal state initialisation to
xfs_fs_fill_super() before we attempt to validate the parameters
that have been set prior to the FSCONFIG_CMD_CREATE call being made.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Fixes: 73e5fff98b64 ("xfs: switch to use the new mount-api")
cc: stable@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff d8d222e0 Mon Jan 15 21:33:07 MST 2024 Dave Chinner <dchinner@redhat.com> xfs: read only mounts with fsopen mount API are busted

Recently xfs/513 started failing on my test machines testing "-o
ro,norecovery" mount options. This was being emitted in dmesg:

[ 9906.932724] XFS (pmem0): no-recovery mounts must be read-only.

Turns out, readonly mounts with the fsopen()/fsconfig() mount API
have been busted since day zero. It's only taken 5 years for debian
unstable to start using this "new" mount API, and shortly after this
I noticed xfs/513 had started to fail as per above.

The syscall trace is:

fsopen("xfs", FSOPEN_CLOEXEC) = 3
mount_setattr(-1, NULL, 0, NULL, 0) = -1 EINVAL (Invalid argument)
.....
fsconfig(3, FSCONFIG_SET_STRING, "source", "/dev/pmem0", 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "ro", NULL, 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "norecovery", NULL, 0) = 0
fsconfig(3, FSCONFIG_CMD_CREATE, NULL, NULL, 0) = -1 EINVAL (Invalid argument)
close(3) = 0

Showing that the actual mount instantiation (FSCONFIG_CMD_CREATE) is
what threw out the error.

During mount instantiation, we call xfs_fs_validate_params() which
does:

/* No recovery flag requires a read-only mount */
if (xfs_has_norecovery(mp) && !xfs_is_readonly(mp)) {
xfs_warn(mp, "no-recovery mounts must be read-only.");
return -EINVAL;
}

and xfs_is_readonly() checks internal mount flags for read only
state. This state is set in xfs_init_fs_context() from the
context superblock flag state:

/*
* Copy binary VFS mount flags we are interested in.
*/
if (fc->sb_flags & SB_RDONLY)
set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);

With the old mount API, all of the VFS specific superblock flags
had already been parsed and set before xfs_init_fs_context() is
called, so this all works fine.

However, in the brave new fsopen/fsconfig world,
xfs_init_fs_context() is called from fsopen() context, before any
VFS superblock have been set or parsed. Hence if we use fsopen(),
the internal XFS readonly state is *never set*. Hence anything that
depends on xfs_is_readonly() actually returning true for read only
mounts is broken if fsopen() has been used to mount the filesystem.

Fix this by moving this internal state initialisation to
xfs_fs_fill_super() before we attempt to validate the parameters
that have been set prior to the FSCONFIG_CMD_CREATE call being made.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Fixes: 73e5fff98b64 ("xfs: switch to use the new mount-api")
cc: stable@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff d8d222e0 Mon Jan 15 21:33:07 MST 2024 Dave Chinner <dchinner@redhat.com> xfs: read only mounts with fsopen mount API are busted

Recently xfs/513 started failing on my test machines testing "-o
ro,norecovery" mount options. This was being emitted in dmesg:

[ 9906.932724] XFS (pmem0): no-recovery mounts must be read-only.

Turns out, readonly mounts with the fsopen()/fsconfig() mount API
have been busted since day zero. It's only taken 5 years for debian
unstable to start using this "new" mount API, and shortly after this
I noticed xfs/513 had started to fail as per above.

The syscall trace is:

fsopen("xfs", FSOPEN_CLOEXEC) = 3
mount_setattr(-1, NULL, 0, NULL, 0) = -1 EINVAL (Invalid argument)
.....
fsconfig(3, FSCONFIG_SET_STRING, "source", "/dev/pmem0", 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "ro", NULL, 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "norecovery", NULL, 0) = 0
fsconfig(3, FSCONFIG_CMD_CREATE, NULL, NULL, 0) = -1 EINVAL (Invalid argument)
close(3) = 0

Showing that the actual mount instantiation (FSCONFIG_CMD_CREATE) is
what threw out the error.

During mount instantiation, we call xfs_fs_validate_params() which
does:

/* No recovery flag requires a read-only mount */
if (xfs_has_norecovery(mp) && !xfs_is_readonly(mp)) {
xfs_warn(mp, "no-recovery mounts must be read-only.");
return -EINVAL;
}

and xfs_is_readonly() checks internal mount flags for read only
state. This state is set in xfs_init_fs_context() from the
context superblock flag state:

/*
* Copy binary VFS mount flags we are interested in.
*/
if (fc->sb_flags & SB_RDONLY)
set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);

With the old mount API, all of the VFS specific superblock flags
had already been parsed and set before xfs_init_fs_context() is
called, so this all works fine.

However, in the brave new fsopen/fsconfig world,
xfs_init_fs_context() is called from fsopen() context, before any
VFS superblock have been set or parsed. Hence if we use fsopen(),
the internal XFS readonly state is *never set*. Hence anything that
depends on xfs_is_readonly() actually returning true for read only
mounts is broken if fsopen() has been used to mount the filesystem.

Fix this by moving this internal state initialisation to
xfs_fs_fill_super() before we attempt to validate the parameters
that have been set prior to the FSCONFIG_CMD_CREATE call being made.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Fixes: 73e5fff98b64 ("xfs: switch to use the new mount-api")
cc: stable@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff d8d222e0 Mon Jan 15 21:33:07 MST 2024 Dave Chinner <dchinner@redhat.com> xfs: read only mounts with fsopen mount API are busted

Recently xfs/513 started failing on my test machines testing "-o
ro,norecovery" mount options. This was being emitted in dmesg:

[ 9906.932724] XFS (pmem0): no-recovery mounts must be read-only.

Turns out, readonly mounts with the fsopen()/fsconfig() mount API
have been busted since day zero. It's only taken 5 years for debian
unstable to start using this "new" mount API, and shortly after this
I noticed xfs/513 had started to fail as per above.

The syscall trace is:

fsopen("xfs", FSOPEN_CLOEXEC) = 3
mount_setattr(-1, NULL, 0, NULL, 0) = -1 EINVAL (Invalid argument)
.....
fsconfig(3, FSCONFIG_SET_STRING, "source", "/dev/pmem0", 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "ro", NULL, 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "norecovery", NULL, 0) = 0
fsconfig(3, FSCONFIG_CMD_CREATE, NULL, NULL, 0) = -1 EINVAL (Invalid argument)
close(3) = 0

Showing that the actual mount instantiation (FSCONFIG_CMD_CREATE) is
what threw out the error.

During mount instantiation, we call xfs_fs_validate_params() which
does:

/* No recovery flag requires a read-only mount */
if (xfs_has_norecovery(mp) && !xfs_is_readonly(mp)) {
xfs_warn(mp, "no-recovery mounts must be read-only.");
return -EINVAL;
}

and xfs_is_readonly() checks internal mount flags for read only
state. This state is set in xfs_init_fs_context() from the
context superblock flag state:

/*
* Copy binary VFS mount flags we are interested in.
*/
if (fc->sb_flags & SB_RDONLY)
set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);

With the old mount API, all of the VFS specific superblock flags
had already been parsed and set before xfs_init_fs_context() is
called, so this all works fine.

However, in the brave new fsopen/fsconfig world,
xfs_init_fs_context() is called from fsopen() context, before any
VFS superblock have been set or parsed. Hence if we use fsopen(),
the internal XFS readonly state is *never set*. Hence anything that
depends on xfs_is_readonly() actually returning true for read only
mounts is broken if fsopen() has been used to mount the filesystem.

Fix this by moving this internal state initialisation to
xfs_fs_fill_super() before we attempt to validate the parameters
that have been set prior to the FSCONFIG_CMD_CREATE call being made.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Fixes: 73e5fff98b64 ("xfs: switch to use the new mount-api")
cc: stable@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
diff d8d222e0 Mon Jan 15 21:33:07 MST 2024 Dave Chinner <dchinner@redhat.com> xfs: read only mounts with fsopen mount API are busted

Recently xfs/513 started failing on my test machines testing "-o
ro,norecovery" mount options. This was being emitted in dmesg:

[ 9906.932724] XFS (pmem0): no-recovery mounts must be read-only.

Turns out, readonly mounts with the fsopen()/fsconfig() mount API
have been busted since day zero. It's only taken 5 years for debian
unstable to start using this "new" mount API, and shortly after this
I noticed xfs/513 had started to fail as per above.

The syscall trace is:

fsopen("xfs", FSOPEN_CLOEXEC) = 3
mount_setattr(-1, NULL, 0, NULL, 0) = -1 EINVAL (Invalid argument)
.....
fsconfig(3, FSCONFIG_SET_STRING, "source", "/dev/pmem0", 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "ro", NULL, 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "norecovery", NULL, 0) = 0
fsconfig(3, FSCONFIG_CMD_CREATE, NULL, NULL, 0) = -1 EINVAL (Invalid argument)
close(3) = 0

Showing that the actual mount instantiation (FSCONFIG_CMD_CREATE) is
what threw out the error.

During mount instantiation, we call xfs_fs_validate_params() which
does:

/* No recovery flag requires a read-only mount */
if (xfs_has_norecovery(mp) && !xfs_is_readonly(mp)) {
xfs_warn(mp, "no-recovery mounts must be read-only.");
return -EINVAL;
}

and xfs_is_readonly() checks internal mount flags for read only
state. This state is set in xfs_init_fs_context() from the
context superblock flag state:

/*
* Copy binary VFS mount flags we are interested in.
*/
if (fc->sb_flags & SB_RDONLY)
set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);

With the old mount API, all of the VFS specific superblock flags
had already been parsed and set before xfs_init_fs_context() is
called, so this all works fine.

However, in the brave new fsopen/fsconfig world,
xfs_init_fs_context() is called from fsopen() context, before any
VFS superblock have been set or parsed. Hence if we use fsopen(),
the internal XFS readonly state is *never set*. Hence anything that
depends on xfs_is_readonly() actually returning true for read only
mounts is broken if fsopen() has been used to mount the filesystem.

Fix this by moving this internal state initialisation to
xfs_fs_fill_super() before we attempt to validate the parameters
that have been set prior to the FSCONFIG_CMD_CREATE call being made.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Fixes: 73e5fff98b64 ("xfs: switch to use the new mount-api")
cc: stable@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
H A Dxfs_mount.cdiff 59f6ab40 Wed Nov 16 20:20:20 MST 2022 Long Li <leo.lilong@huawei.com> xfs: fix sb write verify for lazysbcount

When lazysbcount is enabled, fsstress and loop mount/unmount test report
the following problems:

XFS (loop0): SB summary counter sanity check failed
XFS (loop0): Metadata corruption detected at xfs_sb_write_verify+0x13b/0x460,
xfs_sb block 0x0
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000: 58 46 53 42 00 00 10 00 00 00 00 00 00 28 00 00 XFSB.........(..
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 69 fb 7c cd 5f dc 44 af 85 74 e0 cc d4 e3 34 5a i.|._.D..t....4Z
00000030: 00 00 00 00 00 20 00 06 00 00 00 00 00 00 00 80 ..... ..........
00000040: 00 00 00 00 00 00 00 81 00 00 00 00 00 00 00 82 ................
00000050: 00 00 00 01 00 0a 00 00 00 00 00 04 00 00 00 00 ................
00000060: 00 00 0a 00 b4 b5 02 00 02 00 00 08 00 00 00 00 ................
00000070: 00 00 00 00 00 00 00 00 0c 09 09 03 14 00 00 19 ................
XFS (loop0): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply
+0xe1e/0x10e0 (fs/xfs/xfs_buf.c:1580). Shutting down filesystem.
XFS (loop0): Please unmount the filesystem and rectify the problem(s)
XFS (loop0): log mount/recovery failed: error -117
XFS (loop0): log mount failed

This corruption will shutdown the file system and the file system will
no longer be mountable. The following script can reproduce the problem,
but it may take a long time.

#!/bin/bash

device=/dev/sda
testdir=/mnt/test
round=0

function fail()
{
echo "$*"
exit 1
}

mkdir -p $testdir
while [ $round -lt 10000 ]
do
echo "******* round $round ********"
mkfs.xfs -f $device
mount $device $testdir || fail "mount failed!"
fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null &
sleep 4
killall -w fsstress
umount $testdir
xfs_repair -e $device > /dev/null
if [ $? -eq 2 ];then
echo "ERR CODE 2: Dirty log exception during repair."
exit 1
fi
round=$(($round+1))
done

With lazysbcount is enabled, There is no additional lock protection for
reading m_ifree and m_icount in xfs_log_sb(), if other cpu modifies the
m_ifree, this will make the m_ifree greater than m_icount. For example,
consider the following sequence and ifreedelta is postive:

CPU0 CPU1
xfs_log_sb xfs_trans_unreserve_and_mod_sb
---------- ------------------------------
percpu_counter_sum(&mp->m_icount)
percpu_counter_add_batch(&mp->m_icount,
idelta, XFS_ICOUNT_BATCH)
percpu_counter_add(&mp->m_ifree, ifreedelta);
percpu_counter_sum(&mp->m_ifree)

After this, incorrect inode count (sb_ifree > sb_icount) will be writen to
the log. In the subsequent writing of sb, incorrect inode count (sb_ifree >
sb_icount) will fail to pass the boundary check in xfs_validate_sb_write()
that cause the file system shutdown.

When lazysbcount is enabled, we don't need to guarantee that Lazy sb
counters are completely correct, but we do need to guarantee that sb_ifree
<= sb_icount. On the other hand, the constraint that m_ifree <= m_icount
must be satisfied any time that there /cannot/ be other threads allocating
or freeing inode chunks. If the constraint is violated under these
circumstances, sb_i{count,free} (the ondisk superblock inode counters)
maybe incorrect and need to be marked sick at unmount, the count will
be rebuilt on the next mount.

Fixes: 8756a5af1819 ("libxfs: add more bounds checking to sb sanity checks")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff 59f6ab40 Wed Nov 16 20:20:20 MST 2022 Long Li <leo.lilong@huawei.com> xfs: fix sb write verify for lazysbcount

When lazysbcount is enabled, fsstress and loop mount/unmount test report
the following problems:

XFS (loop0): SB summary counter sanity check failed
XFS (loop0): Metadata corruption detected at xfs_sb_write_verify+0x13b/0x460,
xfs_sb block 0x0
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000: 58 46 53 42 00 00 10 00 00 00 00 00 00 28 00 00 XFSB.........(..
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 69 fb 7c cd 5f dc 44 af 85 74 e0 cc d4 e3 34 5a i.|._.D..t....4Z
00000030: 00 00 00 00 00 20 00 06 00 00 00 00 00 00 00 80 ..... ..........
00000040: 00 00 00 00 00 00 00 81 00 00 00 00 00 00 00 82 ................
00000050: 00 00 00 01 00 0a 00 00 00 00 00 04 00 00 00 00 ................
00000060: 00 00 0a 00 b4 b5 02 00 02 00 00 08 00 00 00 00 ................
00000070: 00 00 00 00 00 00 00 00 0c 09 09 03 14 00 00 19 ................
XFS (loop0): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply
+0xe1e/0x10e0 (fs/xfs/xfs_buf.c:1580). Shutting down filesystem.
XFS (loop0): Please unmount the filesystem and rectify the problem(s)
XFS (loop0): log mount/recovery failed: error -117
XFS (loop0): log mount failed

This corruption will shutdown the file system and the file system will
no longer be mountable. The following script can reproduce the problem,
but it may take a long time.

#!/bin/bash

device=/dev/sda
testdir=/mnt/test
round=0

function fail()
{
echo "$*"
exit 1
}

mkdir -p $testdir
while [ $round -lt 10000 ]
do
echo "******* round $round ********"
mkfs.xfs -f $device
mount $device $testdir || fail "mount failed!"
fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null &
sleep 4
killall -w fsstress
umount $testdir
xfs_repair -e $device > /dev/null
if [ $? -eq 2 ];then
echo "ERR CODE 2: Dirty log exception during repair."
exit 1
fi
round=$(($round+1))
done

With lazysbcount is enabled, There is no additional lock protection for
reading m_ifree and m_icount in xfs_log_sb(), if other cpu modifies the
m_ifree, this will make the m_ifree greater than m_icount. For example,
consider the following sequence and ifreedelta is postive:

CPU0 CPU1
xfs_log_sb xfs_trans_unreserve_and_mod_sb
---------- ------------------------------
percpu_counter_sum(&mp->m_icount)
percpu_counter_add_batch(&mp->m_icount,
idelta, XFS_ICOUNT_BATCH)
percpu_counter_add(&mp->m_ifree, ifreedelta);
percpu_counter_sum(&mp->m_ifree)

After this, incorrect inode count (sb_ifree > sb_icount) will be writen to
the log. In the subsequent writing of sb, incorrect inode count (sb_ifree >
sb_icount) will fail to pass the boundary check in xfs_validate_sb_write()
that cause the file system shutdown.

When lazysbcount is enabled, we don't need to guarantee that Lazy sb
counters are completely correct, but we do need to guarantee that sb_ifree
<= sb_icount. On the other hand, the constraint that m_ifree <= m_icount
must be satisfied any time that there /cannot/ be other threads allocating
or freeing inode chunks. If the constraint is violated under these
circumstances, sb_i{count,free} (the ondisk superblock inode counters)
maybe incorrect and need to be marked sick at unmount, the count will
be rebuilt on the next mount.

Fixes: 8756a5af1819 ("libxfs: add more bounds checking to sb sanity checks")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff 59f6ab40 Wed Nov 16 20:20:20 MST 2022 Long Li <leo.lilong@huawei.com> xfs: fix sb write verify for lazysbcount

When lazysbcount is enabled, fsstress and loop mount/unmount test report
the following problems:

XFS (loop0): SB summary counter sanity check failed
XFS (loop0): Metadata corruption detected at xfs_sb_write_verify+0x13b/0x460,
xfs_sb block 0x0
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000: 58 46 53 42 00 00 10 00 00 00 00 00 00 28 00 00 XFSB.........(..
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 69 fb 7c cd 5f dc 44 af 85 74 e0 cc d4 e3 34 5a i.|._.D..t....4Z
00000030: 00 00 00 00 00 20 00 06 00 00 00 00 00 00 00 80 ..... ..........
00000040: 00 00 00 00 00 00 00 81 00 00 00 00 00 00 00 82 ................
00000050: 00 00 00 01 00 0a 00 00 00 00 00 04 00 00 00 00 ................
00000060: 00 00 0a 00 b4 b5 02 00 02 00 00 08 00 00 00 00 ................
00000070: 00 00 00 00 00 00 00 00 0c 09 09 03 14 00 00 19 ................
XFS (loop0): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply
+0xe1e/0x10e0 (fs/xfs/xfs_buf.c:1580). Shutting down filesystem.
XFS (loop0): Please unmount the filesystem and rectify the problem(s)
XFS (loop0): log mount/recovery failed: error -117
XFS (loop0): log mount failed

This corruption will shutdown the file system and the file system will
no longer be mountable. The following script can reproduce the problem,
but it may take a long time.

#!/bin/bash

device=/dev/sda
testdir=/mnt/test
round=0

function fail()
{
echo "$*"
exit 1
}

mkdir -p $testdir
while [ $round -lt 10000 ]
do
echo "******* round $round ********"
mkfs.xfs -f $device
mount $device $testdir || fail "mount failed!"
fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null &
sleep 4
killall -w fsstress
umount $testdir
xfs_repair -e $device > /dev/null
if [ $? -eq 2 ];then
echo "ERR CODE 2: Dirty log exception during repair."
exit 1
fi
round=$(($round+1))
done

With lazysbcount is enabled, There is no additional lock protection for
reading m_ifree and m_icount in xfs_log_sb(), if other cpu modifies the
m_ifree, this will make the m_ifree greater than m_icount. For example,
consider the following sequence and ifreedelta is postive:

CPU0 CPU1
xfs_log_sb xfs_trans_unreserve_and_mod_sb
---------- ------------------------------
percpu_counter_sum(&mp->m_icount)
percpu_counter_add_batch(&mp->m_icount,
idelta, XFS_ICOUNT_BATCH)
percpu_counter_add(&mp->m_ifree, ifreedelta);
percpu_counter_sum(&mp->m_ifree)

After this, incorrect inode count (sb_ifree > sb_icount) will be writen to
the log. In the subsequent writing of sb, incorrect inode count (sb_ifree >
sb_icount) will fail to pass the boundary check in xfs_validate_sb_write()
that cause the file system shutdown.

When lazysbcount is enabled, we don't need to guarantee that Lazy sb
counters are completely correct, but we do need to guarantee that sb_ifree
<= sb_icount. On the other hand, the constraint that m_ifree <= m_icount
must be satisfied any time that there /cannot/ be other threads allocating
or freeing inode chunks. If the constraint is violated under these
circumstances, sb_i{count,free} (the ondisk superblock inode counters)
maybe incorrect and need to be marked sick at unmount, the count will
be rebuilt on the next mount.

Fixes: 8756a5af1819 ("libxfs: add more bounds checking to sb sanity checks")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff 59f6ab40 Wed Nov 16 20:20:20 MST 2022 Long Li <leo.lilong@huawei.com> xfs: fix sb write verify for lazysbcount

When lazysbcount is enabled, fsstress and loop mount/unmount test report
the following problems:

XFS (loop0): SB summary counter sanity check failed
XFS (loop0): Metadata corruption detected at xfs_sb_write_verify+0x13b/0x460,
xfs_sb block 0x0
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000: 58 46 53 42 00 00 10 00 00 00 00 00 00 28 00 00 XFSB.........(..
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 69 fb 7c cd 5f dc 44 af 85 74 e0 cc d4 e3 34 5a i.|._.D..t....4Z
00000030: 00 00 00 00 00 20 00 06 00 00 00 00 00 00 00 80 ..... ..........
00000040: 00 00 00 00 00 00 00 81 00 00 00 00 00 00 00 82 ................
00000050: 00 00 00 01 00 0a 00 00 00 00 00 04 00 00 00 00 ................
00000060: 00 00 0a 00 b4 b5 02 00 02 00 00 08 00 00 00 00 ................
00000070: 00 00 00 00 00 00 00 00 0c 09 09 03 14 00 00 19 ................
XFS (loop0): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply
+0xe1e/0x10e0 (fs/xfs/xfs_buf.c:1580). Shutting down filesystem.
XFS (loop0): Please unmount the filesystem and rectify the problem(s)
XFS (loop0): log mount/recovery failed: error -117
XFS (loop0): log mount failed

This corruption will shutdown the file system and the file system will
no longer be mountable. The following script can reproduce the problem,
but it may take a long time.

#!/bin/bash

device=/dev/sda
testdir=/mnt/test
round=0

function fail()
{
echo "$*"
exit 1
}

mkdir -p $testdir
while [ $round -lt 10000 ]
do
echo "******* round $round ********"
mkfs.xfs -f $device
mount $device $testdir || fail "mount failed!"
fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null &
sleep 4
killall -w fsstress
umount $testdir
xfs_repair -e $device > /dev/null
if [ $? -eq 2 ];then
echo "ERR CODE 2: Dirty log exception during repair."
exit 1
fi
round=$(($round+1))
done

With lazysbcount is enabled, There is no additional lock protection for
reading m_ifree and m_icount in xfs_log_sb(), if other cpu modifies the
m_ifree, this will make the m_ifree greater than m_icount. For example,
consider the following sequence and ifreedelta is postive:

CPU0 CPU1
xfs_log_sb xfs_trans_unreserve_and_mod_sb
---------- ------------------------------
percpu_counter_sum(&mp->m_icount)
percpu_counter_add_batch(&mp->m_icount,
idelta, XFS_ICOUNT_BATCH)
percpu_counter_add(&mp->m_ifree, ifreedelta);
percpu_counter_sum(&mp->m_ifree)

After this, incorrect inode count (sb_ifree > sb_icount) will be writen to
the log. In the subsequent writing of sb, incorrect inode count (sb_ifree >
sb_icount) will fail to pass the boundary check in xfs_validate_sb_write()
that cause the file system shutdown.

When lazysbcount is enabled, we don't need to guarantee that Lazy sb
counters are completely correct, but we do need to guarantee that sb_ifree
<= sb_icount. On the other hand, the constraint that m_ifree <= m_icount
must be satisfied any time that there /cannot/ be other threads allocating
or freeing inode chunks. If the constraint is violated under these
circumstances, sb_i{count,free} (the ondisk superblock inode counters)
maybe incorrect and need to be marked sick at unmount, the count will
be rebuilt on the next mount.

Fixes: 8756a5af1819 ("libxfs: add more bounds checking to sb sanity checks")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff 59f6ab40 Wed Nov 16 20:20:20 MST 2022 Long Li <leo.lilong@huawei.com> xfs: fix sb write verify for lazysbcount

When lazysbcount is enabled, fsstress and loop mount/unmount test report
the following problems:

XFS (loop0): SB summary counter sanity check failed
XFS (loop0): Metadata corruption detected at xfs_sb_write_verify+0x13b/0x460,
xfs_sb block 0x0
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000: 58 46 53 42 00 00 10 00 00 00 00 00 00 28 00 00 XFSB.........(..
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 69 fb 7c cd 5f dc 44 af 85 74 e0 cc d4 e3 34 5a i.|._.D..t....4Z
00000030: 00 00 00 00 00 20 00 06 00 00 00 00 00 00 00 80 ..... ..........
00000040: 00 00 00 00 00 00 00 81 00 00 00 00 00 00 00 82 ................
00000050: 00 00 00 01 00 0a 00 00 00 00 00 04 00 00 00 00 ................
00000060: 00 00 0a 00 b4 b5 02 00 02 00 00 08 00 00 00 00 ................
00000070: 00 00 00 00 00 00 00 00 0c 09 09 03 14 00 00 19 ................
XFS (loop0): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply
+0xe1e/0x10e0 (fs/xfs/xfs_buf.c:1580). Shutting down filesystem.
XFS (loop0): Please unmount the filesystem and rectify the problem(s)
XFS (loop0): log mount/recovery failed: error -117
XFS (loop0): log mount failed

This corruption will shutdown the file system and the file system will
no longer be mountable. The following script can reproduce the problem,
but it may take a long time.

#!/bin/bash

device=/dev/sda
testdir=/mnt/test
round=0

function fail()
{
echo "$*"
exit 1
}

mkdir -p $testdir
while [ $round -lt 10000 ]
do
echo "******* round $round ********"
mkfs.xfs -f $device
mount $device $testdir || fail "mount failed!"
fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null &
sleep 4
killall -w fsstress
umount $testdir
xfs_repair -e $device > /dev/null
if [ $? -eq 2 ];then
echo "ERR CODE 2: Dirty log exception during repair."
exit 1
fi
round=$(($round+1))
done

With lazysbcount is enabled, There is no additional lock protection for
reading m_ifree and m_icount in xfs_log_sb(), if other cpu modifies the
m_ifree, this will make the m_ifree greater than m_icount. For example,
consider the following sequence and ifreedelta is postive:

CPU0 CPU1
xfs_log_sb xfs_trans_unreserve_and_mod_sb
---------- ------------------------------
percpu_counter_sum(&mp->m_icount)
percpu_counter_add_batch(&mp->m_icount,
idelta, XFS_ICOUNT_BATCH)
percpu_counter_add(&mp->m_ifree, ifreedelta);
percpu_counter_sum(&mp->m_ifree)

After this, incorrect inode count (sb_ifree > sb_icount) will be writen to
the log. In the subsequent writing of sb, incorrect inode count (sb_ifree >
sb_icount) will fail to pass the boundary check in xfs_validate_sb_write()
that cause the file system shutdown.

When lazysbcount is enabled, we don't need to guarantee that Lazy sb
counters are completely correct, but we do need to guarantee that sb_ifree
<= sb_icount. On the other hand, the constraint that m_ifree <= m_icount
must be satisfied any time that there /cannot/ be other threads allocating
or freeing inode chunks. If the constraint is violated under these
circumstances, sb_i{count,free} (the ondisk superblock inode counters)
maybe incorrect and need to be marked sick at unmount, the count will
be rebuilt on the next mount.

Fixes: 8756a5af1819 ("libxfs: add more bounds checking to sb sanity checks")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff 59f6ab40 Wed Nov 16 20:20:20 MST 2022 Long Li <leo.lilong@huawei.com> xfs: fix sb write verify for lazysbcount

When lazysbcount is enabled, fsstress and loop mount/unmount test report
the following problems:

XFS (loop0): SB summary counter sanity check failed
XFS (loop0): Metadata corruption detected at xfs_sb_write_verify+0x13b/0x460,
xfs_sb block 0x0
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000: 58 46 53 42 00 00 10 00 00 00 00 00 00 28 00 00 XFSB.........(..
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 69 fb 7c cd 5f dc 44 af 85 74 e0 cc d4 e3 34 5a i.|._.D..t....4Z
00000030: 00 00 00 00 00 20 00 06 00 00 00 00 00 00 00 80 ..... ..........
00000040: 00 00 00 00 00 00 00 81 00 00 00 00 00 00 00 82 ................
00000050: 00 00 00 01 00 0a 00 00 00 00 00 04 00 00 00 00 ................
00000060: 00 00 0a 00 b4 b5 02 00 02 00 00 08 00 00 00 00 ................
00000070: 00 00 00 00 00 00 00 00 0c 09 09 03 14 00 00 19 ................
XFS (loop0): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply
+0xe1e/0x10e0 (fs/xfs/xfs_buf.c:1580). Shutting down filesystem.
XFS (loop0): Please unmount the filesystem and rectify the problem(s)
XFS (loop0): log mount/recovery failed: error -117
XFS (loop0): log mount failed

This corruption will shutdown the file system and the file system will
no longer be mountable. The following script can reproduce the problem,
but it may take a long time.

#!/bin/bash

device=/dev/sda
testdir=/mnt/test
round=0

function fail()
{
echo "$*"
exit 1
}

mkdir -p $testdir
while [ $round -lt 10000 ]
do
echo "******* round $round ********"
mkfs.xfs -f $device
mount $device $testdir || fail "mount failed!"
fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null &
sleep 4
killall -w fsstress
umount $testdir
xfs_repair -e $device > /dev/null
if [ $? -eq 2 ];then
echo "ERR CODE 2: Dirty log exception during repair."
exit 1
fi
round=$(($round+1))
done

With lazysbcount is enabled, There is no additional lock protection for
reading m_ifree and m_icount in xfs_log_sb(), if other cpu modifies the
m_ifree, this will make the m_ifree greater than m_icount. For example,
consider the following sequence and ifreedelta is postive:

CPU0 CPU1
xfs_log_sb xfs_trans_unreserve_and_mod_sb
---------- ------------------------------
percpu_counter_sum(&mp->m_icount)
percpu_counter_add_batch(&mp->m_icount,
idelta, XFS_ICOUNT_BATCH)
percpu_counter_add(&mp->m_ifree, ifreedelta);
percpu_counter_sum(&mp->m_ifree)

After this, incorrect inode count (sb_ifree > sb_icount) will be writen to
the log. In the subsequent writing of sb, incorrect inode count (sb_ifree >
sb_icount) will fail to pass the boundary check in xfs_validate_sb_write()
that cause the file system shutdown.

When lazysbcount is enabled, we don't need to guarantee that Lazy sb
counters are completely correct, but we do need to guarantee that sb_ifree
<= sb_icount. On the other hand, the constraint that m_ifree <= m_icount
must be satisfied any time that there /cannot/ be other threads allocating
or freeing inode chunks. If the constraint is violated under these
circumstances, sb_i{count,free} (the ondisk superblock inode counters)
maybe incorrect and need to be marked sick at unmount, the count will
be rebuilt on the next mount.

Fixes: 8756a5af1819 ("libxfs: add more bounds checking to sb sanity checks")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff 59f6ab40 Wed Nov 16 20:20:20 MST 2022 Long Li <leo.lilong@huawei.com> xfs: fix sb write verify for lazysbcount

When lazysbcount is enabled, fsstress and loop mount/unmount test report
the following problems:

XFS (loop0): SB summary counter sanity check failed
XFS (loop0): Metadata corruption detected at xfs_sb_write_verify+0x13b/0x460,
xfs_sb block 0x0
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000: 58 46 53 42 00 00 10 00 00 00 00 00 00 28 00 00 XFSB.........(..
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 69 fb 7c cd 5f dc 44 af 85 74 e0 cc d4 e3 34 5a i.|._.D..t....4Z
00000030: 00 00 00 00 00 20 00 06 00 00 00 00 00 00 00 80 ..... ..........
00000040: 00 00 00 00 00 00 00 81 00 00 00 00 00 00 00 82 ................
00000050: 00 00 00 01 00 0a 00 00 00 00 00 04 00 00 00 00 ................
00000060: 00 00 0a 00 b4 b5 02 00 02 00 00 08 00 00 00 00 ................
00000070: 00 00 00 00 00 00 00 00 0c 09 09 03 14 00 00 19 ................
XFS (loop0): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply
+0xe1e/0x10e0 (fs/xfs/xfs_buf.c:1580). Shutting down filesystem.
XFS (loop0): Please unmount the filesystem and rectify the problem(s)
XFS (loop0): log mount/recovery failed: error -117
XFS (loop0): log mount failed

This corruption will shutdown the file system and the file system will
no longer be mountable. The following script can reproduce the problem,
but it may take a long time.

#!/bin/bash

device=/dev/sda
testdir=/mnt/test
round=0

function fail()
{
echo "$*"
exit 1
}

mkdir -p $testdir
while [ $round -lt 10000 ]
do
echo "******* round $round ********"
mkfs.xfs -f $device
mount $device $testdir || fail "mount failed!"
fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null &
sleep 4
killall -w fsstress
umount $testdir
xfs_repair -e $device > /dev/null
if [ $? -eq 2 ];then
echo "ERR CODE 2: Dirty log exception during repair."
exit 1
fi
round=$(($round+1))
done

With lazysbcount is enabled, There is no additional lock protection for
reading m_ifree and m_icount in xfs_log_sb(), if other cpu modifies the
m_ifree, this will make the m_ifree greater than m_icount. For example,
consider the following sequence and ifreedelta is postive:

CPU0 CPU1
xfs_log_sb xfs_trans_unreserve_and_mod_sb
---------- ------------------------------
percpu_counter_sum(&mp->m_icount)
percpu_counter_add_batch(&mp->m_icount,
idelta, XFS_ICOUNT_BATCH)
percpu_counter_add(&mp->m_ifree, ifreedelta);
percpu_counter_sum(&mp->m_ifree)

After this, incorrect inode count (sb_ifree > sb_icount) will be writen to
the log. In the subsequent writing of sb, incorrect inode count (sb_ifree >
sb_icount) will fail to pass the boundary check in xfs_validate_sb_write()
that cause the file system shutdown.

When lazysbcount is enabled, we don't need to guarantee that Lazy sb
counters are completely correct, but we do need to guarantee that sb_ifree
<= sb_icount. On the other hand, the constraint that m_ifree <= m_icount
must be satisfied any time that there /cannot/ be other threads allocating
or freeing inode chunks. If the constraint is violated under these
circumstances, sb_i{count,free} (the ondisk superblock inode counters)
maybe incorrect and need to be marked sick at unmount, the count will
be rebuilt on the next mount.

Fixes: 8756a5af1819 ("libxfs: add more bounds checking to sb sanity checks")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff 59f6ab40 Wed Nov 16 20:20:20 MST 2022 Long Li <leo.lilong@huawei.com> xfs: fix sb write verify for lazysbcount

When lazysbcount is enabled, fsstress and loop mount/unmount test report
the following problems:

XFS (loop0): SB summary counter sanity check failed
XFS (loop0): Metadata corruption detected at xfs_sb_write_verify+0x13b/0x460,
xfs_sb block 0x0
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000: 58 46 53 42 00 00 10 00 00 00 00 00 00 28 00 00 XFSB.........(..
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 69 fb 7c cd 5f dc 44 af 85 74 e0 cc d4 e3 34 5a i.|._.D..t....4Z
00000030: 00 00 00 00 00 20 00 06 00 00 00 00 00 00 00 80 ..... ..........
00000040: 00 00 00 00 00 00 00 81 00 00 00 00 00 00 00 82 ................
00000050: 00 00 00 01 00 0a 00 00 00 00 00 04 00 00 00 00 ................
00000060: 00 00 0a 00 b4 b5 02 00 02 00 00 08 00 00 00 00 ................
00000070: 00 00 00 00 00 00 00 00 0c 09 09 03 14 00 00 19 ................
XFS (loop0): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply
+0xe1e/0x10e0 (fs/xfs/xfs_buf.c:1580). Shutting down filesystem.
XFS (loop0): Please unmount the filesystem and rectify the problem(s)
XFS (loop0): log mount/recovery failed: error -117
XFS (loop0): log mount failed

This corruption will shutdown the file system and the file system will
no longer be mountable. The following script can reproduce the problem,
but it may take a long time.

#!/bin/bash

device=/dev/sda
testdir=/mnt/test
round=0

function fail()
{
echo "$*"
exit 1
}

mkdir -p $testdir
while [ $round -lt 10000 ]
do
echo "******* round $round ********"
mkfs.xfs -f $device
mount $device $testdir || fail "mount failed!"
fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null &
sleep 4
killall -w fsstress
umount $testdir
xfs_repair -e $device > /dev/null
if [ $? -eq 2 ];then
echo "ERR CODE 2: Dirty log exception during repair."
exit 1
fi
round=$(($round+1))
done

With lazysbcount is enabled, There is no additional lock protection for
reading m_ifree and m_icount in xfs_log_sb(), if other cpu modifies the
m_ifree, this will make the m_ifree greater than m_icount. For example,
consider the following sequence and ifreedelta is postive:

CPU0 CPU1
xfs_log_sb xfs_trans_unreserve_and_mod_sb
---------- ------------------------------
percpu_counter_sum(&mp->m_icount)
percpu_counter_add_batch(&mp->m_icount,
idelta, XFS_ICOUNT_BATCH)
percpu_counter_add(&mp->m_ifree, ifreedelta);
percpu_counter_sum(&mp->m_ifree)

After this, incorrect inode count (sb_ifree > sb_icount) will be writen to
the log. In the subsequent writing of sb, incorrect inode count (sb_ifree >
sb_icount) will fail to pass the boundary check in xfs_validate_sb_write()
that cause the file system shutdown.

When lazysbcount is enabled, we don't need to guarantee that Lazy sb
counters are completely correct, but we do need to guarantee that sb_ifree
<= sb_icount. On the other hand, the constraint that m_ifree <= m_icount
must be satisfied any time that there /cannot/ be other threads allocating
or freeing inode chunks. If the constraint is violated under these
circumstances, sb_i{count,free} (the ondisk superblock inode counters)
maybe incorrect and need to be marked sick at unmount, the count will
be rebuilt on the next mount.

Fixes: 8756a5af1819 ("libxfs: add more bounds checking to sb sanity checks")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff 59f6ab40 Wed Nov 16 20:20:20 MST 2022 Long Li <leo.lilong@huawei.com> xfs: fix sb write verify for lazysbcount

When lazysbcount is enabled, fsstress and loop mount/unmount test report
the following problems:

XFS (loop0): SB summary counter sanity check failed
XFS (loop0): Metadata corruption detected at xfs_sb_write_verify+0x13b/0x460,
xfs_sb block 0x0
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000: 58 46 53 42 00 00 10 00 00 00 00 00 00 28 00 00 XFSB.........(..
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 69 fb 7c cd 5f dc 44 af 85 74 e0 cc d4 e3 34 5a i.|._.D..t....4Z
00000030: 00 00 00 00 00 20 00 06 00 00 00 00 00 00 00 80 ..... ..........
00000040: 00 00 00 00 00 00 00 81 00 00 00 00 00 00 00 82 ................
00000050: 00 00 00 01 00 0a 00 00 00 00 00 04 00 00 00 00 ................
00000060: 00 00 0a 00 b4 b5 02 00 02 00 00 08 00 00 00 00 ................
00000070: 00 00 00 00 00 00 00 00 0c 09 09 03 14 00 00 19 ................
XFS (loop0): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply
+0xe1e/0x10e0 (fs/xfs/xfs_buf.c:1580). Shutting down filesystem.
XFS (loop0): Please unmount the filesystem and rectify the problem(s)
XFS (loop0): log mount/recovery failed: error -117
XFS (loop0): log mount failed

This corruption will shutdown the file system and the file system will
no longer be mountable. The following script can reproduce the problem,
but it may take a long time.

#!/bin/bash

device=/dev/sda
testdir=/mnt/test
round=0

function fail()
{
echo "$*"
exit 1
}

mkdir -p $testdir
while [ $round -lt 10000 ]
do
echo "******* round $round ********"
mkfs.xfs -f $device
mount $device $testdir || fail "mount failed!"
fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null &
sleep 4
killall -w fsstress
umount $testdir
xfs_repair -e $device > /dev/null
if [ $? -eq 2 ];then
echo "ERR CODE 2: Dirty log exception during repair."
exit 1
fi
round=$(($round+1))
done

With lazysbcount is enabled, There is no additional lock protection for
reading m_ifree and m_icount in xfs_log_sb(), if other cpu modifies the
m_ifree, this will make the m_ifree greater than m_icount. For example,
consider the following sequence and ifreedelta is postive:

CPU0 CPU1
xfs_log_sb xfs_trans_unreserve_and_mod_sb
---------- ------------------------------
percpu_counter_sum(&mp->m_icount)
percpu_counter_add_batch(&mp->m_icount,
idelta, XFS_ICOUNT_BATCH)
percpu_counter_add(&mp->m_ifree, ifreedelta);
percpu_counter_sum(&mp->m_ifree)

After this, incorrect inode count (sb_ifree > sb_icount) will be writen to
the log. In the subsequent writing of sb, incorrect inode count (sb_ifree >
sb_icount) will fail to pass the boundary check in xfs_validate_sb_write()
that cause the file system shutdown.

When lazysbcount is enabled, we don't need to guarantee that Lazy sb
counters are completely correct, but we do need to guarantee that sb_ifree
<= sb_icount. On the other hand, the constraint that m_ifree <= m_icount
must be satisfied any time that there /cannot/ be other threads allocating
or freeing inode chunks. If the constraint is violated under these
circumstances, sb_i{count,free} (the ondisk superblock inode counters)
maybe incorrect and need to be marked sick at unmount, the count will
be rebuilt on the next mount.

Fixes: 8756a5af1819 ("libxfs: add more bounds checking to sb sanity checks")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff 59f6ab40 Wed Nov 16 20:20:20 MST 2022 Long Li <leo.lilong@huawei.com> xfs: fix sb write verify for lazysbcount

When lazysbcount is enabled, fsstress and loop mount/unmount test report
the following problems:

XFS (loop0): SB summary counter sanity check failed
XFS (loop0): Metadata corruption detected at xfs_sb_write_verify+0x13b/0x460,
xfs_sb block 0x0
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000: 58 46 53 42 00 00 10 00 00 00 00 00 00 28 00 00 XFSB.........(..
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 69 fb 7c cd 5f dc 44 af 85 74 e0 cc d4 e3 34 5a i.|._.D..t....4Z
00000030: 00 00 00 00 00 20 00 06 00 00 00 00 00 00 00 80 ..... ..........
00000040: 00 00 00 00 00 00 00 81 00 00 00 00 00 00 00 82 ................
00000050: 00 00 00 01 00 0a 00 00 00 00 00 04 00 00 00 00 ................
00000060: 00 00 0a 00 b4 b5 02 00 02 00 00 08 00 00 00 00 ................
00000070: 00 00 00 00 00 00 00 00 0c 09 09 03 14 00 00 19 ................
XFS (loop0): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply
+0xe1e/0x10e0 (fs/xfs/xfs_buf.c:1580). Shutting down filesystem.
XFS (loop0): Please unmount the filesystem and rectify the problem(s)
XFS (loop0): log mount/recovery failed: error -117
XFS (loop0): log mount failed

This corruption will shutdown the file system and the file system will
no longer be mountable. The following script can reproduce the problem,
but it may take a long time.

#!/bin/bash

device=/dev/sda
testdir=/mnt/test
round=0

function fail()
{
echo "$*"
exit 1
}

mkdir -p $testdir
while [ $round -lt 10000 ]
do
echo "******* round $round ********"
mkfs.xfs -f $device
mount $device $testdir || fail "mount failed!"
fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null &
sleep 4
killall -w fsstress
umount $testdir
xfs_repair -e $device > /dev/null
if [ $? -eq 2 ];then
echo "ERR CODE 2: Dirty log exception during repair."
exit 1
fi
round=$(($round+1))
done

With lazysbcount is enabled, There is no additional lock protection for
reading m_ifree and m_icount in xfs_log_sb(), if other cpu modifies the
m_ifree, this will make the m_ifree greater than m_icount. For example,
consider the following sequence and ifreedelta is postive:

CPU0 CPU1
xfs_log_sb xfs_trans_unreserve_and_mod_sb
---------- ------------------------------
percpu_counter_sum(&mp->m_icount)
percpu_counter_add_batch(&mp->m_icount,
idelta, XFS_ICOUNT_BATCH)
percpu_counter_add(&mp->m_ifree, ifreedelta);
percpu_counter_sum(&mp->m_ifree)

After this, incorrect inode count (sb_ifree > sb_icount) will be writen to
the log. In the subsequent writing of sb, incorrect inode count (sb_ifree >
sb_icount) will fail to pass the boundary check in xfs_validate_sb_write()
that cause the file system shutdown.

When lazysbcount is enabled, we don't need to guarantee that Lazy sb
counters are completely correct, but we do need to guarantee that sb_ifree
<= sb_icount. On the other hand, the constraint that m_ifree <= m_icount
must be satisfied any time that there /cannot/ be other threads allocating
or freeing inode chunks. If the constraint is violated under these
circumstances, sb_i{count,free} (the ondisk superblock inode counters)
maybe incorrect and need to be marked sick at unmount, the count will
be rebuilt on the next mount.

Fixes: 8756a5af1819 ("libxfs: add more bounds checking to sb sanity checks")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
diff 59f6ab40 Wed Nov 16 20:20:20 MST 2022 Long Li <leo.lilong@huawei.com> xfs: fix sb write verify for lazysbcount

When lazysbcount is enabled, fsstress and loop mount/unmount test report
the following problems:

XFS (loop0): SB summary counter sanity check failed
XFS (loop0): Metadata corruption detected at xfs_sb_write_verify+0x13b/0x460,
xfs_sb block 0x0
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000: 58 46 53 42 00 00 10 00 00 00 00 00 00 28 00 00 XFSB.........(..
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 69 fb 7c cd 5f dc 44 af 85 74 e0 cc d4 e3 34 5a i.|._.D..t....4Z
00000030: 00 00 00 00 00 20 00 06 00 00 00 00 00 00 00 80 ..... ..........
00000040: 00 00 00 00 00 00 00 81 00 00 00 00 00 00 00 82 ................
00000050: 00 00 00 01 00 0a 00 00 00 00 00 04 00 00 00 00 ................
00000060: 00 00 0a 00 b4 b5 02 00 02 00 00 08 00 00 00 00 ................
00000070: 00 00 00 00 00 00 00 00 0c 09 09 03 14 00 00 19 ................
XFS (loop0): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply
+0xe1e/0x10e0 (fs/xfs/xfs_buf.c:1580). Shutting down filesystem.
XFS (loop0): Please unmount the filesystem and rectify the problem(s)
XFS (loop0): log mount/recovery failed: error -117
XFS (loop0): log mount failed

This corruption will shutdown the file system and the file system will
no longer be mountable. The following script can reproduce the problem,
but it may take a long time.

#!/bin/bash

device=/dev/sda
testdir=/mnt/test
round=0

function fail()
{
echo "$*"
exit 1
}

mkdir -p $testdir
while [ $round -lt 10000 ]
do
echo "******* round $round ********"
mkfs.xfs -f $device
mount $device $testdir || fail "mount failed!"
fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null &
sleep 4
killall -w fsstress
umount $testdir
xfs_repair -e $device > /dev/null
if [ $? -eq 2 ];then
echo "ERR CODE 2: Dirty log exception during repair."
exit 1
fi
round=$(($round+1))
done

With lazysbcount is enabled, There is no additional lock protection for
reading m_ifree and m_icount in xfs_log_sb(), if other cpu modifies the
m_ifree, this will make the m_ifree greater than m_icount. For example,
consider the following sequence and ifreedelta is postive:

CPU0 CPU1
xfs_log_sb xfs_trans_unreserve_and_mod_sb
---------- ------------------------------
percpu_counter_sum(&mp->m_icount)
percpu_counter_add_batch(&mp->m_icount,
idelta, XFS_ICOUNT_BATCH)
percpu_counter_add(&mp->m_ifree, ifreedelta);
percpu_counter_sum(&mp->m_ifree)

After this, incorrect inode count (sb_ifree > sb_icount) will be writen to
the log. In the subsequent writing of sb, incorrect inode count (sb_ifree >
sb_icount) will fail to pass the boundary check in xfs_validate_sb_write()
that cause the file system shutdown.

When lazysbcount is enabled, we don't need to guarantee that Lazy sb
counters are completely correct, but we do need to guarantee that sb_ifree
<= sb_icount. On the other hand, the constraint that m_ifree <= m_icount
must be satisfied any time that there /cannot/ be other threads allocating
or freeing inode chunks. If the constraint is violated under these
circumstances, sb_i{count,free} (the ondisk superblock inode counters)
maybe incorrect and need to be marked sick at unmount, the count will
be rebuilt on the next mount.

Fixes: 8756a5af1819 ("libxfs: add more bounds checking to sb sanity checks")
Signed-off-by: Long Li <leo.lilong@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>

Completed in 1266 milliseconds

12345678