1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_trans.h"
14#include "xfs_buf_item.h"
15#include "xfs_trans_priv.h"
16#include "xfs_trace.h"
17
18/*
19 * Check to see if a buffer matching the given parameters is already
20 * a part of the given transaction.
21 */
22STATIC struct xfs_buf *
23xfs_trans_buf_item_match(
24	struct xfs_trans	*tp,
25	struct xfs_buftarg	*target,
26	struct xfs_buf_map	*map,
27	int			nmaps)
28{
29	struct xfs_log_item	*lip;
30	struct xfs_buf_log_item	*blip;
31	int			len = 0;
32	int			i;
33
34	for (i = 0; i < nmaps; i++)
35		len += map[i].bm_len;
36
37	list_for_each_entry(lip, &tp->t_items, li_trans) {
38		blip = (struct xfs_buf_log_item *)lip;
39		if (blip->bli_item.li_type == XFS_LI_BUF &&
40		    blip->bli_buf->b_target == target &&
41		    xfs_buf_daddr(blip->bli_buf) == map[0].bm_bn &&
42		    blip->bli_buf->b_length == len) {
43			ASSERT(blip->bli_buf->b_map_count == nmaps);
44			return blip->bli_buf;
45		}
46	}
47
48	return NULL;
49}
50
51/*
52 * Add the locked buffer to the transaction.
53 *
54 * The buffer must be locked, and it cannot be associated with any
55 * transaction.
56 *
57 * If the buffer does not yet have a buf log item associated with it,
58 * then allocate one for it.  Then add the buf item to the transaction.
59 */
60STATIC void
61_xfs_trans_bjoin(
62	struct xfs_trans	*tp,
63	struct xfs_buf		*bp,
64	int			reset_recur)
65{
66	struct xfs_buf_log_item	*bip;
67
68	ASSERT(bp->b_transp == NULL);
69
70	/*
71	 * The xfs_buf_log_item pointer is stored in b_log_item.  If
72	 * it doesn't have one yet, then allocate one and initialize it.
73	 * The checks to see if one is there are in xfs_buf_item_init().
74	 */
75	xfs_buf_item_init(bp, tp->t_mountp);
76	bip = bp->b_log_item;
77	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
78	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
79	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
80	if (reset_recur)
81		bip->bli_recur = 0;
82
83	/*
84	 * Take a reference for this transaction on the buf item.
85	 */
86	atomic_inc(&bip->bli_refcount);
87
88	/*
89	 * Attach the item to the transaction so we can find it in
90	 * xfs_trans_get_buf() and friends.
91	 */
92	xfs_trans_add_item(tp, &bip->bli_item);
93	bp->b_transp = tp;
94
95}
96
97void
98xfs_trans_bjoin(
99	struct xfs_trans	*tp,
100	struct xfs_buf		*bp)
101{
102	_xfs_trans_bjoin(tp, bp, 0);
103	trace_xfs_trans_bjoin(bp->b_log_item);
104}
105
106/*
107 * Get and lock the buffer for the caller if it is not already
108 * locked within the given transaction.  If it is already locked
109 * within the transaction, just increment its lock recursion count
110 * and return a pointer to it.
111 *
112 * If the transaction pointer is NULL, make this just a normal
113 * get_buf() call.
114 */
115int
116xfs_trans_get_buf_map(
117	struct xfs_trans	*tp,
118	struct xfs_buftarg	*target,
119	struct xfs_buf_map	*map,
120	int			nmaps,
121	xfs_buf_flags_t		flags,
122	struct xfs_buf		**bpp)
123{
124	struct xfs_buf		*bp;
125	struct xfs_buf_log_item	*bip;
126	int			error;
127
128	*bpp = NULL;
129	if (!tp)
130		return xfs_buf_get_map(target, map, nmaps, flags, bpp);
131
132	/*
133	 * If we find the buffer in the cache with this transaction
134	 * pointer in its b_fsprivate2 field, then we know we already
135	 * have it locked.  In this case we just increment the lock
136	 * recursion count and return the buffer to the caller.
137	 */
138	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
139	if (bp != NULL) {
140		ASSERT(xfs_buf_islocked(bp));
141		if (xfs_is_shutdown(tp->t_mountp)) {
142			xfs_buf_stale(bp);
143			bp->b_flags |= XBF_DONE;
144		}
145
146		ASSERT(bp->b_transp == tp);
147		bip = bp->b_log_item;
148		ASSERT(bip != NULL);
149		ASSERT(atomic_read(&bip->bli_refcount) > 0);
150		bip->bli_recur++;
151		trace_xfs_trans_get_buf_recur(bip);
152		*bpp = bp;
153		return 0;
154	}
155
156	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
157	if (error)
158		return error;
159
160	ASSERT(!bp->b_error);
161
162	_xfs_trans_bjoin(tp, bp, 1);
163	trace_xfs_trans_get_buf(bp->b_log_item);
164	*bpp = bp;
165	return 0;
166}
167
168/*
169 * Get and lock the superblock buffer for the given transaction.
170 */
171struct xfs_buf *
172xfs_trans_getsb(
173	struct xfs_trans	*tp)
174{
175	struct xfs_buf		*bp = tp->t_mountp->m_sb_bp;
176
177	/*
178	 * Just increment the lock recursion count if the buffer is already
179	 * attached to this transaction.
180	 */
181	if (bp->b_transp == tp) {
182		struct xfs_buf_log_item	*bip = bp->b_log_item;
183
184		ASSERT(bip != NULL);
185		ASSERT(atomic_read(&bip->bli_refcount) > 0);
186		bip->bli_recur++;
187
188		trace_xfs_trans_getsb_recur(bip);
189	} else {
190		xfs_buf_lock(bp);
191		xfs_buf_hold(bp);
192		_xfs_trans_bjoin(tp, bp, 1);
193
194		trace_xfs_trans_getsb(bp->b_log_item);
195	}
196
197	return bp;
198}
199
200/*
201 * Get and lock the buffer for the caller if it is not already
202 * locked within the given transaction.  If it has not yet been
203 * read in, read it from disk. If it is already locked
204 * within the transaction and already read in, just increment its
205 * lock recursion count and return a pointer to it.
206 *
207 * If the transaction pointer is NULL, make this just a normal
208 * read_buf() call.
209 */
210int
211xfs_trans_read_buf_map(
212	struct xfs_mount	*mp,
213	struct xfs_trans	*tp,
214	struct xfs_buftarg	*target,
215	struct xfs_buf_map	*map,
216	int			nmaps,
217	xfs_buf_flags_t		flags,
218	struct xfs_buf		**bpp,
219	const struct xfs_buf_ops *ops)
220{
221	struct xfs_buf		*bp = NULL;
222	struct xfs_buf_log_item	*bip;
223	int			error;
224
225	*bpp = NULL;
226	/*
227	 * If we find the buffer in the cache with this transaction
228	 * pointer in its b_fsprivate2 field, then we know we already
229	 * have it locked.  If it is already read in we just increment
230	 * the lock recursion count and return the buffer to the caller.
231	 * If the buffer is not yet read in, then we read it in, increment
232	 * the lock recursion count, and return it to the caller.
233	 */
234	if (tp)
235		bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
236	if (bp) {
237		ASSERT(xfs_buf_islocked(bp));
238		ASSERT(bp->b_transp == tp);
239		ASSERT(bp->b_log_item != NULL);
240		ASSERT(!bp->b_error);
241		ASSERT(bp->b_flags & XBF_DONE);
242
243		/*
244		 * We never locked this buf ourselves, so we shouldn't
245		 * brelse it either. Just get out.
246		 */
247		if (xfs_is_shutdown(mp)) {
248			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
249			return -EIO;
250		}
251
252		/*
253		 * Check if the caller is trying to read a buffer that is
254		 * already attached to the transaction yet has no buffer ops
255		 * assigned.  Ops are usually attached when the buffer is
256		 * attached to the transaction, or by the read caller if
257		 * special circumstances.  That didn't happen, which is not
258		 * how this is supposed to go.
259		 *
260		 * If the buffer passes verification we'll let this go, but if
261		 * not we have to shut down.  Let the transaction cleanup code
262		 * release this buffer when it kills the tranaction.
263		 */
264		ASSERT(bp->b_ops != NULL);
265		error = xfs_buf_reverify(bp, ops);
266		if (error) {
267			xfs_buf_ioerror_alert(bp, __return_address);
268
269			if (tp->t_flags & XFS_TRANS_DIRTY)
270				xfs_force_shutdown(tp->t_mountp,
271						SHUTDOWN_META_IO_ERROR);
272
273			/* bad CRC means corrupted metadata */
274			if (error == -EFSBADCRC)
275				error = -EFSCORRUPTED;
276			return error;
277		}
278
279		bip = bp->b_log_item;
280		bip->bli_recur++;
281
282		ASSERT(atomic_read(&bip->bli_refcount) > 0);
283		trace_xfs_trans_read_buf_recur(bip);
284		ASSERT(bp->b_ops != NULL || ops == NULL);
285		*bpp = bp;
286		return 0;
287	}
288
289	error = xfs_buf_read_map(target, map, nmaps, flags, &bp, ops,
290			__return_address);
291	switch (error) {
292	case 0:
293		break;
294	default:
295		if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
296			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
297		fallthrough;
298	case -ENOMEM:
299	case -EAGAIN:
300		return error;
301	}
302
303	if (xfs_is_shutdown(mp)) {
304		xfs_buf_relse(bp);
305		trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
306		return -EIO;
307	}
308
309	if (tp) {
310		_xfs_trans_bjoin(tp, bp, 1);
311		trace_xfs_trans_read_buf(bp->b_log_item);
312	}
313	ASSERT(bp->b_ops != NULL || ops == NULL);
314	*bpp = bp;
315	return 0;
316
317}
318
319/* Has this buffer been dirtied by anyone? */
320bool
321xfs_trans_buf_is_dirty(
322	struct xfs_buf		*bp)
323{
324	struct xfs_buf_log_item	*bip = bp->b_log_item;
325
326	if (!bip)
327		return false;
328	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
329	return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
330}
331
332/*
333 * Release a buffer previously joined to the transaction. If the buffer is
334 * modified within this transaction, decrement the recursion count but do not
335 * release the buffer even if the count goes to 0. If the buffer is not modified
336 * within the transaction, decrement the recursion count and release the buffer
337 * if the recursion count goes to 0.
338 *
339 * If the buffer is to be released and it was not already dirty before this
340 * transaction began, then also free the buf_log_item associated with it.
341 *
342 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
343 */
344void
345xfs_trans_brelse(
346	struct xfs_trans	*tp,
347	struct xfs_buf		*bp)
348{
349	struct xfs_buf_log_item	*bip = bp->b_log_item;
350
351	ASSERT(bp->b_transp == tp);
352
353	if (!tp) {
354		xfs_buf_relse(bp);
355		return;
356	}
357
358	trace_xfs_trans_brelse(bip);
359	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
360	ASSERT(atomic_read(&bip->bli_refcount) > 0);
361
362	/*
363	 * If the release is for a recursive lookup, then decrement the count
364	 * and return.
365	 */
366	if (bip->bli_recur > 0) {
367		bip->bli_recur--;
368		return;
369	}
370
371	/*
372	 * If the buffer is invalidated or dirty in this transaction, we can't
373	 * release it until we commit.
374	 */
375	if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
376		return;
377	if (bip->bli_flags & XFS_BLI_STALE)
378		return;
379
380	/*
381	 * Unlink the log item from the transaction and clear the hold flag, if
382	 * set. We wouldn't want the next user of the buffer to get confused.
383	 */
384	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
385	xfs_trans_del_item(&bip->bli_item);
386	bip->bli_flags &= ~XFS_BLI_HOLD;
387
388	/* drop the reference to the bli */
389	xfs_buf_item_put(bip);
390
391	bp->b_transp = NULL;
392	xfs_buf_relse(bp);
393}
394
395/*
396 * Forcibly detach a buffer previously joined to the transaction.  The caller
397 * will retain its locked reference to the buffer after this function returns.
398 * The buffer must be completely clean and must not be held to the transaction.
399 */
400void
401xfs_trans_bdetach(
402	struct xfs_trans	*tp,
403	struct xfs_buf		*bp)
404{
405	struct xfs_buf_log_item	*bip = bp->b_log_item;
406
407	ASSERT(tp != NULL);
408	ASSERT(bp->b_transp == tp);
409	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
410	ASSERT(atomic_read(&bip->bli_refcount) > 0);
411
412	trace_xfs_trans_bdetach(bip);
413
414	/*
415	 * Erase all recursion count, since we're removing this buffer from the
416	 * transaction.
417	 */
418	bip->bli_recur = 0;
419
420	/*
421	 * The buffer must be completely clean.  Specifically, it had better
422	 * not be dirty, stale, logged, ordered, or held to the transaction.
423	 */
424	ASSERT(!test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
425	ASSERT(!(bip->bli_flags & XFS_BLI_DIRTY));
426	ASSERT(!(bip->bli_flags & XFS_BLI_HOLD));
427	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
428	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
429	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
430
431	/* Unlink the log item from the transaction and drop the log item. */
432	xfs_trans_del_item(&bip->bli_item);
433	xfs_buf_item_put(bip);
434	bp->b_transp = NULL;
435}
436
437/*
438 * Mark the buffer as not needing to be unlocked when the buf item's
439 * iop_committing() routine is called.  The buffer must already be locked
440 * and associated with the given transaction.
441 */
442/* ARGSUSED */
443void
444xfs_trans_bhold(
445	xfs_trans_t		*tp,
446	struct xfs_buf		*bp)
447{
448	struct xfs_buf_log_item	*bip = bp->b_log_item;
449
450	ASSERT(bp->b_transp == tp);
451	ASSERT(bip != NULL);
452	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
453	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
454	ASSERT(atomic_read(&bip->bli_refcount) > 0);
455
456	bip->bli_flags |= XFS_BLI_HOLD;
457	trace_xfs_trans_bhold(bip);
458}
459
460/*
461 * Cancel the previous buffer hold request made on this buffer
462 * for this transaction.
463 */
464void
465xfs_trans_bhold_release(
466	xfs_trans_t		*tp,
467	struct xfs_buf		*bp)
468{
469	struct xfs_buf_log_item	*bip = bp->b_log_item;
470
471	ASSERT(bp->b_transp == tp);
472	ASSERT(bip != NULL);
473	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
474	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
475	ASSERT(atomic_read(&bip->bli_refcount) > 0);
476	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
477
478	bip->bli_flags &= ~XFS_BLI_HOLD;
479	trace_xfs_trans_bhold_release(bip);
480}
481
482/*
483 * Mark a buffer dirty in the transaction.
484 */
485void
486xfs_trans_dirty_buf(
487	struct xfs_trans	*tp,
488	struct xfs_buf		*bp)
489{
490	struct xfs_buf_log_item	*bip = bp->b_log_item;
491
492	ASSERT(bp->b_transp == tp);
493	ASSERT(bip != NULL);
494
495	/*
496	 * Mark the buffer as needing to be written out eventually,
497	 * and set its iodone function to remove the buffer's buf log
498	 * item from the AIL and free it when the buffer is flushed
499	 * to disk.
500	 */
501	bp->b_flags |= XBF_DONE;
502
503	ASSERT(atomic_read(&bip->bli_refcount) > 0);
504
505	/*
506	 * If we invalidated the buffer within this transaction, then
507	 * cancel the invalidation now that we're dirtying the buffer
508	 * again.  There are no races with the code in xfs_buf_item_unpin(),
509	 * because we have a reference to the buffer this entire time.
510	 */
511	if (bip->bli_flags & XFS_BLI_STALE) {
512		bip->bli_flags &= ~XFS_BLI_STALE;
513		ASSERT(bp->b_flags & XBF_STALE);
514		bp->b_flags &= ~XBF_STALE;
515		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
516	}
517	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
518
519	tp->t_flags |= XFS_TRANS_DIRTY;
520	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
521}
522
523/*
524 * This is called to mark bytes first through last inclusive of the given
525 * buffer as needing to be logged when the transaction is committed.
526 * The buffer must already be associated with the given transaction.
527 *
528 * First and last are numbers relative to the beginning of this buffer,
529 * so the first byte in the buffer is numbered 0 regardless of the
530 * value of b_blkno.
531 */
532void
533xfs_trans_log_buf(
534	struct xfs_trans	*tp,
535	struct xfs_buf		*bp,
536	uint			first,
537	uint			last)
538{
539	struct xfs_buf_log_item	*bip = bp->b_log_item;
540
541	ASSERT(first <= last && last < BBTOB(bp->b_length));
542	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
543
544	xfs_trans_dirty_buf(tp, bp);
545
546	trace_xfs_trans_log_buf(bip);
547	xfs_buf_item_log(bip, first, last);
548}
549
550
551/*
552 * Invalidate a buffer that is being used within a transaction.
553 *
554 * Typically this is because the blocks in the buffer are being freed, so we
555 * need to prevent it from being written out when we're done.  Allowing it
556 * to be written again might overwrite data in the free blocks if they are
557 * reallocated to a file.
558 *
559 * We prevent the buffer from being written out by marking it stale.  We can't
560 * get rid of the buf log item at this point because the buffer may still be
561 * pinned by another transaction.  If that is the case, then we'll wait until
562 * the buffer is committed to disk for the last time (we can tell by the ref
563 * count) and free it in xfs_buf_item_unpin().  Until that happens we will
564 * keep the buffer locked so that the buffer and buf log item are not reused.
565 *
566 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
567 * the buf item.  This will be used at recovery time to determine that copies
568 * of the buffer in the log before this should not be replayed.
569 *
570 * We mark the item descriptor and the transaction dirty so that we'll hold
571 * the buffer until after the commit.
572 *
573 * Since we're invalidating the buffer, we also clear the state about which
574 * parts of the buffer have been logged.  We also clear the flag indicating
575 * that this is an inode buffer since the data in the buffer will no longer
576 * be valid.
577 *
578 * We set the stale bit in the buffer as well since we're getting rid of it.
579 */
580void
581xfs_trans_binval(
582	xfs_trans_t		*tp,
583	struct xfs_buf		*bp)
584{
585	struct xfs_buf_log_item	*bip = bp->b_log_item;
586	int			i;
587
588	ASSERT(bp->b_transp == tp);
589	ASSERT(bip != NULL);
590	ASSERT(atomic_read(&bip->bli_refcount) > 0);
591
592	trace_xfs_trans_binval(bip);
593
594	if (bip->bli_flags & XFS_BLI_STALE) {
595		/*
596		 * If the buffer is already invalidated, then
597		 * just return.
598		 */
599		ASSERT(bp->b_flags & XBF_STALE);
600		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
601		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
602		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
603		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
604		ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
605		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
606		return;
607	}
608
609	xfs_buf_stale(bp);
610
611	bip->bli_flags |= XFS_BLI_STALE;
612	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
613	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
614	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
615	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
616	for (i = 0; i < bip->bli_format_count; i++) {
617		memset(bip->bli_formats[i].blf_data_map, 0,
618		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
619	}
620	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
621	tp->t_flags |= XFS_TRANS_DIRTY;
622}
623
624/*
625 * This call is used to indicate that the buffer contains on-disk inodes which
626 * must be handled specially during recovery.  They require special handling
627 * because only the di_next_unlinked from the inodes in the buffer should be
628 * recovered.  The rest of the data in the buffer is logged via the inodes
629 * themselves.
630 *
631 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
632 * transferred to the buffer's log format structure so that we'll know what to
633 * do at recovery time.
634 */
635void
636xfs_trans_inode_buf(
637	xfs_trans_t		*tp,
638	struct xfs_buf		*bp)
639{
640	struct xfs_buf_log_item	*bip = bp->b_log_item;
641
642	ASSERT(bp->b_transp == tp);
643	ASSERT(bip != NULL);
644	ASSERT(atomic_read(&bip->bli_refcount) > 0);
645
646	bip->bli_flags |= XFS_BLI_INODE_BUF;
647	bp->b_flags |= _XBF_INODES;
648	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
649}
650
651/*
652 * This call is used to indicate that the buffer is going to
653 * be staled and was an inode buffer. This means it gets
654 * special processing during unpin - where any inodes
655 * associated with the buffer should be removed from ail.
656 * There is also special processing during recovery,
657 * any replay of the inodes in the buffer needs to be
658 * prevented as the buffer may have been reused.
659 */
660void
661xfs_trans_stale_inode_buf(
662	xfs_trans_t		*tp,
663	struct xfs_buf		*bp)
664{
665	struct xfs_buf_log_item	*bip = bp->b_log_item;
666
667	ASSERT(bp->b_transp == tp);
668	ASSERT(bip != NULL);
669	ASSERT(atomic_read(&bip->bli_refcount) > 0);
670
671	bip->bli_flags |= XFS_BLI_STALE_INODE;
672	bp->b_flags |= _XBF_INODES;
673	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
674}
675
676/*
677 * Mark the buffer as being one which contains newly allocated
678 * inodes.  We need to make sure that even if this buffer is
679 * relogged as an 'inode buf' we still recover all of the inode
680 * images in the face of a crash.  This works in coordination with
681 * xfs_buf_item_committed() to ensure that the buffer remains in the
682 * AIL at its original location even after it has been relogged.
683 */
684/* ARGSUSED */
685void
686xfs_trans_inode_alloc_buf(
687	xfs_trans_t		*tp,
688	struct xfs_buf		*bp)
689{
690	struct xfs_buf_log_item	*bip = bp->b_log_item;
691
692	ASSERT(bp->b_transp == tp);
693	ASSERT(bip != NULL);
694	ASSERT(atomic_read(&bip->bli_refcount) > 0);
695
696	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
697	bp->b_flags |= _XBF_INODES;
698	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
699}
700
701/*
702 * Mark the buffer as ordered for this transaction. This means that the contents
703 * of the buffer are not recorded in the transaction but it is tracked in the
704 * AIL as though it was. This allows us to record logical changes in
705 * transactions rather than the physical changes we make to the buffer without
706 * changing writeback ordering constraints of metadata buffers.
707 */
708bool
709xfs_trans_ordered_buf(
710	struct xfs_trans	*tp,
711	struct xfs_buf		*bp)
712{
713	struct xfs_buf_log_item	*bip = bp->b_log_item;
714
715	ASSERT(bp->b_transp == tp);
716	ASSERT(bip != NULL);
717	ASSERT(atomic_read(&bip->bli_refcount) > 0);
718
719	if (xfs_buf_item_dirty_format(bip))
720		return false;
721
722	bip->bli_flags |= XFS_BLI_ORDERED;
723	trace_xfs_buf_item_ordered(bip);
724
725	/*
726	 * We don't log a dirty range of an ordered buffer but it still needs
727	 * to be marked dirty and that it has been logged.
728	 */
729	xfs_trans_dirty_buf(tp, bp);
730	return true;
731}
732
733/*
734 * Set the type of the buffer for log recovery so that it can correctly identify
735 * and hence attach the correct buffer ops to the buffer after replay.
736 */
737void
738xfs_trans_buf_set_type(
739	struct xfs_trans	*tp,
740	struct xfs_buf		*bp,
741	enum xfs_blft		type)
742{
743	struct xfs_buf_log_item	*bip = bp->b_log_item;
744
745	if (!tp)
746		return;
747
748	ASSERT(bp->b_transp == tp);
749	ASSERT(bip != NULL);
750	ASSERT(atomic_read(&bip->bli_refcount) > 0);
751
752	xfs_blft_to_flags(&bip->__bli_format, type);
753}
754
755void
756xfs_trans_buf_copy_type(
757	struct xfs_buf		*dst_bp,
758	struct xfs_buf		*src_bp)
759{
760	struct xfs_buf_log_item	*sbip = src_bp->b_log_item;
761	struct xfs_buf_log_item	*dbip = dst_bp->b_log_item;
762	enum xfs_blft		type;
763
764	type = xfs_blft_from_flags(&sbip->__bli_format);
765	xfs_blft_to_flags(&dbip->__bli_format, type);
766}
767
768/*
769 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
770 * dquots. However, unlike in inode buffer recovery, dquot buffers get
771 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
772 * The only thing that makes dquot buffers different from regular
773 * buffers is that we must not replay dquot bufs when recovering
774 * if a _corresponding_ quotaoff has happened. We also have to distinguish
775 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
776 * can be turned off independently.
777 */
778/* ARGSUSED */
779void
780xfs_trans_dquot_buf(
781	xfs_trans_t		*tp,
782	struct xfs_buf		*bp,
783	uint			type)
784{
785	struct xfs_buf_log_item	*bip = bp->b_log_item;
786
787	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
788	       type == XFS_BLF_PDQUOT_BUF ||
789	       type == XFS_BLF_GDQUOT_BUF);
790
791	bip->__bli_format.blf_flags |= type;
792
793	switch (type) {
794	case XFS_BLF_UDQUOT_BUF:
795		type = XFS_BLFT_UDQUOT_BUF;
796		break;
797	case XFS_BLF_PDQUOT_BUF:
798		type = XFS_BLFT_PDQUOT_BUF;
799		break;
800	case XFS_BLF_GDQUOT_BUF:
801		type = XFS_BLFT_GDQUOT_BUF;
802		break;
803	default:
804		type = XFS_BLFT_UNKNOWN_BUF;
805		break;
806	}
807
808	bp->b_flags |= _XBF_DQUOTS;
809	xfs_trans_buf_set_type(tp, bp, type);
810}
811