1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_dir2.h"
17#include "xfs_ialloc.h"
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
24#include "xfs_log_priv.h"
25#include "xfs_error.h"
26#include "xfs_quota.h"
27#include "xfs_fsops.h"
28#include "xfs_icache.h"
29#include "xfs_sysfs.h"
30#include "xfs_rmap_btree.h"
31#include "xfs_refcount_btree.h"
32#include "xfs_reflink.h"
33#include "xfs_extent_busy.h"
34#include "xfs_health.h"
35#include "xfs_trace.h"
36#include "xfs_ag.h"
37#include "scrub/stats.h"
38
39static DEFINE_MUTEX(xfs_uuid_table_mutex);
40static int xfs_uuid_table_size;
41static uuid_t *xfs_uuid_table;
42
43void
44xfs_uuid_table_free(void)
45{
46	if (xfs_uuid_table_size == 0)
47		return;
48	kfree(xfs_uuid_table);
49	xfs_uuid_table = NULL;
50	xfs_uuid_table_size = 0;
51}
52
53/*
54 * See if the UUID is unique among mounted XFS filesystems.
55 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
56 */
57STATIC int
58xfs_uuid_mount(
59	struct xfs_mount	*mp)
60{
61	uuid_t			*uuid = &mp->m_sb.sb_uuid;
62	int			hole, i;
63
64	/* Publish UUID in struct super_block */
65	super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
66
67	if (xfs_has_nouuid(mp))
68		return 0;
69
70	if (uuid_is_null(uuid)) {
71		xfs_warn(mp, "Filesystem has null UUID - can't mount");
72		return -EINVAL;
73	}
74
75	mutex_lock(&xfs_uuid_table_mutex);
76	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
77		if (uuid_is_null(&xfs_uuid_table[i])) {
78			hole = i;
79			continue;
80		}
81		if (uuid_equal(uuid, &xfs_uuid_table[i]))
82			goto out_duplicate;
83	}
84
85	if (hole < 0) {
86		xfs_uuid_table = krealloc(xfs_uuid_table,
87			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
88			GFP_KERNEL | __GFP_NOFAIL);
89		hole = xfs_uuid_table_size++;
90	}
91	xfs_uuid_table[hole] = *uuid;
92	mutex_unlock(&xfs_uuid_table_mutex);
93
94	return 0;
95
96 out_duplicate:
97	mutex_unlock(&xfs_uuid_table_mutex);
98	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
99	return -EINVAL;
100}
101
102STATIC void
103xfs_uuid_unmount(
104	struct xfs_mount	*mp)
105{
106	uuid_t			*uuid = &mp->m_sb.sb_uuid;
107	int			i;
108
109	if (xfs_has_nouuid(mp))
110		return;
111
112	mutex_lock(&xfs_uuid_table_mutex);
113	for (i = 0; i < xfs_uuid_table_size; i++) {
114		if (uuid_is_null(&xfs_uuid_table[i]))
115			continue;
116		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
117			continue;
118		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
119		break;
120	}
121	ASSERT(i < xfs_uuid_table_size);
122	mutex_unlock(&xfs_uuid_table_mutex);
123}
124
125/*
126 * Check size of device based on the (data/realtime) block count.
127 * Note: this check is used by the growfs code as well as mount.
128 */
129int
130xfs_sb_validate_fsb_count(
131	xfs_sb_t	*sbp,
132	uint64_t	nblocks)
133{
134	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
135	ASSERT(sbp->sb_blocklog >= BBSHIFT);
136
137	/* Limited by ULONG_MAX of page cache index */
138	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
139		return -EFBIG;
140	return 0;
141}
142
143/*
144 * xfs_readsb
145 *
146 * Does the initial read of the superblock.
147 */
148int
149xfs_readsb(
150	struct xfs_mount *mp,
151	int		flags)
152{
153	unsigned int	sector_size;
154	struct xfs_buf	*bp;
155	struct xfs_sb	*sbp = &mp->m_sb;
156	int		error;
157	int		loud = !(flags & XFS_MFSI_QUIET);
158	const struct xfs_buf_ops *buf_ops;
159
160	ASSERT(mp->m_sb_bp == NULL);
161	ASSERT(mp->m_ddev_targp != NULL);
162
163	/*
164	 * For the initial read, we must guess at the sector
165	 * size based on the block device.  It's enough to
166	 * get the sb_sectsize out of the superblock and
167	 * then reread with the proper length.
168	 * We don't verify it yet, because it may not be complete.
169	 */
170	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
171	buf_ops = NULL;
172
173	/*
174	 * Allocate a (locked) buffer to hold the superblock. This will be kept
175	 * around at all times to optimize access to the superblock. Therefore,
176	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
177	 * elevated.
178	 */
179reread:
180	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
181				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
182				      buf_ops);
183	if (error) {
184		if (loud)
185			xfs_warn(mp, "SB validate failed with error %d.", error);
186		/* bad CRC means corrupted metadata */
187		if (error == -EFSBADCRC)
188			error = -EFSCORRUPTED;
189		return error;
190	}
191
192	/*
193	 * Initialize the mount structure from the superblock.
194	 */
195	xfs_sb_from_disk(sbp, bp->b_addr);
196
197	/*
198	 * If we haven't validated the superblock, do so now before we try
199	 * to check the sector size and reread the superblock appropriately.
200	 */
201	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
202		if (loud)
203			xfs_warn(mp, "Invalid superblock magic number");
204		error = -EINVAL;
205		goto release_buf;
206	}
207
208	/*
209	 * We must be able to do sector-sized and sector-aligned IO.
210	 */
211	if (sector_size > sbp->sb_sectsize) {
212		if (loud)
213			xfs_warn(mp, "device supports %u byte sectors (not %u)",
214				sector_size, sbp->sb_sectsize);
215		error = -ENOSYS;
216		goto release_buf;
217	}
218
219	if (buf_ops == NULL) {
220		/*
221		 * Re-read the superblock so the buffer is correctly sized,
222		 * and properly verified.
223		 */
224		xfs_buf_relse(bp);
225		sector_size = sbp->sb_sectsize;
226		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
227		goto reread;
228	}
229
230	mp->m_features |= xfs_sb_version_to_features(sbp);
231	xfs_reinit_percpu_counters(mp);
232
233	/* no need to be quiet anymore, so reset the buf ops */
234	bp->b_ops = &xfs_sb_buf_ops;
235
236	mp->m_sb_bp = bp;
237	xfs_buf_unlock(bp);
238	return 0;
239
240release_buf:
241	xfs_buf_relse(bp);
242	return error;
243}
244
245/*
246 * If the sunit/swidth change would move the precomputed root inode value, we
247 * must reject the ondisk change because repair will stumble over that.
248 * However, we allow the mount to proceed because we never rejected this
249 * combination before.  Returns true to update the sb, false otherwise.
250 */
251static inline int
252xfs_check_new_dalign(
253	struct xfs_mount	*mp,
254	int			new_dalign,
255	bool			*update_sb)
256{
257	struct xfs_sb		*sbp = &mp->m_sb;
258	xfs_ino_t		calc_ino;
259
260	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
261	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
262
263	if (sbp->sb_rootino == calc_ino) {
264		*update_sb = true;
265		return 0;
266	}
267
268	xfs_warn(mp,
269"Cannot change stripe alignment; would require moving root inode.");
270
271	/*
272	 * XXX: Next time we add a new incompat feature, this should start
273	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
274	 * that we're ignoring the administrator's instructions.
275	 */
276	xfs_warn(mp, "Skipping superblock stripe alignment update.");
277	*update_sb = false;
278	return 0;
279}
280
281/*
282 * If we were provided with new sunit/swidth values as mount options, make sure
283 * that they pass basic alignment and superblock feature checks, and convert
284 * them into the same units (FSB) that everything else expects.  This step
285 * /must/ be done before computing the inode geometry.
286 */
287STATIC int
288xfs_validate_new_dalign(
289	struct xfs_mount	*mp)
290{
291	if (mp->m_dalign == 0)
292		return 0;
293
294	/*
295	 * If stripe unit and stripe width are not multiples
296	 * of the fs blocksize turn off alignment.
297	 */
298	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
299	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
300		xfs_warn(mp,
301	"alignment check failed: sunit/swidth vs. blocksize(%d)",
302			mp->m_sb.sb_blocksize);
303		return -EINVAL;
304	}
305
306	/*
307	 * Convert the stripe unit and width to FSBs.
308	 */
309	mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
310	if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
311		xfs_warn(mp,
312	"alignment check failed: sunit/swidth vs. agsize(%d)",
313			mp->m_sb.sb_agblocks);
314		return -EINVAL;
315	}
316
317	if (!mp->m_dalign) {
318		xfs_warn(mp,
319	"alignment check failed: sunit(%d) less than bsize(%d)",
320			mp->m_dalign, mp->m_sb.sb_blocksize);
321		return -EINVAL;
322	}
323
324	mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
325
326	if (!xfs_has_dalign(mp)) {
327		xfs_warn(mp,
328"cannot change alignment: superblock does not support data alignment");
329		return -EINVAL;
330	}
331
332	return 0;
333}
334
335/* Update alignment values based on mount options and sb values. */
336STATIC int
337xfs_update_alignment(
338	struct xfs_mount	*mp)
339{
340	struct xfs_sb		*sbp = &mp->m_sb;
341
342	if (mp->m_dalign) {
343		bool		update_sb;
344		int		error;
345
346		if (sbp->sb_unit == mp->m_dalign &&
347		    sbp->sb_width == mp->m_swidth)
348			return 0;
349
350		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
351		if (error || !update_sb)
352			return error;
353
354		sbp->sb_unit = mp->m_dalign;
355		sbp->sb_width = mp->m_swidth;
356		mp->m_update_sb = true;
357	} else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
358		mp->m_dalign = sbp->sb_unit;
359		mp->m_swidth = sbp->sb_width;
360	}
361
362	return 0;
363}
364
365/*
366 * precalculate the low space thresholds for dynamic speculative preallocation.
367 */
368void
369xfs_set_low_space_thresholds(
370	struct xfs_mount	*mp)
371{
372	uint64_t		dblocks = mp->m_sb.sb_dblocks;
373	uint64_t		rtexts = mp->m_sb.sb_rextents;
374	int			i;
375
376	do_div(dblocks, 100);
377	do_div(rtexts, 100);
378
379	for (i = 0; i < XFS_LOWSP_MAX; i++) {
380		mp->m_low_space[i] = dblocks * (i + 1);
381		mp->m_low_rtexts[i] = rtexts * (i + 1);
382	}
383}
384
385/*
386 * Check that the data (and log if separate) is an ok size.
387 */
388STATIC int
389xfs_check_sizes(
390	struct xfs_mount *mp)
391{
392	struct xfs_buf	*bp;
393	xfs_daddr_t	d;
394	int		error;
395
396	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
397	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
398		xfs_warn(mp, "filesystem size mismatch detected");
399		return -EFBIG;
400	}
401	error = xfs_buf_read_uncached(mp->m_ddev_targp,
402					d - XFS_FSS_TO_BB(mp, 1),
403					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
404	if (error) {
405		xfs_warn(mp, "last sector read failed");
406		return error;
407	}
408	xfs_buf_relse(bp);
409
410	if (mp->m_logdev_targp == mp->m_ddev_targp)
411		return 0;
412
413	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
414	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
415		xfs_warn(mp, "log size mismatch detected");
416		return -EFBIG;
417	}
418	error = xfs_buf_read_uncached(mp->m_logdev_targp,
419					d - XFS_FSB_TO_BB(mp, 1),
420					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
421	if (error) {
422		xfs_warn(mp, "log device read failed");
423		return error;
424	}
425	xfs_buf_relse(bp);
426	return 0;
427}
428
429/*
430 * Clear the quotaflags in memory and in the superblock.
431 */
432int
433xfs_mount_reset_sbqflags(
434	struct xfs_mount	*mp)
435{
436	mp->m_qflags = 0;
437
438	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
439	if (mp->m_sb.sb_qflags == 0)
440		return 0;
441	spin_lock(&mp->m_sb_lock);
442	mp->m_sb.sb_qflags = 0;
443	spin_unlock(&mp->m_sb_lock);
444
445	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
446		return 0;
447
448	return xfs_sync_sb(mp, false);
449}
450
451uint64_t
452xfs_default_resblks(xfs_mount_t *mp)
453{
454	uint64_t resblks;
455
456	/*
457	 * We default to 5% or 8192 fsbs of space reserved, whichever is
458	 * smaller.  This is intended to cover concurrent allocation
459	 * transactions when we initially hit enospc. These each require a 4
460	 * block reservation. Hence by default we cover roughly 2000 concurrent
461	 * allocation reservations.
462	 */
463	resblks = mp->m_sb.sb_dblocks;
464	do_div(resblks, 20);
465	resblks = min_t(uint64_t, resblks, 8192);
466	return resblks;
467}
468
469/* Ensure the summary counts are correct. */
470STATIC int
471xfs_check_summary_counts(
472	struct xfs_mount	*mp)
473{
474	int			error = 0;
475
476	/*
477	 * The AG0 superblock verifier rejects in-progress filesystems,
478	 * so we should never see the flag set this far into mounting.
479	 */
480	if (mp->m_sb.sb_inprogress) {
481		xfs_err(mp, "sb_inprogress set after log recovery??");
482		WARN_ON(1);
483		return -EFSCORRUPTED;
484	}
485
486	/*
487	 * Now the log is mounted, we know if it was an unclean shutdown or
488	 * not. If it was, with the first phase of recovery has completed, we
489	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
490	 * but they are recovered transactionally in the second recovery phase
491	 * later.
492	 *
493	 * If the log was clean when we mounted, we can check the summary
494	 * counters.  If any of them are obviously incorrect, we can recompute
495	 * them from the AGF headers in the next step.
496	 */
497	if (xfs_is_clean(mp) &&
498	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
499	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
500	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
501		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
502
503	/*
504	 * We can safely re-initialise incore superblock counters from the
505	 * per-ag data. These may not be correct if the filesystem was not
506	 * cleanly unmounted, so we waited for recovery to finish before doing
507	 * this.
508	 *
509	 * If the filesystem was cleanly unmounted or the previous check did
510	 * not flag anything weird, then we can trust the values in the
511	 * superblock to be correct and we don't need to do anything here.
512	 * Otherwise, recalculate the summary counters.
513	 */
514	if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
515	    xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
516		error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
517		if (error)
518			return error;
519	}
520
521	/*
522	 * Older kernels misused sb_frextents to reflect both incore
523	 * reservations made by running transactions and the actual count of
524	 * free rt extents in the ondisk metadata.  Transactions committed
525	 * during runtime can therefore contain a superblock update that
526	 * undercounts the number of free rt extents tracked in the rt bitmap.
527	 * A clean unmount record will have the correct frextents value since
528	 * there can be no other transactions running at that point.
529	 *
530	 * If we're mounting the rt volume after recovering the log, recompute
531	 * frextents from the rtbitmap file to fix the inconsistency.
532	 */
533	if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
534		error = xfs_rtalloc_reinit_frextents(mp);
535		if (error)
536			return error;
537	}
538
539	return 0;
540}
541
542static void
543xfs_unmount_check(
544	struct xfs_mount	*mp)
545{
546	if (xfs_is_shutdown(mp))
547		return;
548
549	if (percpu_counter_sum(&mp->m_ifree) >
550			percpu_counter_sum(&mp->m_icount)) {
551		xfs_alert(mp, "ifree/icount mismatch at unmount");
552		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
553	}
554}
555
556/*
557 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
558 * internal inode structures can be sitting in the CIL and AIL at this point,
559 * so we need to unpin them, write them back and/or reclaim them before unmount
560 * can proceed.  In other words, callers are required to have inactivated all
561 * inodes.
562 *
563 * An inode cluster that has been freed can have its buffer still pinned in
564 * memory because the transaction is still sitting in a iclog. The stale inodes
565 * on that buffer will be pinned to the buffer until the transaction hits the
566 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
567 * may never see the pinned buffer, so nothing will push out the iclog and
568 * unpin the buffer.
569 *
570 * Hence we need to force the log to unpin everything first. However, log
571 * forces don't wait for the discards they issue to complete, so we have to
572 * explicitly wait for them to complete here as well.
573 *
574 * Then we can tell the world we are unmounting so that error handling knows
575 * that the filesystem is going away and we should error out anything that we
576 * have been retrying in the background.  This will prevent never-ending
577 * retries in AIL pushing from hanging the unmount.
578 *
579 * Finally, we can push the AIL to clean all the remaining dirty objects, then
580 * reclaim the remaining inodes that are still in memory at this point in time.
581 */
582static void
583xfs_unmount_flush_inodes(
584	struct xfs_mount	*mp)
585{
586	xfs_log_force(mp, XFS_LOG_SYNC);
587	xfs_extent_busy_wait_all(mp);
588	flush_workqueue(xfs_discard_wq);
589
590	set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
591
592	xfs_ail_push_all_sync(mp->m_ail);
593	xfs_inodegc_stop(mp);
594	cancel_delayed_work_sync(&mp->m_reclaim_work);
595	xfs_reclaim_inodes(mp);
596	xfs_health_unmount(mp);
597}
598
599static void
600xfs_mount_setup_inode_geom(
601	struct xfs_mount	*mp)
602{
603	struct xfs_ino_geometry *igeo = M_IGEO(mp);
604
605	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
606	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
607
608	xfs_ialloc_setup_geometry(mp);
609}
610
611/* Compute maximum possible height for per-AG btree types for this fs. */
612static inline void
613xfs_agbtree_compute_maxlevels(
614	struct xfs_mount	*mp)
615{
616	unsigned int		levels;
617
618	levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
619	levels = max(levels, mp->m_rmap_maxlevels);
620	mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
621}
622
623/*
624 * This function does the following on an initial mount of a file system:
625 *	- reads the superblock from disk and init the mount struct
626 *	- if we're a 32-bit kernel, do a size check on the superblock
627 *		so we don't mount terabyte filesystems
628 *	- init mount struct realtime fields
629 *	- allocate inode hash table for fs
630 *	- init directory manager
631 *	- perform recovery and init the log manager
632 */
633int
634xfs_mountfs(
635	struct xfs_mount	*mp)
636{
637	struct xfs_sb		*sbp = &(mp->m_sb);
638	struct xfs_inode	*rip;
639	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
640	uint			quotamount = 0;
641	uint			quotaflags = 0;
642	int			error = 0;
643
644	xfs_sb_mount_common(mp, sbp);
645
646	/*
647	 * Check for a mismatched features2 values.  Older kernels read & wrote
648	 * into the wrong sb offset for sb_features2 on some platforms due to
649	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
650	 * which made older superblock reading/writing routines swap it as a
651	 * 64-bit value.
652	 *
653	 * For backwards compatibility, we make both slots equal.
654	 *
655	 * If we detect a mismatched field, we OR the set bits into the existing
656	 * features2 field in case it has already been modified; we don't want
657	 * to lose any features.  We then update the bad location with the ORed
658	 * value so that older kernels will see any features2 flags. The
659	 * superblock writeback code ensures the new sb_features2 is copied to
660	 * sb_bad_features2 before it is logged or written to disk.
661	 */
662	if (xfs_sb_has_mismatched_features2(sbp)) {
663		xfs_warn(mp, "correcting sb_features alignment problem");
664		sbp->sb_features2 |= sbp->sb_bad_features2;
665		mp->m_update_sb = true;
666	}
667
668
669	/* always use v2 inodes by default now */
670	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
671		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
672		mp->m_features |= XFS_FEAT_NLINK;
673		mp->m_update_sb = true;
674	}
675
676	/*
677	 * If we were given new sunit/swidth options, do some basic validation
678	 * checks and convert the incore dalign and swidth values to the
679	 * same units (FSB) that everything else uses.  This /must/ happen
680	 * before computing the inode geometry.
681	 */
682	error = xfs_validate_new_dalign(mp);
683	if (error)
684		goto out;
685
686	xfs_alloc_compute_maxlevels(mp);
687	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
688	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
689	xfs_mount_setup_inode_geom(mp);
690	xfs_rmapbt_compute_maxlevels(mp);
691	xfs_refcountbt_compute_maxlevels(mp);
692
693	xfs_agbtree_compute_maxlevels(mp);
694
695	/*
696	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
697	 * is NOT aligned turn off m_dalign since allocator alignment is within
698	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
699	 * we must compute the free space and rmap btree geometry before doing
700	 * this.
701	 */
702	error = xfs_update_alignment(mp);
703	if (error)
704		goto out;
705
706	/* enable fail_at_unmount as default */
707	mp->m_fail_unmount = true;
708
709	super_set_sysfs_name_id(mp->m_super);
710
711	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
712			       NULL, mp->m_super->s_id);
713	if (error)
714		goto out;
715
716	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
717			       &mp->m_kobj, "stats");
718	if (error)
719		goto out_remove_sysfs;
720
721	xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
722
723	error = xfs_error_sysfs_init(mp);
724	if (error)
725		goto out_remove_scrub_stats;
726
727	error = xfs_errortag_init(mp);
728	if (error)
729		goto out_remove_error_sysfs;
730
731	error = xfs_uuid_mount(mp);
732	if (error)
733		goto out_remove_errortag;
734
735	/*
736	 * Update the preferred write size based on the information from the
737	 * on-disk superblock.
738	 */
739	mp->m_allocsize_log =
740		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
741	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
742
743	/* set the low space thresholds for dynamic preallocation */
744	xfs_set_low_space_thresholds(mp);
745
746	/*
747	 * If enabled, sparse inode chunk alignment is expected to match the
748	 * cluster size. Full inode chunk alignment must match the chunk size,
749	 * but that is checked on sb read verification...
750	 */
751	if (xfs_has_sparseinodes(mp) &&
752	    mp->m_sb.sb_spino_align !=
753			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
754		xfs_warn(mp,
755	"Sparse inode block alignment (%u) must match cluster size (%llu).",
756			 mp->m_sb.sb_spino_align,
757			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
758		error = -EINVAL;
759		goto out_remove_uuid;
760	}
761
762	/*
763	 * Check that the data (and log if separate) is an ok size.
764	 */
765	error = xfs_check_sizes(mp);
766	if (error)
767		goto out_remove_uuid;
768
769	/*
770	 * Initialize realtime fields in the mount structure
771	 */
772	error = xfs_rtmount_init(mp);
773	if (error) {
774		xfs_warn(mp, "RT mount failed");
775		goto out_remove_uuid;
776	}
777
778	/*
779	 *  Copies the low order bits of the timestamp and the randomly
780	 *  set "sequence" number out of a UUID.
781	 */
782	mp->m_fixedfsid[0] =
783		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
784		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
785	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
786
787	error = xfs_da_mount(mp);
788	if (error) {
789		xfs_warn(mp, "Failed dir/attr init: %d", error);
790		goto out_remove_uuid;
791	}
792
793	/*
794	 * Initialize the precomputed transaction reservations values.
795	 */
796	xfs_trans_init(mp);
797
798	/*
799	 * Allocate and initialize the per-ag data.
800	 */
801	error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
802			&mp->m_maxagi);
803	if (error) {
804		xfs_warn(mp, "Failed per-ag init: %d", error);
805		goto out_free_dir;
806	}
807
808	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
809		xfs_warn(mp, "no log defined");
810		error = -EFSCORRUPTED;
811		goto out_free_perag;
812	}
813
814	error = xfs_inodegc_register_shrinker(mp);
815	if (error)
816		goto out_fail_wait;
817
818	/*
819	 * Log's mount-time initialization. The first part of recovery can place
820	 * some items on the AIL, to be handled when recovery is finished or
821	 * cancelled.
822	 */
823	error = xfs_log_mount(mp, mp->m_logdev_targp,
824			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
825			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
826	if (error) {
827		xfs_warn(mp, "log mount failed");
828		goto out_inodegc_shrinker;
829	}
830
831	/* Enable background inode inactivation workers. */
832	xfs_inodegc_start(mp);
833	xfs_blockgc_start(mp);
834
835	/*
836	 * Now that we've recovered any pending superblock feature bit
837	 * additions, we can finish setting up the attr2 behaviour for the
838	 * mount. The noattr2 option overrides the superblock flag, so only
839	 * check the superblock feature flag if the mount option is not set.
840	 */
841	if (xfs_has_noattr2(mp)) {
842		mp->m_features &= ~XFS_FEAT_ATTR2;
843	} else if (!xfs_has_attr2(mp) &&
844		   (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
845		mp->m_features |= XFS_FEAT_ATTR2;
846	}
847
848	/*
849	 * Get and sanity-check the root inode.
850	 * Save the pointer to it in the mount structure.
851	 */
852	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
853			 XFS_ILOCK_EXCL, &rip);
854	if (error) {
855		xfs_warn(mp,
856			"Failed to read root inode 0x%llx, error %d",
857			sbp->sb_rootino, -error);
858		goto out_log_dealloc;
859	}
860
861	ASSERT(rip != NULL);
862
863	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
864		xfs_warn(mp, "corrupted root inode %llu: not a directory",
865			(unsigned long long)rip->i_ino);
866		xfs_iunlock(rip, XFS_ILOCK_EXCL);
867		error = -EFSCORRUPTED;
868		goto out_rele_rip;
869	}
870	mp->m_rootip = rip;	/* save it */
871
872	xfs_iunlock(rip, XFS_ILOCK_EXCL);
873
874	/*
875	 * Initialize realtime inode pointers in the mount structure
876	 */
877	error = xfs_rtmount_inodes(mp);
878	if (error) {
879		/*
880		 * Free up the root inode.
881		 */
882		xfs_warn(mp, "failed to read RT inodes");
883		goto out_rele_rip;
884	}
885
886	/* Make sure the summary counts are ok. */
887	error = xfs_check_summary_counts(mp);
888	if (error)
889		goto out_rtunmount;
890
891	/*
892	 * If this is a read-only mount defer the superblock updates until
893	 * the next remount into writeable mode.  Otherwise we would never
894	 * perform the update e.g. for the root filesystem.
895	 */
896	if (mp->m_update_sb && !xfs_is_readonly(mp)) {
897		error = xfs_sync_sb(mp, false);
898		if (error) {
899			xfs_warn(mp, "failed to write sb changes");
900			goto out_rtunmount;
901		}
902	}
903
904	/*
905	 * Initialise the XFS quota management subsystem for this mount
906	 */
907	if (XFS_IS_QUOTA_ON(mp)) {
908		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
909		if (error)
910			goto out_rtunmount;
911	} else {
912		/*
913		 * If a file system had quotas running earlier, but decided to
914		 * mount without -o uquota/pquota/gquota options, revoke the
915		 * quotachecked license.
916		 */
917		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
918			xfs_notice(mp, "resetting quota flags");
919			error = xfs_mount_reset_sbqflags(mp);
920			if (error)
921				goto out_rtunmount;
922		}
923	}
924
925	/*
926	 * Finish recovering the file system.  This part needed to be delayed
927	 * until after the root and real-time bitmap inodes were consistently
928	 * read in.  Temporarily create per-AG space reservations for metadata
929	 * btree shape changes because space freeing transactions (for inode
930	 * inactivation) require the per-AG reservation in lieu of reserving
931	 * blocks.
932	 */
933	error = xfs_fs_reserve_ag_blocks(mp);
934	if (error && error == -ENOSPC)
935		xfs_warn(mp,
936	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
937	error = xfs_log_mount_finish(mp);
938	xfs_fs_unreserve_ag_blocks(mp);
939	if (error) {
940		xfs_warn(mp, "log mount finish failed");
941		goto out_rtunmount;
942	}
943
944	/*
945	 * Now the log is fully replayed, we can transition to full read-only
946	 * mode for read-only mounts. This will sync all the metadata and clean
947	 * the log so that the recovery we just performed does not have to be
948	 * replayed again on the next mount.
949	 *
950	 * We use the same quiesce mechanism as the rw->ro remount, as they are
951	 * semantically identical operations.
952	 */
953	if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
954		xfs_log_clean(mp);
955
956	/*
957	 * Complete the quota initialisation, post-log-replay component.
958	 */
959	if (quotamount) {
960		ASSERT(mp->m_qflags == 0);
961		mp->m_qflags = quotaflags;
962
963		xfs_qm_mount_quotas(mp);
964	}
965
966	/*
967	 * Now we are mounted, reserve a small amount of unused space for
968	 * privileged transactions. This is needed so that transaction
969	 * space required for critical operations can dip into this pool
970	 * when at ENOSPC. This is needed for operations like create with
971	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
972	 * are not allowed to use this reserved space.
973	 *
974	 * This may drive us straight to ENOSPC on mount, but that implies
975	 * we were already there on the last unmount. Warn if this occurs.
976	 */
977	if (!xfs_is_readonly(mp)) {
978		error = xfs_reserve_blocks(mp, xfs_default_resblks(mp));
979		if (error)
980			xfs_warn(mp,
981	"Unable to allocate reserve blocks. Continuing without reserve pool.");
982
983		/* Reserve AG blocks for future btree expansion. */
984		error = xfs_fs_reserve_ag_blocks(mp);
985		if (error && error != -ENOSPC)
986			goto out_agresv;
987	}
988
989	return 0;
990
991 out_agresv:
992	xfs_fs_unreserve_ag_blocks(mp);
993	xfs_qm_unmount_quotas(mp);
994 out_rtunmount:
995	xfs_rtunmount_inodes(mp);
996 out_rele_rip:
997	xfs_irele(rip);
998	/* Clean out dquots that might be in memory after quotacheck. */
999	xfs_qm_unmount(mp);
1000
1001	/*
1002	 * Inactivate all inodes that might still be in memory after a log
1003	 * intent recovery failure so that reclaim can free them.  Metadata
1004	 * inodes and the root directory shouldn't need inactivation, but the
1005	 * mount failed for some reason, so pull down all the state and flee.
1006	 */
1007	xfs_inodegc_flush(mp);
1008
1009	/*
1010	 * Flush all inode reclamation work and flush the log.
1011	 * We have to do this /after/ rtunmount and qm_unmount because those
1012	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1013	 *
1014	 * This is slightly different from the unmountfs call sequence
1015	 * because we could be tearing down a partially set up mount.  In
1016	 * particular, if log_mount_finish fails we bail out without calling
1017	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1018	 * quota inodes.
1019	 */
1020	xfs_unmount_flush_inodes(mp);
1021 out_log_dealloc:
1022	xfs_log_mount_cancel(mp);
1023 out_inodegc_shrinker:
1024	shrinker_free(mp->m_inodegc_shrinker);
1025 out_fail_wait:
1026	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1027		xfs_buftarg_drain(mp->m_logdev_targp);
1028	xfs_buftarg_drain(mp->m_ddev_targp);
1029 out_free_perag:
1030	xfs_free_perag(mp);
1031 out_free_dir:
1032	xfs_da_unmount(mp);
1033 out_remove_uuid:
1034	xfs_uuid_unmount(mp);
1035 out_remove_errortag:
1036	xfs_errortag_del(mp);
1037 out_remove_error_sysfs:
1038	xfs_error_sysfs_del(mp);
1039 out_remove_scrub_stats:
1040	xchk_stats_unregister(mp->m_scrub_stats);
1041	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1042 out_remove_sysfs:
1043	xfs_sysfs_del(&mp->m_kobj);
1044 out:
1045	return error;
1046}
1047
1048/*
1049 * This flushes out the inodes,dquots and the superblock, unmounts the
1050 * log and makes sure that incore structures are freed.
1051 */
1052void
1053xfs_unmountfs(
1054	struct xfs_mount	*mp)
1055{
1056	int			error;
1057
1058	/*
1059	 * Perform all on-disk metadata updates required to inactivate inodes
1060	 * that the VFS evicted earlier in the unmount process.  Freeing inodes
1061	 * and discarding CoW fork preallocations can cause shape changes to
1062	 * the free inode and refcount btrees, respectively, so we must finish
1063	 * this before we discard the metadata space reservations.  Metadata
1064	 * inodes and the root directory do not require inactivation.
1065	 */
1066	xfs_inodegc_flush(mp);
1067
1068	xfs_blockgc_stop(mp);
1069	xfs_fs_unreserve_ag_blocks(mp);
1070	xfs_qm_unmount_quotas(mp);
1071	xfs_rtunmount_inodes(mp);
1072	xfs_irele(mp->m_rootip);
1073
1074	xfs_unmount_flush_inodes(mp);
1075
1076	xfs_qm_unmount(mp);
1077
1078	/*
1079	 * Unreserve any blocks we have so that when we unmount we don't account
1080	 * the reserved free space as used. This is really only necessary for
1081	 * lazy superblock counting because it trusts the incore superblock
1082	 * counters to be absolutely correct on clean unmount.
1083	 *
1084	 * We don't bother correcting this elsewhere for lazy superblock
1085	 * counting because on mount of an unclean filesystem we reconstruct the
1086	 * correct counter value and this is irrelevant.
1087	 *
1088	 * For non-lazy counter filesystems, this doesn't matter at all because
1089	 * we only every apply deltas to the superblock and hence the incore
1090	 * value does not matter....
1091	 */
1092	error = xfs_reserve_blocks(mp, 0);
1093	if (error)
1094		xfs_warn(mp, "Unable to free reserved block pool. "
1095				"Freespace may not be correct on next mount.");
1096	xfs_unmount_check(mp);
1097
1098	xfs_log_unmount(mp);
1099	xfs_da_unmount(mp);
1100	xfs_uuid_unmount(mp);
1101
1102#if defined(DEBUG)
1103	xfs_errortag_clearall(mp);
1104#endif
1105	shrinker_free(mp->m_inodegc_shrinker);
1106	xfs_free_perag(mp);
1107
1108	xfs_errortag_del(mp);
1109	xfs_error_sysfs_del(mp);
1110	xchk_stats_unregister(mp->m_scrub_stats);
1111	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1112	xfs_sysfs_del(&mp->m_kobj);
1113}
1114
1115/*
1116 * Determine whether modifications can proceed. The caller specifies the minimum
1117 * freeze level for which modifications should not be allowed. This allows
1118 * certain operations to proceed while the freeze sequence is in progress, if
1119 * necessary.
1120 */
1121bool
1122xfs_fs_writable(
1123	struct xfs_mount	*mp,
1124	int			level)
1125{
1126	ASSERT(level > SB_UNFROZEN);
1127	if ((mp->m_super->s_writers.frozen >= level) ||
1128	    xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1129		return false;
1130
1131	return true;
1132}
1133
1134/* Adjust m_fdblocks or m_frextents. */
1135int
1136xfs_mod_freecounter(
1137	struct xfs_mount	*mp,
1138	struct percpu_counter	*counter,
1139	int64_t			delta,
1140	bool			rsvd)
1141{
1142	int64_t			lcounter;
1143	long long		res_used;
1144	uint64_t		set_aside = 0;
1145	s32			batch;
1146	bool			has_resv_pool;
1147
1148	ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1149	has_resv_pool = (counter == &mp->m_fdblocks);
1150	if (rsvd)
1151		ASSERT(has_resv_pool);
1152
1153	if (delta > 0) {
1154		/*
1155		 * If the reserve pool is depleted, put blocks back into it
1156		 * first. Most of the time the pool is full.
1157		 */
1158		if (likely(!has_resv_pool ||
1159			   mp->m_resblks == mp->m_resblks_avail)) {
1160			percpu_counter_add(counter, delta);
1161			return 0;
1162		}
1163
1164		spin_lock(&mp->m_sb_lock);
1165		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1166
1167		if (res_used > delta) {
1168			mp->m_resblks_avail += delta;
1169		} else {
1170			delta -= res_used;
1171			mp->m_resblks_avail = mp->m_resblks;
1172			percpu_counter_add(counter, delta);
1173		}
1174		spin_unlock(&mp->m_sb_lock);
1175		return 0;
1176	}
1177
1178	/*
1179	 * Taking blocks away, need to be more accurate the closer we
1180	 * are to zero.
1181	 *
1182	 * If the counter has a value of less than 2 * max batch size,
1183	 * then make everything serialise as we are real close to
1184	 * ENOSPC.
1185	 */
1186	if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1187				     XFS_FDBLOCKS_BATCH) < 0)
1188		batch = 1;
1189	else
1190		batch = XFS_FDBLOCKS_BATCH;
1191
1192	/*
1193	 * Set aside allocbt blocks because these blocks are tracked as free
1194	 * space but not available for allocation. Technically this means that a
1195	 * single reservation cannot consume all remaining free space, but the
1196	 * ratio of allocbt blocks to usable free blocks should be rather small.
1197	 * The tradeoff without this is that filesystems that maintain high
1198	 * perag block reservations can over reserve physical block availability
1199	 * and fail physical allocation, which leads to much more serious
1200	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1201	 * slightly premature -ENOSPC.
1202	 */
1203	if (has_resv_pool)
1204		set_aside = xfs_fdblocks_unavailable(mp);
1205	percpu_counter_add_batch(counter, delta, batch);
1206	if (__percpu_counter_compare(counter, set_aside,
1207				     XFS_FDBLOCKS_BATCH) >= 0) {
1208		/* we had space! */
1209		return 0;
1210	}
1211
1212	/*
1213	 * lock up the sb for dipping into reserves before releasing the space
1214	 * that took us to ENOSPC.
1215	 */
1216	spin_lock(&mp->m_sb_lock);
1217	percpu_counter_add(counter, -delta);
1218	if (!has_resv_pool || !rsvd)
1219		goto fdblocks_enospc;
1220
1221	lcounter = (long long)mp->m_resblks_avail + delta;
1222	if (lcounter >= 0) {
1223		mp->m_resblks_avail = lcounter;
1224		spin_unlock(&mp->m_sb_lock);
1225		return 0;
1226	}
1227	xfs_warn_once(mp,
1228"Reserve blocks depleted! Consider increasing reserve pool size.");
1229
1230fdblocks_enospc:
1231	spin_unlock(&mp->m_sb_lock);
1232	return -ENOSPC;
1233}
1234
1235/*
1236 * Used to free the superblock along various error paths.
1237 */
1238void
1239xfs_freesb(
1240	struct xfs_mount	*mp)
1241{
1242	struct xfs_buf		*bp = mp->m_sb_bp;
1243
1244	xfs_buf_lock(bp);
1245	mp->m_sb_bp = NULL;
1246	xfs_buf_relse(bp);
1247}
1248
1249/*
1250 * If the underlying (data/log/rt) device is readonly, there are some
1251 * operations that cannot proceed.
1252 */
1253int
1254xfs_dev_is_read_only(
1255	struct xfs_mount	*mp,
1256	char			*message)
1257{
1258	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1259	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1260	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1261		xfs_notice(mp, "%s required on read-only device.", message);
1262		xfs_notice(mp, "write access unavailable, cannot proceed.");
1263		return -EROFS;
1264	}
1265	return 0;
1266}
1267
1268/* Force the summary counters to be recalculated at next mount. */
1269void
1270xfs_force_summary_recalc(
1271	struct xfs_mount	*mp)
1272{
1273	if (!xfs_has_lazysbcount(mp))
1274		return;
1275
1276	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1277}
1278
1279/*
1280 * Enable a log incompat feature flag in the primary superblock.  The caller
1281 * cannot have any other transactions in progress.
1282 */
1283int
1284xfs_add_incompat_log_feature(
1285	struct xfs_mount	*mp,
1286	uint32_t		feature)
1287{
1288	struct xfs_dsb		*dsb;
1289	int			error;
1290
1291	ASSERT(hweight32(feature) == 1);
1292	ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1293
1294	/*
1295	 * Force the log to disk and kick the background AIL thread to reduce
1296	 * the chances that the bwrite will stall waiting for the AIL to unpin
1297	 * the primary superblock buffer.  This isn't a data integrity
1298	 * operation, so we don't need a synchronous push.
1299	 */
1300	error = xfs_log_force(mp, XFS_LOG_SYNC);
1301	if (error)
1302		return error;
1303	xfs_ail_push_all(mp->m_ail);
1304
1305	/*
1306	 * Lock the primary superblock buffer to serialize all callers that
1307	 * are trying to set feature bits.
1308	 */
1309	xfs_buf_lock(mp->m_sb_bp);
1310	xfs_buf_hold(mp->m_sb_bp);
1311
1312	if (xfs_is_shutdown(mp)) {
1313		error = -EIO;
1314		goto rele;
1315	}
1316
1317	if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1318		goto rele;
1319
1320	/*
1321	 * Write the primary superblock to disk immediately, because we need
1322	 * the log_incompat bit to be set in the primary super now to protect
1323	 * the log items that we're going to commit later.
1324	 */
1325	dsb = mp->m_sb_bp->b_addr;
1326	xfs_sb_to_disk(dsb, &mp->m_sb);
1327	dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1328	error = xfs_bwrite(mp->m_sb_bp);
1329	if (error)
1330		goto shutdown;
1331
1332	/*
1333	 * Add the feature bits to the incore superblock before we unlock the
1334	 * buffer.
1335	 */
1336	xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1337	xfs_buf_relse(mp->m_sb_bp);
1338
1339	/* Log the superblock to disk. */
1340	return xfs_sync_sb(mp, false);
1341shutdown:
1342	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1343rele:
1344	xfs_buf_relse(mp->m_sb_bp);
1345	return error;
1346}
1347
1348/*
1349 * Clear all the log incompat flags from the superblock.
1350 *
1351 * The caller cannot be in a transaction, must ensure that the log does not
1352 * contain any log items protected by any log incompat bit, and must ensure
1353 * that there are no other threads that depend on the state of the log incompat
1354 * feature flags in the primary super.
1355 *
1356 * Returns true if the superblock is dirty.
1357 */
1358bool
1359xfs_clear_incompat_log_features(
1360	struct xfs_mount	*mp)
1361{
1362	bool			ret = false;
1363
1364	if (!xfs_has_crc(mp) ||
1365	    !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1366				XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1367	    xfs_is_shutdown(mp))
1368		return false;
1369
1370	/*
1371	 * Update the incore superblock.  We synchronize on the primary super
1372	 * buffer lock to be consistent with the add function, though at least
1373	 * in theory this shouldn't be necessary.
1374	 */
1375	xfs_buf_lock(mp->m_sb_bp);
1376	xfs_buf_hold(mp->m_sb_bp);
1377
1378	if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1379				XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1380		xfs_sb_remove_incompat_log_features(&mp->m_sb);
1381		ret = true;
1382	}
1383
1384	xfs_buf_relse(mp->m_sb_bp);
1385	return ret;
1386}
1387
1388/*
1389 * Update the in-core delayed block counter.
1390 *
1391 * We prefer to update the counter without having to take a spinlock for every
1392 * counter update (i.e. batching).  Each change to delayed allocation
1393 * reservations can change can easily exceed the default percpu counter
1394 * batching, so we use a larger batch factor here.
1395 *
1396 * Note that we don't currently have any callers requiring fast summation
1397 * (e.g. percpu_counter_read) so we can use a big batch value here.
1398 */
1399#define XFS_DELALLOC_BATCH	(4096)
1400void
1401xfs_mod_delalloc(
1402	struct xfs_mount	*mp,
1403	int64_t			delta)
1404{
1405	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1406			XFS_DELALLOC_BATCH);
1407}
1408