1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_defer.h"
16#include "xfs_inode.h"
17#include "xfs_trans.h"
18#include "xfs_log.h"
19#include "xfs_log_priv.h"
20#include "xfs_log_recover.h"
21#include "xfs_trans_priv.h"
22#include "xfs_alloc.h"
23#include "xfs_ialloc.h"
24#include "xfs_trace.h"
25#include "xfs_icache.h"
26#include "xfs_error.h"
27#include "xfs_buf_item.h"
28#include "xfs_ag.h"
29#include "xfs_quota.h"
30#include "xfs_reflink.h"
31
32#define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
33
34STATIC int
35xlog_find_zeroed(
36	struct xlog	*,
37	xfs_daddr_t	*);
38STATIC int
39xlog_clear_stale_blocks(
40	struct xlog	*,
41	xfs_lsn_t);
42STATIC int
43xlog_do_recovery_pass(
44        struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
45
46/*
47 * Sector aligned buffer routines for buffer create/read/write/access
48 */
49
50/*
51 * Verify the log-relative block number and length in basic blocks are valid for
52 * an operation involving the given XFS log buffer. Returns true if the fields
53 * are valid, false otherwise.
54 */
55static inline bool
56xlog_verify_bno(
57	struct xlog	*log,
58	xfs_daddr_t	blk_no,
59	int		bbcount)
60{
61	if (blk_no < 0 || blk_no >= log->l_logBBsize)
62		return false;
63	if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
64		return false;
65	return true;
66}
67
68/*
69 * Allocate a buffer to hold log data.  The buffer needs to be able to map to
70 * a range of nbblks basic blocks at any valid offset within the log.
71 */
72static char *
73xlog_alloc_buffer(
74	struct xlog	*log,
75	int		nbblks)
76{
77	/*
78	 * Pass log block 0 since we don't have an addr yet, buffer will be
79	 * verified on read.
80	 */
81	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
82		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
83			nbblks);
84		return NULL;
85	}
86
87	/*
88	 * We do log I/O in units of log sectors (a power-of-2 multiple of the
89	 * basic block size), so we round up the requested size to accommodate
90	 * the basic blocks required for complete log sectors.
91	 *
92	 * In addition, the buffer may be used for a non-sector-aligned block
93	 * offset, in which case an I/O of the requested size could extend
94	 * beyond the end of the buffer.  If the requested size is only 1 basic
95	 * block it will never straddle a sector boundary, so this won't be an
96	 * issue.  Nor will this be a problem if the log I/O is done in basic
97	 * blocks (sector size 1).  But otherwise we extend the buffer by one
98	 * extra log sector to ensure there's space to accommodate this
99	 * possibility.
100	 */
101	if (nbblks > 1 && log->l_sectBBsize > 1)
102		nbblks += log->l_sectBBsize;
103	nbblks = round_up(nbblks, log->l_sectBBsize);
104	return kvzalloc(BBTOB(nbblks), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
105}
106
107/*
108 * Return the address of the start of the given block number's data
109 * in a log buffer.  The buffer covers a log sector-aligned region.
110 */
111static inline unsigned int
112xlog_align(
113	struct xlog	*log,
114	xfs_daddr_t	blk_no)
115{
116	return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
117}
118
119static int
120xlog_do_io(
121	struct xlog		*log,
122	xfs_daddr_t		blk_no,
123	unsigned int		nbblks,
124	char			*data,
125	enum req_op		op)
126{
127	int			error;
128
129	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
130		xfs_warn(log->l_mp,
131			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
132			 blk_no, nbblks);
133		return -EFSCORRUPTED;
134	}
135
136	blk_no = round_down(blk_no, log->l_sectBBsize);
137	nbblks = round_up(nbblks, log->l_sectBBsize);
138	ASSERT(nbblks > 0);
139
140	error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
141			BBTOB(nbblks), data, op);
142	if (error && !xlog_is_shutdown(log)) {
143		xfs_alert(log->l_mp,
144			  "log recovery %s I/O error at daddr 0x%llx len %d error %d",
145			  op == REQ_OP_WRITE ? "write" : "read",
146			  blk_no, nbblks, error);
147	}
148	return error;
149}
150
151STATIC int
152xlog_bread_noalign(
153	struct xlog	*log,
154	xfs_daddr_t	blk_no,
155	int		nbblks,
156	char		*data)
157{
158	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
159}
160
161STATIC int
162xlog_bread(
163	struct xlog	*log,
164	xfs_daddr_t	blk_no,
165	int		nbblks,
166	char		*data,
167	char		**offset)
168{
169	int		error;
170
171	error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
172	if (!error)
173		*offset = data + xlog_align(log, blk_no);
174	return error;
175}
176
177STATIC int
178xlog_bwrite(
179	struct xlog	*log,
180	xfs_daddr_t	blk_no,
181	int		nbblks,
182	char		*data)
183{
184	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
185}
186
187#ifdef DEBUG
188/*
189 * dump debug superblock and log record information
190 */
191STATIC void
192xlog_header_check_dump(
193	xfs_mount_t		*mp,
194	xlog_rec_header_t	*head)
195{
196	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
197		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
198	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
199		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
200}
201#else
202#define xlog_header_check_dump(mp, head)
203#endif
204
205/*
206 * check log record header for recovery
207 */
208STATIC int
209xlog_header_check_recover(
210	xfs_mount_t		*mp,
211	xlog_rec_header_t	*head)
212{
213	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
214
215	/*
216	 * IRIX doesn't write the h_fmt field and leaves it zeroed
217	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
218	 * a dirty log created in IRIX.
219	 */
220	if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
221		xfs_warn(mp,
222	"dirty log written in incompatible format - can't recover");
223		xlog_header_check_dump(mp, head);
224		return -EFSCORRUPTED;
225	}
226	if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
227					   &head->h_fs_uuid))) {
228		xfs_warn(mp,
229	"dirty log entry has mismatched uuid - can't recover");
230		xlog_header_check_dump(mp, head);
231		return -EFSCORRUPTED;
232	}
233	return 0;
234}
235
236/*
237 * read the head block of the log and check the header
238 */
239STATIC int
240xlog_header_check_mount(
241	xfs_mount_t		*mp,
242	xlog_rec_header_t	*head)
243{
244	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
245
246	if (uuid_is_null(&head->h_fs_uuid)) {
247		/*
248		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
249		 * h_fs_uuid is null, we assume this log was last mounted
250		 * by IRIX and continue.
251		 */
252		xfs_warn(mp, "null uuid in log - IRIX style log");
253	} else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
254						  &head->h_fs_uuid))) {
255		xfs_warn(mp, "log has mismatched uuid - can't recover");
256		xlog_header_check_dump(mp, head);
257		return -EFSCORRUPTED;
258	}
259	return 0;
260}
261
262/*
263 * This routine finds (to an approximation) the first block in the physical
264 * log which contains the given cycle.  It uses a binary search algorithm.
265 * Note that the algorithm can not be perfect because the disk will not
266 * necessarily be perfect.
267 */
268STATIC int
269xlog_find_cycle_start(
270	struct xlog	*log,
271	char		*buffer,
272	xfs_daddr_t	first_blk,
273	xfs_daddr_t	*last_blk,
274	uint		cycle)
275{
276	char		*offset;
277	xfs_daddr_t	mid_blk;
278	xfs_daddr_t	end_blk;
279	uint		mid_cycle;
280	int		error;
281
282	end_blk = *last_blk;
283	mid_blk = BLK_AVG(first_blk, end_blk);
284	while (mid_blk != first_blk && mid_blk != end_blk) {
285		error = xlog_bread(log, mid_blk, 1, buffer, &offset);
286		if (error)
287			return error;
288		mid_cycle = xlog_get_cycle(offset);
289		if (mid_cycle == cycle)
290			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
291		else
292			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
293		mid_blk = BLK_AVG(first_blk, end_blk);
294	}
295	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
296	       (mid_blk == end_blk && mid_blk-1 == first_blk));
297
298	*last_blk = end_blk;
299
300	return 0;
301}
302
303/*
304 * Check that a range of blocks does not contain stop_on_cycle_no.
305 * Fill in *new_blk with the block offset where such a block is
306 * found, or with -1 (an invalid block number) if there is no such
307 * block in the range.  The scan needs to occur from front to back
308 * and the pointer into the region must be updated since a later
309 * routine will need to perform another test.
310 */
311STATIC int
312xlog_find_verify_cycle(
313	struct xlog	*log,
314	xfs_daddr_t	start_blk,
315	int		nbblks,
316	uint		stop_on_cycle_no,
317	xfs_daddr_t	*new_blk)
318{
319	xfs_daddr_t	i, j;
320	uint		cycle;
321	char		*buffer;
322	xfs_daddr_t	bufblks;
323	char		*buf = NULL;
324	int		error = 0;
325
326	/*
327	 * Greedily allocate a buffer big enough to handle the full
328	 * range of basic blocks we'll be examining.  If that fails,
329	 * try a smaller size.  We need to be able to read at least
330	 * a log sector, or we're out of luck.
331	 */
332	bufblks = roundup_pow_of_two(nbblks);
333	while (bufblks > log->l_logBBsize)
334		bufblks >>= 1;
335	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
336		bufblks >>= 1;
337		if (bufblks < log->l_sectBBsize)
338			return -ENOMEM;
339	}
340
341	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
342		int	bcount;
343
344		bcount = min(bufblks, (start_blk + nbblks - i));
345
346		error = xlog_bread(log, i, bcount, buffer, &buf);
347		if (error)
348			goto out;
349
350		for (j = 0; j < bcount; j++) {
351			cycle = xlog_get_cycle(buf);
352			if (cycle == stop_on_cycle_no) {
353				*new_blk = i+j;
354				goto out;
355			}
356
357			buf += BBSIZE;
358		}
359	}
360
361	*new_blk = -1;
362
363out:
364	kvfree(buffer);
365	return error;
366}
367
368static inline int
369xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh)
370{
371	if (xfs_has_logv2(log->l_mp)) {
372		int	h_size = be32_to_cpu(rh->h_size);
373
374		if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) &&
375		    h_size > XLOG_HEADER_CYCLE_SIZE)
376			return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
377	}
378	return 1;
379}
380
381/*
382 * Potentially backup over partial log record write.
383 *
384 * In the typical case, last_blk is the number of the block directly after
385 * a good log record.  Therefore, we subtract one to get the block number
386 * of the last block in the given buffer.  extra_bblks contains the number
387 * of blocks we would have read on a previous read.  This happens when the
388 * last log record is split over the end of the physical log.
389 *
390 * extra_bblks is the number of blocks potentially verified on a previous
391 * call to this routine.
392 */
393STATIC int
394xlog_find_verify_log_record(
395	struct xlog		*log,
396	xfs_daddr_t		start_blk,
397	xfs_daddr_t		*last_blk,
398	int			extra_bblks)
399{
400	xfs_daddr_t		i;
401	char			*buffer;
402	char			*offset = NULL;
403	xlog_rec_header_t	*head = NULL;
404	int			error = 0;
405	int			smallmem = 0;
406	int			num_blks = *last_blk - start_blk;
407	int			xhdrs;
408
409	ASSERT(start_blk != 0 || *last_blk != start_blk);
410
411	buffer = xlog_alloc_buffer(log, num_blks);
412	if (!buffer) {
413		buffer = xlog_alloc_buffer(log, 1);
414		if (!buffer)
415			return -ENOMEM;
416		smallmem = 1;
417	} else {
418		error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
419		if (error)
420			goto out;
421		offset += ((num_blks - 1) << BBSHIFT);
422	}
423
424	for (i = (*last_blk) - 1; i >= 0; i--) {
425		if (i < start_blk) {
426			/* valid log record not found */
427			xfs_warn(log->l_mp,
428		"Log inconsistent (didn't find previous header)");
429			ASSERT(0);
430			error = -EFSCORRUPTED;
431			goto out;
432		}
433
434		if (smallmem) {
435			error = xlog_bread(log, i, 1, buffer, &offset);
436			if (error)
437				goto out;
438		}
439
440		head = (xlog_rec_header_t *)offset;
441
442		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
443			break;
444
445		if (!smallmem)
446			offset -= BBSIZE;
447	}
448
449	/*
450	 * We hit the beginning of the physical log & still no header.  Return
451	 * to caller.  If caller can handle a return of -1, then this routine
452	 * will be called again for the end of the physical log.
453	 */
454	if (i == -1) {
455		error = 1;
456		goto out;
457	}
458
459	/*
460	 * We have the final block of the good log (the first block
461	 * of the log record _before_ the head. So we check the uuid.
462	 */
463	if ((error = xlog_header_check_mount(log->l_mp, head)))
464		goto out;
465
466	/*
467	 * We may have found a log record header before we expected one.
468	 * last_blk will be the 1st block # with a given cycle #.  We may end
469	 * up reading an entire log record.  In this case, we don't want to
470	 * reset last_blk.  Only when last_blk points in the middle of a log
471	 * record do we update last_blk.
472	 */
473	xhdrs = xlog_logrec_hblks(log, head);
474
475	if (*last_blk - i + extra_bblks !=
476	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
477		*last_blk = i;
478
479out:
480	kvfree(buffer);
481	return error;
482}
483
484/*
485 * Head is defined to be the point of the log where the next log write
486 * could go.  This means that incomplete LR writes at the end are
487 * eliminated when calculating the head.  We aren't guaranteed that previous
488 * LR have complete transactions.  We only know that a cycle number of
489 * current cycle number -1 won't be present in the log if we start writing
490 * from our current block number.
491 *
492 * last_blk contains the block number of the first block with a given
493 * cycle number.
494 *
495 * Return: zero if normal, non-zero if error.
496 */
497STATIC int
498xlog_find_head(
499	struct xlog	*log,
500	xfs_daddr_t	*return_head_blk)
501{
502	char		*buffer;
503	char		*offset;
504	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
505	int		num_scan_bblks;
506	uint		first_half_cycle, last_half_cycle;
507	uint		stop_on_cycle;
508	int		error, log_bbnum = log->l_logBBsize;
509
510	/* Is the end of the log device zeroed? */
511	error = xlog_find_zeroed(log, &first_blk);
512	if (error < 0) {
513		xfs_warn(log->l_mp, "empty log check failed");
514		return error;
515	}
516	if (error == 1) {
517		*return_head_blk = first_blk;
518
519		/* Is the whole lot zeroed? */
520		if (!first_blk) {
521			/* Linux XFS shouldn't generate totally zeroed logs -
522			 * mkfs etc write a dummy unmount record to a fresh
523			 * log so we can store the uuid in there
524			 */
525			xfs_warn(log->l_mp, "totally zeroed log");
526		}
527
528		return 0;
529	}
530
531	first_blk = 0;			/* get cycle # of 1st block */
532	buffer = xlog_alloc_buffer(log, 1);
533	if (!buffer)
534		return -ENOMEM;
535
536	error = xlog_bread(log, 0, 1, buffer, &offset);
537	if (error)
538		goto out_free_buffer;
539
540	first_half_cycle = xlog_get_cycle(offset);
541
542	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
543	error = xlog_bread(log, last_blk, 1, buffer, &offset);
544	if (error)
545		goto out_free_buffer;
546
547	last_half_cycle = xlog_get_cycle(offset);
548	ASSERT(last_half_cycle != 0);
549
550	/*
551	 * If the 1st half cycle number is equal to the last half cycle number,
552	 * then the entire log is stamped with the same cycle number.  In this
553	 * case, head_blk can't be set to zero (which makes sense).  The below
554	 * math doesn't work out properly with head_blk equal to zero.  Instead,
555	 * we set it to log_bbnum which is an invalid block number, but this
556	 * value makes the math correct.  If head_blk doesn't changed through
557	 * all the tests below, *head_blk is set to zero at the very end rather
558	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
559	 * in a circular file.
560	 */
561	if (first_half_cycle == last_half_cycle) {
562		/*
563		 * In this case we believe that the entire log should have
564		 * cycle number last_half_cycle.  We need to scan backwards
565		 * from the end verifying that there are no holes still
566		 * containing last_half_cycle - 1.  If we find such a hole,
567		 * then the start of that hole will be the new head.  The
568		 * simple case looks like
569		 *        x | x ... | x - 1 | x
570		 * Another case that fits this picture would be
571		 *        x | x + 1 | x ... | x
572		 * In this case the head really is somewhere at the end of the
573		 * log, as one of the latest writes at the beginning was
574		 * incomplete.
575		 * One more case is
576		 *        x | x + 1 | x ... | x - 1 | x
577		 * This is really the combination of the above two cases, and
578		 * the head has to end up at the start of the x-1 hole at the
579		 * end of the log.
580		 *
581		 * In the 256k log case, we will read from the beginning to the
582		 * end of the log and search for cycle numbers equal to x-1.
583		 * We don't worry about the x+1 blocks that we encounter,
584		 * because we know that they cannot be the head since the log
585		 * started with x.
586		 */
587		head_blk = log_bbnum;
588		stop_on_cycle = last_half_cycle - 1;
589	} else {
590		/*
591		 * In this case we want to find the first block with cycle
592		 * number matching last_half_cycle.  We expect the log to be
593		 * some variation on
594		 *        x + 1 ... | x ... | x
595		 * The first block with cycle number x (last_half_cycle) will
596		 * be where the new head belongs.  First we do a binary search
597		 * for the first occurrence of last_half_cycle.  The binary
598		 * search may not be totally accurate, so then we scan back
599		 * from there looking for occurrences of last_half_cycle before
600		 * us.  If that backwards scan wraps around the beginning of
601		 * the log, then we look for occurrences of last_half_cycle - 1
602		 * at the end of the log.  The cases we're looking for look
603		 * like
604		 *                               v binary search stopped here
605		 *        x + 1 ... | x | x + 1 | x ... | x
606		 *                   ^ but we want to locate this spot
607		 * or
608		 *        <---------> less than scan distance
609		 *        x + 1 ... | x ... | x - 1 | x
610		 *                           ^ we want to locate this spot
611		 */
612		stop_on_cycle = last_half_cycle;
613		error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
614				last_half_cycle);
615		if (error)
616			goto out_free_buffer;
617	}
618
619	/*
620	 * Now validate the answer.  Scan back some number of maximum possible
621	 * blocks and make sure each one has the expected cycle number.  The
622	 * maximum is determined by the total possible amount of buffering
623	 * in the in-core log.  The following number can be made tighter if
624	 * we actually look at the block size of the filesystem.
625	 */
626	num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
627	if (head_blk >= num_scan_bblks) {
628		/*
629		 * We are guaranteed that the entire check can be performed
630		 * in one buffer.
631		 */
632		start_blk = head_blk - num_scan_bblks;
633		if ((error = xlog_find_verify_cycle(log,
634						start_blk, num_scan_bblks,
635						stop_on_cycle, &new_blk)))
636			goto out_free_buffer;
637		if (new_blk != -1)
638			head_blk = new_blk;
639	} else {		/* need to read 2 parts of log */
640		/*
641		 * We are going to scan backwards in the log in two parts.
642		 * First we scan the physical end of the log.  In this part
643		 * of the log, we are looking for blocks with cycle number
644		 * last_half_cycle - 1.
645		 * If we find one, then we know that the log starts there, as
646		 * we've found a hole that didn't get written in going around
647		 * the end of the physical log.  The simple case for this is
648		 *        x + 1 ... | x ... | x - 1 | x
649		 *        <---------> less than scan distance
650		 * If all of the blocks at the end of the log have cycle number
651		 * last_half_cycle, then we check the blocks at the start of
652		 * the log looking for occurrences of last_half_cycle.  If we
653		 * find one, then our current estimate for the location of the
654		 * first occurrence of last_half_cycle is wrong and we move
655		 * back to the hole we've found.  This case looks like
656		 *        x + 1 ... | x | x + 1 | x ...
657		 *                               ^ binary search stopped here
658		 * Another case we need to handle that only occurs in 256k
659		 * logs is
660		 *        x + 1 ... | x ... | x+1 | x ...
661		 *                   ^ binary search stops here
662		 * In a 256k log, the scan at the end of the log will see the
663		 * x + 1 blocks.  We need to skip past those since that is
664		 * certainly not the head of the log.  By searching for
665		 * last_half_cycle-1 we accomplish that.
666		 */
667		ASSERT(head_blk <= INT_MAX &&
668			(xfs_daddr_t) num_scan_bblks >= head_blk);
669		start_blk = log_bbnum - (num_scan_bblks - head_blk);
670		if ((error = xlog_find_verify_cycle(log, start_blk,
671					num_scan_bblks - (int)head_blk,
672					(stop_on_cycle - 1), &new_blk)))
673			goto out_free_buffer;
674		if (new_blk != -1) {
675			head_blk = new_blk;
676			goto validate_head;
677		}
678
679		/*
680		 * Scan beginning of log now.  The last part of the physical
681		 * log is good.  This scan needs to verify that it doesn't find
682		 * the last_half_cycle.
683		 */
684		start_blk = 0;
685		ASSERT(head_blk <= INT_MAX);
686		if ((error = xlog_find_verify_cycle(log,
687					start_blk, (int)head_blk,
688					stop_on_cycle, &new_blk)))
689			goto out_free_buffer;
690		if (new_blk != -1)
691			head_blk = new_blk;
692	}
693
694validate_head:
695	/*
696	 * Now we need to make sure head_blk is not pointing to a block in
697	 * the middle of a log record.
698	 */
699	num_scan_bblks = XLOG_REC_SHIFT(log);
700	if (head_blk >= num_scan_bblks) {
701		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
702
703		/* start ptr at last block ptr before head_blk */
704		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
705		if (error == 1)
706			error = -EIO;
707		if (error)
708			goto out_free_buffer;
709	} else {
710		start_blk = 0;
711		ASSERT(head_blk <= INT_MAX);
712		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
713		if (error < 0)
714			goto out_free_buffer;
715		if (error == 1) {
716			/* We hit the beginning of the log during our search */
717			start_blk = log_bbnum - (num_scan_bblks - head_blk);
718			new_blk = log_bbnum;
719			ASSERT(start_blk <= INT_MAX &&
720				(xfs_daddr_t) log_bbnum-start_blk >= 0);
721			ASSERT(head_blk <= INT_MAX);
722			error = xlog_find_verify_log_record(log, start_blk,
723							&new_blk, (int)head_blk);
724			if (error == 1)
725				error = -EIO;
726			if (error)
727				goto out_free_buffer;
728			if (new_blk != log_bbnum)
729				head_blk = new_blk;
730		} else if (error)
731			goto out_free_buffer;
732	}
733
734	kvfree(buffer);
735	if (head_blk == log_bbnum)
736		*return_head_blk = 0;
737	else
738		*return_head_blk = head_blk;
739	/*
740	 * When returning here, we have a good block number.  Bad block
741	 * means that during a previous crash, we didn't have a clean break
742	 * from cycle number N to cycle number N-1.  In this case, we need
743	 * to find the first block with cycle number N-1.
744	 */
745	return 0;
746
747out_free_buffer:
748	kvfree(buffer);
749	if (error)
750		xfs_warn(log->l_mp, "failed to find log head");
751	return error;
752}
753
754/*
755 * Seek backwards in the log for log record headers.
756 *
757 * Given a starting log block, walk backwards until we find the provided number
758 * of records or hit the provided tail block. The return value is the number of
759 * records encountered or a negative error code. The log block and buffer
760 * pointer of the last record seen are returned in rblk and rhead respectively.
761 */
762STATIC int
763xlog_rseek_logrec_hdr(
764	struct xlog		*log,
765	xfs_daddr_t		head_blk,
766	xfs_daddr_t		tail_blk,
767	int			count,
768	char			*buffer,
769	xfs_daddr_t		*rblk,
770	struct xlog_rec_header	**rhead,
771	bool			*wrapped)
772{
773	int			i;
774	int			error;
775	int			found = 0;
776	char			*offset = NULL;
777	xfs_daddr_t		end_blk;
778
779	*wrapped = false;
780
781	/*
782	 * Walk backwards from the head block until we hit the tail or the first
783	 * block in the log.
784	 */
785	end_blk = head_blk > tail_blk ? tail_blk : 0;
786	for (i = (int) head_blk - 1; i >= end_blk; i--) {
787		error = xlog_bread(log, i, 1, buffer, &offset);
788		if (error)
789			goto out_error;
790
791		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
792			*rblk = i;
793			*rhead = (struct xlog_rec_header *) offset;
794			if (++found == count)
795				break;
796		}
797	}
798
799	/*
800	 * If we haven't hit the tail block or the log record header count,
801	 * start looking again from the end of the physical log. Note that
802	 * callers can pass head == tail if the tail is not yet known.
803	 */
804	if (tail_blk >= head_blk && found != count) {
805		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
806			error = xlog_bread(log, i, 1, buffer, &offset);
807			if (error)
808				goto out_error;
809
810			if (*(__be32 *)offset ==
811			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
812				*wrapped = true;
813				*rblk = i;
814				*rhead = (struct xlog_rec_header *) offset;
815				if (++found == count)
816					break;
817			}
818		}
819	}
820
821	return found;
822
823out_error:
824	return error;
825}
826
827/*
828 * Seek forward in the log for log record headers.
829 *
830 * Given head and tail blocks, walk forward from the tail block until we find
831 * the provided number of records or hit the head block. The return value is the
832 * number of records encountered or a negative error code. The log block and
833 * buffer pointer of the last record seen are returned in rblk and rhead
834 * respectively.
835 */
836STATIC int
837xlog_seek_logrec_hdr(
838	struct xlog		*log,
839	xfs_daddr_t		head_blk,
840	xfs_daddr_t		tail_blk,
841	int			count,
842	char			*buffer,
843	xfs_daddr_t		*rblk,
844	struct xlog_rec_header	**rhead,
845	bool			*wrapped)
846{
847	int			i;
848	int			error;
849	int			found = 0;
850	char			*offset = NULL;
851	xfs_daddr_t		end_blk;
852
853	*wrapped = false;
854
855	/*
856	 * Walk forward from the tail block until we hit the head or the last
857	 * block in the log.
858	 */
859	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
860	for (i = (int) tail_blk; i <= end_blk; i++) {
861		error = xlog_bread(log, i, 1, buffer, &offset);
862		if (error)
863			goto out_error;
864
865		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
866			*rblk = i;
867			*rhead = (struct xlog_rec_header *) offset;
868			if (++found == count)
869				break;
870		}
871	}
872
873	/*
874	 * If we haven't hit the head block or the log record header count,
875	 * start looking again from the start of the physical log.
876	 */
877	if (tail_blk > head_blk && found != count) {
878		for (i = 0; i < (int) head_blk; i++) {
879			error = xlog_bread(log, i, 1, buffer, &offset);
880			if (error)
881				goto out_error;
882
883			if (*(__be32 *)offset ==
884			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
885				*wrapped = true;
886				*rblk = i;
887				*rhead = (struct xlog_rec_header *) offset;
888				if (++found == count)
889					break;
890			}
891		}
892	}
893
894	return found;
895
896out_error:
897	return error;
898}
899
900/*
901 * Calculate distance from head to tail (i.e., unused space in the log).
902 */
903static inline int
904xlog_tail_distance(
905	struct xlog	*log,
906	xfs_daddr_t	head_blk,
907	xfs_daddr_t	tail_blk)
908{
909	if (head_blk < tail_blk)
910		return tail_blk - head_blk;
911
912	return tail_blk + (log->l_logBBsize - head_blk);
913}
914
915/*
916 * Verify the log tail. This is particularly important when torn or incomplete
917 * writes have been detected near the front of the log and the head has been
918 * walked back accordingly.
919 *
920 * We also have to handle the case where the tail was pinned and the head
921 * blocked behind the tail right before a crash. If the tail had been pushed
922 * immediately prior to the crash and the subsequent checkpoint was only
923 * partially written, it's possible it overwrote the last referenced tail in the
924 * log with garbage. This is not a coherency problem because the tail must have
925 * been pushed before it can be overwritten, but appears as log corruption to
926 * recovery because we have no way to know the tail was updated if the
927 * subsequent checkpoint didn't write successfully.
928 *
929 * Therefore, CRC check the log from tail to head. If a failure occurs and the
930 * offending record is within max iclog bufs from the head, walk the tail
931 * forward and retry until a valid tail is found or corruption is detected out
932 * of the range of a possible overwrite.
933 */
934STATIC int
935xlog_verify_tail(
936	struct xlog		*log,
937	xfs_daddr_t		head_blk,
938	xfs_daddr_t		*tail_blk,
939	int			hsize)
940{
941	struct xlog_rec_header	*thead;
942	char			*buffer;
943	xfs_daddr_t		first_bad;
944	int			error = 0;
945	bool			wrapped;
946	xfs_daddr_t		tmp_tail;
947	xfs_daddr_t		orig_tail = *tail_blk;
948
949	buffer = xlog_alloc_buffer(log, 1);
950	if (!buffer)
951		return -ENOMEM;
952
953	/*
954	 * Make sure the tail points to a record (returns positive count on
955	 * success).
956	 */
957	error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
958			&tmp_tail, &thead, &wrapped);
959	if (error < 0)
960		goto out;
961	if (*tail_blk != tmp_tail)
962		*tail_blk = tmp_tail;
963
964	/*
965	 * Run a CRC check from the tail to the head. We can't just check
966	 * MAX_ICLOGS records past the tail because the tail may point to stale
967	 * blocks cleared during the search for the head/tail. These blocks are
968	 * overwritten with zero-length records and thus record count is not a
969	 * reliable indicator of the iclog state before a crash.
970	 */
971	first_bad = 0;
972	error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
973				      XLOG_RECOVER_CRCPASS, &first_bad);
974	while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
975		int	tail_distance;
976
977		/*
978		 * Is corruption within range of the head? If so, retry from
979		 * the next record. Otherwise return an error.
980		 */
981		tail_distance = xlog_tail_distance(log, head_blk, first_bad);
982		if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
983			break;
984
985		/* skip to the next record; returns positive count on success */
986		error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
987				buffer, &tmp_tail, &thead, &wrapped);
988		if (error < 0)
989			goto out;
990
991		*tail_blk = tmp_tail;
992		first_bad = 0;
993		error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
994					      XLOG_RECOVER_CRCPASS, &first_bad);
995	}
996
997	if (!error && *tail_blk != orig_tail)
998		xfs_warn(log->l_mp,
999		"Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1000			 orig_tail, *tail_blk);
1001out:
1002	kvfree(buffer);
1003	return error;
1004}
1005
1006/*
1007 * Detect and trim torn writes from the head of the log.
1008 *
1009 * Storage without sector atomicity guarantees can result in torn writes in the
1010 * log in the event of a crash. Our only means to detect this scenario is via
1011 * CRC verification. While we can't always be certain that CRC verification
1012 * failure is due to a torn write vs. an unrelated corruption, we do know that
1013 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1014 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1015 * the log and treat failures in this range as torn writes as a matter of
1016 * policy. In the event of CRC failure, the head is walked back to the last good
1017 * record in the log and the tail is updated from that record and verified.
1018 */
1019STATIC int
1020xlog_verify_head(
1021	struct xlog		*log,
1022	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1023	xfs_daddr_t		*tail_blk,	/* out: tail block */
1024	char			*buffer,
1025	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1026	struct xlog_rec_header	**rhead,	/* ptr to last record */
1027	bool			*wrapped)	/* last rec. wraps phys. log */
1028{
1029	struct xlog_rec_header	*tmp_rhead;
1030	char			*tmp_buffer;
1031	xfs_daddr_t		first_bad;
1032	xfs_daddr_t		tmp_rhead_blk;
1033	int			found;
1034	int			error;
1035	bool			tmp_wrapped;
1036
1037	/*
1038	 * Check the head of the log for torn writes. Search backwards from the
1039	 * head until we hit the tail or the maximum number of log record I/Os
1040	 * that could have been in flight at one time. Use a temporary buffer so
1041	 * we don't trash the rhead/buffer pointers from the caller.
1042	 */
1043	tmp_buffer = xlog_alloc_buffer(log, 1);
1044	if (!tmp_buffer)
1045		return -ENOMEM;
1046	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1047				      XLOG_MAX_ICLOGS, tmp_buffer,
1048				      &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1049	kvfree(tmp_buffer);
1050	if (error < 0)
1051		return error;
1052
1053	/*
1054	 * Now run a CRC verification pass over the records starting at the
1055	 * block found above to the current head. If a CRC failure occurs, the
1056	 * log block of the first bad record is saved in first_bad.
1057	 */
1058	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1059				      XLOG_RECOVER_CRCPASS, &first_bad);
1060	if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1061		/*
1062		 * We've hit a potential torn write. Reset the error and warn
1063		 * about it.
1064		 */
1065		error = 0;
1066		xfs_warn(log->l_mp,
1067"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1068			 first_bad, *head_blk);
1069
1070		/*
1071		 * Get the header block and buffer pointer for the last good
1072		 * record before the bad record.
1073		 *
1074		 * Note that xlog_find_tail() clears the blocks at the new head
1075		 * (i.e., the records with invalid CRC) if the cycle number
1076		 * matches the current cycle.
1077		 */
1078		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1079				buffer, rhead_blk, rhead, wrapped);
1080		if (found < 0)
1081			return found;
1082		if (found == 0)		/* XXX: right thing to do here? */
1083			return -EIO;
1084
1085		/*
1086		 * Reset the head block to the starting block of the first bad
1087		 * log record and set the tail block based on the last good
1088		 * record.
1089		 *
1090		 * Bail out if the updated head/tail match as this indicates
1091		 * possible corruption outside of the acceptable
1092		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1093		 */
1094		*head_blk = first_bad;
1095		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1096		if (*head_blk == *tail_blk) {
1097			ASSERT(0);
1098			return 0;
1099		}
1100	}
1101	if (error)
1102		return error;
1103
1104	return xlog_verify_tail(log, *head_blk, tail_blk,
1105				be32_to_cpu((*rhead)->h_size));
1106}
1107
1108/*
1109 * We need to make sure we handle log wrapping properly, so we can't use the
1110 * calculated logbno directly. Make sure it wraps to the correct bno inside the
1111 * log.
1112 *
1113 * The log is limited to 32 bit sizes, so we use the appropriate modulus
1114 * operation here and cast it back to a 64 bit daddr on return.
1115 */
1116static inline xfs_daddr_t
1117xlog_wrap_logbno(
1118	struct xlog		*log,
1119	xfs_daddr_t		bno)
1120{
1121	int			mod;
1122
1123	div_s64_rem(bno, log->l_logBBsize, &mod);
1124	return mod;
1125}
1126
1127/*
1128 * Check whether the head of the log points to an unmount record. In other
1129 * words, determine whether the log is clean. If so, update the in-core state
1130 * appropriately.
1131 */
1132static int
1133xlog_check_unmount_rec(
1134	struct xlog		*log,
1135	xfs_daddr_t		*head_blk,
1136	xfs_daddr_t		*tail_blk,
1137	struct xlog_rec_header	*rhead,
1138	xfs_daddr_t		rhead_blk,
1139	char			*buffer,
1140	bool			*clean)
1141{
1142	struct xlog_op_header	*op_head;
1143	xfs_daddr_t		umount_data_blk;
1144	xfs_daddr_t		after_umount_blk;
1145	int			hblks;
1146	int			error;
1147	char			*offset;
1148
1149	*clean = false;
1150
1151	/*
1152	 * Look for unmount record. If we find it, then we know there was a
1153	 * clean unmount. Since 'i' could be the last block in the physical
1154	 * log, we convert to a log block before comparing to the head_blk.
1155	 *
1156	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1157	 * below. We won't want to clear the unmount record if there is one, so
1158	 * we pass the lsn of the unmount record rather than the block after it.
1159	 */
1160	hblks = xlog_logrec_hblks(log, rhead);
1161	after_umount_blk = xlog_wrap_logbno(log,
1162			rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1163
1164	if (*head_blk == after_umount_blk &&
1165	    be32_to_cpu(rhead->h_num_logops) == 1) {
1166		umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1167		error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1168		if (error)
1169			return error;
1170
1171		op_head = (struct xlog_op_header *)offset;
1172		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1173			/*
1174			 * Set tail and last sync so that newly written log
1175			 * records will point recovery to after the current
1176			 * unmount record.
1177			 */
1178			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1179					log->l_curr_cycle, after_umount_blk);
1180			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1181					log->l_curr_cycle, after_umount_blk);
1182			*tail_blk = after_umount_blk;
1183
1184			*clean = true;
1185		}
1186	}
1187
1188	return 0;
1189}
1190
1191static void
1192xlog_set_state(
1193	struct xlog		*log,
1194	xfs_daddr_t		head_blk,
1195	struct xlog_rec_header	*rhead,
1196	xfs_daddr_t		rhead_blk,
1197	bool			bump_cycle)
1198{
1199	/*
1200	 * Reset log values according to the state of the log when we
1201	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1202	 * one because the next write starts a new cycle rather than
1203	 * continuing the cycle of the last good log record.  At this
1204	 * point we have guaranteed that all partial log records have been
1205	 * accounted for.  Therefore, we know that the last good log record
1206	 * written was complete and ended exactly on the end boundary
1207	 * of the physical log.
1208	 */
1209	log->l_prev_block = rhead_blk;
1210	log->l_curr_block = (int)head_blk;
1211	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1212	if (bump_cycle)
1213		log->l_curr_cycle++;
1214	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1215	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1216	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1217					BBTOB(log->l_curr_block));
1218	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1219					BBTOB(log->l_curr_block));
1220}
1221
1222/*
1223 * Find the sync block number or the tail of the log.
1224 *
1225 * This will be the block number of the last record to have its
1226 * associated buffers synced to disk.  Every log record header has
1227 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1228 * to get a sync block number.  The only concern is to figure out which
1229 * log record header to believe.
1230 *
1231 * The following algorithm uses the log record header with the largest
1232 * lsn.  The entire log record does not need to be valid.  We only care
1233 * that the header is valid.
1234 *
1235 * We could speed up search by using current head_blk buffer, but it is not
1236 * available.
1237 */
1238STATIC int
1239xlog_find_tail(
1240	struct xlog		*log,
1241	xfs_daddr_t		*head_blk,
1242	xfs_daddr_t		*tail_blk)
1243{
1244	xlog_rec_header_t	*rhead;
1245	char			*offset = NULL;
1246	char			*buffer;
1247	int			error;
1248	xfs_daddr_t		rhead_blk;
1249	xfs_lsn_t		tail_lsn;
1250	bool			wrapped = false;
1251	bool			clean = false;
1252
1253	/*
1254	 * Find previous log record
1255	 */
1256	if ((error = xlog_find_head(log, head_blk)))
1257		return error;
1258	ASSERT(*head_blk < INT_MAX);
1259
1260	buffer = xlog_alloc_buffer(log, 1);
1261	if (!buffer)
1262		return -ENOMEM;
1263	if (*head_blk == 0) {				/* special case */
1264		error = xlog_bread(log, 0, 1, buffer, &offset);
1265		if (error)
1266			goto done;
1267
1268		if (xlog_get_cycle(offset) == 0) {
1269			*tail_blk = 0;
1270			/* leave all other log inited values alone */
1271			goto done;
1272		}
1273	}
1274
1275	/*
1276	 * Search backwards through the log looking for the log record header
1277	 * block. This wraps all the way back around to the head so something is
1278	 * seriously wrong if we can't find it.
1279	 */
1280	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1281				      &rhead_blk, &rhead, &wrapped);
1282	if (error < 0)
1283		goto done;
1284	if (!error) {
1285		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1286		error = -EFSCORRUPTED;
1287		goto done;
1288	}
1289	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1290
1291	/*
1292	 * Set the log state based on the current head record.
1293	 */
1294	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1295	tail_lsn = atomic64_read(&log->l_tail_lsn);
1296
1297	/*
1298	 * Look for an unmount record at the head of the log. This sets the log
1299	 * state to determine whether recovery is necessary.
1300	 */
1301	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1302				       rhead_blk, buffer, &clean);
1303	if (error)
1304		goto done;
1305
1306	/*
1307	 * Verify the log head if the log is not clean (e.g., we have anything
1308	 * but an unmount record at the head). This uses CRC verification to
1309	 * detect and trim torn writes. If discovered, CRC failures are
1310	 * considered torn writes and the log head is trimmed accordingly.
1311	 *
1312	 * Note that we can only run CRC verification when the log is dirty
1313	 * because there's no guarantee that the log data behind an unmount
1314	 * record is compatible with the current architecture.
1315	 */
1316	if (!clean) {
1317		xfs_daddr_t	orig_head = *head_blk;
1318
1319		error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1320					 &rhead_blk, &rhead, &wrapped);
1321		if (error)
1322			goto done;
1323
1324		/* update in-core state again if the head changed */
1325		if (*head_blk != orig_head) {
1326			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1327				       wrapped);
1328			tail_lsn = atomic64_read(&log->l_tail_lsn);
1329			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1330						       rhead, rhead_blk, buffer,
1331						       &clean);
1332			if (error)
1333				goto done;
1334		}
1335	}
1336
1337	/*
1338	 * Note that the unmount was clean. If the unmount was not clean, we
1339	 * need to know this to rebuild the superblock counters from the perag
1340	 * headers if we have a filesystem using non-persistent counters.
1341	 */
1342	if (clean)
1343		set_bit(XFS_OPSTATE_CLEAN, &log->l_mp->m_opstate);
1344
1345	/*
1346	 * Make sure that there are no blocks in front of the head
1347	 * with the same cycle number as the head.  This can happen
1348	 * because we allow multiple outstanding log writes concurrently,
1349	 * and the later writes might make it out before earlier ones.
1350	 *
1351	 * We use the lsn from before modifying it so that we'll never
1352	 * overwrite the unmount record after a clean unmount.
1353	 *
1354	 * Do this only if we are going to recover the filesystem
1355	 *
1356	 * NOTE: This used to say "if (!readonly)"
1357	 * However on Linux, we can & do recover a read-only filesystem.
1358	 * We only skip recovery if NORECOVERY is specified on mount,
1359	 * in which case we would not be here.
1360	 *
1361	 * But... if the -device- itself is readonly, just skip this.
1362	 * We can't recover this device anyway, so it won't matter.
1363	 */
1364	if (!xfs_readonly_buftarg(log->l_targ))
1365		error = xlog_clear_stale_blocks(log, tail_lsn);
1366
1367done:
1368	kvfree(buffer);
1369
1370	if (error)
1371		xfs_warn(log->l_mp, "failed to locate log tail");
1372	return error;
1373}
1374
1375/*
1376 * Is the log zeroed at all?
1377 *
1378 * The last binary search should be changed to perform an X block read
1379 * once X becomes small enough.  You can then search linearly through
1380 * the X blocks.  This will cut down on the number of reads we need to do.
1381 *
1382 * If the log is partially zeroed, this routine will pass back the blkno
1383 * of the first block with cycle number 0.  It won't have a complete LR
1384 * preceding it.
1385 *
1386 * Return:
1387 *	0  => the log is completely written to
1388 *	1 => use *blk_no as the first block of the log
1389 *	<0 => error has occurred
1390 */
1391STATIC int
1392xlog_find_zeroed(
1393	struct xlog	*log,
1394	xfs_daddr_t	*blk_no)
1395{
1396	char		*buffer;
1397	char		*offset;
1398	uint	        first_cycle, last_cycle;
1399	xfs_daddr_t	new_blk, last_blk, start_blk;
1400	xfs_daddr_t     num_scan_bblks;
1401	int	        error, log_bbnum = log->l_logBBsize;
1402	int		ret = 1;
1403
1404	*blk_no = 0;
1405
1406	/* check totally zeroed log */
1407	buffer = xlog_alloc_buffer(log, 1);
1408	if (!buffer)
1409		return -ENOMEM;
1410	error = xlog_bread(log, 0, 1, buffer, &offset);
1411	if (error)
1412		goto out_free_buffer;
1413
1414	first_cycle = xlog_get_cycle(offset);
1415	if (first_cycle == 0) {		/* completely zeroed log */
1416		*blk_no = 0;
1417		goto out_free_buffer;
1418	}
1419
1420	/* check partially zeroed log */
1421	error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1422	if (error)
1423		goto out_free_buffer;
1424
1425	last_cycle = xlog_get_cycle(offset);
1426	if (last_cycle != 0) {		/* log completely written to */
1427		ret = 0;
1428		goto out_free_buffer;
1429	}
1430
1431	/* we have a partially zeroed log */
1432	last_blk = log_bbnum-1;
1433	error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1434	if (error)
1435		goto out_free_buffer;
1436
1437	/*
1438	 * Validate the answer.  Because there is no way to guarantee that
1439	 * the entire log is made up of log records which are the same size,
1440	 * we scan over the defined maximum blocks.  At this point, the maximum
1441	 * is not chosen to mean anything special.   XXXmiken
1442	 */
1443	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1444	ASSERT(num_scan_bblks <= INT_MAX);
1445
1446	if (last_blk < num_scan_bblks)
1447		num_scan_bblks = last_blk;
1448	start_blk = last_blk - num_scan_bblks;
1449
1450	/*
1451	 * We search for any instances of cycle number 0 that occur before
1452	 * our current estimate of the head.  What we're trying to detect is
1453	 *        1 ... | 0 | 1 | 0...
1454	 *                       ^ binary search ends here
1455	 */
1456	if ((error = xlog_find_verify_cycle(log, start_blk,
1457					 (int)num_scan_bblks, 0, &new_blk)))
1458		goto out_free_buffer;
1459	if (new_blk != -1)
1460		last_blk = new_blk;
1461
1462	/*
1463	 * Potentially backup over partial log record write.  We don't need
1464	 * to search the end of the log because we know it is zero.
1465	 */
1466	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1467	if (error == 1)
1468		error = -EIO;
1469	if (error)
1470		goto out_free_buffer;
1471
1472	*blk_no = last_blk;
1473out_free_buffer:
1474	kvfree(buffer);
1475	if (error)
1476		return error;
1477	return ret;
1478}
1479
1480/*
1481 * These are simple subroutines used by xlog_clear_stale_blocks() below
1482 * to initialize a buffer full of empty log record headers and write
1483 * them into the log.
1484 */
1485STATIC void
1486xlog_add_record(
1487	struct xlog		*log,
1488	char			*buf,
1489	int			cycle,
1490	int			block,
1491	int			tail_cycle,
1492	int			tail_block)
1493{
1494	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1495
1496	memset(buf, 0, BBSIZE);
1497	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1498	recp->h_cycle = cpu_to_be32(cycle);
1499	recp->h_version = cpu_to_be32(
1500			xfs_has_logv2(log->l_mp) ? 2 : 1);
1501	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1502	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1503	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1504	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1505}
1506
1507STATIC int
1508xlog_write_log_records(
1509	struct xlog	*log,
1510	int		cycle,
1511	int		start_block,
1512	int		blocks,
1513	int		tail_cycle,
1514	int		tail_block)
1515{
1516	char		*offset;
1517	char		*buffer;
1518	int		balign, ealign;
1519	int		sectbb = log->l_sectBBsize;
1520	int		end_block = start_block + blocks;
1521	int		bufblks;
1522	int		error = 0;
1523	int		i, j = 0;
1524
1525	/*
1526	 * Greedily allocate a buffer big enough to handle the full
1527	 * range of basic blocks to be written.  If that fails, try
1528	 * a smaller size.  We need to be able to write at least a
1529	 * log sector, or we're out of luck.
1530	 */
1531	bufblks = roundup_pow_of_two(blocks);
1532	while (bufblks > log->l_logBBsize)
1533		bufblks >>= 1;
1534	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1535		bufblks >>= 1;
1536		if (bufblks < sectbb)
1537			return -ENOMEM;
1538	}
1539
1540	/* We may need to do a read at the start to fill in part of
1541	 * the buffer in the starting sector not covered by the first
1542	 * write below.
1543	 */
1544	balign = round_down(start_block, sectbb);
1545	if (balign != start_block) {
1546		error = xlog_bread_noalign(log, start_block, 1, buffer);
1547		if (error)
1548			goto out_free_buffer;
1549
1550		j = start_block - balign;
1551	}
1552
1553	for (i = start_block; i < end_block; i += bufblks) {
1554		int		bcount, endcount;
1555
1556		bcount = min(bufblks, end_block - start_block);
1557		endcount = bcount - j;
1558
1559		/* We may need to do a read at the end to fill in part of
1560		 * the buffer in the final sector not covered by the write.
1561		 * If this is the same sector as the above read, skip it.
1562		 */
1563		ealign = round_down(end_block, sectbb);
1564		if (j == 0 && (start_block + endcount > ealign)) {
1565			error = xlog_bread_noalign(log, ealign, sectbb,
1566					buffer + BBTOB(ealign - start_block));
1567			if (error)
1568				break;
1569
1570		}
1571
1572		offset = buffer + xlog_align(log, start_block);
1573		for (; j < endcount; j++) {
1574			xlog_add_record(log, offset, cycle, i+j,
1575					tail_cycle, tail_block);
1576			offset += BBSIZE;
1577		}
1578		error = xlog_bwrite(log, start_block, endcount, buffer);
1579		if (error)
1580			break;
1581		start_block += endcount;
1582		j = 0;
1583	}
1584
1585out_free_buffer:
1586	kvfree(buffer);
1587	return error;
1588}
1589
1590/*
1591 * This routine is called to blow away any incomplete log writes out
1592 * in front of the log head.  We do this so that we won't become confused
1593 * if we come up, write only a little bit more, and then crash again.
1594 * If we leave the partial log records out there, this situation could
1595 * cause us to think those partial writes are valid blocks since they
1596 * have the current cycle number.  We get rid of them by overwriting them
1597 * with empty log records with the old cycle number rather than the
1598 * current one.
1599 *
1600 * The tail lsn is passed in rather than taken from
1601 * the log so that we will not write over the unmount record after a
1602 * clean unmount in a 512 block log.  Doing so would leave the log without
1603 * any valid log records in it until a new one was written.  If we crashed
1604 * during that time we would not be able to recover.
1605 */
1606STATIC int
1607xlog_clear_stale_blocks(
1608	struct xlog	*log,
1609	xfs_lsn_t	tail_lsn)
1610{
1611	int		tail_cycle, head_cycle;
1612	int		tail_block, head_block;
1613	int		tail_distance, max_distance;
1614	int		distance;
1615	int		error;
1616
1617	tail_cycle = CYCLE_LSN(tail_lsn);
1618	tail_block = BLOCK_LSN(tail_lsn);
1619	head_cycle = log->l_curr_cycle;
1620	head_block = log->l_curr_block;
1621
1622	/*
1623	 * Figure out the distance between the new head of the log
1624	 * and the tail.  We want to write over any blocks beyond the
1625	 * head that we may have written just before the crash, but
1626	 * we don't want to overwrite the tail of the log.
1627	 */
1628	if (head_cycle == tail_cycle) {
1629		/*
1630		 * The tail is behind the head in the physical log,
1631		 * so the distance from the head to the tail is the
1632		 * distance from the head to the end of the log plus
1633		 * the distance from the beginning of the log to the
1634		 * tail.
1635		 */
1636		if (XFS_IS_CORRUPT(log->l_mp,
1637				   head_block < tail_block ||
1638				   head_block >= log->l_logBBsize))
1639			return -EFSCORRUPTED;
1640		tail_distance = tail_block + (log->l_logBBsize - head_block);
1641	} else {
1642		/*
1643		 * The head is behind the tail in the physical log,
1644		 * so the distance from the head to the tail is just
1645		 * the tail block minus the head block.
1646		 */
1647		if (XFS_IS_CORRUPT(log->l_mp,
1648				   head_block >= tail_block ||
1649				   head_cycle != tail_cycle + 1))
1650			return -EFSCORRUPTED;
1651		tail_distance = tail_block - head_block;
1652	}
1653
1654	/*
1655	 * If the head is right up against the tail, we can't clear
1656	 * anything.
1657	 */
1658	if (tail_distance <= 0) {
1659		ASSERT(tail_distance == 0);
1660		return 0;
1661	}
1662
1663	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1664	/*
1665	 * Take the smaller of the maximum amount of outstanding I/O
1666	 * we could have and the distance to the tail to clear out.
1667	 * We take the smaller so that we don't overwrite the tail and
1668	 * we don't waste all day writing from the head to the tail
1669	 * for no reason.
1670	 */
1671	max_distance = min(max_distance, tail_distance);
1672
1673	if ((head_block + max_distance) <= log->l_logBBsize) {
1674		/*
1675		 * We can stomp all the blocks we need to without
1676		 * wrapping around the end of the log.  Just do it
1677		 * in a single write.  Use the cycle number of the
1678		 * current cycle minus one so that the log will look like:
1679		 *     n ... | n - 1 ...
1680		 */
1681		error = xlog_write_log_records(log, (head_cycle - 1),
1682				head_block, max_distance, tail_cycle,
1683				tail_block);
1684		if (error)
1685			return error;
1686	} else {
1687		/*
1688		 * We need to wrap around the end of the physical log in
1689		 * order to clear all the blocks.  Do it in two separate
1690		 * I/Os.  The first write should be from the head to the
1691		 * end of the physical log, and it should use the current
1692		 * cycle number minus one just like above.
1693		 */
1694		distance = log->l_logBBsize - head_block;
1695		error = xlog_write_log_records(log, (head_cycle - 1),
1696				head_block, distance, tail_cycle,
1697				tail_block);
1698
1699		if (error)
1700			return error;
1701
1702		/*
1703		 * Now write the blocks at the start of the physical log.
1704		 * This writes the remainder of the blocks we want to clear.
1705		 * It uses the current cycle number since we're now on the
1706		 * same cycle as the head so that we get:
1707		 *    n ... n ... | n - 1 ...
1708		 *    ^^^^^ blocks we're writing
1709		 */
1710		distance = max_distance - (log->l_logBBsize - head_block);
1711		error = xlog_write_log_records(log, head_cycle, 0, distance,
1712				tail_cycle, tail_block);
1713		if (error)
1714			return error;
1715	}
1716
1717	return 0;
1718}
1719
1720/*
1721 * Release the recovered intent item in the AIL that matches the given intent
1722 * type and intent id.
1723 */
1724void
1725xlog_recover_release_intent(
1726	struct xlog			*log,
1727	unsigned short			intent_type,
1728	uint64_t			intent_id)
1729{
1730	struct xfs_defer_pending	*dfp, *n;
1731
1732	list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) {
1733		struct xfs_log_item	*lip = dfp->dfp_intent;
1734
1735		if (lip->li_type != intent_type)
1736			continue;
1737		if (!lip->li_ops->iop_match(lip, intent_id))
1738			continue;
1739
1740		ASSERT(xlog_item_is_intent(lip));
1741
1742		xfs_defer_cancel_recovery(log->l_mp, dfp);
1743	}
1744}
1745
1746int
1747xlog_recover_iget(
1748	struct xfs_mount	*mp,
1749	xfs_ino_t		ino,
1750	struct xfs_inode	**ipp)
1751{
1752	int			error;
1753
1754	error = xfs_iget(mp, NULL, ino, 0, 0, ipp);
1755	if (error)
1756		return error;
1757
1758	error = xfs_qm_dqattach(*ipp);
1759	if (error) {
1760		xfs_irele(*ipp);
1761		return error;
1762	}
1763
1764	if (VFS_I(*ipp)->i_nlink == 0)
1765		xfs_iflags_set(*ipp, XFS_IRECOVERY);
1766
1767	return 0;
1768}
1769
1770/******************************************************************************
1771 *
1772 *		Log recover routines
1773 *
1774 ******************************************************************************
1775 */
1776static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = {
1777	&xlog_buf_item_ops,
1778	&xlog_inode_item_ops,
1779	&xlog_dquot_item_ops,
1780	&xlog_quotaoff_item_ops,
1781	&xlog_icreate_item_ops,
1782	&xlog_efi_item_ops,
1783	&xlog_efd_item_ops,
1784	&xlog_rui_item_ops,
1785	&xlog_rud_item_ops,
1786	&xlog_cui_item_ops,
1787	&xlog_cud_item_ops,
1788	&xlog_bui_item_ops,
1789	&xlog_bud_item_ops,
1790	&xlog_attri_item_ops,
1791	&xlog_attrd_item_ops,
1792};
1793
1794static const struct xlog_recover_item_ops *
1795xlog_find_item_ops(
1796	struct xlog_recover_item		*item)
1797{
1798	unsigned int				i;
1799
1800	for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++)
1801		if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type)
1802			return xlog_recover_item_ops[i];
1803
1804	return NULL;
1805}
1806
1807/*
1808 * Sort the log items in the transaction.
1809 *
1810 * The ordering constraints are defined by the inode allocation and unlink
1811 * behaviour. The rules are:
1812 *
1813 *	1. Every item is only logged once in a given transaction. Hence it
1814 *	   represents the last logged state of the item. Hence ordering is
1815 *	   dependent on the order in which operations need to be performed so
1816 *	   required initial conditions are always met.
1817 *
1818 *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1819 *	   there's nothing to replay from them so we can simply cull them
1820 *	   from the transaction. However, we can't do that until after we've
1821 *	   replayed all the other items because they may be dependent on the
1822 *	   cancelled buffer and replaying the cancelled buffer can remove it
1823 *	   form the cancelled buffer table. Hence they have tobe done last.
1824 *
1825 *	3. Inode allocation buffers must be replayed before inode items that
1826 *	   read the buffer and replay changes into it. For filesystems using the
1827 *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1828 *	   treated the same as inode allocation buffers as they create and
1829 *	   initialise the buffers directly.
1830 *
1831 *	4. Inode unlink buffers must be replayed after inode items are replayed.
1832 *	   This ensures that inodes are completely flushed to the inode buffer
1833 *	   in a "free" state before we remove the unlinked inode list pointer.
1834 *
1835 * Hence the ordering needs to be inode allocation buffers first, inode items
1836 * second, inode unlink buffers third and cancelled buffers last.
1837 *
1838 * But there's a problem with that - we can't tell an inode allocation buffer
1839 * apart from a regular buffer, so we can't separate them. We can, however,
1840 * tell an inode unlink buffer from the others, and so we can separate them out
1841 * from all the other buffers and move them to last.
1842 *
1843 * Hence, 4 lists, in order from head to tail:
1844 *	- buffer_list for all buffers except cancelled/inode unlink buffers
1845 *	- item_list for all non-buffer items
1846 *	- inode_buffer_list for inode unlink buffers
1847 *	- cancel_list for the cancelled buffers
1848 *
1849 * Note that we add objects to the tail of the lists so that first-to-last
1850 * ordering is preserved within the lists. Adding objects to the head of the
1851 * list means when we traverse from the head we walk them in last-to-first
1852 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1853 * but for all other items there may be specific ordering that we need to
1854 * preserve.
1855 */
1856STATIC int
1857xlog_recover_reorder_trans(
1858	struct xlog		*log,
1859	struct xlog_recover	*trans,
1860	int			pass)
1861{
1862	struct xlog_recover_item *item, *n;
1863	int			error = 0;
1864	LIST_HEAD(sort_list);
1865	LIST_HEAD(cancel_list);
1866	LIST_HEAD(buffer_list);
1867	LIST_HEAD(inode_buffer_list);
1868	LIST_HEAD(item_list);
1869
1870	list_splice_init(&trans->r_itemq, &sort_list);
1871	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1872		enum xlog_recover_reorder	fate = XLOG_REORDER_ITEM_LIST;
1873
1874		item->ri_ops = xlog_find_item_ops(item);
1875		if (!item->ri_ops) {
1876			xfs_warn(log->l_mp,
1877				"%s: unrecognized type of log operation (%d)",
1878				__func__, ITEM_TYPE(item));
1879			ASSERT(0);
1880			/*
1881			 * return the remaining items back to the transaction
1882			 * item list so they can be freed in caller.
1883			 */
1884			if (!list_empty(&sort_list))
1885				list_splice_init(&sort_list, &trans->r_itemq);
1886			error = -EFSCORRUPTED;
1887			break;
1888		}
1889
1890		if (item->ri_ops->reorder)
1891			fate = item->ri_ops->reorder(item);
1892
1893		switch (fate) {
1894		case XLOG_REORDER_BUFFER_LIST:
1895			list_move_tail(&item->ri_list, &buffer_list);
1896			break;
1897		case XLOG_REORDER_CANCEL_LIST:
1898			trace_xfs_log_recover_item_reorder_head(log,
1899					trans, item, pass);
1900			list_move(&item->ri_list, &cancel_list);
1901			break;
1902		case XLOG_REORDER_INODE_BUFFER_LIST:
1903			list_move(&item->ri_list, &inode_buffer_list);
1904			break;
1905		case XLOG_REORDER_ITEM_LIST:
1906			trace_xfs_log_recover_item_reorder_tail(log,
1907							trans, item, pass);
1908			list_move_tail(&item->ri_list, &item_list);
1909			break;
1910		}
1911	}
1912
1913	ASSERT(list_empty(&sort_list));
1914	if (!list_empty(&buffer_list))
1915		list_splice(&buffer_list, &trans->r_itemq);
1916	if (!list_empty(&item_list))
1917		list_splice_tail(&item_list, &trans->r_itemq);
1918	if (!list_empty(&inode_buffer_list))
1919		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1920	if (!list_empty(&cancel_list))
1921		list_splice_tail(&cancel_list, &trans->r_itemq);
1922	return error;
1923}
1924
1925void
1926xlog_buf_readahead(
1927	struct xlog		*log,
1928	xfs_daddr_t		blkno,
1929	uint			len,
1930	const struct xfs_buf_ops *ops)
1931{
1932	if (!xlog_is_buffer_cancelled(log, blkno, len))
1933		xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops);
1934}
1935
1936/*
1937 * Create a deferred work structure for resuming and tracking the progress of a
1938 * log intent item that was found during recovery.
1939 */
1940void
1941xlog_recover_intent_item(
1942	struct xlog			*log,
1943	struct xfs_log_item		*lip,
1944	xfs_lsn_t			lsn,
1945	const struct xfs_defer_op_type	*ops)
1946{
1947	ASSERT(xlog_item_is_intent(lip));
1948
1949	xfs_defer_start_recovery(lip, &log->r_dfops, ops);
1950
1951	/*
1952	 * Insert the intent into the AIL directly and drop one reference so
1953	 * that finishing or canceling the work will drop the other.
1954	 */
1955	xfs_trans_ail_insert(log->l_ailp, lip, lsn);
1956	lip->li_ops->iop_unpin(lip, 0);
1957}
1958
1959STATIC int
1960xlog_recover_items_pass2(
1961	struct xlog                     *log,
1962	struct xlog_recover             *trans,
1963	struct list_head                *buffer_list,
1964	struct list_head                *item_list)
1965{
1966	struct xlog_recover_item	*item;
1967	int				error = 0;
1968
1969	list_for_each_entry(item, item_list, ri_list) {
1970		trace_xfs_log_recover_item_recover(log, trans, item,
1971				XLOG_RECOVER_PASS2);
1972
1973		if (item->ri_ops->commit_pass2)
1974			error = item->ri_ops->commit_pass2(log, buffer_list,
1975					item, trans->r_lsn);
1976		if (error)
1977			return error;
1978	}
1979
1980	return error;
1981}
1982
1983/*
1984 * Perform the transaction.
1985 *
1986 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
1987 * EFIs and EFDs get queued up by adding entries into the AIL for them.
1988 */
1989STATIC int
1990xlog_recover_commit_trans(
1991	struct xlog		*log,
1992	struct xlog_recover	*trans,
1993	int			pass,
1994	struct list_head	*buffer_list)
1995{
1996	int				error = 0;
1997	int				items_queued = 0;
1998	struct xlog_recover_item	*item;
1999	struct xlog_recover_item	*next;
2000	LIST_HEAD			(ra_list);
2001	LIST_HEAD			(done_list);
2002
2003	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
2004
2005	hlist_del_init(&trans->r_list);
2006
2007	error = xlog_recover_reorder_trans(log, trans, pass);
2008	if (error)
2009		return error;
2010
2011	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
2012		trace_xfs_log_recover_item_recover(log, trans, item, pass);
2013
2014		switch (pass) {
2015		case XLOG_RECOVER_PASS1:
2016			if (item->ri_ops->commit_pass1)
2017				error = item->ri_ops->commit_pass1(log, item);
2018			break;
2019		case XLOG_RECOVER_PASS2:
2020			if (item->ri_ops->ra_pass2)
2021				item->ri_ops->ra_pass2(log, item);
2022			list_move_tail(&item->ri_list, &ra_list);
2023			items_queued++;
2024			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
2025				error = xlog_recover_items_pass2(log, trans,
2026						buffer_list, &ra_list);
2027				list_splice_tail_init(&ra_list, &done_list);
2028				items_queued = 0;
2029			}
2030
2031			break;
2032		default:
2033			ASSERT(0);
2034		}
2035
2036		if (error)
2037			goto out;
2038	}
2039
2040out:
2041	if (!list_empty(&ra_list)) {
2042		if (!error)
2043			error = xlog_recover_items_pass2(log, trans,
2044					buffer_list, &ra_list);
2045		list_splice_tail_init(&ra_list, &done_list);
2046	}
2047
2048	if (!list_empty(&done_list))
2049		list_splice_init(&done_list, &trans->r_itemq);
2050
2051	return error;
2052}
2053
2054STATIC void
2055xlog_recover_add_item(
2056	struct list_head	*head)
2057{
2058	struct xlog_recover_item *item;
2059
2060	item = kzalloc(sizeof(struct xlog_recover_item),
2061			GFP_KERNEL | __GFP_NOFAIL);
2062	INIT_LIST_HEAD(&item->ri_list);
2063	list_add_tail(&item->ri_list, head);
2064}
2065
2066STATIC int
2067xlog_recover_add_to_cont_trans(
2068	struct xlog		*log,
2069	struct xlog_recover	*trans,
2070	char			*dp,
2071	int			len)
2072{
2073	struct xlog_recover_item *item;
2074	char			*ptr, *old_ptr;
2075	int			old_len;
2076
2077	/*
2078	 * If the transaction is empty, the header was split across this and the
2079	 * previous record. Copy the rest of the header.
2080	 */
2081	if (list_empty(&trans->r_itemq)) {
2082		ASSERT(len <= sizeof(struct xfs_trans_header));
2083		if (len > sizeof(struct xfs_trans_header)) {
2084			xfs_warn(log->l_mp, "%s: bad header length", __func__);
2085			return -EFSCORRUPTED;
2086		}
2087
2088		xlog_recover_add_item(&trans->r_itemq);
2089		ptr = (char *)&trans->r_theader +
2090				sizeof(struct xfs_trans_header) - len;
2091		memcpy(ptr, dp, len);
2092		return 0;
2093	}
2094
2095	/* take the tail entry */
2096	item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2097			  ri_list);
2098
2099	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
2100	old_len = item->ri_buf[item->ri_cnt-1].i_len;
2101
2102	ptr = kvrealloc(old_ptr, old_len, len + old_len, GFP_KERNEL);
2103	if (!ptr)
2104		return -ENOMEM;
2105	memcpy(&ptr[old_len], dp, len);
2106	item->ri_buf[item->ri_cnt-1].i_len += len;
2107	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
2108	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
2109	return 0;
2110}
2111
2112/*
2113 * The next region to add is the start of a new region.  It could be
2114 * a whole region or it could be the first part of a new region.  Because
2115 * of this, the assumption here is that the type and size fields of all
2116 * format structures fit into the first 32 bits of the structure.
2117 *
2118 * This works because all regions must be 32 bit aligned.  Therefore, we
2119 * either have both fields or we have neither field.  In the case we have
2120 * neither field, the data part of the region is zero length.  We only have
2121 * a log_op_header and can throw away the header since a new one will appear
2122 * later.  If we have at least 4 bytes, then we can determine how many regions
2123 * will appear in the current log item.
2124 */
2125STATIC int
2126xlog_recover_add_to_trans(
2127	struct xlog		*log,
2128	struct xlog_recover	*trans,
2129	char			*dp,
2130	int			len)
2131{
2132	struct xfs_inode_log_format	*in_f;			/* any will do */
2133	struct xlog_recover_item *item;
2134	char			*ptr;
2135
2136	if (!len)
2137		return 0;
2138	if (list_empty(&trans->r_itemq)) {
2139		/* we need to catch log corruptions here */
2140		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
2141			xfs_warn(log->l_mp, "%s: bad header magic number",
2142				__func__);
2143			ASSERT(0);
2144			return -EFSCORRUPTED;
2145		}
2146
2147		if (len > sizeof(struct xfs_trans_header)) {
2148			xfs_warn(log->l_mp, "%s: bad header length", __func__);
2149			ASSERT(0);
2150			return -EFSCORRUPTED;
2151		}
2152
2153		/*
2154		 * The transaction header can be arbitrarily split across op
2155		 * records. If we don't have the whole thing here, copy what we
2156		 * do have and handle the rest in the next record.
2157		 */
2158		if (len == sizeof(struct xfs_trans_header))
2159			xlog_recover_add_item(&trans->r_itemq);
2160		memcpy(&trans->r_theader, dp, len);
2161		return 0;
2162	}
2163
2164	ptr = xlog_kvmalloc(len);
2165	memcpy(ptr, dp, len);
2166	in_f = (struct xfs_inode_log_format *)ptr;
2167
2168	/* take the tail entry */
2169	item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2170			  ri_list);
2171	if (item->ri_total != 0 &&
2172	     item->ri_total == item->ri_cnt) {
2173		/* tail item is in use, get a new one */
2174		xlog_recover_add_item(&trans->r_itemq);
2175		item = list_entry(trans->r_itemq.prev,
2176					struct xlog_recover_item, ri_list);
2177	}
2178
2179	if (item->ri_total == 0) {		/* first region to be added */
2180		if (in_f->ilf_size == 0 ||
2181		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
2182			xfs_warn(log->l_mp,
2183		"bad number of regions (%d) in inode log format",
2184				  in_f->ilf_size);
2185			ASSERT(0);
2186			kvfree(ptr);
2187			return -EFSCORRUPTED;
2188		}
2189
2190		item->ri_total = in_f->ilf_size;
2191		item->ri_buf = kzalloc(item->ri_total * sizeof(xfs_log_iovec_t),
2192				GFP_KERNEL | __GFP_NOFAIL);
2193	}
2194
2195	if (item->ri_total <= item->ri_cnt) {
2196		xfs_warn(log->l_mp,
2197	"log item region count (%d) overflowed size (%d)",
2198				item->ri_cnt, item->ri_total);
2199		ASSERT(0);
2200		kvfree(ptr);
2201		return -EFSCORRUPTED;
2202	}
2203
2204	/* Description region is ri_buf[0] */
2205	item->ri_buf[item->ri_cnt].i_addr = ptr;
2206	item->ri_buf[item->ri_cnt].i_len  = len;
2207	item->ri_cnt++;
2208	trace_xfs_log_recover_item_add(log, trans, item, 0);
2209	return 0;
2210}
2211
2212/*
2213 * Free up any resources allocated by the transaction
2214 *
2215 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2216 */
2217STATIC void
2218xlog_recover_free_trans(
2219	struct xlog_recover	*trans)
2220{
2221	struct xlog_recover_item *item, *n;
2222	int			i;
2223
2224	hlist_del_init(&trans->r_list);
2225
2226	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2227		/* Free the regions in the item. */
2228		list_del(&item->ri_list);
2229		for (i = 0; i < item->ri_cnt; i++)
2230			kvfree(item->ri_buf[i].i_addr);
2231		/* Free the item itself */
2232		kfree(item->ri_buf);
2233		kfree(item);
2234	}
2235	/* Free the transaction recover structure */
2236	kfree(trans);
2237}
2238
2239/*
2240 * On error or completion, trans is freed.
2241 */
2242STATIC int
2243xlog_recovery_process_trans(
2244	struct xlog		*log,
2245	struct xlog_recover	*trans,
2246	char			*dp,
2247	unsigned int		len,
2248	unsigned int		flags,
2249	int			pass,
2250	struct list_head	*buffer_list)
2251{
2252	int			error = 0;
2253	bool			freeit = false;
2254
2255	/* mask off ophdr transaction container flags */
2256	flags &= ~XLOG_END_TRANS;
2257	if (flags & XLOG_WAS_CONT_TRANS)
2258		flags &= ~XLOG_CONTINUE_TRANS;
2259
2260	/*
2261	 * Callees must not free the trans structure. We'll decide if we need to
2262	 * free it or not based on the operation being done and it's result.
2263	 */
2264	switch (flags) {
2265	/* expected flag values */
2266	case 0:
2267	case XLOG_CONTINUE_TRANS:
2268		error = xlog_recover_add_to_trans(log, trans, dp, len);
2269		break;
2270	case XLOG_WAS_CONT_TRANS:
2271		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
2272		break;
2273	case XLOG_COMMIT_TRANS:
2274		error = xlog_recover_commit_trans(log, trans, pass,
2275						  buffer_list);
2276		/* success or fail, we are now done with this transaction. */
2277		freeit = true;
2278		break;
2279
2280	/* unexpected flag values */
2281	case XLOG_UNMOUNT_TRANS:
2282		/* just skip trans */
2283		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2284		freeit = true;
2285		break;
2286	case XLOG_START_TRANS:
2287	default:
2288		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
2289		ASSERT(0);
2290		error = -EFSCORRUPTED;
2291		break;
2292	}
2293	if (error || freeit)
2294		xlog_recover_free_trans(trans);
2295	return error;
2296}
2297
2298/*
2299 * Lookup the transaction recovery structure associated with the ID in the
2300 * current ophdr. If the transaction doesn't exist and the start flag is set in
2301 * the ophdr, then allocate a new transaction for future ID matches to find.
2302 * Either way, return what we found during the lookup - an existing transaction
2303 * or nothing.
2304 */
2305STATIC struct xlog_recover *
2306xlog_recover_ophdr_to_trans(
2307	struct hlist_head	rhash[],
2308	struct xlog_rec_header	*rhead,
2309	struct xlog_op_header	*ohead)
2310{
2311	struct xlog_recover	*trans;
2312	xlog_tid_t		tid;
2313	struct hlist_head	*rhp;
2314
2315	tid = be32_to_cpu(ohead->oh_tid);
2316	rhp = &rhash[XLOG_RHASH(tid)];
2317	hlist_for_each_entry(trans, rhp, r_list) {
2318		if (trans->r_log_tid == tid)
2319			return trans;
2320	}
2321
2322	/*
2323	 * skip over non-start transaction headers - we could be
2324	 * processing slack space before the next transaction starts
2325	 */
2326	if (!(ohead->oh_flags & XLOG_START_TRANS))
2327		return NULL;
2328
2329	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
2330
2331	/*
2332	 * This is a new transaction so allocate a new recovery container to
2333	 * hold the recovery ops that will follow.
2334	 */
2335	trans = kzalloc(sizeof(struct xlog_recover), GFP_KERNEL | __GFP_NOFAIL);
2336	trans->r_log_tid = tid;
2337	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
2338	INIT_LIST_HEAD(&trans->r_itemq);
2339	INIT_HLIST_NODE(&trans->r_list);
2340	hlist_add_head(&trans->r_list, rhp);
2341
2342	/*
2343	 * Nothing more to do for this ophdr. Items to be added to this new
2344	 * transaction will be in subsequent ophdr containers.
2345	 */
2346	return NULL;
2347}
2348
2349STATIC int
2350xlog_recover_process_ophdr(
2351	struct xlog		*log,
2352	struct hlist_head	rhash[],
2353	struct xlog_rec_header	*rhead,
2354	struct xlog_op_header	*ohead,
2355	char			*dp,
2356	char			*end,
2357	int			pass,
2358	struct list_head	*buffer_list)
2359{
2360	struct xlog_recover	*trans;
2361	unsigned int		len;
2362	int			error;
2363
2364	/* Do we understand who wrote this op? */
2365	if (ohead->oh_clientid != XFS_TRANSACTION &&
2366	    ohead->oh_clientid != XFS_LOG) {
2367		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2368			__func__, ohead->oh_clientid);
2369		ASSERT(0);
2370		return -EFSCORRUPTED;
2371	}
2372
2373	/*
2374	 * Check the ophdr contains all the data it is supposed to contain.
2375	 */
2376	len = be32_to_cpu(ohead->oh_len);
2377	if (dp + len > end) {
2378		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
2379		WARN_ON(1);
2380		return -EFSCORRUPTED;
2381	}
2382
2383	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
2384	if (!trans) {
2385		/* nothing to do, so skip over this ophdr */
2386		return 0;
2387	}
2388
2389	/*
2390	 * The recovered buffer queue is drained only once we know that all
2391	 * recovery items for the current LSN have been processed. This is
2392	 * required because:
2393	 *
2394	 * - Buffer write submission updates the metadata LSN of the buffer.
2395	 * - Log recovery skips items with a metadata LSN >= the current LSN of
2396	 *   the recovery item.
2397	 * - Separate recovery items against the same metadata buffer can share
2398	 *   a current LSN. I.e., consider that the LSN of a recovery item is
2399	 *   defined as the starting LSN of the first record in which its
2400	 *   transaction appears, that a record can hold multiple transactions,
2401	 *   and/or that a transaction can span multiple records.
2402	 *
2403	 * In other words, we are allowed to submit a buffer from log recovery
2404	 * once per current LSN. Otherwise, we may incorrectly skip recovery
2405	 * items and cause corruption.
2406	 *
2407	 * We don't know up front whether buffers are updated multiple times per
2408	 * LSN. Therefore, track the current LSN of each commit log record as it
2409	 * is processed and drain the queue when it changes. Use commit records
2410	 * because they are ordered correctly by the logging code.
2411	 */
2412	if (log->l_recovery_lsn != trans->r_lsn &&
2413	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
2414		error = xfs_buf_delwri_submit(buffer_list);
2415		if (error)
2416			return error;
2417		log->l_recovery_lsn = trans->r_lsn;
2418	}
2419
2420	return xlog_recovery_process_trans(log, trans, dp, len,
2421					   ohead->oh_flags, pass, buffer_list);
2422}
2423
2424/*
2425 * There are two valid states of the r_state field.  0 indicates that the
2426 * transaction structure is in a normal state.  We have either seen the
2427 * start of the transaction or the last operation we added was not a partial
2428 * operation.  If the last operation we added to the transaction was a
2429 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2430 *
2431 * NOTE: skip LRs with 0 data length.
2432 */
2433STATIC int
2434xlog_recover_process_data(
2435	struct xlog		*log,
2436	struct hlist_head	rhash[],
2437	struct xlog_rec_header	*rhead,
2438	char			*dp,
2439	int			pass,
2440	struct list_head	*buffer_list)
2441{
2442	struct xlog_op_header	*ohead;
2443	char			*end;
2444	int			num_logops;
2445	int			error;
2446
2447	end = dp + be32_to_cpu(rhead->h_len);
2448	num_logops = be32_to_cpu(rhead->h_num_logops);
2449
2450	/* check the log format matches our own - else we can't recover */
2451	if (xlog_header_check_recover(log->l_mp, rhead))
2452		return -EIO;
2453
2454	trace_xfs_log_recover_record(log, rhead, pass);
2455	while ((dp < end) && num_logops) {
2456
2457		ohead = (struct xlog_op_header *)dp;
2458		dp += sizeof(*ohead);
2459		ASSERT(dp <= end);
2460
2461		/* errors will abort recovery */
2462		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
2463						   dp, end, pass, buffer_list);
2464		if (error)
2465			return error;
2466
2467		dp += be32_to_cpu(ohead->oh_len);
2468		num_logops--;
2469	}
2470	return 0;
2471}
2472
2473/* Take all the collected deferred ops and finish them in order. */
2474static int
2475xlog_finish_defer_ops(
2476	struct xfs_mount	*mp,
2477	struct list_head	*capture_list)
2478{
2479	struct xfs_defer_capture *dfc, *next;
2480	struct xfs_trans	*tp;
2481	int			error = 0;
2482
2483	list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2484		struct xfs_trans_res	resv;
2485		struct xfs_defer_resources dres;
2486
2487		/*
2488		 * Create a new transaction reservation from the captured
2489		 * information.  Set logcount to 1 to force the new transaction
2490		 * to regrant every roll so that we can make forward progress
2491		 * in recovery no matter how full the log might be.
2492		 */
2493		resv.tr_logres = dfc->dfc_logres;
2494		resv.tr_logcount = 1;
2495		resv.tr_logflags = XFS_TRANS_PERM_LOG_RES;
2496
2497		error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres,
2498				dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp);
2499		if (error) {
2500			xlog_force_shutdown(mp->m_log, SHUTDOWN_LOG_IO_ERROR);
2501			return error;
2502		}
2503
2504		/*
2505		 * Transfer to this new transaction all the dfops we captured
2506		 * from recovering a single intent item.
2507		 */
2508		list_del_init(&dfc->dfc_list);
2509		xfs_defer_ops_continue(dfc, tp, &dres);
2510		error = xfs_trans_commit(tp);
2511		xfs_defer_resources_rele(&dres);
2512		if (error)
2513			return error;
2514	}
2515
2516	ASSERT(list_empty(capture_list));
2517	return 0;
2518}
2519
2520/* Release all the captured defer ops and capture structures in this list. */
2521static void
2522xlog_abort_defer_ops(
2523	struct xfs_mount		*mp,
2524	struct list_head		*capture_list)
2525{
2526	struct xfs_defer_capture	*dfc;
2527	struct xfs_defer_capture	*next;
2528
2529	list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2530		list_del_init(&dfc->dfc_list);
2531		xfs_defer_ops_capture_abort(mp, dfc);
2532	}
2533}
2534
2535/*
2536 * When this is called, all of the log intent items which did not have
2537 * corresponding log done items should be in the AIL.  What we do now is update
2538 * the data structures associated with each one.
2539 *
2540 * Since we process the log intent items in normal transactions, they will be
2541 * removed at some point after the commit.  This prevents us from just walking
2542 * down the list processing each one.  We'll use a flag in the intent item to
2543 * skip those that we've already processed and use the AIL iteration mechanism's
2544 * generation count to try to speed this up at least a bit.
2545 *
2546 * When we start, we know that the intents are the only things in the AIL. As we
2547 * process them, however, other items are added to the AIL. Hence we know we
2548 * have started recovery on all the pending intents when we find an non-intent
2549 * item in the AIL.
2550 */
2551STATIC int
2552xlog_recover_process_intents(
2553	struct xlog			*log)
2554{
2555	LIST_HEAD(capture_list);
2556	struct xfs_defer_pending	*dfp, *n;
2557	int				error = 0;
2558#if defined(DEBUG) || defined(XFS_WARN)
2559	xfs_lsn_t			last_lsn;
2560
2561	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
2562#endif
2563
2564	list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) {
2565		ASSERT(xlog_item_is_intent(dfp->dfp_intent));
2566
2567		/*
2568		 * We should never see a redo item with a LSN higher than
2569		 * the last transaction we found in the log at the start
2570		 * of recovery.
2571		 */
2572		ASSERT(XFS_LSN_CMP(last_lsn, dfp->dfp_intent->li_lsn) >= 0);
2573
2574		/*
2575		 * NOTE: If your intent processing routine can create more
2576		 * deferred ops, you /must/ attach them to the capture list in
2577		 * the recover routine or else those subsequent intents will be
2578		 * replayed in the wrong order!
2579		 *
2580		 * The recovery function can free the log item, so we must not
2581		 * access dfp->dfp_intent after it returns.  It must dispose of
2582		 * @dfp if it returns 0.
2583		 */
2584		error = xfs_defer_finish_recovery(log->l_mp, dfp,
2585				&capture_list);
2586		if (error)
2587			break;
2588	}
2589	if (error)
2590		goto err;
2591
2592	error = xlog_finish_defer_ops(log->l_mp, &capture_list);
2593	if (error)
2594		goto err;
2595
2596	return 0;
2597err:
2598	xlog_abort_defer_ops(log->l_mp, &capture_list);
2599	return error;
2600}
2601
2602/*
2603 * A cancel occurs when the mount has failed and we're bailing out.  Release all
2604 * pending log intent items that we haven't started recovery on so they don't
2605 * pin the AIL.
2606 */
2607STATIC void
2608xlog_recover_cancel_intents(
2609	struct xlog			*log)
2610{
2611	struct xfs_defer_pending	*dfp, *n;
2612
2613	list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) {
2614		ASSERT(xlog_item_is_intent(dfp->dfp_intent));
2615
2616		xfs_defer_cancel_recovery(log->l_mp, dfp);
2617	}
2618}
2619
2620/*
2621 * Transfer ownership of the recovered pending work to the recovery transaction
2622 * and try to finish the work.  If there is more work to be done, the dfp will
2623 * remain attached to the transaction.  If not, the dfp is freed.
2624 */
2625int
2626xlog_recover_finish_intent(
2627	struct xfs_trans		*tp,
2628	struct xfs_defer_pending	*dfp)
2629{
2630	int				error;
2631
2632	list_move(&dfp->dfp_list, &tp->t_dfops);
2633	error = xfs_defer_finish_one(tp, dfp);
2634	if (error == -EAGAIN)
2635		return 0;
2636	return error;
2637}
2638
2639/*
2640 * This routine performs a transaction to null out a bad inode pointer
2641 * in an agi unlinked inode hash bucket.
2642 */
2643STATIC void
2644xlog_recover_clear_agi_bucket(
2645	struct xfs_perag	*pag,
2646	int			bucket)
2647{
2648	struct xfs_mount	*mp = pag->pag_mount;
2649	struct xfs_trans	*tp;
2650	struct xfs_agi		*agi;
2651	struct xfs_buf		*agibp;
2652	int			offset;
2653	int			error;
2654
2655	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
2656	if (error)
2657		goto out_error;
2658
2659	error = xfs_read_agi(pag, tp, &agibp);
2660	if (error)
2661		goto out_abort;
2662
2663	agi = agibp->b_addr;
2664	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
2665	offset = offsetof(xfs_agi_t, agi_unlinked) +
2666		 (sizeof(xfs_agino_t) * bucket);
2667	xfs_trans_log_buf(tp, agibp, offset,
2668			  (offset + sizeof(xfs_agino_t) - 1));
2669
2670	error = xfs_trans_commit(tp);
2671	if (error)
2672		goto out_error;
2673	return;
2674
2675out_abort:
2676	xfs_trans_cancel(tp);
2677out_error:
2678	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__,
2679			pag->pag_agno);
2680	return;
2681}
2682
2683static int
2684xlog_recover_iunlink_bucket(
2685	struct xfs_perag	*pag,
2686	struct xfs_agi		*agi,
2687	int			bucket)
2688{
2689	struct xfs_mount	*mp = pag->pag_mount;
2690	struct xfs_inode	*prev_ip = NULL;
2691	struct xfs_inode	*ip;
2692	xfs_agino_t		prev_agino, agino;
2693	int			error = 0;
2694
2695	agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2696	while (agino != NULLAGINO) {
2697		error = xfs_iget(mp, NULL,
2698				XFS_AGINO_TO_INO(mp, pag->pag_agno, agino),
2699				0, 0, &ip);
2700		if (error)
2701			break;
2702
2703		ASSERT(VFS_I(ip)->i_nlink == 0);
2704		ASSERT(VFS_I(ip)->i_mode != 0);
2705		xfs_iflags_clear(ip, XFS_IRECOVERY);
2706		agino = ip->i_next_unlinked;
2707
2708		if (prev_ip) {
2709			ip->i_prev_unlinked = prev_agino;
2710			xfs_irele(prev_ip);
2711
2712			/*
2713			 * Ensure the inode is removed from the unlinked list
2714			 * before we continue so that it won't race with
2715			 * building the in-memory list here. This could be
2716			 * serialised with the agibp lock, but that just
2717			 * serialises via lockstepping and it's much simpler
2718			 * just to flush the inodegc queue and wait for it to
2719			 * complete.
2720			 */
2721			error = xfs_inodegc_flush(mp);
2722			if (error)
2723				break;
2724		}
2725
2726		prev_agino = agino;
2727		prev_ip = ip;
2728	}
2729
2730	if (prev_ip) {
2731		int	error2;
2732
2733		ip->i_prev_unlinked = prev_agino;
2734		xfs_irele(prev_ip);
2735
2736		error2 = xfs_inodegc_flush(mp);
2737		if (error2 && !error)
2738			return error2;
2739	}
2740	return error;
2741}
2742
2743/*
2744 * Recover AGI unlinked lists
2745 *
2746 * This is called during recovery to process any inodes which we unlinked but
2747 * not freed when the system crashed.  These inodes will be on the lists in the
2748 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
2749 * any inodes found on the lists. Each inode is removed from the lists when it
2750 * has been fully truncated and is freed. The freeing of the inode and its
2751 * removal from the list must be atomic.
2752 *
2753 * If everything we touch in the agi processing loop is already in memory, this
2754 * loop can hold the cpu for a long time. It runs without lock contention,
2755 * memory allocation contention, the need wait for IO, etc, and so will run
2756 * until we either run out of inodes to process, run low on memory or we run out
2757 * of log space.
2758 *
2759 * This behaviour is bad for latency on single CPU and non-preemptible kernels,
2760 * and can prevent other filesystem work (such as CIL pushes) from running. This
2761 * can lead to deadlocks if the recovery process runs out of log reservation
2762 * space. Hence we need to yield the CPU when there is other kernel work
2763 * scheduled on this CPU to ensure other scheduled work can run without undue
2764 * latency.
2765 */
2766static void
2767xlog_recover_iunlink_ag(
2768	struct xfs_perag	*pag)
2769{
2770	struct xfs_agi		*agi;
2771	struct xfs_buf		*agibp;
2772	int			bucket;
2773	int			error;
2774
2775	error = xfs_read_agi(pag, NULL, &agibp);
2776	if (error) {
2777		/*
2778		 * AGI is b0rked. Don't process it.
2779		 *
2780		 * We should probably mark the filesystem as corrupt after we've
2781		 * recovered all the ag's we can....
2782		 */
2783		return;
2784	}
2785
2786	/*
2787	 * Unlock the buffer so that it can be acquired in the normal course of
2788	 * the transaction to truncate and free each inode.  Because we are not
2789	 * racing with anyone else here for the AGI buffer, we don't even need
2790	 * to hold it locked to read the initial unlinked bucket entries out of
2791	 * the buffer. We keep buffer reference though, so that it stays pinned
2792	 * in memory while we need the buffer.
2793	 */
2794	agi = agibp->b_addr;
2795	xfs_buf_unlock(agibp);
2796
2797	for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
2798		error = xlog_recover_iunlink_bucket(pag, agi, bucket);
2799		if (error) {
2800			/*
2801			 * Bucket is unrecoverable, so only a repair scan can
2802			 * free the remaining unlinked inodes. Just empty the
2803			 * bucket and remaining inodes on it unreferenced and
2804			 * unfreeable.
2805			 */
2806			xlog_recover_clear_agi_bucket(pag, bucket);
2807		}
2808	}
2809
2810	xfs_buf_rele(agibp);
2811}
2812
2813static void
2814xlog_recover_process_iunlinks(
2815	struct xlog	*log)
2816{
2817	struct xfs_perag	*pag;
2818	xfs_agnumber_t		agno;
2819
2820	for_each_perag(log->l_mp, agno, pag)
2821		xlog_recover_iunlink_ag(pag);
2822}
2823
2824STATIC void
2825xlog_unpack_data(
2826	struct xlog_rec_header	*rhead,
2827	char			*dp,
2828	struct xlog		*log)
2829{
2830	int			i, j, k;
2831
2832	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
2833		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
2834		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
2835		dp += BBSIZE;
2836	}
2837
2838	if (xfs_has_logv2(log->l_mp)) {
2839		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
2840		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
2841			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2842			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2843			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
2844			dp += BBSIZE;
2845		}
2846	}
2847}
2848
2849/*
2850 * CRC check, unpack and process a log record.
2851 */
2852STATIC int
2853xlog_recover_process(
2854	struct xlog		*log,
2855	struct hlist_head	rhash[],
2856	struct xlog_rec_header	*rhead,
2857	char			*dp,
2858	int			pass,
2859	struct list_head	*buffer_list)
2860{
2861	__le32			old_crc = rhead->h_crc;
2862	__le32			crc;
2863
2864	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
2865
2866	/*
2867	 * Nothing else to do if this is a CRC verification pass. Just return
2868	 * if this a record with a non-zero crc. Unfortunately, mkfs always
2869	 * sets old_crc to 0 so we must consider this valid even on v5 supers.
2870	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
2871	 * know precisely what failed.
2872	 */
2873	if (pass == XLOG_RECOVER_CRCPASS) {
2874		if (old_crc && crc != old_crc)
2875			return -EFSBADCRC;
2876		return 0;
2877	}
2878
2879	/*
2880	 * We're in the normal recovery path. Issue a warning if and only if the
2881	 * CRC in the header is non-zero. This is an advisory warning and the
2882	 * zero CRC check prevents warnings from being emitted when upgrading
2883	 * the kernel from one that does not add CRCs by default.
2884	 */
2885	if (crc != old_crc) {
2886		if (old_crc || xfs_has_crc(log->l_mp)) {
2887			xfs_alert(log->l_mp,
2888		"log record CRC mismatch: found 0x%x, expected 0x%x.",
2889					le32_to_cpu(old_crc),
2890					le32_to_cpu(crc));
2891			xfs_hex_dump(dp, 32);
2892		}
2893
2894		/*
2895		 * If the filesystem is CRC enabled, this mismatch becomes a
2896		 * fatal log corruption failure.
2897		 */
2898		if (xfs_has_crc(log->l_mp)) {
2899			XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
2900			return -EFSCORRUPTED;
2901		}
2902	}
2903
2904	xlog_unpack_data(rhead, dp, log);
2905
2906	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
2907					 buffer_list);
2908}
2909
2910STATIC int
2911xlog_valid_rec_header(
2912	struct xlog		*log,
2913	struct xlog_rec_header	*rhead,
2914	xfs_daddr_t		blkno,
2915	int			bufsize)
2916{
2917	int			hlen;
2918
2919	if (XFS_IS_CORRUPT(log->l_mp,
2920			   rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
2921		return -EFSCORRUPTED;
2922	if (XFS_IS_CORRUPT(log->l_mp,
2923			   (!rhead->h_version ||
2924			   (be32_to_cpu(rhead->h_version) &
2925			    (~XLOG_VERSION_OKBITS))))) {
2926		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
2927			__func__, be32_to_cpu(rhead->h_version));
2928		return -EFSCORRUPTED;
2929	}
2930
2931	/*
2932	 * LR body must have data (or it wouldn't have been written)
2933	 * and h_len must not be greater than LR buffer size.
2934	 */
2935	hlen = be32_to_cpu(rhead->h_len);
2936	if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize))
2937		return -EFSCORRUPTED;
2938
2939	if (XFS_IS_CORRUPT(log->l_mp,
2940			   blkno > log->l_logBBsize || blkno > INT_MAX))
2941		return -EFSCORRUPTED;
2942	return 0;
2943}
2944
2945/*
2946 * Read the log from tail to head and process the log records found.
2947 * Handle the two cases where the tail and head are in the same cycle
2948 * and where the active portion of the log wraps around the end of
2949 * the physical log separately.  The pass parameter is passed through
2950 * to the routines called to process the data and is not looked at
2951 * here.
2952 */
2953STATIC int
2954xlog_do_recovery_pass(
2955	struct xlog		*log,
2956	xfs_daddr_t		head_blk,
2957	xfs_daddr_t		tail_blk,
2958	int			pass,
2959	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
2960{
2961	xlog_rec_header_t	*rhead;
2962	xfs_daddr_t		blk_no, rblk_no;
2963	xfs_daddr_t		rhead_blk;
2964	char			*offset;
2965	char			*hbp, *dbp;
2966	int			error = 0, h_size, h_len;
2967	int			error2 = 0;
2968	int			bblks, split_bblks;
2969	int			hblks, split_hblks, wrapped_hblks;
2970	int			i;
2971	struct hlist_head	rhash[XLOG_RHASH_SIZE];
2972	LIST_HEAD		(buffer_list);
2973
2974	ASSERT(head_blk != tail_blk);
2975	blk_no = rhead_blk = tail_blk;
2976
2977	for (i = 0; i < XLOG_RHASH_SIZE; i++)
2978		INIT_HLIST_HEAD(&rhash[i]);
2979
2980	/*
2981	 * Read the header of the tail block and get the iclog buffer size from
2982	 * h_size.  Use this to tell how many sectors make up the log header.
2983	 */
2984	if (xfs_has_logv2(log->l_mp)) {
2985		/*
2986		 * When using variable length iclogs, read first sector of
2987		 * iclog header and extract the header size from it.  Get a
2988		 * new hbp that is the correct size.
2989		 */
2990		hbp = xlog_alloc_buffer(log, 1);
2991		if (!hbp)
2992			return -ENOMEM;
2993
2994		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
2995		if (error)
2996			goto bread_err1;
2997
2998		rhead = (xlog_rec_header_t *)offset;
2999
3000		/*
3001		 * xfsprogs has a bug where record length is based on lsunit but
3002		 * h_size (iclog size) is hardcoded to 32k. Now that we
3003		 * unconditionally CRC verify the unmount record, this means the
3004		 * log buffer can be too small for the record and cause an
3005		 * overrun.
3006		 *
3007		 * Detect this condition here. Use lsunit for the buffer size as
3008		 * long as this looks like the mkfs case. Otherwise, return an
3009		 * error to avoid a buffer overrun.
3010		 */
3011		h_size = be32_to_cpu(rhead->h_size);
3012		h_len = be32_to_cpu(rhead->h_len);
3013		if (h_len > h_size && h_len <= log->l_mp->m_logbsize &&
3014		    rhead->h_num_logops == cpu_to_be32(1)) {
3015			xfs_warn(log->l_mp,
3016		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
3017				 h_size, log->l_mp->m_logbsize);
3018			h_size = log->l_mp->m_logbsize;
3019		}
3020
3021		error = xlog_valid_rec_header(log, rhead, tail_blk, h_size);
3022		if (error)
3023			goto bread_err1;
3024
3025		hblks = xlog_logrec_hblks(log, rhead);
3026		if (hblks != 1) {
3027			kvfree(hbp);
3028			hbp = xlog_alloc_buffer(log, hblks);
3029		}
3030	} else {
3031		ASSERT(log->l_sectBBsize == 1);
3032		hblks = 1;
3033		hbp = xlog_alloc_buffer(log, 1);
3034		h_size = XLOG_BIG_RECORD_BSIZE;
3035	}
3036
3037	if (!hbp)
3038		return -ENOMEM;
3039	dbp = xlog_alloc_buffer(log, BTOBB(h_size));
3040	if (!dbp) {
3041		kvfree(hbp);
3042		return -ENOMEM;
3043	}
3044
3045	memset(rhash, 0, sizeof(rhash));
3046	if (tail_blk > head_blk) {
3047		/*
3048		 * Perform recovery around the end of the physical log.
3049		 * When the head is not on the same cycle number as the tail,
3050		 * we can't do a sequential recovery.
3051		 */
3052		while (blk_no < log->l_logBBsize) {
3053			/*
3054			 * Check for header wrapping around physical end-of-log
3055			 */
3056			offset = hbp;
3057			split_hblks = 0;
3058			wrapped_hblks = 0;
3059			if (blk_no + hblks <= log->l_logBBsize) {
3060				/* Read header in one read */
3061				error = xlog_bread(log, blk_no, hblks, hbp,
3062						   &offset);
3063				if (error)
3064					goto bread_err2;
3065			} else {
3066				/* This LR is split across physical log end */
3067				if (blk_no != log->l_logBBsize) {
3068					/* some data before physical log end */
3069					ASSERT(blk_no <= INT_MAX);
3070					split_hblks = log->l_logBBsize - (int)blk_no;
3071					ASSERT(split_hblks > 0);
3072					error = xlog_bread(log, blk_no,
3073							   split_hblks, hbp,
3074							   &offset);
3075					if (error)
3076						goto bread_err2;
3077				}
3078
3079				/*
3080				 * Note: this black magic still works with
3081				 * large sector sizes (non-512) only because:
3082				 * - we increased the buffer size originally
3083				 *   by 1 sector giving us enough extra space
3084				 *   for the second read;
3085				 * - the log start is guaranteed to be sector
3086				 *   aligned;
3087				 * - we read the log end (LR header start)
3088				 *   _first_, then the log start (LR header end)
3089				 *   - order is important.
3090				 */
3091				wrapped_hblks = hblks - split_hblks;
3092				error = xlog_bread_noalign(log, 0,
3093						wrapped_hblks,
3094						offset + BBTOB(split_hblks));
3095				if (error)
3096					goto bread_err2;
3097			}
3098			rhead = (xlog_rec_header_t *)offset;
3099			error = xlog_valid_rec_header(log, rhead,
3100					split_hblks ? blk_no : 0, h_size);
3101			if (error)
3102				goto bread_err2;
3103
3104			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3105			blk_no += hblks;
3106
3107			/*
3108			 * Read the log record data in multiple reads if it
3109			 * wraps around the end of the log. Note that if the
3110			 * header already wrapped, blk_no could point past the
3111			 * end of the log. The record data is contiguous in
3112			 * that case.
3113			 */
3114			if (blk_no + bblks <= log->l_logBBsize ||
3115			    blk_no >= log->l_logBBsize) {
3116				rblk_no = xlog_wrap_logbno(log, blk_no);
3117				error = xlog_bread(log, rblk_no, bblks, dbp,
3118						   &offset);
3119				if (error)
3120					goto bread_err2;
3121			} else {
3122				/* This log record is split across the
3123				 * physical end of log */
3124				offset = dbp;
3125				split_bblks = 0;
3126				if (blk_no != log->l_logBBsize) {
3127					/* some data is before the physical
3128					 * end of log */
3129					ASSERT(!wrapped_hblks);
3130					ASSERT(blk_no <= INT_MAX);
3131					split_bblks =
3132						log->l_logBBsize - (int)blk_no;
3133					ASSERT(split_bblks > 0);
3134					error = xlog_bread(log, blk_no,
3135							split_bblks, dbp,
3136							&offset);
3137					if (error)
3138						goto bread_err2;
3139				}
3140
3141				/*
3142				 * Note: this black magic still works with
3143				 * large sector sizes (non-512) only because:
3144				 * - we increased the buffer size originally
3145				 *   by 1 sector giving us enough extra space
3146				 *   for the second read;
3147				 * - the log start is guaranteed to be sector
3148				 *   aligned;
3149				 * - we read the log end (LR header start)
3150				 *   _first_, then the log start (LR header end)
3151				 *   - order is important.
3152				 */
3153				error = xlog_bread_noalign(log, 0,
3154						bblks - split_bblks,
3155						offset + BBTOB(split_bblks));
3156				if (error)
3157					goto bread_err2;
3158			}
3159
3160			error = xlog_recover_process(log, rhash, rhead, offset,
3161						     pass, &buffer_list);
3162			if (error)
3163				goto bread_err2;
3164
3165			blk_no += bblks;
3166			rhead_blk = blk_no;
3167		}
3168
3169		ASSERT(blk_no >= log->l_logBBsize);
3170		blk_no -= log->l_logBBsize;
3171		rhead_blk = blk_no;
3172	}
3173
3174	/* read first part of physical log */
3175	while (blk_no < head_blk) {
3176		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3177		if (error)
3178			goto bread_err2;
3179
3180		rhead = (xlog_rec_header_t *)offset;
3181		error = xlog_valid_rec_header(log, rhead, blk_no, h_size);
3182		if (error)
3183			goto bread_err2;
3184
3185		/* blocks in data section */
3186		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3187		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3188				   &offset);
3189		if (error)
3190			goto bread_err2;
3191
3192		error = xlog_recover_process(log, rhash, rhead, offset, pass,
3193					     &buffer_list);
3194		if (error)
3195			goto bread_err2;
3196
3197		blk_no += bblks + hblks;
3198		rhead_blk = blk_no;
3199	}
3200
3201 bread_err2:
3202	kvfree(dbp);
3203 bread_err1:
3204	kvfree(hbp);
3205
3206	/*
3207	 * Submit buffers that have been dirtied by the last record recovered.
3208	 */
3209	if (!list_empty(&buffer_list)) {
3210		if (error) {
3211			/*
3212			 * If there has been an item recovery error then we
3213			 * cannot allow partial checkpoint writeback to
3214			 * occur.  We might have multiple checkpoints with the
3215			 * same start LSN in this buffer list, and partial
3216			 * writeback of a checkpoint in this situation can
3217			 * prevent future recovery of all the changes in the
3218			 * checkpoints at this start LSN.
3219			 *
3220			 * Note: Shutting down the filesystem will result in the
3221			 * delwri submission marking all the buffers stale,
3222			 * completing them and cleaning up _XBF_LOGRECOVERY
3223			 * state without doing any IO.
3224			 */
3225			xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
3226		}
3227		error2 = xfs_buf_delwri_submit(&buffer_list);
3228	}
3229
3230	if (error && first_bad)
3231		*first_bad = rhead_blk;
3232
3233	/*
3234	 * Transactions are freed at commit time but transactions without commit
3235	 * records on disk are never committed. Free any that may be left in the
3236	 * hash table.
3237	 */
3238	for (i = 0; i < XLOG_RHASH_SIZE; i++) {
3239		struct hlist_node	*tmp;
3240		struct xlog_recover	*trans;
3241
3242		hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
3243			xlog_recover_free_trans(trans);
3244	}
3245
3246	return error ? error : error2;
3247}
3248
3249/*
3250 * Do the recovery of the log.  We actually do this in two phases.
3251 * The two passes are necessary in order to implement the function
3252 * of cancelling a record written into the log.  The first pass
3253 * determines those things which have been cancelled, and the
3254 * second pass replays log items normally except for those which
3255 * have been cancelled.  The handling of the replay and cancellations
3256 * takes place in the log item type specific routines.
3257 *
3258 * The table of items which have cancel records in the log is allocated
3259 * and freed at this level, since only here do we know when all of
3260 * the log recovery has been completed.
3261 */
3262STATIC int
3263xlog_do_log_recovery(
3264	struct xlog	*log,
3265	xfs_daddr_t	head_blk,
3266	xfs_daddr_t	tail_blk)
3267{
3268	int		error;
3269
3270	ASSERT(head_blk != tail_blk);
3271
3272	/*
3273	 * First do a pass to find all of the cancelled buf log items.
3274	 * Store them in the buf_cancel_table for use in the second pass.
3275	 */
3276	error = xlog_alloc_buf_cancel_table(log);
3277	if (error)
3278		return error;
3279
3280	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3281				      XLOG_RECOVER_PASS1, NULL);
3282	if (error != 0)
3283		goto out_cancel;
3284
3285	/*
3286	 * Then do a second pass to actually recover the items in the log.
3287	 * When it is complete free the table of buf cancel items.
3288	 */
3289	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3290				      XLOG_RECOVER_PASS2, NULL);
3291	if (!error)
3292		xlog_check_buf_cancel_table(log);
3293out_cancel:
3294	xlog_free_buf_cancel_table(log);
3295	return error;
3296}
3297
3298/*
3299 * Do the actual recovery
3300 */
3301STATIC int
3302xlog_do_recover(
3303	struct xlog		*log,
3304	xfs_daddr_t		head_blk,
3305	xfs_daddr_t		tail_blk)
3306{
3307	struct xfs_mount	*mp = log->l_mp;
3308	struct xfs_buf		*bp = mp->m_sb_bp;
3309	struct xfs_sb		*sbp = &mp->m_sb;
3310	int			error;
3311
3312	trace_xfs_log_recover(log, head_blk, tail_blk);
3313
3314	/*
3315	 * First replay the images in the log.
3316	 */
3317	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3318	if (error)
3319		return error;
3320
3321	if (xlog_is_shutdown(log))
3322		return -EIO;
3323
3324	/*
3325	 * We now update the tail_lsn since much of the recovery has completed
3326	 * and there may be space available to use.  If there were no extent
3327	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3328	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3329	 * lsn of the last known good LR on disk.  If there are extent frees
3330	 * or iunlinks they will have some entries in the AIL; so we look at
3331	 * the AIL to determine how to set the tail_lsn.
3332	 */
3333	xlog_assign_tail_lsn(mp);
3334
3335	/*
3336	 * Now that we've finished replaying all buffer and inode updates,
3337	 * re-read the superblock and reverify it.
3338	 */
3339	xfs_buf_lock(bp);
3340	xfs_buf_hold(bp);
3341	error = _xfs_buf_read(bp, XBF_READ);
3342	if (error) {
3343		if (!xlog_is_shutdown(log)) {
3344			xfs_buf_ioerror_alert(bp, __this_address);
3345			ASSERT(0);
3346		}
3347		xfs_buf_relse(bp);
3348		return error;
3349	}
3350
3351	/* Convert superblock from on-disk format */
3352	xfs_sb_from_disk(sbp, bp->b_addr);
3353	xfs_buf_relse(bp);
3354
3355	/* re-initialise in-core superblock and geometry structures */
3356	mp->m_features |= xfs_sb_version_to_features(sbp);
3357	xfs_reinit_percpu_counters(mp);
3358	error = xfs_initialize_perag(mp, sbp->sb_agcount, sbp->sb_dblocks,
3359			&mp->m_maxagi);
3360	if (error) {
3361		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
3362		return error;
3363	}
3364	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
3365
3366	/* Normal transactions can now occur */
3367	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
3368	return 0;
3369}
3370
3371/*
3372 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3373 *
3374 * Return error or zero.
3375 */
3376int
3377xlog_recover(
3378	struct xlog	*log)
3379{
3380	xfs_daddr_t	head_blk, tail_blk;
3381	int		error;
3382
3383	/* find the tail of the log */
3384	error = xlog_find_tail(log, &head_blk, &tail_blk);
3385	if (error)
3386		return error;
3387
3388	/*
3389	 * The superblock was read before the log was available and thus the LSN
3390	 * could not be verified. Check the superblock LSN against the current
3391	 * LSN now that it's known.
3392	 */
3393	if (xfs_has_crc(log->l_mp) &&
3394	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
3395		return -EINVAL;
3396
3397	if (tail_blk != head_blk) {
3398		/* There used to be a comment here:
3399		 *
3400		 * disallow recovery on read-only mounts.  note -- mount
3401		 * checks for ENOSPC and turns it into an intelligent
3402		 * error message.
3403		 * ...but this is no longer true.  Now, unless you specify
3404		 * NORECOVERY (in which case this function would never be
3405		 * called), we just go ahead and recover.  We do this all
3406		 * under the vfs layer, so we can get away with it unless
3407		 * the device itself is read-only, in which case we fail.
3408		 */
3409		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3410			return error;
3411		}
3412
3413		/*
3414		 * Version 5 superblock log feature mask validation. We know the
3415		 * log is dirty so check if there are any unknown log features
3416		 * in what we need to recover. If there are unknown features
3417		 * (e.g. unsupported transactions, then simply reject the
3418		 * attempt at recovery before touching anything.
3419		 */
3420		if (xfs_sb_is_v5(&log->l_mp->m_sb) &&
3421		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
3422					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
3423			xfs_warn(log->l_mp,
3424"Superblock has unknown incompatible log features (0x%x) enabled.",
3425				(log->l_mp->m_sb.sb_features_log_incompat &
3426					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
3427			xfs_warn(log->l_mp,
3428"The log can not be fully and/or safely recovered by this kernel.");
3429			xfs_warn(log->l_mp,
3430"Please recover the log on a kernel that supports the unknown features.");
3431			return -EINVAL;
3432		}
3433
3434		/*
3435		 * Delay log recovery if the debug hook is set. This is debug
3436		 * instrumentation to coordinate simulation of I/O failures with
3437		 * log recovery.
3438		 */
3439		if (xfs_globals.log_recovery_delay) {
3440			xfs_notice(log->l_mp,
3441				"Delaying log recovery for %d seconds.",
3442				xfs_globals.log_recovery_delay);
3443			msleep(xfs_globals.log_recovery_delay * 1000);
3444		}
3445
3446		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3447				log->l_mp->m_logname ? log->l_mp->m_logname
3448						     : "internal");
3449
3450		error = xlog_do_recover(log, head_blk, tail_blk);
3451		set_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
3452	}
3453	return error;
3454}
3455
3456/*
3457 * In the first part of recovery we replay inodes and buffers and build up the
3458 * list of intents which need to be processed. Here we process the intents and
3459 * clean up the on disk unlinked inode lists. This is separated from the first
3460 * part of recovery so that the root and real-time bitmap inodes can be read in
3461 * from disk in between the two stages.  This is necessary so that we can free
3462 * space in the real-time portion of the file system.
3463 *
3464 * We run this whole process under GFP_NOFS allocation context. We do a
3465 * combination of non-transactional and transactional work, yet we really don't
3466 * want to recurse into the filesystem from direct reclaim during any of this
3467 * processing. This allows all the recovery code run here not to care about the
3468 * memory allocation context it is running in.
3469 */
3470int
3471xlog_recover_finish(
3472	struct xlog	*log)
3473{
3474	unsigned int	nofs_flags = memalloc_nofs_save();
3475	int		error;
3476
3477	error = xlog_recover_process_intents(log);
3478	if (error) {
3479		/*
3480		 * Cancel all the unprocessed intent items now so that we don't
3481		 * leave them pinned in the AIL.  This can cause the AIL to
3482		 * livelock on the pinned item if anyone tries to push the AIL
3483		 * (inode reclaim does this) before we get around to
3484		 * xfs_log_mount_cancel.
3485		 */
3486		xlog_recover_cancel_intents(log);
3487		xfs_alert(log->l_mp, "Failed to recover intents");
3488		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
3489		goto out_error;
3490	}
3491
3492	/*
3493	 * Sync the log to get all the intents out of the AIL.  This isn't
3494	 * absolutely necessary, but it helps in case the unlink transactions
3495	 * would have problems pushing the intents out of the way.
3496	 */
3497	xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3498
3499	/*
3500	 * Now that we've recovered the log and all the intents, we can clear
3501	 * the log incompat feature bits in the superblock because there's no
3502	 * longer anything to protect.  We rely on the AIL push to write out the
3503	 * updated superblock after everything else.
3504	 */
3505	if (xfs_clear_incompat_log_features(log->l_mp)) {
3506		error = xfs_sync_sb(log->l_mp, false);
3507		if (error < 0) {
3508			xfs_alert(log->l_mp,
3509	"Failed to clear log incompat features on recovery");
3510			goto out_error;
3511		}
3512	}
3513
3514	xlog_recover_process_iunlinks(log);
3515
3516	/*
3517	 * Recover any CoW staging blocks that are still referenced by the
3518	 * ondisk refcount metadata.  During mount there cannot be any live
3519	 * staging extents as we have not permitted any user modifications.
3520	 * Therefore, it is safe to free them all right now, even on a
3521	 * read-only mount.
3522	 */
3523	error = xfs_reflink_recover_cow(log->l_mp);
3524	if (error) {
3525		xfs_alert(log->l_mp,
3526	"Failed to recover leftover CoW staging extents, err %d.",
3527				error);
3528		/*
3529		 * If we get an error here, make sure the log is shut down
3530		 * but return zero so that any log items committed since the
3531		 * end of intents processing can be pushed through the CIL
3532		 * and AIL.
3533		 */
3534		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
3535		error = 0;
3536		goto out_error;
3537	}
3538
3539out_error:
3540	memalloc_nofs_restore(nofs_flags);
3541	return error;
3542}
3543
3544void
3545xlog_recover_cancel(
3546	struct xlog	*log)
3547{
3548	if (xlog_recovery_needed(log))
3549		xlog_recover_cancel_intents(log);
3550}
3551
3552