1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_inode_item.h"
16#include "xfs_bmap.h"
17#include "xfs_bmap_util.h"
18#include "xfs_dir2.h"
19#include "xfs_dir2_priv.h"
20#include "xfs_ioctl.h"
21#include "xfs_trace.h"
22#include "xfs_log.h"
23#include "xfs_icache.h"
24#include "xfs_pnfs.h"
25#include "xfs_iomap.h"
26#include "xfs_reflink.h"
27
28#include <linux/dax.h>
29#include <linux/falloc.h>
30#include <linux/backing-dev.h>
31#include <linux/mman.h>
32#include <linux/fadvise.h>
33#include <linux/mount.h>
34
35static const struct vm_operations_struct xfs_file_vm_ops;
36
37/*
38 * Decide if the given file range is aligned to the size of the fundamental
39 * allocation unit for the file.
40 */
41static bool
42xfs_is_falloc_aligned(
43	struct xfs_inode	*ip,
44	loff_t			pos,
45	long long int		len)
46{
47	struct xfs_mount	*mp = ip->i_mount;
48	uint64_t		mask;
49
50	if (XFS_IS_REALTIME_INODE(ip)) {
51		if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
52			u64	rextbytes;
53			u32	mod;
54
55			rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
56			div_u64_rem(pos, rextbytes, &mod);
57			if (mod)
58				return false;
59			div_u64_rem(len, rextbytes, &mod);
60			return mod == 0;
61		}
62		mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
63	} else {
64		mask = mp->m_sb.sb_blocksize - 1;
65	}
66
67	return !((pos | len) & mask);
68}
69
70/*
71 * Fsync operations on directories are much simpler than on regular files,
72 * as there is no file data to flush, and thus also no need for explicit
73 * cache flush operations, and there are no non-transaction metadata updates
74 * on directories either.
75 */
76STATIC int
77xfs_dir_fsync(
78	struct file		*file,
79	loff_t			start,
80	loff_t			end,
81	int			datasync)
82{
83	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
84
85	trace_xfs_dir_fsync(ip);
86	return xfs_log_force_inode(ip);
87}
88
89static xfs_csn_t
90xfs_fsync_seq(
91	struct xfs_inode	*ip,
92	bool			datasync)
93{
94	if (!xfs_ipincount(ip))
95		return 0;
96	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
97		return 0;
98	return ip->i_itemp->ili_commit_seq;
99}
100
101/*
102 * All metadata updates are logged, which means that we just have to flush the
103 * log up to the latest LSN that touched the inode.
104 *
105 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
106 * the log force before we clear the ili_fsync_fields field. This ensures that
107 * we don't get a racing sync operation that does not wait for the metadata to
108 * hit the journal before returning.  If we race with clearing ili_fsync_fields,
109 * then all that will happen is the log force will do nothing as the lsn will
110 * already be on disk.  We can't race with setting ili_fsync_fields because that
111 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
112 * shared until after the ili_fsync_fields is cleared.
113 */
114static  int
115xfs_fsync_flush_log(
116	struct xfs_inode	*ip,
117	bool			datasync,
118	int			*log_flushed)
119{
120	int			error = 0;
121	xfs_csn_t		seq;
122
123	xfs_ilock(ip, XFS_ILOCK_SHARED);
124	seq = xfs_fsync_seq(ip, datasync);
125	if (seq) {
126		error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
127					  log_flushed);
128
129		spin_lock(&ip->i_itemp->ili_lock);
130		ip->i_itemp->ili_fsync_fields = 0;
131		spin_unlock(&ip->i_itemp->ili_lock);
132	}
133	xfs_iunlock(ip, XFS_ILOCK_SHARED);
134	return error;
135}
136
137STATIC int
138xfs_file_fsync(
139	struct file		*file,
140	loff_t			start,
141	loff_t			end,
142	int			datasync)
143{
144	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
145	struct xfs_mount	*mp = ip->i_mount;
146	int			error, err2;
147	int			log_flushed = 0;
148
149	trace_xfs_file_fsync(ip);
150
151	error = file_write_and_wait_range(file, start, end);
152	if (error)
153		return error;
154
155	if (xfs_is_shutdown(mp))
156		return -EIO;
157
158	xfs_iflags_clear(ip, XFS_ITRUNCATED);
159
160	/*
161	 * If we have an RT and/or log subvolume we need to make sure to flush
162	 * the write cache the device used for file data first.  This is to
163	 * ensure newly written file data make it to disk before logging the new
164	 * inode size in case of an extending write.
165	 */
166	if (XFS_IS_REALTIME_INODE(ip))
167		error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
168	else if (mp->m_logdev_targp != mp->m_ddev_targp)
169		error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
170
171	/*
172	 * Any inode that has dirty modifications in the log is pinned.  The
173	 * racy check here for a pinned inode will not catch modifications
174	 * that happen concurrently to the fsync call, but fsync semantics
175	 * only require to sync previously completed I/O.
176	 */
177	if (xfs_ipincount(ip)) {
178		err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
179		if (err2 && !error)
180			error = err2;
181	}
182
183	/*
184	 * If we only have a single device, and the log force about was
185	 * a no-op we might have to flush the data device cache here.
186	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
187	 * an already allocated file and thus do not have any metadata to
188	 * commit.
189	 */
190	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
191	    mp->m_logdev_targp == mp->m_ddev_targp) {
192		err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
193		if (err2 && !error)
194			error = err2;
195	}
196
197	return error;
198}
199
200static int
201xfs_ilock_iocb(
202	struct kiocb		*iocb,
203	unsigned int		lock_mode)
204{
205	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
206
207	if (iocb->ki_flags & IOCB_NOWAIT) {
208		if (!xfs_ilock_nowait(ip, lock_mode))
209			return -EAGAIN;
210	} else {
211		xfs_ilock(ip, lock_mode);
212	}
213
214	return 0;
215}
216
217static int
218xfs_ilock_iocb_for_write(
219	struct kiocb		*iocb,
220	unsigned int		*lock_mode)
221{
222	ssize_t			ret;
223	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
224
225	ret = xfs_ilock_iocb(iocb, *lock_mode);
226	if (ret)
227		return ret;
228
229	if (*lock_mode == XFS_IOLOCK_EXCL)
230		return 0;
231	if (!xfs_iflags_test(ip, XFS_IREMAPPING))
232		return 0;
233
234	xfs_iunlock(ip, *lock_mode);
235	*lock_mode = XFS_IOLOCK_EXCL;
236	return xfs_ilock_iocb(iocb, *lock_mode);
237}
238
239static unsigned int
240xfs_ilock_for_write_fault(
241	struct xfs_inode	*ip)
242{
243	/* get a shared lock if no remapping in progress */
244	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
245	if (!xfs_iflags_test(ip, XFS_IREMAPPING))
246		return XFS_MMAPLOCK_SHARED;
247
248	/* wait for remapping to complete */
249	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
250	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
251	return XFS_MMAPLOCK_EXCL;
252}
253
254STATIC ssize_t
255xfs_file_dio_read(
256	struct kiocb		*iocb,
257	struct iov_iter		*to)
258{
259	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
260	ssize_t			ret;
261
262	trace_xfs_file_direct_read(iocb, to);
263
264	if (!iov_iter_count(to))
265		return 0; /* skip atime */
266
267	file_accessed(iocb->ki_filp);
268
269	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
270	if (ret)
271		return ret;
272	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
273	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
274
275	return ret;
276}
277
278static noinline ssize_t
279xfs_file_dax_read(
280	struct kiocb		*iocb,
281	struct iov_iter		*to)
282{
283	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
284	ssize_t			ret = 0;
285
286	trace_xfs_file_dax_read(iocb, to);
287
288	if (!iov_iter_count(to))
289		return 0; /* skip atime */
290
291	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
292	if (ret)
293		return ret;
294	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
295	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
296
297	file_accessed(iocb->ki_filp);
298	return ret;
299}
300
301STATIC ssize_t
302xfs_file_buffered_read(
303	struct kiocb		*iocb,
304	struct iov_iter		*to)
305{
306	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
307	ssize_t			ret;
308
309	trace_xfs_file_buffered_read(iocb, to);
310
311	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
312	if (ret)
313		return ret;
314	ret = generic_file_read_iter(iocb, to);
315	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
316
317	return ret;
318}
319
320STATIC ssize_t
321xfs_file_read_iter(
322	struct kiocb		*iocb,
323	struct iov_iter		*to)
324{
325	struct inode		*inode = file_inode(iocb->ki_filp);
326	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
327	ssize_t			ret = 0;
328
329	XFS_STATS_INC(mp, xs_read_calls);
330
331	if (xfs_is_shutdown(mp))
332		return -EIO;
333
334	if (IS_DAX(inode))
335		ret = xfs_file_dax_read(iocb, to);
336	else if (iocb->ki_flags & IOCB_DIRECT)
337		ret = xfs_file_dio_read(iocb, to);
338	else
339		ret = xfs_file_buffered_read(iocb, to);
340
341	if (ret > 0)
342		XFS_STATS_ADD(mp, xs_read_bytes, ret);
343	return ret;
344}
345
346STATIC ssize_t
347xfs_file_splice_read(
348	struct file		*in,
349	loff_t			*ppos,
350	struct pipe_inode_info	*pipe,
351	size_t			len,
352	unsigned int		flags)
353{
354	struct inode		*inode = file_inode(in);
355	struct xfs_inode	*ip = XFS_I(inode);
356	struct xfs_mount	*mp = ip->i_mount;
357	ssize_t			ret = 0;
358
359	XFS_STATS_INC(mp, xs_read_calls);
360
361	if (xfs_is_shutdown(mp))
362		return -EIO;
363
364	trace_xfs_file_splice_read(ip, *ppos, len);
365
366	xfs_ilock(ip, XFS_IOLOCK_SHARED);
367	ret = filemap_splice_read(in, ppos, pipe, len, flags);
368	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
369	if (ret > 0)
370		XFS_STATS_ADD(mp, xs_read_bytes, ret);
371	return ret;
372}
373
374/*
375 * Common pre-write limit and setup checks.
376 *
377 * Called with the iolocked held either shared and exclusive according to
378 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
379 * if called for a direct write beyond i_size.
380 */
381STATIC ssize_t
382xfs_file_write_checks(
383	struct kiocb		*iocb,
384	struct iov_iter		*from,
385	unsigned int		*iolock)
386{
387	struct file		*file = iocb->ki_filp;
388	struct inode		*inode = file->f_mapping->host;
389	struct xfs_inode	*ip = XFS_I(inode);
390	ssize_t			error = 0;
391	size_t			count = iov_iter_count(from);
392	bool			drained_dio = false;
393	loff_t			isize;
394
395restart:
396	error = generic_write_checks(iocb, from);
397	if (error <= 0)
398		return error;
399
400	if (iocb->ki_flags & IOCB_NOWAIT) {
401		error = break_layout(inode, false);
402		if (error == -EWOULDBLOCK)
403			error = -EAGAIN;
404	} else {
405		error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
406	}
407
408	if (error)
409		return error;
410
411	/*
412	 * For changing security info in file_remove_privs() we need i_rwsem
413	 * exclusively.
414	 */
415	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
416		xfs_iunlock(ip, *iolock);
417		*iolock = XFS_IOLOCK_EXCL;
418		error = xfs_ilock_iocb(iocb, *iolock);
419		if (error) {
420			*iolock = 0;
421			return error;
422		}
423		goto restart;
424	}
425
426	/*
427	 * If the offset is beyond the size of the file, we need to zero any
428	 * blocks that fall between the existing EOF and the start of this
429	 * write.  If zeroing is needed and we are currently holding the iolock
430	 * shared, we need to update it to exclusive which implies having to
431	 * redo all checks before.
432	 *
433	 * We need to serialise against EOF updates that occur in IO completions
434	 * here. We want to make sure that nobody is changing the size while we
435	 * do this check until we have placed an IO barrier (i.e.  hold the
436	 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.  The
437	 * spinlock effectively forms a memory barrier once we have the
438	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
439	 * hence be able to correctly determine if we need to run zeroing.
440	 *
441	 * We can do an unlocked check here safely as IO completion can only
442	 * extend EOF. Truncate is locked out at this point, so the EOF can
443	 * not move backwards, only forwards. Hence we only need to take the
444	 * slow path and spin locks when we are at or beyond the current EOF.
445	 */
446	if (iocb->ki_pos <= i_size_read(inode))
447		goto out;
448
449	spin_lock(&ip->i_flags_lock);
450	isize = i_size_read(inode);
451	if (iocb->ki_pos > isize) {
452		spin_unlock(&ip->i_flags_lock);
453
454		if (iocb->ki_flags & IOCB_NOWAIT)
455			return -EAGAIN;
456
457		if (!drained_dio) {
458			if (*iolock == XFS_IOLOCK_SHARED) {
459				xfs_iunlock(ip, *iolock);
460				*iolock = XFS_IOLOCK_EXCL;
461				xfs_ilock(ip, *iolock);
462				iov_iter_reexpand(from, count);
463			}
464			/*
465			 * We now have an IO submission barrier in place, but
466			 * AIO can do EOF updates during IO completion and hence
467			 * we now need to wait for all of them to drain. Non-AIO
468			 * DIO will have drained before we are given the
469			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
470			 * no-op.
471			 */
472			inode_dio_wait(inode);
473			drained_dio = true;
474			goto restart;
475		}
476
477		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
478		error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
479		if (error)
480			return error;
481	} else
482		spin_unlock(&ip->i_flags_lock);
483
484out:
485	return kiocb_modified(iocb);
486}
487
488static int
489xfs_dio_write_end_io(
490	struct kiocb		*iocb,
491	ssize_t			size,
492	int			error,
493	unsigned		flags)
494{
495	struct inode		*inode = file_inode(iocb->ki_filp);
496	struct xfs_inode	*ip = XFS_I(inode);
497	loff_t			offset = iocb->ki_pos;
498	unsigned int		nofs_flag;
499
500	trace_xfs_end_io_direct_write(ip, offset, size);
501
502	if (xfs_is_shutdown(ip->i_mount))
503		return -EIO;
504
505	if (error)
506		return error;
507	if (!size)
508		return 0;
509
510	/*
511	 * Capture amount written on completion as we can't reliably account
512	 * for it on submission.
513	 */
514	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
515
516	/*
517	 * We can allocate memory here while doing writeback on behalf of
518	 * memory reclaim.  To avoid memory allocation deadlocks set the
519	 * task-wide nofs context for the following operations.
520	 */
521	nofs_flag = memalloc_nofs_save();
522
523	if (flags & IOMAP_DIO_COW) {
524		error = xfs_reflink_end_cow(ip, offset, size);
525		if (error)
526			goto out;
527	}
528
529	/*
530	 * Unwritten conversion updates the in-core isize after extent
531	 * conversion but before updating the on-disk size. Updating isize any
532	 * earlier allows a racing dio read to find unwritten extents before
533	 * they are converted.
534	 */
535	if (flags & IOMAP_DIO_UNWRITTEN) {
536		error = xfs_iomap_write_unwritten(ip, offset, size, true);
537		goto out;
538	}
539
540	/*
541	 * We need to update the in-core inode size here so that we don't end up
542	 * with the on-disk inode size being outside the in-core inode size. We
543	 * have no other method of updating EOF for AIO, so always do it here
544	 * if necessary.
545	 *
546	 * We need to lock the test/set EOF update as we can be racing with
547	 * other IO completions here to update the EOF. Failing to serialise
548	 * here can result in EOF moving backwards and Bad Things Happen when
549	 * that occurs.
550	 *
551	 * As IO completion only ever extends EOF, we can do an unlocked check
552	 * here to avoid taking the spinlock. If we land within the current EOF,
553	 * then we do not need to do an extending update at all, and we don't
554	 * need to take the lock to check this. If we race with an update moving
555	 * EOF, then we'll either still be beyond EOF and need to take the lock,
556	 * or we'll be within EOF and we don't need to take it at all.
557	 */
558	if (offset + size <= i_size_read(inode))
559		goto out;
560
561	spin_lock(&ip->i_flags_lock);
562	if (offset + size > i_size_read(inode)) {
563		i_size_write(inode, offset + size);
564		spin_unlock(&ip->i_flags_lock);
565		error = xfs_setfilesize(ip, offset, size);
566	} else {
567		spin_unlock(&ip->i_flags_lock);
568	}
569
570out:
571	memalloc_nofs_restore(nofs_flag);
572	return error;
573}
574
575static const struct iomap_dio_ops xfs_dio_write_ops = {
576	.end_io		= xfs_dio_write_end_io,
577};
578
579/*
580 * Handle block aligned direct I/O writes
581 */
582static noinline ssize_t
583xfs_file_dio_write_aligned(
584	struct xfs_inode	*ip,
585	struct kiocb		*iocb,
586	struct iov_iter		*from)
587{
588	unsigned int		iolock = XFS_IOLOCK_SHARED;
589	ssize_t			ret;
590
591	ret = xfs_ilock_iocb_for_write(iocb, &iolock);
592	if (ret)
593		return ret;
594	ret = xfs_file_write_checks(iocb, from, &iolock);
595	if (ret)
596		goto out_unlock;
597
598	/*
599	 * We don't need to hold the IOLOCK exclusively across the IO, so demote
600	 * the iolock back to shared if we had to take the exclusive lock in
601	 * xfs_file_write_checks() for other reasons.
602	 */
603	if (iolock == XFS_IOLOCK_EXCL) {
604		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
605		iolock = XFS_IOLOCK_SHARED;
606	}
607	trace_xfs_file_direct_write(iocb, from);
608	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
609			   &xfs_dio_write_ops, 0, NULL, 0);
610out_unlock:
611	if (iolock)
612		xfs_iunlock(ip, iolock);
613	return ret;
614}
615
616/*
617 * Handle block unaligned direct I/O writes
618 *
619 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
620 * them to be done in parallel with reads and other direct I/O writes.  However,
621 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
622 * to do sub-block zeroing and that requires serialisation against other direct
623 * I/O to the same block.  In this case we need to serialise the submission of
624 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
625 * In the case where sub-block zeroing is not required, we can do concurrent
626 * sub-block dios to the same block successfully.
627 *
628 * Optimistically submit the I/O using the shared lock first, but use the
629 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
630 * if block allocation or partial block zeroing would be required.  In that case
631 * we try again with the exclusive lock.
632 */
633static noinline ssize_t
634xfs_file_dio_write_unaligned(
635	struct xfs_inode	*ip,
636	struct kiocb		*iocb,
637	struct iov_iter		*from)
638{
639	size_t			isize = i_size_read(VFS_I(ip));
640	size_t			count = iov_iter_count(from);
641	unsigned int		iolock = XFS_IOLOCK_SHARED;
642	unsigned int		flags = IOMAP_DIO_OVERWRITE_ONLY;
643	ssize_t			ret;
644
645	/*
646	 * Extending writes need exclusivity because of the sub-block zeroing
647	 * that the DIO code always does for partial tail blocks beyond EOF, so
648	 * don't even bother trying the fast path in this case.
649	 */
650	if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
651		if (iocb->ki_flags & IOCB_NOWAIT)
652			return -EAGAIN;
653retry_exclusive:
654		iolock = XFS_IOLOCK_EXCL;
655		flags = IOMAP_DIO_FORCE_WAIT;
656	}
657
658	ret = xfs_ilock_iocb_for_write(iocb, &iolock);
659	if (ret)
660		return ret;
661
662	/*
663	 * We can't properly handle unaligned direct I/O to reflink files yet,
664	 * as we can't unshare a partial block.
665	 */
666	if (xfs_is_cow_inode(ip)) {
667		trace_xfs_reflink_bounce_dio_write(iocb, from);
668		ret = -ENOTBLK;
669		goto out_unlock;
670	}
671
672	ret = xfs_file_write_checks(iocb, from, &iolock);
673	if (ret)
674		goto out_unlock;
675
676	/*
677	 * If we are doing exclusive unaligned I/O, this must be the only I/O
678	 * in-flight.  Otherwise we risk data corruption due to unwritten extent
679	 * conversions from the AIO end_io handler.  Wait for all other I/O to
680	 * drain first.
681	 */
682	if (flags & IOMAP_DIO_FORCE_WAIT)
683		inode_dio_wait(VFS_I(ip));
684
685	trace_xfs_file_direct_write(iocb, from);
686	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
687			   &xfs_dio_write_ops, flags, NULL, 0);
688
689	/*
690	 * Retry unaligned I/O with exclusive blocking semantics if the DIO
691	 * layer rejected it for mapping or locking reasons. If we are doing
692	 * nonblocking user I/O, propagate the error.
693	 */
694	if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
695		ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
696		xfs_iunlock(ip, iolock);
697		goto retry_exclusive;
698	}
699
700out_unlock:
701	if (iolock)
702		xfs_iunlock(ip, iolock);
703	return ret;
704}
705
706static ssize_t
707xfs_file_dio_write(
708	struct kiocb		*iocb,
709	struct iov_iter		*from)
710{
711	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
712	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
713	size_t			count = iov_iter_count(from);
714
715	/* direct I/O must be aligned to device logical sector size */
716	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
717		return -EINVAL;
718	if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
719		return xfs_file_dio_write_unaligned(ip, iocb, from);
720	return xfs_file_dio_write_aligned(ip, iocb, from);
721}
722
723static noinline ssize_t
724xfs_file_dax_write(
725	struct kiocb		*iocb,
726	struct iov_iter		*from)
727{
728	struct inode		*inode = iocb->ki_filp->f_mapping->host;
729	struct xfs_inode	*ip = XFS_I(inode);
730	unsigned int		iolock = XFS_IOLOCK_EXCL;
731	ssize_t			ret, error = 0;
732	loff_t			pos;
733
734	ret = xfs_ilock_iocb(iocb, iolock);
735	if (ret)
736		return ret;
737	ret = xfs_file_write_checks(iocb, from, &iolock);
738	if (ret)
739		goto out;
740
741	pos = iocb->ki_pos;
742
743	trace_xfs_file_dax_write(iocb, from);
744	ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
745	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
746		i_size_write(inode, iocb->ki_pos);
747		error = xfs_setfilesize(ip, pos, ret);
748	}
749out:
750	if (iolock)
751		xfs_iunlock(ip, iolock);
752	if (error)
753		return error;
754
755	if (ret > 0) {
756		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
757
758		/* Handle various SYNC-type writes */
759		ret = generic_write_sync(iocb, ret);
760	}
761	return ret;
762}
763
764STATIC ssize_t
765xfs_file_buffered_write(
766	struct kiocb		*iocb,
767	struct iov_iter		*from)
768{
769	struct inode		*inode = iocb->ki_filp->f_mapping->host;
770	struct xfs_inode	*ip = XFS_I(inode);
771	ssize_t			ret;
772	bool			cleared_space = false;
773	unsigned int		iolock;
774
775write_retry:
776	iolock = XFS_IOLOCK_EXCL;
777	ret = xfs_ilock_iocb(iocb, iolock);
778	if (ret)
779		return ret;
780
781	ret = xfs_file_write_checks(iocb, from, &iolock);
782	if (ret)
783		goto out;
784
785	trace_xfs_file_buffered_write(iocb, from);
786	ret = iomap_file_buffered_write(iocb, from,
787			&xfs_buffered_write_iomap_ops);
788
789	/*
790	 * If we hit a space limit, try to free up some lingering preallocated
791	 * space before returning an error. In the case of ENOSPC, first try to
792	 * write back all dirty inodes to free up some of the excess reserved
793	 * metadata space. This reduces the chances that the eofblocks scan
794	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
795	 * also behaves as a filter to prevent too many eofblocks scans from
796	 * running at the same time.  Use a synchronous scan to increase the
797	 * effectiveness of the scan.
798	 */
799	if (ret == -EDQUOT && !cleared_space) {
800		xfs_iunlock(ip, iolock);
801		xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
802		cleared_space = true;
803		goto write_retry;
804	} else if (ret == -ENOSPC && !cleared_space) {
805		struct xfs_icwalk	icw = {0};
806
807		cleared_space = true;
808		xfs_flush_inodes(ip->i_mount);
809
810		xfs_iunlock(ip, iolock);
811		icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
812		xfs_blockgc_free_space(ip->i_mount, &icw);
813		goto write_retry;
814	}
815
816out:
817	if (iolock)
818		xfs_iunlock(ip, iolock);
819
820	if (ret > 0) {
821		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
822		/* Handle various SYNC-type writes */
823		ret = generic_write_sync(iocb, ret);
824	}
825	return ret;
826}
827
828STATIC ssize_t
829xfs_file_write_iter(
830	struct kiocb		*iocb,
831	struct iov_iter		*from)
832{
833	struct inode		*inode = iocb->ki_filp->f_mapping->host;
834	struct xfs_inode	*ip = XFS_I(inode);
835	ssize_t			ret;
836	size_t			ocount = iov_iter_count(from);
837
838	XFS_STATS_INC(ip->i_mount, xs_write_calls);
839
840	if (ocount == 0)
841		return 0;
842
843	if (xfs_is_shutdown(ip->i_mount))
844		return -EIO;
845
846	if (IS_DAX(inode))
847		return xfs_file_dax_write(iocb, from);
848
849	if (iocb->ki_flags & IOCB_DIRECT) {
850		/*
851		 * Allow a directio write to fall back to a buffered
852		 * write *only* in the case that we're doing a reflink
853		 * CoW.  In all other directio scenarios we do not
854		 * allow an operation to fall back to buffered mode.
855		 */
856		ret = xfs_file_dio_write(iocb, from);
857		if (ret != -ENOTBLK)
858			return ret;
859	}
860
861	return xfs_file_buffered_write(iocb, from);
862}
863
864static void
865xfs_wait_dax_page(
866	struct inode		*inode)
867{
868	struct xfs_inode        *ip = XFS_I(inode);
869
870	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
871	schedule();
872	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
873}
874
875int
876xfs_break_dax_layouts(
877	struct inode		*inode,
878	bool			*retry)
879{
880	struct page		*page;
881
882	xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);
883
884	page = dax_layout_busy_page(inode->i_mapping);
885	if (!page)
886		return 0;
887
888	*retry = true;
889	return ___wait_var_event(&page->_refcount,
890			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
891			0, 0, xfs_wait_dax_page(inode));
892}
893
894int
895xfs_break_layouts(
896	struct inode		*inode,
897	uint			*iolock,
898	enum layout_break_reason reason)
899{
900	bool			retry;
901	int			error;
902
903	xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);
904
905	do {
906		retry = false;
907		switch (reason) {
908		case BREAK_UNMAP:
909			error = xfs_break_dax_layouts(inode, &retry);
910			if (error || retry)
911				break;
912			fallthrough;
913		case BREAK_WRITE:
914			error = xfs_break_leased_layouts(inode, iolock, &retry);
915			break;
916		default:
917			WARN_ON_ONCE(1);
918			error = -EINVAL;
919		}
920	} while (error == 0 && retry);
921
922	return error;
923}
924
925/* Does this file, inode, or mount want synchronous writes? */
926static inline bool xfs_file_sync_writes(struct file *filp)
927{
928	struct xfs_inode	*ip = XFS_I(file_inode(filp));
929
930	if (xfs_has_wsync(ip->i_mount))
931		return true;
932	if (filp->f_flags & (__O_SYNC | O_DSYNC))
933		return true;
934	if (IS_SYNC(file_inode(filp)))
935		return true;
936
937	return false;
938}
939
940#define	XFS_FALLOC_FL_SUPPORTED						\
941		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
942		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
943		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
944
945STATIC long
946xfs_file_fallocate(
947	struct file		*file,
948	int			mode,
949	loff_t			offset,
950	loff_t			len)
951{
952	struct inode		*inode = file_inode(file);
953	struct xfs_inode	*ip = XFS_I(inode);
954	long			error;
955	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
956	loff_t			new_size = 0;
957	bool			do_file_insert = false;
958
959	if (!S_ISREG(inode->i_mode))
960		return -EINVAL;
961	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
962		return -EOPNOTSUPP;
963
964	xfs_ilock(ip, iolock);
965	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
966	if (error)
967		goto out_unlock;
968
969	/*
970	 * Must wait for all AIO to complete before we continue as AIO can
971	 * change the file size on completion without holding any locks we
972	 * currently hold. We must do this first because AIO can update both
973	 * the on disk and in memory inode sizes, and the operations that follow
974	 * require the in-memory size to be fully up-to-date.
975	 */
976	inode_dio_wait(inode);
977
978	/*
979	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
980	 * the cached range over the first operation we are about to run.
981	 *
982	 * We care about zero and collapse here because they both run a hole
983	 * punch over the range first. Because that can zero data, and the range
984	 * of invalidation for the shift operations is much larger, we still do
985	 * the required flush for collapse in xfs_prepare_shift().
986	 *
987	 * Insert has the same range requirements as collapse, and we extend the
988	 * file first which can zero data. Hence insert has the same
989	 * flush/invalidate requirements as collapse and so they are both
990	 * handled at the right time by xfs_prepare_shift().
991	 */
992	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
993		    FALLOC_FL_COLLAPSE_RANGE)) {
994		error = xfs_flush_unmap_range(ip, offset, len);
995		if (error)
996			goto out_unlock;
997	}
998
999	error = file_modified(file);
1000	if (error)
1001		goto out_unlock;
1002
1003	if (mode & FALLOC_FL_PUNCH_HOLE) {
1004		error = xfs_free_file_space(ip, offset, len);
1005		if (error)
1006			goto out_unlock;
1007	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1008		if (!xfs_is_falloc_aligned(ip, offset, len)) {
1009			error = -EINVAL;
1010			goto out_unlock;
1011		}
1012
1013		/*
1014		 * There is no need to overlap collapse range with EOF,
1015		 * in which case it is effectively a truncate operation
1016		 */
1017		if (offset + len >= i_size_read(inode)) {
1018			error = -EINVAL;
1019			goto out_unlock;
1020		}
1021
1022		new_size = i_size_read(inode) - len;
1023
1024		error = xfs_collapse_file_space(ip, offset, len);
1025		if (error)
1026			goto out_unlock;
1027	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1028		loff_t		isize = i_size_read(inode);
1029
1030		if (!xfs_is_falloc_aligned(ip, offset, len)) {
1031			error = -EINVAL;
1032			goto out_unlock;
1033		}
1034
1035		/*
1036		 * New inode size must not exceed ->s_maxbytes, accounting for
1037		 * possible signed overflow.
1038		 */
1039		if (inode->i_sb->s_maxbytes - isize < len) {
1040			error = -EFBIG;
1041			goto out_unlock;
1042		}
1043		new_size = isize + len;
1044
1045		/* Offset should be less than i_size */
1046		if (offset >= isize) {
1047			error = -EINVAL;
1048			goto out_unlock;
1049		}
1050		do_file_insert = true;
1051	} else {
1052		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1053		    offset + len > i_size_read(inode)) {
1054			new_size = offset + len;
1055			error = inode_newsize_ok(inode, new_size);
1056			if (error)
1057				goto out_unlock;
1058		}
1059
1060		if (mode & FALLOC_FL_ZERO_RANGE) {
1061			/*
1062			 * Punch a hole and prealloc the range.  We use a hole
1063			 * punch rather than unwritten extent conversion for two
1064			 * reasons:
1065			 *
1066			 *   1.) Hole punch handles partial block zeroing for us.
1067			 *   2.) If prealloc returns ENOSPC, the file range is
1068			 *       still zero-valued by virtue of the hole punch.
1069			 */
1070			unsigned int blksize = i_blocksize(inode);
1071
1072			trace_xfs_zero_file_space(ip);
1073
1074			error = xfs_free_file_space(ip, offset, len);
1075			if (error)
1076				goto out_unlock;
1077
1078			len = round_up(offset + len, blksize) -
1079			      round_down(offset, blksize);
1080			offset = round_down(offset, blksize);
1081		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1082			error = xfs_reflink_unshare(ip, offset, len);
1083			if (error)
1084				goto out_unlock;
1085		} else {
1086			/*
1087			 * If always_cow mode we can't use preallocations and
1088			 * thus should not create them.
1089			 */
1090			if (xfs_is_always_cow_inode(ip)) {
1091				error = -EOPNOTSUPP;
1092				goto out_unlock;
1093			}
1094		}
1095
1096		if (!xfs_is_always_cow_inode(ip)) {
1097			error = xfs_alloc_file_space(ip, offset, len);
1098			if (error)
1099				goto out_unlock;
1100		}
1101	}
1102
1103	/* Change file size if needed */
1104	if (new_size) {
1105		struct iattr iattr;
1106
1107		iattr.ia_valid = ATTR_SIZE;
1108		iattr.ia_size = new_size;
1109		error = xfs_vn_setattr_size(file_mnt_idmap(file),
1110					    file_dentry(file), &iattr);
1111		if (error)
1112			goto out_unlock;
1113	}
1114
1115	/*
1116	 * Perform hole insertion now that the file size has been
1117	 * updated so that if we crash during the operation we don't
1118	 * leave shifted extents past EOF and hence losing access to
1119	 * the data that is contained within them.
1120	 */
1121	if (do_file_insert) {
1122		error = xfs_insert_file_space(ip, offset, len);
1123		if (error)
1124			goto out_unlock;
1125	}
1126
1127	if (xfs_file_sync_writes(file))
1128		error = xfs_log_force_inode(ip);
1129
1130out_unlock:
1131	xfs_iunlock(ip, iolock);
1132	return error;
1133}
1134
1135STATIC int
1136xfs_file_fadvise(
1137	struct file	*file,
1138	loff_t		start,
1139	loff_t		end,
1140	int		advice)
1141{
1142	struct xfs_inode *ip = XFS_I(file_inode(file));
1143	int ret;
1144	int lockflags = 0;
1145
1146	/*
1147	 * Operations creating pages in page cache need protection from hole
1148	 * punching and similar ops
1149	 */
1150	if (advice == POSIX_FADV_WILLNEED) {
1151		lockflags = XFS_IOLOCK_SHARED;
1152		xfs_ilock(ip, lockflags);
1153	}
1154	ret = generic_fadvise(file, start, end, advice);
1155	if (lockflags)
1156		xfs_iunlock(ip, lockflags);
1157	return ret;
1158}
1159
1160STATIC loff_t
1161xfs_file_remap_range(
1162	struct file		*file_in,
1163	loff_t			pos_in,
1164	struct file		*file_out,
1165	loff_t			pos_out,
1166	loff_t			len,
1167	unsigned int		remap_flags)
1168{
1169	struct inode		*inode_in = file_inode(file_in);
1170	struct xfs_inode	*src = XFS_I(inode_in);
1171	struct inode		*inode_out = file_inode(file_out);
1172	struct xfs_inode	*dest = XFS_I(inode_out);
1173	struct xfs_mount	*mp = src->i_mount;
1174	loff_t			remapped = 0;
1175	xfs_extlen_t		cowextsize;
1176	int			ret;
1177
1178	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1179		return -EINVAL;
1180
1181	if (!xfs_has_reflink(mp))
1182		return -EOPNOTSUPP;
1183
1184	if (xfs_is_shutdown(mp))
1185		return -EIO;
1186
1187	/* Prepare and then clone file data. */
1188	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1189			&len, remap_flags);
1190	if (ret || len == 0)
1191		return ret;
1192
1193	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1194
1195	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1196			&remapped);
1197	if (ret)
1198		goto out_unlock;
1199
1200	/*
1201	 * Carry the cowextsize hint from src to dest if we're sharing the
1202	 * entire source file to the entire destination file, the source file
1203	 * has a cowextsize hint, and the destination file does not.
1204	 */
1205	cowextsize = 0;
1206	if (pos_in == 0 && len == i_size_read(inode_in) &&
1207	    (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1208	    pos_out == 0 && len >= i_size_read(inode_out) &&
1209	    !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1210		cowextsize = src->i_cowextsize;
1211
1212	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1213			remap_flags);
1214	if (ret)
1215		goto out_unlock;
1216
1217	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1218		xfs_log_force_inode(dest);
1219out_unlock:
1220	xfs_iunlock2_remapping(src, dest);
1221	if (ret)
1222		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1223	return remapped > 0 ? remapped : ret;
1224}
1225
1226STATIC int
1227xfs_file_open(
1228	struct inode	*inode,
1229	struct file	*file)
1230{
1231	if (xfs_is_shutdown(XFS_M(inode->i_sb)))
1232		return -EIO;
1233	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
1234			FMODE_DIO_PARALLEL_WRITE | FMODE_CAN_ODIRECT;
1235	return generic_file_open(inode, file);
1236}
1237
1238STATIC int
1239xfs_dir_open(
1240	struct inode	*inode,
1241	struct file	*file)
1242{
1243	struct xfs_inode *ip = XFS_I(inode);
1244	unsigned int	mode;
1245	int		error;
1246
1247	error = xfs_file_open(inode, file);
1248	if (error)
1249		return error;
1250
1251	/*
1252	 * If there are any blocks, read-ahead block 0 as we're almost
1253	 * certain to have the next operation be a read there.
1254	 */
1255	mode = xfs_ilock_data_map_shared(ip);
1256	if (ip->i_df.if_nextents > 0)
1257		error = xfs_dir3_data_readahead(ip, 0, 0);
1258	xfs_iunlock(ip, mode);
1259	return error;
1260}
1261
1262STATIC int
1263xfs_file_release(
1264	struct inode	*inode,
1265	struct file	*filp)
1266{
1267	return xfs_release(XFS_I(inode));
1268}
1269
1270STATIC int
1271xfs_file_readdir(
1272	struct file	*file,
1273	struct dir_context *ctx)
1274{
1275	struct inode	*inode = file_inode(file);
1276	xfs_inode_t	*ip = XFS_I(inode);
1277	size_t		bufsize;
1278
1279	/*
1280	 * The Linux API doesn't pass down the total size of the buffer
1281	 * we read into down to the filesystem.  With the filldir concept
1282	 * it's not needed for correct information, but the XFS dir2 leaf
1283	 * code wants an estimate of the buffer size to calculate it's
1284	 * readahead window and size the buffers used for mapping to
1285	 * physical blocks.
1286	 *
1287	 * Try to give it an estimate that's good enough, maybe at some
1288	 * point we can change the ->readdir prototype to include the
1289	 * buffer size.  For now we use the current glibc buffer size.
1290	 */
1291	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1292
1293	return xfs_readdir(NULL, ip, ctx, bufsize);
1294}
1295
1296STATIC loff_t
1297xfs_file_llseek(
1298	struct file	*file,
1299	loff_t		offset,
1300	int		whence)
1301{
1302	struct inode		*inode = file->f_mapping->host;
1303
1304	if (xfs_is_shutdown(XFS_I(inode)->i_mount))
1305		return -EIO;
1306
1307	switch (whence) {
1308	default:
1309		return generic_file_llseek(file, offset, whence);
1310	case SEEK_HOLE:
1311		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1312		break;
1313	case SEEK_DATA:
1314		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1315		break;
1316	}
1317
1318	if (offset < 0)
1319		return offset;
1320	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1321}
1322
1323#ifdef CONFIG_FS_DAX
1324static inline vm_fault_t
1325xfs_dax_fault(
1326	struct vm_fault		*vmf,
1327	unsigned int		order,
1328	bool			write_fault,
1329	pfn_t			*pfn)
1330{
1331	return dax_iomap_fault(vmf, order, pfn, NULL,
1332			(write_fault && !vmf->cow_page) ?
1333				&xfs_dax_write_iomap_ops :
1334				&xfs_read_iomap_ops);
1335}
1336#else
1337static inline vm_fault_t
1338xfs_dax_fault(
1339	struct vm_fault		*vmf,
1340	unsigned int		order,
1341	bool			write_fault,
1342	pfn_t			*pfn)
1343{
1344	ASSERT(0);
1345	return VM_FAULT_SIGBUS;
1346}
1347#endif
1348
1349/*
1350 * Locking for serialisation of IO during page faults. This results in a lock
1351 * ordering of:
1352 *
1353 * mmap_lock (MM)
1354 *   sb_start_pagefault(vfs, freeze)
1355 *     invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1356 *       page_lock (MM)
1357 *         i_lock (XFS - extent map serialisation)
1358 */
1359static vm_fault_t
1360__xfs_filemap_fault(
1361	struct vm_fault		*vmf,
1362	unsigned int		order,
1363	bool			write_fault)
1364{
1365	struct inode		*inode = file_inode(vmf->vma->vm_file);
1366	struct xfs_inode	*ip = XFS_I(inode);
1367	vm_fault_t		ret;
1368	unsigned int		lock_mode = 0;
1369
1370	trace_xfs_filemap_fault(ip, order, write_fault);
1371
1372	if (write_fault) {
1373		sb_start_pagefault(inode->i_sb);
1374		file_update_time(vmf->vma->vm_file);
1375	}
1376
1377	if (IS_DAX(inode) || write_fault)
1378		lock_mode = xfs_ilock_for_write_fault(XFS_I(inode));
1379
1380	if (IS_DAX(inode)) {
1381		pfn_t pfn;
1382
1383		ret = xfs_dax_fault(vmf, order, write_fault, &pfn);
1384		if (ret & VM_FAULT_NEEDDSYNC)
1385			ret = dax_finish_sync_fault(vmf, order, pfn);
1386	} else if (write_fault) {
1387		ret = iomap_page_mkwrite(vmf, &xfs_page_mkwrite_iomap_ops);
1388	} else {
1389		ret = filemap_fault(vmf);
1390	}
1391
1392	if (lock_mode)
1393		xfs_iunlock(XFS_I(inode), lock_mode);
1394
1395	if (write_fault)
1396		sb_end_pagefault(inode->i_sb);
1397	return ret;
1398}
1399
1400static inline bool
1401xfs_is_write_fault(
1402	struct vm_fault		*vmf)
1403{
1404	return (vmf->flags & FAULT_FLAG_WRITE) &&
1405	       (vmf->vma->vm_flags & VM_SHARED);
1406}
1407
1408static vm_fault_t
1409xfs_filemap_fault(
1410	struct vm_fault		*vmf)
1411{
1412	/* DAX can shortcut the normal fault path on write faults! */
1413	return __xfs_filemap_fault(vmf, 0,
1414			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1415			xfs_is_write_fault(vmf));
1416}
1417
1418static vm_fault_t
1419xfs_filemap_huge_fault(
1420	struct vm_fault		*vmf,
1421	unsigned int		order)
1422{
1423	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1424		return VM_FAULT_FALLBACK;
1425
1426	/* DAX can shortcut the normal fault path on write faults! */
1427	return __xfs_filemap_fault(vmf, order,
1428			xfs_is_write_fault(vmf));
1429}
1430
1431static vm_fault_t
1432xfs_filemap_page_mkwrite(
1433	struct vm_fault		*vmf)
1434{
1435	return __xfs_filemap_fault(vmf, 0, true);
1436}
1437
1438/*
1439 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1440 * on write faults. In reality, it needs to serialise against truncate and
1441 * prepare memory for writing so handle is as standard write fault.
1442 */
1443static vm_fault_t
1444xfs_filemap_pfn_mkwrite(
1445	struct vm_fault		*vmf)
1446{
1447
1448	return __xfs_filemap_fault(vmf, 0, true);
1449}
1450
1451static const struct vm_operations_struct xfs_file_vm_ops = {
1452	.fault		= xfs_filemap_fault,
1453	.huge_fault	= xfs_filemap_huge_fault,
1454	.map_pages	= filemap_map_pages,
1455	.page_mkwrite	= xfs_filemap_page_mkwrite,
1456	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1457};
1458
1459STATIC int
1460xfs_file_mmap(
1461	struct file		*file,
1462	struct vm_area_struct	*vma)
1463{
1464	struct inode		*inode = file_inode(file);
1465	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1466
1467	/*
1468	 * We don't support synchronous mappings for non-DAX files and
1469	 * for DAX files if underneath dax_device is not synchronous.
1470	 */
1471	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1472		return -EOPNOTSUPP;
1473
1474	file_accessed(file);
1475	vma->vm_ops = &xfs_file_vm_ops;
1476	if (IS_DAX(inode))
1477		vm_flags_set(vma, VM_HUGEPAGE);
1478	return 0;
1479}
1480
1481const struct file_operations xfs_file_operations = {
1482	.llseek		= xfs_file_llseek,
1483	.read_iter	= xfs_file_read_iter,
1484	.write_iter	= xfs_file_write_iter,
1485	.splice_read	= xfs_file_splice_read,
1486	.splice_write	= iter_file_splice_write,
1487	.iopoll		= iocb_bio_iopoll,
1488	.unlocked_ioctl	= xfs_file_ioctl,
1489#ifdef CONFIG_COMPAT
1490	.compat_ioctl	= xfs_file_compat_ioctl,
1491#endif
1492	.mmap		= xfs_file_mmap,
1493	.mmap_supported_flags = MAP_SYNC,
1494	.open		= xfs_file_open,
1495	.release	= xfs_file_release,
1496	.fsync		= xfs_file_fsync,
1497	.get_unmapped_area = thp_get_unmapped_area,
1498	.fallocate	= xfs_file_fallocate,
1499	.fadvise	= xfs_file_fadvise,
1500	.remap_file_range = xfs_file_remap_range,
1501};
1502
1503const struct file_operations xfs_dir_file_operations = {
1504	.open		= xfs_dir_open,
1505	.read		= generic_read_dir,
1506	.iterate_shared	= xfs_file_readdir,
1507	.llseek		= generic_file_llseek,
1508	.unlocked_ioctl	= xfs_file_ioctl,
1509#ifdef CONFIG_COMPAT
1510	.compat_ioctl	= xfs_file_compat_ioctl,
1511#endif
1512	.fsync		= xfs_dir_fsync,
1513};
1514