1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2016 Oracle.  All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_defer.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_bmap.h"
17#include "xfs_bmap_util.h"
18#include "xfs_trace.h"
19#include "xfs_icache.h"
20#include "xfs_btree.h"
21#include "xfs_refcount_btree.h"
22#include "xfs_refcount.h"
23#include "xfs_bmap_btree.h"
24#include "xfs_trans_space.h"
25#include "xfs_bit.h"
26#include "xfs_alloc.h"
27#include "xfs_quota.h"
28#include "xfs_reflink.h"
29#include "xfs_iomap.h"
30#include "xfs_ag.h"
31#include "xfs_ag_resv.h"
32#include "xfs_health.h"
33
34/*
35 * Copy on Write of Shared Blocks
36 *
37 * XFS must preserve "the usual" file semantics even when two files share
38 * the same physical blocks.  This means that a write to one file must not
39 * alter the blocks in a different file; the way that we'll do that is
40 * through the use of a copy-on-write mechanism.  At a high level, that
41 * means that when we want to write to a shared block, we allocate a new
42 * block, write the data to the new block, and if that succeeds we map the
43 * new block into the file.
44 *
45 * XFS provides a "delayed allocation" mechanism that defers the allocation
46 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
47 * possible.  This reduces fragmentation by enabling the filesystem to ask
48 * for bigger chunks less often, which is exactly what we want for CoW.
49 *
50 * The delalloc mechanism begins when the kernel wants to make a block
51 * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
52 * create a delalloc mapping, which is a regular in-core extent, but without
53 * a real startblock.  (For delalloc mappings, the startblock encodes both
54 * a flag that this is a delalloc mapping, and a worst-case estimate of how
55 * many blocks might be required to put the mapping into the BMBT.)  delalloc
56 * mappings are a reservation against the free space in the filesystem;
57 * adjacent mappings can also be combined into fewer larger mappings.
58 *
59 * As an optimization, the CoW extent size hint (cowextsz) creates
60 * outsized aligned delalloc reservations in the hope of landing out of
61 * order nearby CoW writes in a single extent on disk, thereby reducing
62 * fragmentation and improving future performance.
63 *
64 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
65 * C: ------DDDDDDD--------- (CoW fork)
66 *
67 * When dirty pages are being written out (typically in writepage), the
68 * delalloc reservations are converted into unwritten mappings by
69 * allocating blocks and replacing the delalloc mapping with real ones.
70 * A delalloc mapping can be replaced by several unwritten ones if the
71 * free space is fragmented.
72 *
73 * D: --RRRRRRSSSRRRRRRRR---
74 * C: ------UUUUUUU---------
75 *
76 * We want to adapt the delalloc mechanism for copy-on-write, since the
77 * write paths are similar.  The first two steps (creating the reservation
78 * and allocating the blocks) are exactly the same as delalloc except that
79 * the mappings must be stored in a separate CoW fork because we do not want
80 * to disturb the mapping in the data fork until we're sure that the write
81 * succeeded.  IO completion in this case is the process of removing the old
82 * mapping from the data fork and moving the new mapping from the CoW fork to
83 * the data fork.  This will be discussed shortly.
84 *
85 * For now, unaligned directio writes will be bounced back to the page cache.
86 * Block-aligned directio writes will use the same mechanism as buffered
87 * writes.
88 *
89 * Just prior to submitting the actual disk write requests, we convert
90 * the extents representing the range of the file actually being written
91 * (as opposed to extra pieces created for the cowextsize hint) to real
92 * extents.  This will become important in the next step:
93 *
94 * D: --RRRRRRSSSRRRRRRRR---
95 * C: ------UUrrUUU---------
96 *
97 * CoW remapping must be done after the data block write completes,
98 * because we don't want to destroy the old data fork map until we're sure
99 * the new block has been written.  Since the new mappings are kept in a
100 * separate fork, we can simply iterate these mappings to find the ones
101 * that cover the file blocks that we just CoW'd.  For each extent, simply
102 * unmap the corresponding range in the data fork, map the new range into
103 * the data fork, and remove the extent from the CoW fork.  Because of
104 * the presence of the cowextsize hint, however, we must be careful
105 * only to remap the blocks that we've actually written out --  we must
106 * never remap delalloc reservations nor CoW staging blocks that have
107 * yet to be written.  This corresponds exactly to the real extents in
108 * the CoW fork:
109 *
110 * D: --RRRRRRrrSRRRRRRRR---
111 * C: ------UU--UUU---------
112 *
113 * Since the remapping operation can be applied to an arbitrary file
114 * range, we record the need for the remap step as a flag in the ioend
115 * instead of declaring a new IO type.  This is required for direct io
116 * because we only have ioend for the whole dio, and we have to be able to
117 * remember the presence of unwritten blocks and CoW blocks with a single
118 * ioend structure.  Better yet, the more ground we can cover with one
119 * ioend, the better.
120 */
121
122/*
123 * Given an AG extent, find the lowest-numbered run of shared blocks
124 * within that range and return the range in fbno/flen.  If
125 * find_end_of_shared is true, return the longest contiguous extent of
126 * shared blocks.  If there are no shared extents, fbno and flen will
127 * be set to NULLAGBLOCK and 0, respectively.
128 */
129static int
130xfs_reflink_find_shared(
131	struct xfs_perag	*pag,
132	struct xfs_trans	*tp,
133	xfs_agblock_t		agbno,
134	xfs_extlen_t		aglen,
135	xfs_agblock_t		*fbno,
136	xfs_extlen_t		*flen,
137	bool			find_end_of_shared)
138{
139	struct xfs_buf		*agbp;
140	struct xfs_btree_cur	*cur;
141	int			error;
142
143	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
144	if (error)
145		return error;
146
147	cur = xfs_refcountbt_init_cursor(pag->pag_mount, tp, agbp, pag);
148
149	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
150			find_end_of_shared);
151
152	xfs_btree_del_cursor(cur, error);
153
154	xfs_trans_brelse(tp, agbp);
155	return error;
156}
157
158/*
159 * Trim the mapping to the next block where there's a change in the
160 * shared/unshared status.  More specifically, this means that we
161 * find the lowest-numbered extent of shared blocks that coincides with
162 * the given block mapping.  If the shared extent overlaps the start of
163 * the mapping, trim the mapping to the end of the shared extent.  If
164 * the shared region intersects the mapping, trim the mapping to the
165 * start of the shared extent.  If there are no shared regions that
166 * overlap, just return the original extent.
167 */
168int
169xfs_reflink_trim_around_shared(
170	struct xfs_inode	*ip,
171	struct xfs_bmbt_irec	*irec,
172	bool			*shared)
173{
174	struct xfs_mount	*mp = ip->i_mount;
175	struct xfs_perag	*pag;
176	xfs_agblock_t		agbno;
177	xfs_extlen_t		aglen;
178	xfs_agblock_t		fbno;
179	xfs_extlen_t		flen;
180	int			error = 0;
181
182	/* Holes, unwritten, and delalloc extents cannot be shared */
183	if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
184		*shared = false;
185		return 0;
186	}
187
188	trace_xfs_reflink_trim_around_shared(ip, irec);
189
190	pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, irec->br_startblock));
191	agbno = XFS_FSB_TO_AGBNO(mp, irec->br_startblock);
192	aglen = irec->br_blockcount;
193
194	error = xfs_reflink_find_shared(pag, NULL, agbno, aglen, &fbno, &flen,
195			true);
196	xfs_perag_put(pag);
197	if (error)
198		return error;
199
200	*shared = false;
201	if (fbno == NULLAGBLOCK) {
202		/* No shared blocks at all. */
203		return 0;
204	}
205
206	if (fbno == agbno) {
207		/*
208		 * The start of this extent is shared.  Truncate the
209		 * mapping at the end of the shared region so that a
210		 * subsequent iteration starts at the start of the
211		 * unshared region.
212		 */
213		irec->br_blockcount = flen;
214		*shared = true;
215		return 0;
216	}
217
218	/*
219	 * There's a shared extent midway through this extent.
220	 * Truncate the mapping at the start of the shared
221	 * extent so that a subsequent iteration starts at the
222	 * start of the shared region.
223	 */
224	irec->br_blockcount = fbno - agbno;
225	return 0;
226}
227
228int
229xfs_bmap_trim_cow(
230	struct xfs_inode	*ip,
231	struct xfs_bmbt_irec	*imap,
232	bool			*shared)
233{
234	/* We can't update any real extents in always COW mode. */
235	if (xfs_is_always_cow_inode(ip) &&
236	    !isnullstartblock(imap->br_startblock)) {
237		*shared = true;
238		return 0;
239	}
240
241	/* Trim the mapping to the nearest shared extent boundary. */
242	return xfs_reflink_trim_around_shared(ip, imap, shared);
243}
244
245static int
246xfs_reflink_convert_cow_locked(
247	struct xfs_inode	*ip,
248	xfs_fileoff_t		offset_fsb,
249	xfs_filblks_t		count_fsb)
250{
251	struct xfs_iext_cursor	icur;
252	struct xfs_bmbt_irec	got;
253	struct xfs_btree_cur	*dummy_cur = NULL;
254	int			dummy_logflags;
255	int			error = 0;
256
257	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
258		return 0;
259
260	do {
261		if (got.br_startoff >= offset_fsb + count_fsb)
262			break;
263		if (got.br_state == XFS_EXT_NORM)
264			continue;
265		if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
266			return -EIO;
267
268		xfs_trim_extent(&got, offset_fsb, count_fsb);
269		if (!got.br_blockcount)
270			continue;
271
272		got.br_state = XFS_EXT_NORM;
273		error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
274				XFS_COW_FORK, &icur, &dummy_cur, &got,
275				&dummy_logflags);
276		if (error)
277			return error;
278	} while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
279
280	return error;
281}
282
283/* Convert all of the unwritten CoW extents in a file's range to real ones. */
284int
285xfs_reflink_convert_cow(
286	struct xfs_inode	*ip,
287	xfs_off_t		offset,
288	xfs_off_t		count)
289{
290	struct xfs_mount	*mp = ip->i_mount;
291	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
292	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
293	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
294	int			error;
295
296	ASSERT(count != 0);
297
298	xfs_ilock(ip, XFS_ILOCK_EXCL);
299	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
300	xfs_iunlock(ip, XFS_ILOCK_EXCL);
301	return error;
302}
303
304/*
305 * Find the extent that maps the given range in the COW fork. Even if the extent
306 * is not shared we might have a preallocation for it in the COW fork. If so we
307 * use it that rather than trigger a new allocation.
308 */
309static int
310xfs_find_trim_cow_extent(
311	struct xfs_inode	*ip,
312	struct xfs_bmbt_irec	*imap,
313	struct xfs_bmbt_irec	*cmap,
314	bool			*shared,
315	bool			*found)
316{
317	xfs_fileoff_t		offset_fsb = imap->br_startoff;
318	xfs_filblks_t		count_fsb = imap->br_blockcount;
319	struct xfs_iext_cursor	icur;
320
321	*found = false;
322
323	/*
324	 * If we don't find an overlapping extent, trim the range we need to
325	 * allocate to fit the hole we found.
326	 */
327	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
328		cmap->br_startoff = offset_fsb + count_fsb;
329	if (cmap->br_startoff > offset_fsb) {
330		xfs_trim_extent(imap, imap->br_startoff,
331				cmap->br_startoff - imap->br_startoff);
332		return xfs_bmap_trim_cow(ip, imap, shared);
333	}
334
335	*shared = true;
336	if (isnullstartblock(cmap->br_startblock)) {
337		xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
338		return 0;
339	}
340
341	/* real extent found - no need to allocate */
342	xfs_trim_extent(cmap, offset_fsb, count_fsb);
343	*found = true;
344	return 0;
345}
346
347static int
348xfs_reflink_convert_unwritten(
349	struct xfs_inode	*ip,
350	struct xfs_bmbt_irec	*imap,
351	struct xfs_bmbt_irec	*cmap,
352	bool			convert_now)
353{
354	xfs_fileoff_t		offset_fsb = imap->br_startoff;
355	xfs_filblks_t		count_fsb = imap->br_blockcount;
356	int			error;
357
358	/*
359	 * cmap might larger than imap due to cowextsize hint.
360	 */
361	xfs_trim_extent(cmap, offset_fsb, count_fsb);
362
363	/*
364	 * COW fork extents are supposed to remain unwritten until we're ready
365	 * to initiate a disk write.  For direct I/O we are going to write the
366	 * data and need the conversion, but for buffered writes we're done.
367	 */
368	if (!convert_now || cmap->br_state == XFS_EXT_NORM)
369		return 0;
370
371	trace_xfs_reflink_convert_cow(ip, cmap);
372
373	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
374	if (!error)
375		cmap->br_state = XFS_EXT_NORM;
376
377	return error;
378}
379
380static int
381xfs_reflink_fill_cow_hole(
382	struct xfs_inode	*ip,
383	struct xfs_bmbt_irec	*imap,
384	struct xfs_bmbt_irec	*cmap,
385	bool			*shared,
386	uint			*lockmode,
387	bool			convert_now)
388{
389	struct xfs_mount	*mp = ip->i_mount;
390	struct xfs_trans	*tp;
391	xfs_filblks_t		resaligned;
392	xfs_extlen_t		resblks;
393	int			nimaps;
394	int			error;
395	bool			found;
396
397	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
398		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
399	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
400
401	xfs_iunlock(ip, *lockmode);
402	*lockmode = 0;
403
404	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
405			false, &tp);
406	if (error)
407		return error;
408
409	*lockmode = XFS_ILOCK_EXCL;
410
411	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
412	if (error || !*shared)
413		goto out_trans_cancel;
414
415	if (found) {
416		xfs_trans_cancel(tp);
417		goto convert;
418	}
419
420	/* Allocate the entire reservation as unwritten blocks. */
421	nimaps = 1;
422	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
423			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
424			&nimaps);
425	if (error)
426		goto out_trans_cancel;
427
428	xfs_inode_set_cowblocks_tag(ip);
429	error = xfs_trans_commit(tp);
430	if (error)
431		return error;
432
433	/*
434	 * Allocation succeeded but the requested range was not even partially
435	 * satisfied?  Bail out!
436	 */
437	if (nimaps == 0)
438		return -ENOSPC;
439
440convert:
441	return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
442
443out_trans_cancel:
444	xfs_trans_cancel(tp);
445	return error;
446}
447
448static int
449xfs_reflink_fill_delalloc(
450	struct xfs_inode	*ip,
451	struct xfs_bmbt_irec	*imap,
452	struct xfs_bmbt_irec	*cmap,
453	bool			*shared,
454	uint			*lockmode,
455	bool			convert_now)
456{
457	struct xfs_mount	*mp = ip->i_mount;
458	struct xfs_trans	*tp;
459	int			nimaps;
460	int			error;
461	bool			found;
462
463	do {
464		xfs_iunlock(ip, *lockmode);
465		*lockmode = 0;
466
467		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 0, 0,
468				false, &tp);
469		if (error)
470			return error;
471
472		*lockmode = XFS_ILOCK_EXCL;
473
474		error = xfs_find_trim_cow_extent(ip, imap, cmap, shared,
475				&found);
476		if (error || !*shared)
477			goto out_trans_cancel;
478
479		if (found) {
480			xfs_trans_cancel(tp);
481			break;
482		}
483
484		ASSERT(isnullstartblock(cmap->br_startblock) ||
485		       cmap->br_startblock == DELAYSTARTBLOCK);
486
487		/*
488		 * Replace delalloc reservation with an unwritten extent.
489		 */
490		nimaps = 1;
491		error = xfs_bmapi_write(tp, ip, cmap->br_startoff,
492				cmap->br_blockcount,
493				XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0,
494				cmap, &nimaps);
495		if (error)
496			goto out_trans_cancel;
497
498		xfs_inode_set_cowblocks_tag(ip);
499		error = xfs_trans_commit(tp);
500		if (error)
501			return error;
502
503		/*
504		 * Allocation succeeded but the requested range was not even
505		 * partially satisfied?  Bail out!
506		 */
507		if (nimaps == 0)
508			return -ENOSPC;
509	} while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff);
510
511	return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
512
513out_trans_cancel:
514	xfs_trans_cancel(tp);
515	return error;
516}
517
518/* Allocate all CoW reservations covering a range of blocks in a file. */
519int
520xfs_reflink_allocate_cow(
521	struct xfs_inode	*ip,
522	struct xfs_bmbt_irec	*imap,
523	struct xfs_bmbt_irec	*cmap,
524	bool			*shared,
525	uint			*lockmode,
526	bool			convert_now)
527{
528	int			error;
529	bool			found;
530
531	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
532	if (!ip->i_cowfp) {
533		ASSERT(!xfs_is_reflink_inode(ip));
534		xfs_ifork_init_cow(ip);
535	}
536
537	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
538	if (error || !*shared)
539		return error;
540
541	/* CoW fork has a real extent */
542	if (found)
543		return xfs_reflink_convert_unwritten(ip, imap, cmap,
544				convert_now);
545
546	/*
547	 * CoW fork does not have an extent and data extent is shared.
548	 * Allocate a real extent in the CoW fork.
549	 */
550	if (cmap->br_startoff > imap->br_startoff)
551		return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared,
552				lockmode, convert_now);
553
554	/*
555	 * CoW fork has a delalloc reservation. Replace it with a real extent.
556	 * There may or may not be a data fork mapping.
557	 */
558	if (isnullstartblock(cmap->br_startblock) ||
559	    cmap->br_startblock == DELAYSTARTBLOCK)
560		return xfs_reflink_fill_delalloc(ip, imap, cmap, shared,
561				lockmode, convert_now);
562
563	/* Shouldn't get here. */
564	ASSERT(0);
565	return -EFSCORRUPTED;
566}
567
568/*
569 * Cancel CoW reservations for some block range of an inode.
570 *
571 * If cancel_real is true this function cancels all COW fork extents for the
572 * inode; if cancel_real is false, real extents are not cleared.
573 *
574 * Caller must have already joined the inode to the current transaction. The
575 * inode will be joined to the transaction returned to the caller.
576 */
577int
578xfs_reflink_cancel_cow_blocks(
579	struct xfs_inode		*ip,
580	struct xfs_trans		**tpp,
581	xfs_fileoff_t			offset_fsb,
582	xfs_fileoff_t			end_fsb,
583	bool				cancel_real)
584{
585	struct xfs_ifork		*ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
586	struct xfs_bmbt_irec		got, del;
587	struct xfs_iext_cursor		icur;
588	int				error = 0;
589
590	if (!xfs_inode_has_cow_data(ip))
591		return 0;
592	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
593		return 0;
594
595	/* Walk backwards until we're out of the I/O range... */
596	while (got.br_startoff + got.br_blockcount > offset_fsb) {
597		del = got;
598		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
599
600		/* Extent delete may have bumped ext forward */
601		if (!del.br_blockcount) {
602			xfs_iext_prev(ifp, &icur);
603			goto next_extent;
604		}
605
606		trace_xfs_reflink_cancel_cow(ip, &del);
607
608		if (isnullstartblock(del.br_startblock)) {
609			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
610					&icur, &got, &del);
611			if (error)
612				break;
613		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
614			ASSERT((*tpp)->t_highest_agno == NULLAGNUMBER);
615
616			/* Free the CoW orphan record. */
617			xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
618					del.br_blockcount);
619
620			error = xfs_free_extent_later(*tpp, del.br_startblock,
621					del.br_blockcount, NULL,
622					XFS_AG_RESV_NONE, false);
623			if (error)
624				break;
625
626			/* Roll the transaction */
627			error = xfs_defer_finish(tpp);
628			if (error)
629				break;
630
631			/* Remove the mapping from the CoW fork. */
632			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
633
634			/* Remove the quota reservation */
635			error = xfs_quota_unreserve_blkres(ip,
636					del.br_blockcount);
637			if (error)
638				break;
639		} else {
640			/* Didn't do anything, push cursor back. */
641			xfs_iext_prev(ifp, &icur);
642		}
643next_extent:
644		if (!xfs_iext_get_extent(ifp, &icur, &got))
645			break;
646	}
647
648	/* clear tag if cow fork is emptied */
649	if (!ifp->if_bytes)
650		xfs_inode_clear_cowblocks_tag(ip);
651	return error;
652}
653
654/*
655 * Cancel CoW reservations for some byte range of an inode.
656 *
657 * If cancel_real is true this function cancels all COW fork extents for the
658 * inode; if cancel_real is false, real extents are not cleared.
659 */
660int
661xfs_reflink_cancel_cow_range(
662	struct xfs_inode	*ip,
663	xfs_off_t		offset,
664	xfs_off_t		count,
665	bool			cancel_real)
666{
667	struct xfs_trans	*tp;
668	xfs_fileoff_t		offset_fsb;
669	xfs_fileoff_t		end_fsb;
670	int			error;
671
672	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
673	ASSERT(ip->i_cowfp);
674
675	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
676	if (count == NULLFILEOFF)
677		end_fsb = NULLFILEOFF;
678	else
679		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
680
681	/* Start a rolling transaction to remove the mappings */
682	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
683			0, 0, 0, &tp);
684	if (error)
685		goto out;
686
687	xfs_ilock(ip, XFS_ILOCK_EXCL);
688	xfs_trans_ijoin(tp, ip, 0);
689
690	/* Scrape out the old CoW reservations */
691	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
692			cancel_real);
693	if (error)
694		goto out_cancel;
695
696	error = xfs_trans_commit(tp);
697
698	xfs_iunlock(ip, XFS_ILOCK_EXCL);
699	return error;
700
701out_cancel:
702	xfs_trans_cancel(tp);
703	xfs_iunlock(ip, XFS_ILOCK_EXCL);
704out:
705	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
706	return error;
707}
708
709/*
710 * Remap part of the CoW fork into the data fork.
711 *
712 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
713 * into the data fork; this function will remap what it can (at the end of the
714 * range) and update @end_fsb appropriately.  Each remap gets its own
715 * transaction because we can end up merging and splitting bmbt blocks for
716 * every remap operation and we'd like to keep the block reservation
717 * requirements as low as possible.
718 */
719STATIC int
720xfs_reflink_end_cow_extent(
721	struct xfs_inode	*ip,
722	xfs_fileoff_t		*offset_fsb,
723	xfs_fileoff_t		end_fsb)
724{
725	struct xfs_iext_cursor	icur;
726	struct xfs_bmbt_irec	got, del, data;
727	struct xfs_mount	*mp = ip->i_mount;
728	struct xfs_trans	*tp;
729	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
730	unsigned int		resblks;
731	int			nmaps;
732	int			error;
733
734	/* No COW extents?  That's easy! */
735	if (ifp->if_bytes == 0) {
736		*offset_fsb = end_fsb;
737		return 0;
738	}
739
740	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
741	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
742			XFS_TRANS_RESERVE, &tp);
743	if (error)
744		return error;
745
746	/*
747	 * Lock the inode.  We have to ijoin without automatic unlock because
748	 * the lead transaction is the refcountbt record deletion; the data
749	 * fork update follows as a deferred log item.
750	 */
751	xfs_ilock(ip, XFS_ILOCK_EXCL);
752	xfs_trans_ijoin(tp, ip, 0);
753
754	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
755			XFS_IEXT_REFLINK_END_COW_CNT);
756	if (error == -EFBIG)
757		error = xfs_iext_count_upgrade(tp, ip,
758				XFS_IEXT_REFLINK_END_COW_CNT);
759	if (error)
760		goto out_cancel;
761
762	/*
763	 * In case of racing, overlapping AIO writes no COW extents might be
764	 * left by the time I/O completes for the loser of the race.  In that
765	 * case we are done.
766	 */
767	if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) ||
768	    got.br_startoff >= end_fsb) {
769		*offset_fsb = end_fsb;
770		goto out_cancel;
771	}
772
773	/*
774	 * Only remap real extents that contain data.  With AIO, speculative
775	 * preallocations can leak into the range we are called upon, and we
776	 * need to skip them.  Preserve @got for the eventual CoW fork
777	 * deletion; from now on @del represents the mapping that we're
778	 * actually remapping.
779	 */
780	while (!xfs_bmap_is_written_extent(&got)) {
781		if (!xfs_iext_next_extent(ifp, &icur, &got) ||
782		    got.br_startoff >= end_fsb) {
783			*offset_fsb = end_fsb;
784			goto out_cancel;
785		}
786	}
787	del = got;
788	xfs_trim_extent(&del, *offset_fsb, end_fsb - *offset_fsb);
789
790	/* Grab the corresponding mapping in the data fork. */
791	nmaps = 1;
792	error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data,
793			&nmaps, 0);
794	if (error)
795		goto out_cancel;
796
797	/* We can only remap the smaller of the two extent sizes. */
798	data.br_blockcount = min(data.br_blockcount, del.br_blockcount);
799	del.br_blockcount = data.br_blockcount;
800
801	trace_xfs_reflink_cow_remap_from(ip, &del);
802	trace_xfs_reflink_cow_remap_to(ip, &data);
803
804	if (xfs_bmap_is_real_extent(&data)) {
805		/*
806		 * If the extent we're remapping is backed by storage (written
807		 * or not), unmap the extent and drop its refcount.
808		 */
809		xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &data);
810		xfs_refcount_decrease_extent(tp, &data);
811		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
812				-data.br_blockcount);
813	} else if (data.br_startblock == DELAYSTARTBLOCK) {
814		int		done;
815
816		/*
817		 * If the extent we're remapping is a delalloc reservation,
818		 * we can use the regular bunmapi function to release the
819		 * incore state.  Dropping the delalloc reservation takes care
820		 * of the quota reservation for us.
821		 */
822		error = xfs_bunmapi(NULL, ip, data.br_startoff,
823				data.br_blockcount, 0, 1, &done);
824		if (error)
825			goto out_cancel;
826		ASSERT(done);
827	}
828
829	/* Free the CoW orphan record. */
830	xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
831
832	/* Map the new blocks into the data fork. */
833	xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, &del);
834
835	/* Charge this new data fork mapping to the on-disk quota. */
836	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
837			(long)del.br_blockcount);
838
839	/* Remove the mapping from the CoW fork. */
840	xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
841
842	error = xfs_trans_commit(tp);
843	xfs_iunlock(ip, XFS_ILOCK_EXCL);
844	if (error)
845		return error;
846
847	/* Update the caller about how much progress we made. */
848	*offset_fsb = del.br_startoff + del.br_blockcount;
849	return 0;
850
851out_cancel:
852	xfs_trans_cancel(tp);
853	xfs_iunlock(ip, XFS_ILOCK_EXCL);
854	return error;
855}
856
857/*
858 * Remap parts of a file's data fork after a successful CoW.
859 */
860int
861xfs_reflink_end_cow(
862	struct xfs_inode		*ip,
863	xfs_off_t			offset,
864	xfs_off_t			count)
865{
866	xfs_fileoff_t			offset_fsb;
867	xfs_fileoff_t			end_fsb;
868	int				error = 0;
869
870	trace_xfs_reflink_end_cow(ip, offset, count);
871
872	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
873	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
874
875	/*
876	 * Walk forwards until we've remapped the I/O range.  The loop function
877	 * repeatedly cycles the ILOCK to allocate one transaction per remapped
878	 * extent.
879	 *
880	 * If we're being called by writeback then the pages will still
881	 * have PageWriteback set, which prevents races with reflink remapping
882	 * and truncate.  Reflink remapping prevents races with writeback by
883	 * taking the iolock and mmaplock before flushing the pages and
884	 * remapping, which means there won't be any further writeback or page
885	 * cache dirtying until the reflink completes.
886	 *
887	 * We should never have two threads issuing writeback for the same file
888	 * region.  There are also have post-eof checks in the writeback
889	 * preparation code so that we don't bother writing out pages that are
890	 * about to be truncated.
891	 *
892	 * If we're being called as part of directio write completion, the dio
893	 * count is still elevated, which reflink and truncate will wait for.
894	 * Reflink remapping takes the iolock and mmaplock and waits for
895	 * pending dio to finish, which should prevent any directio until the
896	 * remap completes.  Multiple concurrent directio writes to the same
897	 * region are handled by end_cow processing only occurring for the
898	 * threads which succeed; the outcome of multiple overlapping direct
899	 * writes is not well defined anyway.
900	 *
901	 * It's possible that a buffered write and a direct write could collide
902	 * here (the buffered write stumbles in after the dio flushes and
903	 * invalidates the page cache and immediately queues writeback), but we
904	 * have never supported this 100%.  If either disk write succeeds the
905	 * blocks will be remapped.
906	 */
907	while (end_fsb > offset_fsb && !error)
908		error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb);
909
910	if (error)
911		trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
912	return error;
913}
914
915/*
916 * Free all CoW staging blocks that are still referenced by the ondisk refcount
917 * metadata.  The ondisk metadata does not track which inode created the
918 * staging extent, so callers must ensure that there are no cached inodes with
919 * live CoW staging extents.
920 */
921int
922xfs_reflink_recover_cow(
923	struct xfs_mount	*mp)
924{
925	struct xfs_perag	*pag;
926	xfs_agnumber_t		agno;
927	int			error = 0;
928
929	if (!xfs_has_reflink(mp))
930		return 0;
931
932	for_each_perag(mp, agno, pag) {
933		error = xfs_refcount_recover_cow_leftovers(mp, pag);
934		if (error) {
935			xfs_perag_rele(pag);
936			break;
937		}
938	}
939
940	return error;
941}
942
943/*
944 * Reflinking (Block) Ranges of Two Files Together
945 *
946 * First, ensure that the reflink flag is set on both inodes.  The flag is an
947 * optimization to avoid unnecessary refcount btree lookups in the write path.
948 *
949 * Now we can iteratively remap the range of extents (and holes) in src to the
950 * corresponding ranges in dest.  Let drange and srange denote the ranges of
951 * logical blocks in dest and src touched by the reflink operation.
952 *
953 * While the length of drange is greater than zero,
954 *    - Read src's bmbt at the start of srange ("imap")
955 *    - If imap doesn't exist, make imap appear to start at the end of srange
956 *      with zero length.
957 *    - If imap starts before srange, advance imap to start at srange.
958 *    - If imap goes beyond srange, truncate imap to end at the end of srange.
959 *    - Punch (imap start - srange start + imap len) blocks from dest at
960 *      offset (drange start).
961 *    - If imap points to a real range of pblks,
962 *         > Increase the refcount of the imap's pblks
963 *         > Map imap's pblks into dest at the offset
964 *           (drange start + imap start - srange start)
965 *    - Advance drange and srange by (imap start - srange start + imap len)
966 *
967 * Finally, if the reflink made dest longer, update both the in-core and
968 * on-disk file sizes.
969 *
970 * ASCII Art Demonstration:
971 *
972 * Let's say we want to reflink this source file:
973 *
974 * ----SSSSSSS-SSSSS----SSSSSS (src file)
975 *   <-------------------->
976 *
977 * into this destination file:
978 *
979 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
980 *        <-------------------->
981 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
982 * Observe that the range has different logical offsets in either file.
983 *
984 * Consider that the first extent in the source file doesn't line up with our
985 * reflink range.  Unmapping  and remapping are separate operations, so we can
986 * unmap more blocks from the destination file than we remap.
987 *
988 * ----SSSSSSS-SSSSS----SSSSSS
989 *   <------->
990 * --DDDDD---------DDDDD--DDD
991 *        <------->
992 *
993 * Now remap the source extent into the destination file:
994 *
995 * ----SSSSSSS-SSSSS----SSSSSS
996 *   <------->
997 * --DDDDD--SSSSSSSDDDDD--DDD
998 *        <------->
999 *
1000 * Do likewise with the second hole and extent in our range.  Holes in the
1001 * unmap range don't affect our operation.
1002 *
1003 * ----SSSSSSS-SSSSS----SSSSSS
1004 *            <---->
1005 * --DDDDD--SSSSSSS-SSSSS-DDD
1006 *                 <---->
1007 *
1008 * Finally, unmap and remap part of the third extent.  This will increase the
1009 * size of the destination file.
1010 *
1011 * ----SSSSSSS-SSSSS----SSSSSS
1012 *                  <----->
1013 * --DDDDD--SSSSSSS-SSSSS----SSS
1014 *                       <----->
1015 *
1016 * Once we update the destination file's i_size, we're done.
1017 */
1018
1019/*
1020 * Ensure the reflink bit is set in both inodes.
1021 */
1022STATIC int
1023xfs_reflink_set_inode_flag(
1024	struct xfs_inode	*src,
1025	struct xfs_inode	*dest)
1026{
1027	struct xfs_mount	*mp = src->i_mount;
1028	int			error;
1029	struct xfs_trans	*tp;
1030
1031	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
1032		return 0;
1033
1034	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1035	if (error)
1036		goto out_error;
1037
1038	/* Lock both files against IO */
1039	if (src->i_ino == dest->i_ino)
1040		xfs_ilock(src, XFS_ILOCK_EXCL);
1041	else
1042		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
1043
1044	if (!xfs_is_reflink_inode(src)) {
1045		trace_xfs_reflink_set_inode_flag(src);
1046		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
1047		src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1048		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
1049		xfs_ifork_init_cow(src);
1050	} else
1051		xfs_iunlock(src, XFS_ILOCK_EXCL);
1052
1053	if (src->i_ino == dest->i_ino)
1054		goto commit_flags;
1055
1056	if (!xfs_is_reflink_inode(dest)) {
1057		trace_xfs_reflink_set_inode_flag(dest);
1058		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1059		dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1060		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1061		xfs_ifork_init_cow(dest);
1062	} else
1063		xfs_iunlock(dest, XFS_ILOCK_EXCL);
1064
1065commit_flags:
1066	error = xfs_trans_commit(tp);
1067	if (error)
1068		goto out_error;
1069	return error;
1070
1071out_error:
1072	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
1073	return error;
1074}
1075
1076/*
1077 * Update destination inode size & cowextsize hint, if necessary.
1078 */
1079int
1080xfs_reflink_update_dest(
1081	struct xfs_inode	*dest,
1082	xfs_off_t		newlen,
1083	xfs_extlen_t		cowextsize,
1084	unsigned int		remap_flags)
1085{
1086	struct xfs_mount	*mp = dest->i_mount;
1087	struct xfs_trans	*tp;
1088	int			error;
1089
1090	if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
1091		return 0;
1092
1093	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1094	if (error)
1095		goto out_error;
1096
1097	xfs_ilock(dest, XFS_ILOCK_EXCL);
1098	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1099
1100	if (newlen > i_size_read(VFS_I(dest))) {
1101		trace_xfs_reflink_update_inode_size(dest, newlen);
1102		i_size_write(VFS_I(dest), newlen);
1103		dest->i_disk_size = newlen;
1104	}
1105
1106	if (cowextsize) {
1107		dest->i_cowextsize = cowextsize;
1108		dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
1109	}
1110
1111	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1112
1113	error = xfs_trans_commit(tp);
1114	if (error)
1115		goto out_error;
1116	return error;
1117
1118out_error:
1119	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
1120	return error;
1121}
1122
1123/*
1124 * Do we have enough reserve in this AG to handle a reflink?  The refcount
1125 * btree already reserved all the space it needs, but the rmap btree can grow
1126 * infinitely, so we won't allow more reflinks when the AG is down to the
1127 * btree reserves.
1128 */
1129static int
1130xfs_reflink_ag_has_free_space(
1131	struct xfs_mount	*mp,
1132	xfs_agnumber_t		agno)
1133{
1134	struct xfs_perag	*pag;
1135	int			error = 0;
1136
1137	if (!xfs_has_rmapbt(mp))
1138		return 0;
1139
1140	pag = xfs_perag_get(mp, agno);
1141	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1142	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1143		error = -ENOSPC;
1144	xfs_perag_put(pag);
1145	return error;
1146}
1147
1148/*
1149 * Remap the given extent into the file.  The dmap blockcount will be set to
1150 * the number of blocks that were actually remapped.
1151 */
1152STATIC int
1153xfs_reflink_remap_extent(
1154	struct xfs_inode	*ip,
1155	struct xfs_bmbt_irec	*dmap,
1156	xfs_off_t		new_isize)
1157{
1158	struct xfs_bmbt_irec	smap;
1159	struct xfs_mount	*mp = ip->i_mount;
1160	struct xfs_trans	*tp;
1161	xfs_off_t		newlen;
1162	int64_t			qdelta = 0;
1163	unsigned int		resblks;
1164	bool			quota_reserved = true;
1165	bool			smap_real;
1166	bool			dmap_written = xfs_bmap_is_written_extent(dmap);
1167	int			iext_delta = 0;
1168	int			nimaps;
1169	int			error;
1170
1171	/*
1172	 * Start a rolling transaction to switch the mappings.
1173	 *
1174	 * Adding a written extent to the extent map can cause a bmbt split,
1175	 * and removing a mapped extent from the extent can cause a bmbt split.
1176	 * The two operations cannot both cause a split since they operate on
1177	 * the same index in the bmap btree, so we only need a reservation for
1178	 * one bmbt split if either thing is happening.  However, we haven't
1179	 * locked the inode yet, so we reserve assuming this is the case.
1180	 *
1181	 * The first allocation call tries to reserve enough space to handle
1182	 * mapping dmap into a sparse part of the file plus the bmbt split.  We
1183	 * haven't locked the inode or read the existing mapping yet, so we do
1184	 * not know for sure that we need the space.  This should succeed most
1185	 * of the time.
1186	 *
1187	 * If the first attempt fails, try again but reserving only enough
1188	 * space to handle a bmbt split.  This is the hard minimum requirement,
1189	 * and we revisit quota reservations later when we know more about what
1190	 * we're remapping.
1191	 */
1192	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1193	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1194			resblks + dmap->br_blockcount, 0, false, &tp);
1195	if (error == -EDQUOT || error == -ENOSPC) {
1196		quota_reserved = false;
1197		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1198				resblks, 0, false, &tp);
1199	}
1200	if (error)
1201		goto out;
1202
1203	/*
1204	 * Read what's currently mapped in the destination file into smap.
1205	 * If smap isn't a hole, we will have to remove it before we can add
1206	 * dmap to the destination file.
1207	 */
1208	nimaps = 1;
1209	error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1210			&smap, &nimaps, 0);
1211	if (error)
1212		goto out_cancel;
1213	ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1214	smap_real = xfs_bmap_is_real_extent(&smap);
1215
1216	/*
1217	 * We can only remap as many blocks as the smaller of the two extent
1218	 * maps, because we can only remap one extent at a time.
1219	 */
1220	dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1221	ASSERT(dmap->br_blockcount == smap.br_blockcount);
1222
1223	trace_xfs_reflink_remap_extent_dest(ip, &smap);
1224
1225	/*
1226	 * Two extents mapped to the same physical block must not have
1227	 * different states; that's filesystem corruption.  Move on to the next
1228	 * extent if they're both holes or both the same physical extent.
1229	 */
1230	if (dmap->br_startblock == smap.br_startblock) {
1231		if (dmap->br_state != smap.br_state) {
1232			xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
1233			error = -EFSCORRUPTED;
1234		}
1235		goto out_cancel;
1236	}
1237
1238	/* If both extents are unwritten, leave them alone. */
1239	if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1240	    smap.br_state == XFS_EXT_UNWRITTEN)
1241		goto out_cancel;
1242
1243	/* No reflinking if the AG of the dest mapping is low on space. */
1244	if (dmap_written) {
1245		error = xfs_reflink_ag_has_free_space(mp,
1246				XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1247		if (error)
1248			goto out_cancel;
1249	}
1250
1251	/*
1252	 * Increase quota reservation if we think the quota block counter for
1253	 * this file could increase.
1254	 *
1255	 * If we are mapping a written extent into the file, we need to have
1256	 * enough quota block count reservation to handle the blocks in that
1257	 * extent.  We log only the delta to the quota block counts, so if the
1258	 * extent we're unmapping also has blocks allocated to it, we don't
1259	 * need a quota reservation for the extent itself.
1260	 *
1261	 * Note that if we're replacing a delalloc reservation with a written
1262	 * extent, we have to take the full quota reservation because removing
1263	 * the delalloc reservation gives the block count back to the quota
1264	 * count.  This is suboptimal, but the VFS flushed the dest range
1265	 * before we started.  That should have removed all the delalloc
1266	 * reservations, but we code defensively.
1267	 *
1268	 * xfs_trans_alloc_inode above already tried to grab an even larger
1269	 * quota reservation, and kicked off a blockgc scan if it couldn't.
1270	 * If we can't get a potentially smaller quota reservation now, we're
1271	 * done.
1272	 */
1273	if (!quota_reserved && !smap_real && dmap_written) {
1274		error = xfs_trans_reserve_quota_nblks(tp, ip,
1275				dmap->br_blockcount, 0, false);
1276		if (error)
1277			goto out_cancel;
1278	}
1279
1280	if (smap_real)
1281		++iext_delta;
1282
1283	if (dmap_written)
1284		++iext_delta;
1285
1286	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1287	if (error == -EFBIG)
1288		error = xfs_iext_count_upgrade(tp, ip, iext_delta);
1289	if (error)
1290		goto out_cancel;
1291
1292	if (smap_real) {
1293		/*
1294		 * If the extent we're unmapping is backed by storage (written
1295		 * or not), unmap the extent and drop its refcount.
1296		 */
1297		xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &smap);
1298		xfs_refcount_decrease_extent(tp, &smap);
1299		qdelta -= smap.br_blockcount;
1300	} else if (smap.br_startblock == DELAYSTARTBLOCK) {
1301		int		done;
1302
1303		/*
1304		 * If the extent we're unmapping is a delalloc reservation,
1305		 * we can use the regular bunmapi function to release the
1306		 * incore state.  Dropping the delalloc reservation takes care
1307		 * of the quota reservation for us.
1308		 */
1309		error = xfs_bunmapi(NULL, ip, smap.br_startoff,
1310				smap.br_blockcount, 0, 1, &done);
1311		if (error)
1312			goto out_cancel;
1313		ASSERT(done);
1314	}
1315
1316	/*
1317	 * If the extent we're sharing is backed by written storage, increase
1318	 * its refcount and map it into the file.
1319	 */
1320	if (dmap_written) {
1321		xfs_refcount_increase_extent(tp, dmap);
1322		xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, dmap);
1323		qdelta += dmap->br_blockcount;
1324	}
1325
1326	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1327
1328	/* Update dest isize if needed. */
1329	newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1330	newlen = min_t(xfs_off_t, newlen, new_isize);
1331	if (newlen > i_size_read(VFS_I(ip))) {
1332		trace_xfs_reflink_update_inode_size(ip, newlen);
1333		i_size_write(VFS_I(ip), newlen);
1334		ip->i_disk_size = newlen;
1335		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1336	}
1337
1338	/* Commit everything and unlock. */
1339	error = xfs_trans_commit(tp);
1340	goto out_unlock;
1341
1342out_cancel:
1343	xfs_trans_cancel(tp);
1344out_unlock:
1345	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1346out:
1347	if (error)
1348		trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1349	return error;
1350}
1351
1352/* Remap a range of one file to the other. */
1353int
1354xfs_reflink_remap_blocks(
1355	struct xfs_inode	*src,
1356	loff_t			pos_in,
1357	struct xfs_inode	*dest,
1358	loff_t			pos_out,
1359	loff_t			remap_len,
1360	loff_t			*remapped)
1361{
1362	struct xfs_bmbt_irec	imap;
1363	struct xfs_mount	*mp = src->i_mount;
1364	xfs_fileoff_t		srcoff = XFS_B_TO_FSBT(mp, pos_in);
1365	xfs_fileoff_t		destoff = XFS_B_TO_FSBT(mp, pos_out);
1366	xfs_filblks_t		len;
1367	xfs_filblks_t		remapped_len = 0;
1368	xfs_off_t		new_isize = pos_out + remap_len;
1369	int			nimaps;
1370	int			error = 0;
1371
1372	len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1373			XFS_MAX_FILEOFF);
1374
1375	trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1376
1377	while (len > 0) {
1378		unsigned int	lock_mode;
1379
1380		/* Read extent from the source file */
1381		nimaps = 1;
1382		lock_mode = xfs_ilock_data_map_shared(src);
1383		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1384		xfs_iunlock(src, lock_mode);
1385		if (error)
1386			break;
1387		/*
1388		 * The caller supposedly flushed all dirty pages in the source
1389		 * file range, which means that writeback should have allocated
1390		 * or deleted all delalloc reservations in that range.  If we
1391		 * find one, that's a good sign that something is seriously
1392		 * wrong here.
1393		 */
1394		ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1395		if (imap.br_startblock == DELAYSTARTBLOCK) {
1396			ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1397			xfs_bmap_mark_sick(src, XFS_DATA_FORK);
1398			error = -EFSCORRUPTED;
1399			break;
1400		}
1401
1402		trace_xfs_reflink_remap_extent_src(src, &imap);
1403
1404		/* Remap into the destination file at the given offset. */
1405		imap.br_startoff = destoff;
1406		error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1407		if (error)
1408			break;
1409
1410		if (fatal_signal_pending(current)) {
1411			error = -EINTR;
1412			break;
1413		}
1414
1415		/* Advance drange/srange */
1416		srcoff += imap.br_blockcount;
1417		destoff += imap.br_blockcount;
1418		len -= imap.br_blockcount;
1419		remapped_len += imap.br_blockcount;
1420	}
1421
1422	if (error)
1423		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1424	*remapped = min_t(loff_t, remap_len,
1425			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1426	return error;
1427}
1428
1429/*
1430 * If we're reflinking to a point past the destination file's EOF, we must
1431 * zero any speculative post-EOF preallocations that sit between the old EOF
1432 * and the destination file offset.
1433 */
1434static int
1435xfs_reflink_zero_posteof(
1436	struct xfs_inode	*ip,
1437	loff_t			pos)
1438{
1439	loff_t			isize = i_size_read(VFS_I(ip));
1440
1441	if (pos <= isize)
1442		return 0;
1443
1444	trace_xfs_zero_eof(ip, isize, pos - isize);
1445	return xfs_zero_range(ip, isize, pos - isize, NULL);
1446}
1447
1448/*
1449 * Prepare two files for range cloning.  Upon a successful return both inodes
1450 * will have the iolock and mmaplock held, the page cache of the out file will
1451 * be truncated, and any leases on the out file will have been broken.  This
1452 * function borrows heavily from xfs_file_aio_write_checks.
1453 *
1454 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1455 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1456 * EOF block in the source dedupe range because it's not a complete block match,
1457 * hence can introduce a corruption into the file that has it's block replaced.
1458 *
1459 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1460 * "block aligned" for the purposes of cloning entire files.  However, if the
1461 * source file range includes the EOF block and it lands within the existing EOF
1462 * of the destination file, then we can expose stale data from beyond the source
1463 * file EOF in the destination file.
1464 *
1465 * XFS doesn't support partial block sharing, so in both cases we have check
1466 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1467 * down to the previous whole block and ignore the partial EOF block. While this
1468 * means we can't dedupe the last block of a file, this is an acceptible
1469 * tradeoff for simplicity on implementation.
1470 *
1471 * For cloning, we want to share the partial EOF block if it is also the new EOF
1472 * block of the destination file. If the partial EOF block lies inside the
1473 * existing destination EOF, then we have to abort the clone to avoid exposing
1474 * stale data in the destination file. Hence we reject these clone attempts with
1475 * -EINVAL in this case.
1476 */
1477int
1478xfs_reflink_remap_prep(
1479	struct file		*file_in,
1480	loff_t			pos_in,
1481	struct file		*file_out,
1482	loff_t			pos_out,
1483	loff_t			*len,
1484	unsigned int		remap_flags)
1485{
1486	struct inode		*inode_in = file_inode(file_in);
1487	struct xfs_inode	*src = XFS_I(inode_in);
1488	struct inode		*inode_out = file_inode(file_out);
1489	struct xfs_inode	*dest = XFS_I(inode_out);
1490	int			ret;
1491
1492	/* Lock both files against IO */
1493	ret = xfs_ilock2_io_mmap(src, dest);
1494	if (ret)
1495		return ret;
1496
1497	/* Check file eligibility and prepare for block sharing. */
1498	ret = -EINVAL;
1499	/* Don't reflink realtime inodes */
1500	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1501		goto out_unlock;
1502
1503	/* Don't share DAX file data with non-DAX file. */
1504	if (IS_DAX(inode_in) != IS_DAX(inode_out))
1505		goto out_unlock;
1506
1507	if (!IS_DAX(inode_in))
1508		ret = generic_remap_file_range_prep(file_in, pos_in, file_out,
1509				pos_out, len, remap_flags);
1510	else
1511		ret = dax_remap_file_range_prep(file_in, pos_in, file_out,
1512				pos_out, len, remap_flags, &xfs_read_iomap_ops);
1513	if (ret || *len == 0)
1514		goto out_unlock;
1515
1516	/* Attach dquots to dest inode before changing block map */
1517	ret = xfs_qm_dqattach(dest);
1518	if (ret)
1519		goto out_unlock;
1520
1521	/*
1522	 * Zero existing post-eof speculative preallocations in the destination
1523	 * file.
1524	 */
1525	ret = xfs_reflink_zero_posteof(dest, pos_out);
1526	if (ret)
1527		goto out_unlock;
1528
1529	/* Set flags and remap blocks. */
1530	ret = xfs_reflink_set_inode_flag(src, dest);
1531	if (ret)
1532		goto out_unlock;
1533
1534	/*
1535	 * If pos_out > EOF, we may have dirtied blocks between EOF and
1536	 * pos_out. In that case, we need to extend the flush and unmap to cover
1537	 * from EOF to the end of the copy length.
1538	 */
1539	if (pos_out > XFS_ISIZE(dest)) {
1540		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest));
1541		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1542	} else {
1543		ret = xfs_flush_unmap_range(dest, pos_out, *len);
1544	}
1545	if (ret)
1546		goto out_unlock;
1547
1548	xfs_iflags_set(src, XFS_IREMAPPING);
1549	if (inode_in != inode_out)
1550		xfs_ilock_demote(src, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
1551
1552	return 0;
1553out_unlock:
1554	xfs_iunlock2_io_mmap(src, dest);
1555	return ret;
1556}
1557
1558/* Does this inode need the reflink flag? */
1559int
1560xfs_reflink_inode_has_shared_extents(
1561	struct xfs_trans		*tp,
1562	struct xfs_inode		*ip,
1563	bool				*has_shared)
1564{
1565	struct xfs_bmbt_irec		got;
1566	struct xfs_mount		*mp = ip->i_mount;
1567	struct xfs_ifork		*ifp;
1568	struct xfs_iext_cursor		icur;
1569	bool				found;
1570	int				error;
1571
1572	ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1573	error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1574	if (error)
1575		return error;
1576
1577	*has_shared = false;
1578	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1579	while (found) {
1580		struct xfs_perag	*pag;
1581		xfs_agblock_t		agbno;
1582		xfs_extlen_t		aglen;
1583		xfs_agblock_t		rbno;
1584		xfs_extlen_t		rlen;
1585
1586		if (isnullstartblock(got.br_startblock) ||
1587		    got.br_state != XFS_EXT_NORM)
1588			goto next;
1589
1590		pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, got.br_startblock));
1591		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1592		aglen = got.br_blockcount;
1593		error = xfs_reflink_find_shared(pag, tp, agbno, aglen,
1594				&rbno, &rlen, false);
1595		xfs_perag_put(pag);
1596		if (error)
1597			return error;
1598
1599		/* Is there still a shared block here? */
1600		if (rbno != NULLAGBLOCK) {
1601			*has_shared = true;
1602			return 0;
1603		}
1604next:
1605		found = xfs_iext_next_extent(ifp, &icur, &got);
1606	}
1607
1608	return 0;
1609}
1610
1611/*
1612 * Clear the inode reflink flag if there are no shared extents.
1613 *
1614 * The caller is responsible for joining the inode to the transaction passed in.
1615 * The inode will be joined to the transaction that is returned to the caller.
1616 */
1617int
1618xfs_reflink_clear_inode_flag(
1619	struct xfs_inode	*ip,
1620	struct xfs_trans	**tpp)
1621{
1622	bool			needs_flag;
1623	int			error = 0;
1624
1625	ASSERT(xfs_is_reflink_inode(ip));
1626
1627	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1628	if (error || needs_flag)
1629		return error;
1630
1631	/*
1632	 * We didn't find any shared blocks so turn off the reflink flag.
1633	 * First, get rid of any leftover CoW mappings.
1634	 */
1635	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1636			true);
1637	if (error)
1638		return error;
1639
1640	/* Clear the inode flag. */
1641	trace_xfs_reflink_unset_inode_flag(ip);
1642	ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1643	xfs_inode_clear_cowblocks_tag(ip);
1644	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1645
1646	return error;
1647}
1648
1649/*
1650 * Clear the inode reflink flag if there are no shared extents and the size
1651 * hasn't changed.
1652 */
1653STATIC int
1654xfs_reflink_try_clear_inode_flag(
1655	struct xfs_inode	*ip)
1656{
1657	struct xfs_mount	*mp = ip->i_mount;
1658	struct xfs_trans	*tp;
1659	int			error = 0;
1660
1661	/* Start a rolling transaction to remove the mappings */
1662	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1663	if (error)
1664		return error;
1665
1666	xfs_ilock(ip, XFS_ILOCK_EXCL);
1667	xfs_trans_ijoin(tp, ip, 0);
1668
1669	error = xfs_reflink_clear_inode_flag(ip, &tp);
1670	if (error)
1671		goto cancel;
1672
1673	error = xfs_trans_commit(tp);
1674	if (error)
1675		goto out;
1676
1677	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1678	return 0;
1679cancel:
1680	xfs_trans_cancel(tp);
1681out:
1682	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1683	return error;
1684}
1685
1686/*
1687 * Pre-COW all shared blocks within a given byte range of a file and turn off
1688 * the reflink flag if we unshare all of the file's blocks.
1689 */
1690int
1691xfs_reflink_unshare(
1692	struct xfs_inode	*ip,
1693	xfs_off_t		offset,
1694	xfs_off_t		len)
1695{
1696	struct inode		*inode = VFS_I(ip);
1697	int			error;
1698
1699	if (!xfs_is_reflink_inode(ip))
1700		return 0;
1701
1702	trace_xfs_reflink_unshare(ip, offset, len);
1703
1704	inode_dio_wait(inode);
1705
1706	if (IS_DAX(inode))
1707		error = dax_file_unshare(inode, offset, len,
1708				&xfs_dax_write_iomap_ops);
1709	else
1710		error = iomap_file_unshare(inode, offset, len,
1711				&xfs_buffered_write_iomap_ops);
1712	if (error)
1713		goto out;
1714
1715	error = filemap_write_and_wait_range(inode->i_mapping, offset,
1716			offset + len - 1);
1717	if (error)
1718		goto out;
1719
1720	/* Turn off the reflink flag if possible. */
1721	error = xfs_reflink_try_clear_inode_flag(ip);
1722	if (error)
1723		goto out;
1724	return 0;
1725
1726out:
1727	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1728	return error;
1729}
1730