1(*  Title:      HOL/Rat.thy
2    Author:     Markus Wenzel, TU Muenchen
3*)
4
5section \<open>Rational numbers\<close>
6
7theory Rat
8  imports Archimedean_Field
9begin
10
11subsection \<open>Rational numbers as quotient\<close>
12
13subsubsection \<open>Construction of the type of rational numbers\<close>
14
15definition ratrel :: "(int \<times> int) \<Rightarrow> (int \<times> int) \<Rightarrow> bool"
16  where "ratrel = (\<lambda>x y. snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x)"
17
18lemma ratrel_iff [simp]: "ratrel x y \<longleftrightarrow> snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x"
19  by (simp add: ratrel_def)
20
21lemma exists_ratrel_refl: "\<exists>x. ratrel x x"
22  by (auto intro!: one_neq_zero)
23
24lemma symp_ratrel: "symp ratrel"
25  by (simp add: ratrel_def symp_def)
26
27lemma transp_ratrel: "transp ratrel"
28proof (rule transpI, unfold split_paired_all)
29  fix a b a' b' a'' b'' :: int
30  assume *: "ratrel (a, b) (a', b')"
31  assume **: "ratrel (a', b') (a'', b'')"
32  have "b' * (a * b'') = b'' * (a * b')" by simp
33  also from * have "a * b' = a' * b" by auto
34  also have "b'' * (a' * b) = b * (a' * b'')" by simp
35  also from ** have "a' * b'' = a'' * b'" by auto
36  also have "b * (a'' * b') = b' * (a'' * b)" by simp
37  finally have "b' * (a * b'') = b' * (a'' * b)" .
38  moreover from ** have "b' \<noteq> 0" by auto
39  ultimately have "a * b'' = a'' * b" by simp
40  with * ** show "ratrel (a, b) (a'', b'')" by auto
41qed
42
43lemma part_equivp_ratrel: "part_equivp ratrel"
44  by (rule part_equivpI [OF exists_ratrel_refl symp_ratrel transp_ratrel])
45
46quotient_type rat = "int \<times> int" / partial: "ratrel"
47  morphisms Rep_Rat Abs_Rat
48  by (rule part_equivp_ratrel)
49
50lemma Domainp_cr_rat [transfer_domain_rule]: "Domainp pcr_rat = (\<lambda>x. snd x \<noteq> 0)"
51  by (simp add: rat.domain_eq)
52
53
54subsubsection \<open>Representation and basic operations\<close>
55
56lift_definition Fract :: "int \<Rightarrow> int \<Rightarrow> rat"
57  is "\<lambda>a b. if b = 0 then (0, 1) else (a, b)"
58  by simp
59
60lemma eq_rat:
61  "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b"
62  "\<And>a. Fract a 0 = Fract 0 1"
63  "\<And>a c. Fract 0 a = Fract 0 c"
64  by (transfer, simp)+
65
66lemma Rat_cases [case_names Fract, cases type: rat]:
67  assumes that: "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> C"
68  shows C
69proof -
70  obtain a b :: int where q: "q = Fract a b" and b: "b \<noteq> 0"
71    by transfer simp
72  let ?a = "a div gcd a b"
73  let ?b = "b div gcd a b"
74  from b have "?b * gcd a b = b"
75    by simp
76  with b have "?b \<noteq> 0"
77    by fastforce
78  with q b have q2: "q = Fract ?a ?b"
79    by (simp add: eq_rat dvd_div_mult mult.commute [of a])
80  from b have coprime: "coprime ?a ?b"
81    by (auto intro: div_gcd_coprime)
82  show C
83  proof (cases "b > 0")
84    case True
85    then have "?b > 0"
86      by (simp add: nonneg1_imp_zdiv_pos_iff)
87    from q2 this coprime show C by (rule that)
88  next
89    case False
90    have "q = Fract (- ?a) (- ?b)"
91      unfolding q2 by transfer simp
92    moreover from False b have "- ?b > 0"
93      by (simp add: pos_imp_zdiv_neg_iff)
94    moreover from coprime have "coprime (- ?a) (- ?b)"
95      by simp
96    ultimately show C
97      by (rule that)
98  qed
99qed
100
101lemma Rat_induct [case_names Fract, induct type: rat]:
102  assumes "\<And>a b. b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> P (Fract a b)"
103  shows "P q"
104  using assms by (cases q) simp
105
106instantiation rat :: field
107begin
108
109lift_definition zero_rat :: "rat" is "(0, 1)"
110  by simp
111
112lift_definition one_rat :: "rat" is "(1, 1)"
113  by simp
114
115lemma Zero_rat_def: "0 = Fract 0 1"
116  by transfer simp
117
118lemma One_rat_def: "1 = Fract 1 1"
119  by transfer simp
120
121lift_definition plus_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat"
122  is "\<lambda>x y. (fst x * snd y + fst y * snd x, snd x * snd y)"
123  by (auto simp: distrib_right) (simp add: ac_simps)
124
125lemma add_rat [simp]:
126  assumes "b \<noteq> 0" and "d \<noteq> 0"
127  shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)"
128  using assms by transfer simp
129
130lift_definition uminus_rat :: "rat \<Rightarrow> rat" is "\<lambda>x. (- fst x, snd x)"
131  by simp
132
133lemma minus_rat [simp]: "- Fract a b = Fract (- a) b"
134  by transfer simp
135
136lemma minus_rat_cancel [simp]: "Fract (- a) (- b) = Fract a b"
137  by (cases "b = 0") (simp_all add: eq_rat)
138
139definition diff_rat_def: "q - r = q + - r" for q r :: rat
140
141lemma diff_rat [simp]:
142  "b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b - Fract c d = Fract (a * d - c * b) (b * d)"
143  by (simp add: diff_rat_def)
144
145lift_definition times_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat"
146  is "\<lambda>x y. (fst x * fst y, snd x * snd y)"
147  by (simp add: ac_simps)
148
149lemma mult_rat [simp]: "Fract a b * Fract c d = Fract (a * c) (b * d)"
150  by transfer simp
151
152lemma mult_rat_cancel: "c \<noteq> 0 \<Longrightarrow> Fract (c * a) (c * b) = Fract a b"
153  by transfer simp
154
155lift_definition inverse_rat :: "rat \<Rightarrow> rat"
156  is "\<lambda>x. if fst x = 0 then (0, 1) else (snd x, fst x)"
157  by (auto simp add: mult.commute)
158
159lemma inverse_rat [simp]: "inverse (Fract a b) = Fract b a"
160  by transfer simp
161
162definition divide_rat_def: "q div r = q * inverse r" for q r :: rat
163
164lemma divide_rat [simp]: "Fract a b div Fract c d = Fract (a * d) (b * c)"
165  by (simp add: divide_rat_def)
166
167instance
168proof
169  fix q r s :: rat
170  show "(q * r) * s = q * (r * s)"
171    by transfer simp
172  show "q * r = r * q"
173    by transfer simp
174  show "1 * q = q"
175    by transfer simp
176  show "(q + r) + s = q + (r + s)"
177    by transfer (simp add: algebra_simps)
178  show "q + r = r + q"
179    by transfer simp
180  show "0 + q = q"
181    by transfer simp
182  show "- q + q = 0"
183    by transfer simp
184  show "q - r = q + - r"
185    by (fact diff_rat_def)
186  show "(q + r) * s = q * s + r * s"
187    by transfer (simp add: algebra_simps)
188  show "(0::rat) \<noteq> 1"
189    by transfer simp
190  show "inverse q * q = 1" if "q \<noteq> 0"
191    using that by transfer simp
192  show "q div r = q * inverse r"
193    by (fact divide_rat_def)
194  show "inverse 0 = (0::rat)"
195    by transfer simp
196qed
197
198end
199
200(* We cannot state these two rules earlier because of pending sort hypotheses *)
201lemma div_add_self1_no_field [simp]:
202  assumes "NO_MATCH (x :: 'b :: field) b" "(b :: 'a :: euclidean_semiring_cancel) \<noteq> 0"
203  shows "(b + a) div b = a div b + 1"
204  using assms(2) by (fact div_add_self1)
205
206lemma div_add_self2_no_field [simp]:
207  assumes "NO_MATCH (x :: 'b :: field) b" "(b :: 'a :: euclidean_semiring_cancel) \<noteq> 0"
208  shows "(a + b) div b = a div b + 1"
209  using assms(2) by (fact div_add_self2)
210
211lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1"
212  by (induct k) (simp_all add: Zero_rat_def One_rat_def)
213
214lemma of_int_rat: "of_int k = Fract k 1"
215  by (cases k rule: int_diff_cases) (simp add: of_nat_rat)
216
217lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k"
218  by (rule of_nat_rat [symmetric])
219
220lemma Fract_of_int_eq: "Fract k 1 = of_int k"
221  by (rule of_int_rat [symmetric])
222
223lemma rat_number_collapse:
224  "Fract 0 k = 0"
225  "Fract 1 1 = 1"
226  "Fract (numeral w) 1 = numeral w"
227  "Fract (- numeral w) 1 = - numeral w"
228  "Fract (- 1) 1 = - 1"
229  "Fract k 0 = 0"
230  using Fract_of_int_eq [of "numeral w"]
231    and Fract_of_int_eq [of "- numeral w"]
232  by (simp_all add: Zero_rat_def One_rat_def eq_rat)
233
234lemma rat_number_expand:
235  "0 = Fract 0 1"
236  "1 = Fract 1 1"
237  "numeral k = Fract (numeral k) 1"
238  "- 1 = Fract (- 1) 1"
239  "- numeral k = Fract (- numeral k) 1"
240  by (simp_all add: rat_number_collapse)
241
242lemma Rat_cases_nonzero [case_names Fract 0]:
243  assumes Fract: "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> C"
244    and 0: "q = 0 \<Longrightarrow> C"
245  shows C
246proof (cases "q = 0")
247  case True
248  then show C using 0 by auto
249next
250  case False
251  then obtain a b where *: "q = Fract a b" "b > 0" "coprime a b"
252    by (cases q) auto
253  with False have "0 \<noteq> Fract a b"
254    by simp
255  with \<open>b > 0\<close> have "a \<noteq> 0"
256    by (simp add: Zero_rat_def eq_rat)
257  with Fract * show C by blast
258qed
259
260
261subsubsection \<open>Function \<open>normalize\<close>\<close>
262
263lemma Fract_coprime: "Fract (a div gcd a b) (b div gcd a b) = Fract a b"
264proof (cases "b = 0")
265  case True
266  then show ?thesis
267    by (simp add: eq_rat)
268next
269  case False
270  moreover have "b div gcd a b * gcd a b = b"
271    by (rule dvd_div_mult_self) simp
272  ultimately have "b div gcd a b * gcd a b \<noteq> 0"
273    by simp
274  then have "b div gcd a b \<noteq> 0"
275    by fastforce
276  with False show ?thesis
277    by (simp add: eq_rat dvd_div_mult mult.commute [of a])
278qed
279
280definition normalize :: "int \<times> int \<Rightarrow> int \<times> int"
281  where "normalize p =
282   (if snd p > 0 then (let a = gcd (fst p) (snd p) in (fst p div a, snd p div a))
283    else if snd p = 0 then (0, 1)
284    else (let a = - gcd (fst p) (snd p) in (fst p div a, snd p div a)))"
285
286lemma normalize_crossproduct:
287  assumes "q \<noteq> 0" "s \<noteq> 0"
288  assumes "normalize (p, q) = normalize (r, s)"
289  shows "p * s = r * q"
290proof -
291  have *: "p * s = q * r"
292    if "p * gcd r s = sgn (q * s) * r * gcd p q" and "q * gcd r s = sgn (q * s) * s * gcd p q"
293  proof -
294    from that have "(p * gcd r s) * (sgn (q * s) * s * gcd p q) =
295        (q * gcd r s) * (sgn (q * s) * r * gcd p q)"
296      by simp
297    with assms show ?thesis
298      by (auto simp add: ac_simps sgn_mult sgn_0_0)
299  qed
300  from assms show ?thesis
301    by (auto simp: normalize_def Let_def dvd_div_div_eq_mult mult.commute sgn_mult
302        split: if_splits intro: *)
303qed
304
305lemma normalize_eq: "normalize (a, b) = (p, q) \<Longrightarrow> Fract p q = Fract a b"
306  by (auto simp: normalize_def Let_def Fract_coprime dvd_div_neg rat_number_collapse
307      split: if_split_asm)
308
309lemma normalize_denom_pos: "normalize r = (p, q) \<Longrightarrow> q > 0"
310  by (auto simp: normalize_def Let_def dvd_div_neg pos_imp_zdiv_neg_iff nonneg1_imp_zdiv_pos_iff
311      split: if_split_asm)
312
313lemma normalize_coprime: "normalize r = (p, q) \<Longrightarrow> coprime p q"
314  by (auto simp: normalize_def Let_def dvd_div_neg div_gcd_coprime split: if_split_asm)
315
316lemma normalize_stable [simp]: "q > 0 \<Longrightarrow> coprime p q \<Longrightarrow> normalize (p, q) = (p, q)"
317  by (simp add: normalize_def)
318
319lemma normalize_denom_zero [simp]: "normalize (p, 0) = (0, 1)"
320  by (simp add: normalize_def)
321
322lemma normalize_negative [simp]: "q < 0 \<Longrightarrow> normalize (p, q) = normalize (- p, - q)"
323  by (simp add: normalize_def Let_def dvd_div_neg dvd_neg_div)
324
325text\<open>
326  Decompose a fraction into normalized, i.e. coprime numerator and denominator:
327\<close>
328
329definition quotient_of :: "rat \<Rightarrow> int \<times> int"
330  where "quotient_of x =
331    (THE pair. x = Fract (fst pair) (snd pair) \<and> snd pair > 0 \<and> coprime (fst pair) (snd pair))"
332
333lemma quotient_of_unique: "\<exists>!p. r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)"
334proof (cases r)
335  case (Fract a b)
336  then have "r = Fract (fst (a, b)) (snd (a, b)) \<and>
337      snd (a, b) > 0 \<and> coprime (fst (a, b)) (snd (a, b))"
338    by auto
339  then show ?thesis
340  proof (rule ex1I)
341    fix p
342    assume r: "r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)"
343    obtain c d where p: "p = (c, d)" by (cases p)
344    with r have Fract': "r = Fract c d" "d > 0" "coprime c d"
345      by simp_all
346    have "(c, d) = (a, b)"
347    proof (cases "a = 0")
348      case True
349      with Fract Fract' show ?thesis
350        by (simp add: eq_rat)
351    next
352      case False
353      with Fract Fract' have *: "c * b = a * d" and "c \<noteq> 0"
354        by (auto simp add: eq_rat)
355      then have "c * b > 0 \<longleftrightarrow> a * d > 0"
356        by auto
357      with \<open>b > 0\<close> \<open>d > 0\<close> have "a > 0 \<longleftrightarrow> c > 0"
358        by (simp add: zero_less_mult_iff)
359      with \<open>a \<noteq> 0\<close> \<open>c \<noteq> 0\<close> have sgn: "sgn a = sgn c"
360        by (auto simp add: not_less)
361      from \<open>coprime a b\<close> \<open>coprime c d\<close> have "\<bar>a\<bar> * \<bar>d\<bar> = \<bar>c\<bar> * \<bar>b\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> \<bar>d\<bar> = \<bar>b\<bar>"
362        by (simp add: coprime_crossproduct_int)
363      with \<open>b > 0\<close> \<open>d > 0\<close> have "\<bar>a\<bar> * d = \<bar>c\<bar> * b \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> d = b"
364        by simp
365      then have "a * sgn a * d = c * sgn c * b \<longleftrightarrow> a * sgn a = c * sgn c \<and> d = b"
366        by (simp add: abs_sgn)
367      with sgn * show ?thesis
368        by (auto simp add: sgn_0_0)
369    qed
370    with p show "p = (a, b)"
371      by simp
372  qed
373qed
374
375lemma quotient_of_Fract [code]: "quotient_of (Fract a b) = normalize (a, b)"
376proof -
377  have "Fract a b = Fract (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?Fract)
378    by (rule sym) (auto intro: normalize_eq)
379  moreover have "0 < snd (normalize (a, b))" (is ?denom_pos)
380    by (cases "normalize (a, b)") (rule normalize_denom_pos, simp)
381  moreover have "coprime (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?coprime)
382    by (rule normalize_coprime) simp
383  ultimately have "?Fract \<and> ?denom_pos \<and> ?coprime" by blast
384  then have "(THE p. Fract a b = Fract (fst p) (snd p) \<and> 0 < snd p \<and>
385    coprime (fst p) (snd p)) = normalize (a, b)"
386    by (rule the1_equality [OF quotient_of_unique])
387  then show ?thesis by (simp add: quotient_of_def)
388qed
389
390lemma quotient_of_number [simp]:
391  "quotient_of 0 = (0, 1)"
392  "quotient_of 1 = (1, 1)"
393  "quotient_of (numeral k) = (numeral k, 1)"
394  "quotient_of (- 1) = (- 1, 1)"
395  "quotient_of (- numeral k) = (- numeral k, 1)"
396  by (simp_all add: rat_number_expand quotient_of_Fract)
397
398lemma quotient_of_eq: "quotient_of (Fract a b) = (p, q) \<Longrightarrow> Fract p q = Fract a b"
399  by (simp add: quotient_of_Fract normalize_eq)
400
401lemma quotient_of_denom_pos: "quotient_of r = (p, q) \<Longrightarrow> q > 0"
402  by (cases r) (simp add: quotient_of_Fract normalize_denom_pos)
403
404lemma quotient_of_denom_pos': "snd (quotient_of r) > 0"
405  using quotient_of_denom_pos [of r] by (simp add: prod_eq_iff)
406
407lemma quotient_of_coprime: "quotient_of r = (p, q) \<Longrightarrow> coprime p q"
408  by (cases r) (simp add: quotient_of_Fract normalize_coprime)
409
410lemma quotient_of_inject:
411  assumes "quotient_of a = quotient_of b"
412  shows "a = b"
413proof -
414  obtain p q r s where a: "a = Fract p q" and b: "b = Fract r s" and "q > 0" and "s > 0"
415    by (cases a, cases b)
416  with assms show ?thesis
417    by (simp add: eq_rat quotient_of_Fract normalize_crossproduct)
418qed
419
420lemma quotient_of_inject_eq: "quotient_of a = quotient_of b \<longleftrightarrow> a = b"
421  by (auto simp add: quotient_of_inject)
422
423
424subsubsection \<open>Various\<close>
425
426lemma Fract_of_int_quotient: "Fract k l = of_int k / of_int l"
427  by (simp add: Fract_of_int_eq [symmetric])
428
429lemma Fract_add_one: "n \<noteq> 0 \<Longrightarrow> Fract (m + n) n = Fract m n + 1"
430  by (simp add: rat_number_expand)
431
432lemma quotient_of_div:
433  assumes r: "quotient_of r = (n,d)"
434  shows "r = of_int n / of_int d"
435proof -
436  from theI'[OF quotient_of_unique[of r], unfolded r[unfolded quotient_of_def]]
437  have "r = Fract n d" by simp
438  then show ?thesis using Fract_of_int_quotient
439    by simp
440qed
441
442
443subsubsection \<open>The ordered field of rational numbers\<close>
444
445lift_definition positive :: "rat \<Rightarrow> bool"
446  is "\<lambda>x. 0 < fst x * snd x"
447proof clarsimp
448  fix a b c d :: int
449  assume "b \<noteq> 0" and "d \<noteq> 0" and "a * d = c * b"
450  then have "a * d * b * d = c * b * b * d"
451    by simp
452  then have "a * b * d\<^sup>2 = c * d * b\<^sup>2"
453    unfolding power2_eq_square by (simp add: ac_simps)
454  then have "0 < a * b * d\<^sup>2 \<longleftrightarrow> 0 < c * d * b\<^sup>2"
455    by simp
456  then show "0 < a * b \<longleftrightarrow> 0 < c * d"
457    using \<open>b \<noteq> 0\<close> and \<open>d \<noteq> 0\<close>
458    by (simp add: zero_less_mult_iff)
459qed
460
461lemma positive_zero: "\<not> positive 0"
462  by transfer simp
463
464lemma positive_add: "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x + y)"
465  apply transfer
466  apply (simp add: zero_less_mult_iff)
467  apply (elim disjE)
468     apply (simp_all add: add_pos_pos add_neg_neg mult_pos_neg mult_neg_pos mult_neg_neg)
469  done
470
471lemma positive_mult: "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x * y)"
472  apply transfer
473  apply (drule (1) mult_pos_pos)
474  apply (simp add: ac_simps)
475  done
476
477lemma positive_minus: "\<not> positive x \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> positive (- x)"
478  by transfer (auto simp: neq_iff zero_less_mult_iff mult_less_0_iff)
479
480instantiation rat :: linordered_field
481begin
482
483definition "x < y \<longleftrightarrow> positive (y - x)"
484
485definition "x \<le> y \<longleftrightarrow> x < y \<or> x = y" for x y :: rat
486
487definition "\<bar>a\<bar> = (if a < 0 then - a else a)" for a :: rat
488
489definition "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" for a :: rat
490
491instance
492proof
493  fix a b c :: rat
494  show "\<bar>a\<bar> = (if a < 0 then - a else a)"
495    by (rule abs_rat_def)
496  show "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a"
497    unfolding less_eq_rat_def less_rat_def
498    apply auto
499     apply (drule (1) positive_add)
500     apply (simp_all add: positive_zero)
501    done
502  show "a \<le> a"
503    unfolding less_eq_rat_def by simp
504  show "a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c"
505    unfolding less_eq_rat_def less_rat_def
506    apply auto
507    apply (drule (1) positive_add)
508    apply (simp add: algebra_simps)
509    done
510  show "a \<le> b \<Longrightarrow> b \<le> a \<Longrightarrow> a = b"
511    unfolding less_eq_rat_def less_rat_def
512    apply auto
513    apply (drule (1) positive_add)
514    apply (simp add: positive_zero)
515    done
516  show "a \<le> b \<Longrightarrow> c + a \<le> c + b"
517    unfolding less_eq_rat_def less_rat_def by auto
518  show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)"
519    by (rule sgn_rat_def)
520  show "a \<le> b \<or> b \<le> a"
521    unfolding less_eq_rat_def less_rat_def
522    by (auto dest!: positive_minus)
523  show "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
524    unfolding less_rat_def
525    apply (drule (1) positive_mult)
526    apply (simp add: algebra_simps)
527    done
528qed
529
530end
531
532instantiation rat :: distrib_lattice
533begin
534
535definition "(inf :: rat \<Rightarrow> rat \<Rightarrow> rat) = min"
536
537definition "(sup :: rat \<Rightarrow> rat \<Rightarrow> rat) = max"
538
539instance
540  by standard (auto simp add: inf_rat_def sup_rat_def max_min_distrib2)
541
542end
543
544lemma positive_rat: "positive (Fract a b) \<longleftrightarrow> 0 < a * b"
545  by transfer simp
546
547lemma less_rat [simp]:
548  "b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)"
549  by (simp add: less_rat_def positive_rat algebra_simps)
550
551lemma le_rat [simp]:
552  "b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)"
553  by (simp add: le_less eq_rat)
554
555lemma abs_rat [simp, code]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>"
556  by (auto simp add: abs_rat_def zabs_def Zero_rat_def not_less le_less eq_rat zero_less_mult_iff)
557
558lemma sgn_rat [simp, code]: "sgn (Fract a b) = of_int (sgn a * sgn b)"
559  unfolding Fract_of_int_eq
560  by (auto simp: zsgn_def sgn_rat_def Zero_rat_def eq_rat)
561    (auto simp: rat_number_collapse not_less le_less zero_less_mult_iff)
562
563lemma Rat_induct_pos [case_names Fract, induct type: rat]:
564  assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)"
565  shows "P q"
566proof (cases q)
567  case (Fract a b)
568  have step': "P (Fract a b)" if b: "b < 0" for a b :: int
569  proof -
570    from b have "0 < - b"
571      by simp
572    then have "P (Fract (- a) (- b))"
573      by (rule step)
574    then show "P (Fract a b)"
575      by (simp add: order_less_imp_not_eq [OF b])
576  qed
577  from Fract show "P q"
578    by (auto simp add: linorder_neq_iff step step')
579qed
580
581lemma zero_less_Fract_iff: "0 < b \<Longrightarrow> 0 < Fract a b \<longleftrightarrow> 0 < a"
582  by (simp add: Zero_rat_def zero_less_mult_iff)
583
584lemma Fract_less_zero_iff: "0 < b \<Longrightarrow> Fract a b < 0 \<longleftrightarrow> a < 0"
585  by (simp add: Zero_rat_def mult_less_0_iff)
586
587lemma zero_le_Fract_iff: "0 < b \<Longrightarrow> 0 \<le> Fract a b \<longleftrightarrow> 0 \<le> a"
588  by (simp add: Zero_rat_def zero_le_mult_iff)
589
590lemma Fract_le_zero_iff: "0 < b \<Longrightarrow> Fract a b \<le> 0 \<longleftrightarrow> a \<le> 0"
591  by (simp add: Zero_rat_def mult_le_0_iff)
592
593lemma one_less_Fract_iff: "0 < b \<Longrightarrow> 1 < Fract a b \<longleftrightarrow> b < a"
594  by (simp add: One_rat_def mult_less_cancel_right_disj)
595
596lemma Fract_less_one_iff: "0 < b \<Longrightarrow> Fract a b < 1 \<longleftrightarrow> a < b"
597  by (simp add: One_rat_def mult_less_cancel_right_disj)
598
599lemma one_le_Fract_iff: "0 < b \<Longrightarrow> 1 \<le> Fract a b \<longleftrightarrow> b \<le> a"
600  by (simp add: One_rat_def mult_le_cancel_right)
601
602lemma Fract_le_one_iff: "0 < b \<Longrightarrow> Fract a b \<le> 1 \<longleftrightarrow> a \<le> b"
603  by (simp add: One_rat_def mult_le_cancel_right)
604
605
606subsubsection \<open>Rationals are an Archimedean field\<close>
607
608lemma rat_floor_lemma: "of_int (a div b) \<le> Fract a b \<and> Fract a b < of_int (a div b + 1)"
609proof -
610  have "Fract a b = of_int (a div b) + Fract (a mod b) b"
611    by (cases "b = 0") (simp, simp add: of_int_rat)
612  moreover have "0 \<le> Fract (a mod b) b \<and> Fract (a mod b) b < 1"
613    unfolding Fract_of_int_quotient
614    by (rule linorder_cases [of b 0]) (simp_all add: divide_nonpos_neg)
615  ultimately show ?thesis by simp
616qed
617
618instance rat :: archimedean_field
619proof
620  show "\<exists>z. r \<le> of_int z" for r :: rat
621  proof (induct r)
622    case (Fract a b)
623    have "Fract a b \<le> of_int (a div b + 1)"
624      using rat_floor_lemma [of a b] by simp
625    then show "\<exists>z. Fract a b \<le> of_int z" ..
626  qed
627qed
628
629instantiation rat :: floor_ceiling
630begin
631
632definition floor_rat :: "rat \<Rightarrow> int"
633  where"\<lfloor>x\<rfloor> = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))" for x :: rat
634
635instance
636proof
637  show "of_int \<lfloor>x\<rfloor> \<le> x \<and> x < of_int (\<lfloor>x\<rfloor> + 1)" for x :: rat
638    unfolding floor_rat_def using floor_exists1 by (rule theI')
639qed
640
641end
642
643lemma floor_Fract [simp]: "\<lfloor>Fract a b\<rfloor> = a div b"
644  by (simp add: Fract_of_int_quotient floor_divide_of_int_eq)
645
646
647subsection \<open>Linear arithmetic setup\<close>
648
649declaration \<open>
650  K (Lin_Arith.add_inj_thms @{thms of_int_le_iff [THEN iffD2] of_int_eq_iff [THEN iffD2]}
651    (* not needed because x < (y::int) can be rewritten as x + 1 <= y: of_int_less_iff RS iffD2 *)
652  #> Lin_Arith.add_inj_const (\<^const_name>\<open>of_nat\<close>, \<^typ>\<open>nat \<Rightarrow> rat\<close>)
653  #> Lin_Arith.add_inj_const (\<^const_name>\<open>of_int\<close>, \<^typ>\<open>int \<Rightarrow> rat\<close>))
654\<close>
655
656
657subsection \<open>Embedding from Rationals to other Fields\<close>
658
659context field_char_0
660begin
661
662lift_definition of_rat :: "rat \<Rightarrow> 'a"
663  is "\<lambda>x. of_int (fst x) / of_int (snd x)"
664  by (auto simp: nonzero_divide_eq_eq nonzero_eq_divide_eq) (simp only: of_int_mult [symmetric])
665
666end
667
668lemma of_rat_rat: "b \<noteq> 0 \<Longrightarrow> of_rat (Fract a b) = of_int a / of_int b"
669  by transfer simp
670
671lemma of_rat_0 [simp]: "of_rat 0 = 0"
672  by transfer simp
673
674lemma of_rat_1 [simp]: "of_rat 1 = 1"
675  by transfer simp
676
677lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b"
678  by transfer (simp add: add_frac_eq)
679
680lemma of_rat_minus: "of_rat (- a) = - of_rat a"
681  by transfer simp
682
683lemma of_rat_neg_one [simp]: "of_rat (- 1) = - 1"
684  by (simp add: of_rat_minus)
685
686lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b"
687  using of_rat_add [of a "- b"] by (simp add: of_rat_minus)
688
689lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b"
690  by transfer (simp add: divide_inverse nonzero_inverse_mult_distrib ac_simps)
691
692lemma of_rat_sum: "of_rat (\<Sum>a\<in>A. f a) = (\<Sum>a\<in>A. of_rat (f a))"
693  by (induct rule: infinite_finite_induct) (auto simp: of_rat_add)
694
695lemma of_rat_prod: "of_rat (\<Prod>a\<in>A. f a) = (\<Prod>a\<in>A. of_rat (f a))"
696  by (induct rule: infinite_finite_induct) (auto simp: of_rat_mult)
697
698lemma nonzero_of_rat_inverse: "a \<noteq> 0 \<Longrightarrow> of_rat (inverse a) = inverse (of_rat a)"
699  by (rule inverse_unique [symmetric]) (simp add: of_rat_mult [symmetric])
700
701lemma of_rat_inverse: "(of_rat (inverse a) :: 'a::field_char_0) = inverse (of_rat a)"
702  by (cases "a = 0") (simp_all add: nonzero_of_rat_inverse)
703
704lemma nonzero_of_rat_divide: "b \<noteq> 0 \<Longrightarrow> of_rat (a / b) = of_rat a / of_rat b"
705  by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse)
706
707lemma of_rat_divide: "(of_rat (a / b) :: 'a::field_char_0) = of_rat a / of_rat b"
708  by (cases "b = 0") (simp_all add: nonzero_of_rat_divide)
709
710lemma of_rat_power: "(of_rat (a ^ n) :: 'a::field_char_0) = of_rat a ^ n"
711  by (induct n) (simp_all add: of_rat_mult)
712
713lemma of_rat_eq_iff [simp]: "of_rat a = of_rat b \<longleftrightarrow> a = b"
714  apply transfer
715  apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
716  apply (simp only: of_int_mult [symmetric] of_int_eq_iff)
717  done
718
719lemma of_rat_eq_0_iff [simp]: "of_rat a = 0 \<longleftrightarrow> a = 0"
720  using of_rat_eq_iff [of _ 0] by simp
721
722lemma zero_eq_of_rat_iff [simp]: "0 = of_rat a \<longleftrightarrow> 0 = a"
723  by simp
724
725lemma of_rat_eq_1_iff [simp]: "of_rat a = 1 \<longleftrightarrow> a = 1"
726  using of_rat_eq_iff [of _ 1] by simp
727
728lemma one_eq_of_rat_iff [simp]: "1 = of_rat a \<longleftrightarrow> 1 = a"
729  by simp
730
731lemma of_rat_less: "(of_rat r :: 'a::linordered_field) < of_rat s \<longleftrightarrow> r < s"
732proof (induct r, induct s)
733  fix a b c d :: int
734  assume not_zero: "b > 0" "d > 0"
735  then have "b * d > 0" by simp
736  have of_int_divide_less_eq:
737    "(of_int a :: 'a) / of_int b < of_int c / of_int d \<longleftrightarrow>
738      (of_int a :: 'a) * of_int d < of_int c * of_int b"
739    using not_zero by (simp add: pos_less_divide_eq pos_divide_less_eq)
740  show "(of_rat (Fract a b) :: 'a::linordered_field) < of_rat (Fract c d) \<longleftrightarrow>
741      Fract a b < Fract c d"
742    using not_zero \<open>b * d > 0\<close>
743    by (simp add: of_rat_rat of_int_divide_less_eq of_int_mult [symmetric] del: of_int_mult)
744qed
745
746lemma of_rat_less_eq: "(of_rat r :: 'a::linordered_field) \<le> of_rat s \<longleftrightarrow> r \<le> s"
747  unfolding le_less by (auto simp add: of_rat_less)
748
749lemma of_rat_le_0_iff [simp]: "(of_rat r :: 'a::linordered_field) \<le> 0 \<longleftrightarrow> r \<le> 0"
750  using of_rat_less_eq [of r 0, where 'a = 'a] by simp
751
752lemma zero_le_of_rat_iff [simp]: "0 \<le> (of_rat r :: 'a::linordered_field) \<longleftrightarrow> 0 \<le> r"
753  using of_rat_less_eq [of 0 r, where 'a = 'a] by simp
754
755lemma of_rat_le_1_iff [simp]: "(of_rat r :: 'a::linordered_field) \<le> 1 \<longleftrightarrow> r \<le> 1"
756  using of_rat_less_eq [of r 1] by simp
757
758lemma one_le_of_rat_iff [simp]: "1 \<le> (of_rat r :: 'a::linordered_field) \<longleftrightarrow> 1 \<le> r"
759  using of_rat_less_eq [of 1 r] by simp
760
761lemma of_rat_less_0_iff [simp]: "(of_rat r :: 'a::linordered_field) < 0 \<longleftrightarrow> r < 0"
762  using of_rat_less [of r 0, where 'a = 'a] by simp
763
764lemma zero_less_of_rat_iff [simp]: "0 < (of_rat r :: 'a::linordered_field) \<longleftrightarrow> 0 < r"
765  using of_rat_less [of 0 r, where 'a = 'a] by simp
766
767lemma of_rat_less_1_iff [simp]: "(of_rat r :: 'a::linordered_field) < 1 \<longleftrightarrow> r < 1"
768  using of_rat_less [of r 1] by simp
769
770lemma one_less_of_rat_iff [simp]: "1 < (of_rat r :: 'a::linordered_field) \<longleftrightarrow> 1 < r"
771  using of_rat_less [of 1 r] by simp
772
773lemma of_rat_eq_id [simp]: "of_rat = id"
774proof
775  show "of_rat a = id a" for a
776    by (induct a) (simp add: of_rat_rat Fract_of_int_eq [symmetric])
777qed
778
779lemma abs_of_rat [simp]:
780  "\<bar>of_rat r\<bar> = (of_rat \<bar>r\<bar> :: 'a :: linordered_field)"
781  by (cases "r \<ge> 0") (simp_all add: not_le of_rat_minus)
782
783text \<open>Collapse nested embeddings.\<close>
784lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n"
785  by (induct n) (simp_all add: of_rat_add)
786
787lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z"
788  by (cases z rule: int_diff_cases) (simp add: of_rat_diff)
789
790lemma of_rat_numeral_eq [simp]: "of_rat (numeral w) = numeral w"
791  using of_rat_of_int_eq [of "numeral w"] by simp
792
793lemma of_rat_neg_numeral_eq [simp]: "of_rat (- numeral w) = - numeral w"
794  using of_rat_of_int_eq [of "- numeral w"] by simp
795
796lemma of_rat_floor [simp]:
797  "\<lfloor>of_rat r\<rfloor> = \<lfloor>r\<rfloor>"
798  by (cases r) (simp add: Fract_of_int_quotient of_rat_divide floor_divide_of_int_eq)
799
800lemma of_rat_ceiling [simp]:
801  "\<lceil>of_rat r\<rceil> = \<lceil>r\<rceil>"
802  using of_rat_floor [of "- r"] by (simp add: of_rat_minus ceiling_def)
803
804lemmas zero_rat = Zero_rat_def
805lemmas one_rat = One_rat_def
806
807abbreviation rat_of_nat :: "nat \<Rightarrow> rat"
808  where "rat_of_nat \<equiv> of_nat"
809
810abbreviation rat_of_int :: "int \<Rightarrow> rat"
811  where "rat_of_int \<equiv> of_int"
812
813
814subsection \<open>The Set of Rational Numbers\<close>
815
816context field_char_0
817begin
818
819definition Rats :: "'a set" ("\<rat>")
820  where "\<rat> = range of_rat"
821
822end
823
824lemma Rats_cases [cases set: Rats]:
825  assumes "q \<in> \<rat>"
826  obtains (of_rat) r where "q = of_rat r"
827proof -
828  from \<open>q \<in> \<rat>\<close> have "q \<in> range of_rat"
829    by (simp only: Rats_def)
830  then obtain r where "q = of_rat r" ..
831  then show thesis ..
832qed
833
834lemma Rats_of_rat [simp]: "of_rat r \<in> \<rat>"
835  by (simp add: Rats_def)
836
837lemma Rats_of_int [simp]: "of_int z \<in> \<rat>"
838  by (subst of_rat_of_int_eq [symmetric]) (rule Rats_of_rat)
839
840lemma Ints_subset_Rats: "\<int> \<subseteq> \<rat>"
841  using Ints_cases Rats_of_int by blast
842
843lemma Rats_of_nat [simp]: "of_nat n \<in> \<rat>"
844  by (subst of_rat_of_nat_eq [symmetric]) (rule Rats_of_rat)
845
846lemma Nats_subset_Rats: "\<nat> \<subseteq> \<rat>"
847  using Ints_subset_Rats Nats_subset_Ints by blast
848
849lemma Rats_number_of [simp]: "numeral w \<in> \<rat>"
850  by (subst of_rat_numeral_eq [symmetric]) (rule Rats_of_rat)
851
852lemma Rats_0 [simp]: "0 \<in> \<rat>"
853  unfolding Rats_def by (rule range_eqI) (rule of_rat_0 [symmetric])
854
855lemma Rats_1 [simp]: "1 \<in> \<rat>"
856  unfolding Rats_def by (rule range_eqI) (rule of_rat_1 [symmetric])
857
858lemma Rats_add [simp]: "a \<in> \<rat> \<Longrightarrow> b \<in> \<rat> \<Longrightarrow> a + b \<in> \<rat>"
859  apply (auto simp add: Rats_def)
860  apply (rule range_eqI)
861  apply (rule of_rat_add [symmetric])
862  done
863
864lemma Rats_minus_iff [simp]: "- a \<in> \<rat> \<longleftrightarrow> a \<in> \<rat>"
865by (metis Rats_cases Rats_of_rat add.inverse_inverse of_rat_minus)
866
867lemma Rats_diff [simp]: "a \<in> \<rat> \<Longrightarrow> b \<in> \<rat> \<Longrightarrow> a - b \<in> \<rat>"
868  apply (auto simp add: Rats_def)
869  apply (rule range_eqI)
870  apply (rule of_rat_diff [symmetric])
871  done
872
873lemma Rats_mult [simp]: "a \<in> \<rat> \<Longrightarrow> b \<in> \<rat> \<Longrightarrow> a * b \<in> \<rat>"
874  apply (auto simp add: Rats_def)
875  apply (rule range_eqI)
876  apply (rule of_rat_mult [symmetric])
877  done
878
879lemma Rats_inverse [simp]: "a \<in> \<rat> \<Longrightarrow> inverse a \<in> \<rat>"
880  for a :: "'a::field_char_0"
881  apply (auto simp add: Rats_def)
882  apply (rule range_eqI)
883  apply (rule of_rat_inverse [symmetric])
884  done
885
886lemma Rats_divide [simp]: "a \<in> \<rat> \<Longrightarrow> b \<in> \<rat> \<Longrightarrow> a / b \<in> \<rat>"
887  for a b :: "'a::field_char_0"
888  apply (auto simp add: Rats_def)
889  apply (rule range_eqI)
890  apply (rule of_rat_divide [symmetric])
891  done
892
893lemma Rats_power [simp]: "a \<in> \<rat> \<Longrightarrow> a ^ n \<in> \<rat>"
894  for a :: "'a::field_char_0"
895  apply (auto simp add: Rats_def)
896  apply (rule range_eqI)
897  apply (rule of_rat_power [symmetric])
898  done
899
900lemma Rats_induct [case_names of_rat, induct set: Rats]: "q \<in> \<rat> \<Longrightarrow> (\<And>r. P (of_rat r)) \<Longrightarrow> P q"
901  by (rule Rats_cases) auto
902
903lemma Rats_infinite: "\<not> finite \<rat>"
904  by (auto dest!: finite_imageD simp: inj_on_def infinite_UNIV_char_0 Rats_def)
905
906
907subsection \<open>Implementation of rational numbers as pairs of integers\<close>
908
909text \<open>Formal constructor\<close>
910
911definition Frct :: "int \<times> int \<Rightarrow> rat"
912  where [simp]: "Frct p = Fract (fst p) (snd p)"
913
914lemma [code abstype]: "Frct (quotient_of q) = q"
915  by (cases q) (auto intro: quotient_of_eq)
916
917
918text \<open>Numerals\<close>
919
920declare quotient_of_Fract [code abstract]
921
922definition of_int :: "int \<Rightarrow> rat"
923  where [code_abbrev]: "of_int = Int.of_int"
924
925hide_const (open) of_int
926
927lemma quotient_of_int [code abstract]: "quotient_of (Rat.of_int a) = (a, 1)"
928  by (simp add: of_int_def of_int_rat quotient_of_Fract)
929
930lemma [code_unfold]: "numeral k = Rat.of_int (numeral k)"
931  by (simp add: Rat.of_int_def)
932
933lemma [code_unfold]: "- numeral k = Rat.of_int (- numeral k)"
934  by (simp add: Rat.of_int_def)
935
936lemma Frct_code_post [code_post]:
937  "Frct (0, a) = 0"
938  "Frct (a, 0) = 0"
939  "Frct (1, 1) = 1"
940  "Frct (numeral k, 1) = numeral k"
941  "Frct (1, numeral k) = 1 / numeral k"
942  "Frct (numeral k, numeral l) = numeral k / numeral l"
943  "Frct (- a, b) = - Frct (a, b)"
944  "Frct (a, - b) = - Frct (a, b)"
945  "- (- Frct q) = Frct q"
946  by (simp_all add: Fract_of_int_quotient)
947
948
949text \<open>Operations\<close>
950
951lemma rat_zero_code [code abstract]: "quotient_of 0 = (0, 1)"
952  by (simp add: Zero_rat_def quotient_of_Fract normalize_def)
953
954lemma rat_one_code [code abstract]: "quotient_of 1 = (1, 1)"
955  by (simp add: One_rat_def quotient_of_Fract normalize_def)
956
957lemma rat_plus_code [code abstract]:
958  "quotient_of (p + q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
959     in normalize (a * d + b * c, c * d))"
960  by (cases p, cases q) (simp add: quotient_of_Fract)
961
962lemma rat_uminus_code [code abstract]:
963  "quotient_of (- p) = (let (a, b) = quotient_of p in (- a, b))"
964  by (cases p) (simp add: quotient_of_Fract)
965
966lemma rat_minus_code [code abstract]:
967  "quotient_of (p - q) =
968    (let (a, c) = quotient_of p; (b, d) = quotient_of q
969     in normalize (a * d - b * c, c * d))"
970  by (cases p, cases q) (simp add: quotient_of_Fract)
971
972lemma rat_times_code [code abstract]:
973  "quotient_of (p * q) =
974    (let (a, c) = quotient_of p; (b, d) = quotient_of q
975     in normalize (a * b, c * d))"
976  by (cases p, cases q) (simp add: quotient_of_Fract)
977
978lemma rat_inverse_code [code abstract]:
979  "quotient_of (inverse p) =
980    (let (a, b) = quotient_of p
981     in if a = 0 then (0, 1) else (sgn a * b, \<bar>a\<bar>))"
982proof (cases p)
983  case (Fract a b)
984  then show ?thesis
985    by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract ac_simps)
986qed
987
988lemma rat_divide_code [code abstract]:
989  "quotient_of (p / q) =
990    (let (a, c) = quotient_of p; (b, d) = quotient_of q
991     in normalize (a * d, c * b))"
992  by (cases p, cases q) (simp add: quotient_of_Fract)
993
994lemma rat_abs_code [code abstract]:
995  "quotient_of \<bar>p\<bar> = (let (a, b) = quotient_of p in (\<bar>a\<bar>, b))"
996  by (cases p) (simp add: quotient_of_Fract)
997  
998lemma rat_sgn_code [code abstract]: "quotient_of (sgn p) = (sgn (fst (quotient_of p)), 1)"
999proof (cases p)
1000  case (Fract a b)
1001  then show ?thesis
1002    by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract)
1003qed
1004
1005lemma rat_floor_code [code]: "\<lfloor>p\<rfloor> = (let (a, b) = quotient_of p in a div b)"
1006  by (cases p) (simp add: quotient_of_Fract floor_Fract)
1007
1008instantiation rat :: equal
1009begin
1010
1011definition [code]: "HOL.equal a b \<longleftrightarrow> quotient_of a = quotient_of b"
1012
1013instance
1014  by standard (simp add: equal_rat_def quotient_of_inject_eq)
1015
1016lemma rat_eq_refl [code nbe]: "HOL.equal (r::rat) r \<longleftrightarrow> True"
1017  by (rule equal_refl)
1018
1019end
1020
1021lemma rat_less_eq_code [code]:
1022  "p \<le> q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d \<le> c * b)"
1023  by (cases p, cases q) (simp add: quotient_of_Fract mult.commute)
1024
1025lemma rat_less_code [code]:
1026  "p < q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d < c * b)"
1027  by (cases p, cases q) (simp add: quotient_of_Fract mult.commute)
1028
1029lemma [code]: "of_rat p = (let (a, b) = quotient_of p in of_int a / of_int b)"
1030  by (cases p) (simp add: quotient_of_Fract of_rat_rat)
1031
1032
1033text \<open>Quickcheck\<close>
1034
1035definition (in term_syntax)
1036  valterm_fract :: "int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow>
1037    int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow>
1038    rat \<times> (unit \<Rightarrow> Code_Evaluation.term)"
1039  where [code_unfold]: "valterm_fract k l = Code_Evaluation.valtermify Fract {\<cdot>} k {\<cdot>} l"
1040
1041notation fcomp (infixl "\<circ>>" 60)
1042notation scomp (infixl "\<circ>\<rightarrow>" 60)
1043
1044instantiation rat :: random
1045begin
1046
1047definition
1048  "Quickcheck_Random.random i =
1049    Quickcheck_Random.random i \<circ>\<rightarrow> (\<lambda>num. Random.range i \<circ>\<rightarrow> (\<lambda>denom. Pair
1050      (let j = int_of_integer (integer_of_natural (denom + 1))
1051       in valterm_fract num (j, \<lambda>u. Code_Evaluation.term_of j))))"
1052
1053instance ..
1054
1055end
1056
1057no_notation fcomp (infixl "\<circ>>" 60)
1058no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
1059
1060instantiation rat :: exhaustive
1061begin
1062
1063definition
1064  "exhaustive_rat f d =
1065    Quickcheck_Exhaustive.exhaustive
1066      (\<lambda>l. Quickcheck_Exhaustive.exhaustive
1067        (\<lambda>k. f (Fract k (int_of_integer (integer_of_natural l) + 1))) d) d"
1068
1069instance ..
1070
1071end
1072
1073instantiation rat :: full_exhaustive
1074begin
1075
1076definition
1077  "full_exhaustive_rat f d =
1078    Quickcheck_Exhaustive.full_exhaustive
1079      (\<lambda>(l, _). Quickcheck_Exhaustive.full_exhaustive
1080        (\<lambda>k. f
1081          (let j = int_of_integer (integer_of_natural l) + 1
1082           in valterm_fract k (j, \<lambda>_. Code_Evaluation.term_of j))) d) d"
1083
1084instance ..
1085
1086end
1087
1088instance rat :: partial_term_of ..
1089
1090lemma [code]:
1091  "partial_term_of (ty :: rat itself) (Quickcheck_Narrowing.Narrowing_variable p tt) \<equiv>
1092    Code_Evaluation.Free (STR ''_'') (Typerep.Typerep (STR ''Rat.rat'') [])"
1093  "partial_term_of (ty :: rat itself) (Quickcheck_Narrowing.Narrowing_constructor 0 [l, k]) \<equiv>
1094    Code_Evaluation.App
1095      (Code_Evaluation.Const (STR ''Rat.Frct'')
1096        (Typerep.Typerep (STR ''fun'')
1097          [Typerep.Typerep (STR ''Product_Type.prod'')
1098           [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Int.int'') []],
1099           Typerep.Typerep (STR ''Rat.rat'') []]))
1100      (Code_Evaluation.App
1101        (Code_Evaluation.App
1102          (Code_Evaluation.Const (STR ''Product_Type.Pair'')
1103            (Typerep.Typerep (STR ''fun'')
1104              [Typerep.Typerep (STR ''Int.int'') [],
1105               Typerep.Typerep (STR ''fun'')
1106                [Typerep.Typerep (STR ''Int.int'') [],
1107                 Typerep.Typerep (STR ''Product_Type.prod'')
1108                 [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Int.int'') []]]]))
1109          (partial_term_of (TYPE(int)) l)) (partial_term_of (TYPE(int)) k))"
1110  by (rule partial_term_of_anything)+
1111
1112instantiation rat :: narrowing
1113begin
1114
1115definition
1116  "narrowing =
1117    Quickcheck_Narrowing.apply
1118      (Quickcheck_Narrowing.apply
1119        (Quickcheck_Narrowing.cons (\<lambda>nom denom. Fract nom denom)) narrowing) narrowing"
1120
1121instance ..
1122
1123end
1124
1125
1126subsection \<open>Setup for Nitpick\<close>
1127
1128declaration \<open>
1129  Nitpick_HOL.register_frac_type \<^type_name>\<open>rat\<close>
1130    [(\<^const_name>\<open>Abs_Rat\<close>, \<^const_name>\<open>Nitpick.Abs_Frac\<close>),
1131     (\<^const_name>\<open>zero_rat_inst.zero_rat\<close>, \<^const_name>\<open>Nitpick.zero_frac\<close>),
1132     (\<^const_name>\<open>one_rat_inst.one_rat\<close>, \<^const_name>\<open>Nitpick.one_frac\<close>),
1133     (\<^const_name>\<open>plus_rat_inst.plus_rat\<close>, \<^const_name>\<open>Nitpick.plus_frac\<close>),
1134     (\<^const_name>\<open>times_rat_inst.times_rat\<close>, \<^const_name>\<open>Nitpick.times_frac\<close>),
1135     (\<^const_name>\<open>uminus_rat_inst.uminus_rat\<close>, \<^const_name>\<open>Nitpick.uminus_frac\<close>),
1136     (\<^const_name>\<open>inverse_rat_inst.inverse_rat\<close>, \<^const_name>\<open>Nitpick.inverse_frac\<close>),
1137     (\<^const_name>\<open>ord_rat_inst.less_rat\<close>, \<^const_name>\<open>Nitpick.less_frac\<close>),
1138     (\<^const_name>\<open>ord_rat_inst.less_eq_rat\<close>, \<^const_name>\<open>Nitpick.less_eq_frac\<close>),
1139     (\<^const_name>\<open>field_char_0_class.of_rat\<close>, \<^const_name>\<open>Nitpick.of_frac\<close>)]
1140\<close>
1141
1142lemmas [nitpick_unfold] =
1143  inverse_rat_inst.inverse_rat
1144  one_rat_inst.one_rat ord_rat_inst.less_rat
1145  ord_rat_inst.less_eq_rat plus_rat_inst.plus_rat times_rat_inst.times_rat
1146  uminus_rat_inst.uminus_rat zero_rat_inst.zero_rat
1147
1148
1149subsection \<open>Float syntax\<close>
1150
1151syntax "_Float" :: "float_const \<Rightarrow> 'a"    ("_")
1152
1153parse_translation \<open>
1154  let
1155    fun mk_frac str =
1156      let
1157        val {mant = i, exp = n} = Lexicon.read_float str;
1158        val exp = Syntax.const \<^const_syntax>\<open>Power.power\<close>;
1159        val ten = Numeral.mk_number_syntax 10;
1160        val exp10 = if n = 1 then ten else exp $ ten $ Numeral.mk_number_syntax n;
1161      in Syntax.const \<^const_syntax>\<open>Fields.inverse_divide\<close> $ Numeral.mk_number_syntax i $ exp10 end;
1162
1163    fun float_tr [(c as Const (\<^syntax_const>\<open>_constrain\<close>, _)) $ t $ u] = c $ float_tr [t] $ u
1164      | float_tr [t as Const (str, _)] = mk_frac str
1165      | float_tr ts = raise TERM ("float_tr", ts);
1166  in [(\<^syntax_const>\<open>_Float\<close>, K float_tr)] end
1167\<close>
1168
1169text\<open>Test:\<close>
1170lemma "123.456 = -111.111 + 200 + 30 + 4 + 5/10 + 6/100 + (7/1000::rat)"
1171  by simp
1172
1173
1174subsection \<open>Hiding implementation details\<close>
1175
1176hide_const (open) normalize positive
1177
1178lifting_update rat.lifting
1179lifting_forget rat.lifting
1180
1181end
1182