(* Title: HOL/Rat.thy Author: Markus Wenzel, TU Muenchen *) section \Rational numbers\ theory Rat imports Archimedean_Field begin subsection \Rational numbers as quotient\ subsubsection \Construction of the type of rational numbers\ definition ratrel :: "(int \ int) \ (int \ int) \ bool" where "ratrel = (\x y. snd x \ 0 \ snd y \ 0 \ fst x * snd y = fst y * snd x)" lemma ratrel_iff [simp]: "ratrel x y \ snd x \ 0 \ snd y \ 0 \ fst x * snd y = fst y * snd x" by (simp add: ratrel_def) lemma exists_ratrel_refl: "\x. ratrel x x" by (auto intro!: one_neq_zero) lemma symp_ratrel: "symp ratrel" by (simp add: ratrel_def symp_def) lemma transp_ratrel: "transp ratrel" proof (rule transpI, unfold split_paired_all) fix a b a' b' a'' b'' :: int assume *: "ratrel (a, b) (a', b')" assume **: "ratrel (a', b') (a'', b'')" have "b' * (a * b'') = b'' * (a * b')" by simp also from * have "a * b' = a' * b" by auto also have "b'' * (a' * b) = b * (a' * b'')" by simp also from ** have "a' * b'' = a'' * b'" by auto also have "b * (a'' * b') = b' * (a'' * b)" by simp finally have "b' * (a * b'') = b' * (a'' * b)" . moreover from ** have "b' \ 0" by auto ultimately have "a * b'' = a'' * b" by simp with * ** show "ratrel (a, b) (a'', b'')" by auto qed lemma part_equivp_ratrel: "part_equivp ratrel" by (rule part_equivpI [OF exists_ratrel_refl symp_ratrel transp_ratrel]) quotient_type rat = "int \ int" / partial: "ratrel" morphisms Rep_Rat Abs_Rat by (rule part_equivp_ratrel) lemma Domainp_cr_rat [transfer_domain_rule]: "Domainp pcr_rat = (\x. snd x \ 0)" by (simp add: rat.domain_eq) subsubsection \Representation and basic operations\ lift_definition Fract :: "int \ int \ rat" is "\a b. if b = 0 then (0, 1) else (a, b)" by simp lemma eq_rat: "\a b c d. b \ 0 \ d \ 0 \ Fract a b = Fract c d \ a * d = c * b" "\a. Fract a 0 = Fract 0 1" "\a c. Fract 0 a = Fract 0 c" by (transfer, simp)+ lemma Rat_cases [case_names Fract, cases type: rat]: assumes that: "\a b. q = Fract a b \ b > 0 \ coprime a b \ C" shows C proof - obtain a b :: int where q: "q = Fract a b" and b: "b \ 0" by transfer simp let ?a = "a div gcd a b" let ?b = "b div gcd a b" from b have "?b * gcd a b = b" by simp with b have "?b \ 0" by fastforce with q b have q2: "q = Fract ?a ?b" by (simp add: eq_rat dvd_div_mult mult.commute [of a]) from b have coprime: "coprime ?a ?b" by (auto intro: div_gcd_coprime) show C proof (cases "b > 0") case True then have "?b > 0" by (simp add: nonneg1_imp_zdiv_pos_iff) from q2 this coprime show C by (rule that) next case False have "q = Fract (- ?a) (- ?b)" unfolding q2 by transfer simp moreover from False b have "- ?b > 0" by (simp add: pos_imp_zdiv_neg_iff) moreover from coprime have "coprime (- ?a) (- ?b)" by simp ultimately show C by (rule that) qed qed lemma Rat_induct [case_names Fract, induct type: rat]: assumes "\a b. b > 0 \ coprime a b \ P (Fract a b)" shows "P q" using assms by (cases q) simp instantiation rat :: field begin lift_definition zero_rat :: "rat" is "(0, 1)" by simp lift_definition one_rat :: "rat" is "(1, 1)" by simp lemma Zero_rat_def: "0 = Fract 0 1" by transfer simp lemma One_rat_def: "1 = Fract 1 1" by transfer simp lift_definition plus_rat :: "rat \ rat \ rat" is "\x y. (fst x * snd y + fst y * snd x, snd x * snd y)" by (auto simp: distrib_right) (simp add: ac_simps) lemma add_rat [simp]: assumes "b \ 0" and "d \ 0" shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)" using assms by transfer simp lift_definition uminus_rat :: "rat \ rat" is "\x. (- fst x, snd x)" by simp lemma minus_rat [simp]: "- Fract a b = Fract (- a) b" by transfer simp lemma minus_rat_cancel [simp]: "Fract (- a) (- b) = Fract a b" by (cases "b = 0") (simp_all add: eq_rat) definition diff_rat_def: "q - r = q + - r" for q r :: rat lemma diff_rat [simp]: "b \ 0 \ d \ 0 \ Fract a b - Fract c d = Fract (a * d - c * b) (b * d)" by (simp add: diff_rat_def) lift_definition times_rat :: "rat \ rat \ rat" is "\x y. (fst x * fst y, snd x * snd y)" by (simp add: ac_simps) lemma mult_rat [simp]: "Fract a b * Fract c d = Fract (a * c) (b * d)" by transfer simp lemma mult_rat_cancel: "c \ 0 \ Fract (c * a) (c * b) = Fract a b" by transfer simp lift_definition inverse_rat :: "rat \ rat" is "\x. if fst x = 0 then (0, 1) else (snd x, fst x)" by (auto simp add: mult.commute) lemma inverse_rat [simp]: "inverse (Fract a b) = Fract b a" by transfer simp definition divide_rat_def: "q div r = q * inverse r" for q r :: rat lemma divide_rat [simp]: "Fract a b div Fract c d = Fract (a * d) (b * c)" by (simp add: divide_rat_def) instance proof fix q r s :: rat show "(q * r) * s = q * (r * s)" by transfer simp show "q * r = r * q" by transfer simp show "1 * q = q" by transfer simp show "(q + r) + s = q + (r + s)" by transfer (simp add: algebra_simps) show "q + r = r + q" by transfer simp show "0 + q = q" by transfer simp show "- q + q = 0" by transfer simp show "q - r = q + - r" by (fact diff_rat_def) show "(q + r) * s = q * s + r * s" by transfer (simp add: algebra_simps) show "(0::rat) \ 1" by transfer simp show "inverse q * q = 1" if "q \ 0" using that by transfer simp show "q div r = q * inverse r" by (fact divide_rat_def) show "inverse 0 = (0::rat)" by transfer simp qed end (* We cannot state these two rules earlier because of pending sort hypotheses *) lemma div_add_self1_no_field [simp]: assumes "NO_MATCH (x :: 'b :: field) b" "(b :: 'a :: euclidean_semiring_cancel) \ 0" shows "(b + a) div b = a div b + 1" using assms(2) by (fact div_add_self1) lemma div_add_self2_no_field [simp]: assumes "NO_MATCH (x :: 'b :: field) b" "(b :: 'a :: euclidean_semiring_cancel) \ 0" shows "(a + b) div b = a div b + 1" using assms(2) by (fact div_add_self2) lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1" by (induct k) (simp_all add: Zero_rat_def One_rat_def) lemma of_int_rat: "of_int k = Fract k 1" by (cases k rule: int_diff_cases) (simp add: of_nat_rat) lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k" by (rule of_nat_rat [symmetric]) lemma Fract_of_int_eq: "Fract k 1 = of_int k" by (rule of_int_rat [symmetric]) lemma rat_number_collapse: "Fract 0 k = 0" "Fract 1 1 = 1" "Fract (numeral w) 1 = numeral w" "Fract (- numeral w) 1 = - numeral w" "Fract (- 1) 1 = - 1" "Fract k 0 = 0" using Fract_of_int_eq [of "numeral w"] and Fract_of_int_eq [of "- numeral w"] by (simp_all add: Zero_rat_def One_rat_def eq_rat) lemma rat_number_expand: "0 = Fract 0 1" "1 = Fract 1 1" "numeral k = Fract (numeral k) 1" "- 1 = Fract (- 1) 1" "- numeral k = Fract (- numeral k) 1" by (simp_all add: rat_number_collapse) lemma Rat_cases_nonzero [case_names Fract 0]: assumes Fract: "\a b. q = Fract a b \ b > 0 \ a \ 0 \ coprime a b \ C" and 0: "q = 0 \ C" shows C proof (cases "q = 0") case True then show C using 0 by auto next case False then obtain a b where *: "q = Fract a b" "b > 0" "coprime a b" by (cases q) auto with False have "0 \ Fract a b" by simp with \b > 0\ have "a \ 0" by (simp add: Zero_rat_def eq_rat) with Fract * show C by blast qed subsubsection \Function \normalize\\ lemma Fract_coprime: "Fract (a div gcd a b) (b div gcd a b) = Fract a b" proof (cases "b = 0") case True then show ?thesis by (simp add: eq_rat) next case False moreover have "b div gcd a b * gcd a b = b" by (rule dvd_div_mult_self) simp ultimately have "b div gcd a b * gcd a b \ 0" by simp then have "b div gcd a b \ 0" by fastforce with False show ?thesis by (simp add: eq_rat dvd_div_mult mult.commute [of a]) qed definition normalize :: "int \ int \ int \ int" where "normalize p = (if snd p > 0 then (let a = gcd (fst p) (snd p) in (fst p div a, snd p div a)) else if snd p = 0 then (0, 1) else (let a = - gcd (fst p) (snd p) in (fst p div a, snd p div a)))" lemma normalize_crossproduct: assumes "q \ 0" "s \ 0" assumes "normalize (p, q) = normalize (r, s)" shows "p * s = r * q" proof - have *: "p * s = q * r" if "p * gcd r s = sgn (q * s) * r * gcd p q" and "q * gcd r s = sgn (q * s) * s * gcd p q" proof - from that have "(p * gcd r s) * (sgn (q * s) * s * gcd p q) = (q * gcd r s) * (sgn (q * s) * r * gcd p q)" by simp with assms show ?thesis by (auto simp add: ac_simps sgn_mult sgn_0_0) qed from assms show ?thesis by (auto simp: normalize_def Let_def dvd_div_div_eq_mult mult.commute sgn_mult split: if_splits intro: *) qed lemma normalize_eq: "normalize (a, b) = (p, q) \ Fract p q = Fract a b" by (auto simp: normalize_def Let_def Fract_coprime dvd_div_neg rat_number_collapse split: if_split_asm) lemma normalize_denom_pos: "normalize r = (p, q) \ q > 0" by (auto simp: normalize_def Let_def dvd_div_neg pos_imp_zdiv_neg_iff nonneg1_imp_zdiv_pos_iff split: if_split_asm) lemma normalize_coprime: "normalize r = (p, q) \ coprime p q" by (auto simp: normalize_def Let_def dvd_div_neg div_gcd_coprime split: if_split_asm) lemma normalize_stable [simp]: "q > 0 \ coprime p q \ normalize (p, q) = (p, q)" by (simp add: normalize_def) lemma normalize_denom_zero [simp]: "normalize (p, 0) = (0, 1)" by (simp add: normalize_def) lemma normalize_negative [simp]: "q < 0 \ normalize (p, q) = normalize (- p, - q)" by (simp add: normalize_def Let_def dvd_div_neg dvd_neg_div) text\ Decompose a fraction into normalized, i.e. coprime numerator and denominator: \ definition quotient_of :: "rat \ int \ int" where "quotient_of x = (THE pair. x = Fract (fst pair) (snd pair) \ snd pair > 0 \ coprime (fst pair) (snd pair))" lemma quotient_of_unique: "\!p. r = Fract (fst p) (snd p) \ snd p > 0 \ coprime (fst p) (snd p)" proof (cases r) case (Fract a b) then have "r = Fract (fst (a, b)) (snd (a, b)) \ snd (a, b) > 0 \ coprime (fst (a, b)) (snd (a, b))" by auto then show ?thesis proof (rule ex1I) fix p assume r: "r = Fract (fst p) (snd p) \ snd p > 0 \ coprime (fst p) (snd p)" obtain c d where p: "p = (c, d)" by (cases p) with r have Fract': "r = Fract c d" "d > 0" "coprime c d" by simp_all have "(c, d) = (a, b)" proof (cases "a = 0") case True with Fract Fract' show ?thesis by (simp add: eq_rat) next case False with Fract Fract' have *: "c * b = a * d" and "c \ 0" by (auto simp add: eq_rat) then have "c * b > 0 \ a * d > 0" by auto with \b > 0\ \d > 0\ have "a > 0 \ c > 0" by (simp add: zero_less_mult_iff) with \a \ 0\ \c \ 0\ have sgn: "sgn a = sgn c" by (auto simp add: not_less) from \coprime a b\ \coprime c d\ have "\a\ * \d\ = \c\ * \b\ \ \a\ = \c\ \ \d\ = \b\" by (simp add: coprime_crossproduct_int) with \b > 0\ \d > 0\ have "\a\ * d = \c\ * b \ \a\ = \c\ \ d = b" by simp then have "a * sgn a * d = c * sgn c * b \ a * sgn a = c * sgn c \ d = b" by (simp add: abs_sgn) with sgn * show ?thesis by (auto simp add: sgn_0_0) qed with p show "p = (a, b)" by simp qed qed lemma quotient_of_Fract [code]: "quotient_of (Fract a b) = normalize (a, b)" proof - have "Fract a b = Fract (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?Fract) by (rule sym) (auto intro: normalize_eq) moreover have "0 < snd (normalize (a, b))" (is ?denom_pos) by (cases "normalize (a, b)") (rule normalize_denom_pos, simp) moreover have "coprime (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?coprime) by (rule normalize_coprime) simp ultimately have "?Fract \ ?denom_pos \ ?coprime" by blast then have "(THE p. Fract a b = Fract (fst p) (snd p) \ 0 < snd p \ coprime (fst p) (snd p)) = normalize (a, b)" by (rule the1_equality [OF quotient_of_unique]) then show ?thesis by (simp add: quotient_of_def) qed lemma quotient_of_number [simp]: "quotient_of 0 = (0, 1)" "quotient_of 1 = (1, 1)" "quotient_of (numeral k) = (numeral k, 1)" "quotient_of (- 1) = (- 1, 1)" "quotient_of (- numeral k) = (- numeral k, 1)" by (simp_all add: rat_number_expand quotient_of_Fract) lemma quotient_of_eq: "quotient_of (Fract a b) = (p, q) \ Fract p q = Fract a b" by (simp add: quotient_of_Fract normalize_eq) lemma quotient_of_denom_pos: "quotient_of r = (p, q) \ q > 0" by (cases r) (simp add: quotient_of_Fract normalize_denom_pos) lemma quotient_of_denom_pos': "snd (quotient_of r) > 0" using quotient_of_denom_pos [of r] by (simp add: prod_eq_iff) lemma quotient_of_coprime: "quotient_of r = (p, q) \ coprime p q" by (cases r) (simp add: quotient_of_Fract normalize_coprime) lemma quotient_of_inject: assumes "quotient_of a = quotient_of b" shows "a = b" proof - obtain p q r s where a: "a = Fract p q" and b: "b = Fract r s" and "q > 0" and "s > 0" by (cases a, cases b) with assms show ?thesis by (simp add: eq_rat quotient_of_Fract normalize_crossproduct) qed lemma quotient_of_inject_eq: "quotient_of a = quotient_of b \ a = b" by (auto simp add: quotient_of_inject) subsubsection \Various\ lemma Fract_of_int_quotient: "Fract k l = of_int k / of_int l" by (simp add: Fract_of_int_eq [symmetric]) lemma Fract_add_one: "n \ 0 \ Fract (m + n) n = Fract m n + 1" by (simp add: rat_number_expand) lemma quotient_of_div: assumes r: "quotient_of r = (n,d)" shows "r = of_int n / of_int d" proof - from theI'[OF quotient_of_unique[of r], unfolded r[unfolded quotient_of_def]] have "r = Fract n d" by simp then show ?thesis using Fract_of_int_quotient by simp qed subsubsection \The ordered field of rational numbers\ lift_definition positive :: "rat \ bool" is "\x. 0 < fst x * snd x" proof clarsimp fix a b c d :: int assume "b \ 0" and "d \ 0" and "a * d = c * b" then have "a * d * b * d = c * b * b * d" by simp then have "a * b * d\<^sup>2 = c * d * b\<^sup>2" unfolding power2_eq_square by (simp add: ac_simps) then have "0 < a * b * d\<^sup>2 \ 0 < c * d * b\<^sup>2" by simp then show "0 < a * b \ 0 < c * d" using \b \ 0\ and \d \ 0\ by (simp add: zero_less_mult_iff) qed lemma positive_zero: "\ positive 0" by transfer simp lemma positive_add: "positive x \ positive y \ positive (x + y)" apply transfer apply (simp add: zero_less_mult_iff) apply (elim disjE) apply (simp_all add: add_pos_pos add_neg_neg mult_pos_neg mult_neg_pos mult_neg_neg) done lemma positive_mult: "positive x \ positive y \ positive (x * y)" apply transfer apply (drule (1) mult_pos_pos) apply (simp add: ac_simps) done lemma positive_minus: "\ positive x \ x \ 0 \ positive (- x)" by transfer (auto simp: neq_iff zero_less_mult_iff mult_less_0_iff) instantiation rat :: linordered_field begin definition "x < y \ positive (y - x)" definition "x \ y \ x < y \ x = y" for x y :: rat definition "\a\ = (if a < 0 then - a else a)" for a :: rat definition "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" for a :: rat instance proof fix a b c :: rat show "\a\ = (if a < 0 then - a else a)" by (rule abs_rat_def) show "a < b \ a \ b \ \ b \ a" unfolding less_eq_rat_def less_rat_def apply auto apply (drule (1) positive_add) apply (simp_all add: positive_zero) done show "a \ a" unfolding less_eq_rat_def by simp show "a \ b \ b \ c \ a \ c" unfolding less_eq_rat_def less_rat_def apply auto apply (drule (1) positive_add) apply (simp add: algebra_simps) done show "a \ b \ b \ a \ a = b" unfolding less_eq_rat_def less_rat_def apply auto apply (drule (1) positive_add) apply (simp add: positive_zero) done show "a \ b \ c + a \ c + b" unfolding less_eq_rat_def less_rat_def by auto show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" by (rule sgn_rat_def) show "a \ b \ b \ a" unfolding less_eq_rat_def less_rat_def by (auto dest!: positive_minus) show "a < b \ 0 < c \ c * a < c * b" unfolding less_rat_def apply (drule (1) positive_mult) apply (simp add: algebra_simps) done qed end instantiation rat :: distrib_lattice begin definition "(inf :: rat \ rat \ rat) = min" definition "(sup :: rat \ rat \ rat) = max" instance by standard (auto simp add: inf_rat_def sup_rat_def max_min_distrib2) end lemma positive_rat: "positive (Fract a b) \ 0 < a * b" by transfer simp lemma less_rat [simp]: "b \ 0 \ d \ 0 \ Fract a b < Fract c d \ (a * d) * (b * d) < (c * b) * (b * d)" by (simp add: less_rat_def positive_rat algebra_simps) lemma le_rat [simp]: "b \ 0 \ d \ 0 \ Fract a b \ Fract c d \ (a * d) * (b * d) \ (c * b) * (b * d)" by (simp add: le_less eq_rat) lemma abs_rat [simp, code]: "\Fract a b\ = Fract \a\ \b\" by (auto simp add: abs_rat_def zabs_def Zero_rat_def not_less le_less eq_rat zero_less_mult_iff) lemma sgn_rat [simp, code]: "sgn (Fract a b) = of_int (sgn a * sgn b)" unfolding Fract_of_int_eq by (auto simp: zsgn_def sgn_rat_def Zero_rat_def eq_rat) (auto simp: rat_number_collapse not_less le_less zero_less_mult_iff) lemma Rat_induct_pos [case_names Fract, induct type: rat]: assumes step: "\a b. 0 < b \ P (Fract a b)" shows "P q" proof (cases q) case (Fract a b) have step': "P (Fract a b)" if b: "b < 0" for a b :: int proof - from b have "0 < - b" by simp then have "P (Fract (- a) (- b))" by (rule step) then show "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b]) qed from Fract show "P q" by (auto simp add: linorder_neq_iff step step') qed lemma zero_less_Fract_iff: "0 < b \ 0 < Fract a b \ 0 < a" by (simp add: Zero_rat_def zero_less_mult_iff) lemma Fract_less_zero_iff: "0 < b \ Fract a b < 0 \ a < 0" by (simp add: Zero_rat_def mult_less_0_iff) lemma zero_le_Fract_iff: "0 < b \ 0 \ Fract a b \ 0 \ a" by (simp add: Zero_rat_def zero_le_mult_iff) lemma Fract_le_zero_iff: "0 < b \ Fract a b \ 0 \ a \ 0" by (simp add: Zero_rat_def mult_le_0_iff) lemma one_less_Fract_iff: "0 < b \ 1 < Fract a b \ b < a" by (simp add: One_rat_def mult_less_cancel_right_disj) lemma Fract_less_one_iff: "0 < b \ Fract a b < 1 \ a < b" by (simp add: One_rat_def mult_less_cancel_right_disj) lemma one_le_Fract_iff: "0 < b \ 1 \ Fract a b \ b \ a" by (simp add: One_rat_def mult_le_cancel_right) lemma Fract_le_one_iff: "0 < b \ Fract a b \ 1 \ a \ b" by (simp add: One_rat_def mult_le_cancel_right) subsubsection \Rationals are an Archimedean field\ lemma rat_floor_lemma: "of_int (a div b) \ Fract a b \ Fract a b < of_int (a div b + 1)" proof - have "Fract a b = of_int (a div b) + Fract (a mod b) b" by (cases "b = 0") (simp, simp add: of_int_rat) moreover have "0 \ Fract (a mod b) b \ Fract (a mod b) b < 1" unfolding Fract_of_int_quotient by (rule linorder_cases [of b 0]) (simp_all add: divide_nonpos_neg) ultimately show ?thesis by simp qed instance rat :: archimedean_field proof show "\z. r \ of_int z" for r :: rat proof (induct r) case (Fract a b) have "Fract a b \ of_int (a div b + 1)" using rat_floor_lemma [of a b] by simp then show "\z. Fract a b \ of_int z" .. qed qed instantiation rat :: floor_ceiling begin definition floor_rat :: "rat \ int" where"\x\ = (THE z. of_int z \ x \ x < of_int (z + 1))" for x :: rat instance proof show "of_int \x\ \ x \ x < of_int (\x\ + 1)" for x :: rat unfolding floor_rat_def using floor_exists1 by (rule theI') qed end lemma floor_Fract [simp]: "\Fract a b\ = a div b" by (simp add: Fract_of_int_quotient floor_divide_of_int_eq) subsection \Linear arithmetic setup\ declaration \ K (Lin_Arith.add_inj_thms @{thms of_int_le_iff [THEN iffD2] of_int_eq_iff [THEN iffD2]} (* not needed because x < (y::int) can be rewritten as x + 1 <= y: of_int_less_iff RS iffD2 *) #> Lin_Arith.add_inj_const (\<^const_name>\of_nat\, \<^typ>\nat \ rat\) #> Lin_Arith.add_inj_const (\<^const_name>\of_int\, \<^typ>\int \ rat\)) \ subsection \Embedding from Rationals to other Fields\ context field_char_0 begin lift_definition of_rat :: "rat \ 'a" is "\x. of_int (fst x) / of_int (snd x)" by (auto simp: nonzero_divide_eq_eq nonzero_eq_divide_eq) (simp only: of_int_mult [symmetric]) end lemma of_rat_rat: "b \ 0 \ of_rat (Fract a b) = of_int a / of_int b" by transfer simp lemma of_rat_0 [simp]: "of_rat 0 = 0" by transfer simp lemma of_rat_1 [simp]: "of_rat 1 = 1" by transfer simp lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b" by transfer (simp add: add_frac_eq) lemma of_rat_minus: "of_rat (- a) = - of_rat a" by transfer simp lemma of_rat_neg_one [simp]: "of_rat (- 1) = - 1" by (simp add: of_rat_minus) lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b" using of_rat_add [of a "- b"] by (simp add: of_rat_minus) lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b" by transfer (simp add: divide_inverse nonzero_inverse_mult_distrib ac_simps) lemma of_rat_sum: "of_rat (\a\A. f a) = (\a\A. of_rat (f a))" by (induct rule: infinite_finite_induct) (auto simp: of_rat_add) lemma of_rat_prod: "of_rat (\a\A. f a) = (\a\A. of_rat (f a))" by (induct rule: infinite_finite_induct) (auto simp: of_rat_mult) lemma nonzero_of_rat_inverse: "a \ 0 \ of_rat (inverse a) = inverse (of_rat a)" by (rule inverse_unique [symmetric]) (simp add: of_rat_mult [symmetric]) lemma of_rat_inverse: "(of_rat (inverse a) :: 'a::field_char_0) = inverse (of_rat a)" by (cases "a = 0") (simp_all add: nonzero_of_rat_inverse) lemma nonzero_of_rat_divide: "b \ 0 \ of_rat (a / b) = of_rat a / of_rat b" by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse) lemma of_rat_divide: "(of_rat (a / b) :: 'a::field_char_0) = of_rat a / of_rat b" by (cases "b = 0") (simp_all add: nonzero_of_rat_divide) lemma of_rat_power: "(of_rat (a ^ n) :: 'a::field_char_0) = of_rat a ^ n" by (induct n) (simp_all add: of_rat_mult) lemma of_rat_eq_iff [simp]: "of_rat a = of_rat b \ a = b" apply transfer apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq) apply (simp only: of_int_mult [symmetric] of_int_eq_iff) done lemma of_rat_eq_0_iff [simp]: "of_rat a = 0 \ a = 0" using of_rat_eq_iff [of _ 0] by simp lemma zero_eq_of_rat_iff [simp]: "0 = of_rat a \ 0 = a" by simp lemma of_rat_eq_1_iff [simp]: "of_rat a = 1 \ a = 1" using of_rat_eq_iff [of _ 1] by simp lemma one_eq_of_rat_iff [simp]: "1 = of_rat a \ 1 = a" by simp lemma of_rat_less: "(of_rat r :: 'a::linordered_field) < of_rat s \ r < s" proof (induct r, induct s) fix a b c d :: int assume not_zero: "b > 0" "d > 0" then have "b * d > 0" by simp have of_int_divide_less_eq: "(of_int a :: 'a) / of_int b < of_int c / of_int d \ (of_int a :: 'a) * of_int d < of_int c * of_int b" using not_zero by (simp add: pos_less_divide_eq pos_divide_less_eq) show "(of_rat (Fract a b) :: 'a::linordered_field) < of_rat (Fract c d) \ Fract a b < Fract c d" using not_zero \b * d > 0\ by (simp add: of_rat_rat of_int_divide_less_eq of_int_mult [symmetric] del: of_int_mult) qed lemma of_rat_less_eq: "(of_rat r :: 'a::linordered_field) \ of_rat s \ r \ s" unfolding le_less by (auto simp add: of_rat_less) lemma of_rat_le_0_iff [simp]: "(of_rat r :: 'a::linordered_field) \ 0 \ r \ 0" using of_rat_less_eq [of r 0, where 'a = 'a] by simp lemma zero_le_of_rat_iff [simp]: "0 \ (of_rat r :: 'a::linordered_field) \ 0 \ r" using of_rat_less_eq [of 0 r, where 'a = 'a] by simp lemma of_rat_le_1_iff [simp]: "(of_rat r :: 'a::linordered_field) \ 1 \ r \ 1" using of_rat_less_eq [of r 1] by simp lemma one_le_of_rat_iff [simp]: "1 \ (of_rat r :: 'a::linordered_field) \ 1 \ r" using of_rat_less_eq [of 1 r] by simp lemma of_rat_less_0_iff [simp]: "(of_rat r :: 'a::linordered_field) < 0 \ r < 0" using of_rat_less [of r 0, where 'a = 'a] by simp lemma zero_less_of_rat_iff [simp]: "0 < (of_rat r :: 'a::linordered_field) \ 0 < r" using of_rat_less [of 0 r, where 'a = 'a] by simp lemma of_rat_less_1_iff [simp]: "(of_rat r :: 'a::linordered_field) < 1 \ r < 1" using of_rat_less [of r 1] by simp lemma one_less_of_rat_iff [simp]: "1 < (of_rat r :: 'a::linordered_field) \ 1 < r" using of_rat_less [of 1 r] by simp lemma of_rat_eq_id [simp]: "of_rat = id" proof show "of_rat a = id a" for a by (induct a) (simp add: of_rat_rat Fract_of_int_eq [symmetric]) qed lemma abs_of_rat [simp]: "\of_rat r\ = (of_rat \r\ :: 'a :: linordered_field)" by (cases "r \ 0") (simp_all add: not_le of_rat_minus) text \Collapse nested embeddings.\ lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n" by (induct n) (simp_all add: of_rat_add) lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z" by (cases z rule: int_diff_cases) (simp add: of_rat_diff) lemma of_rat_numeral_eq [simp]: "of_rat (numeral w) = numeral w" using of_rat_of_int_eq [of "numeral w"] by simp lemma of_rat_neg_numeral_eq [simp]: "of_rat (- numeral w) = - numeral w" using of_rat_of_int_eq [of "- numeral w"] by simp lemma of_rat_floor [simp]: "\of_rat r\ = \r\" by (cases r) (simp add: Fract_of_int_quotient of_rat_divide floor_divide_of_int_eq) lemma of_rat_ceiling [simp]: "\of_rat r\ = \r\" using of_rat_floor [of "- r"] by (simp add: of_rat_minus ceiling_def) lemmas zero_rat = Zero_rat_def lemmas one_rat = One_rat_def abbreviation rat_of_nat :: "nat \ rat" where "rat_of_nat \ of_nat" abbreviation rat_of_int :: "int \ rat" where "rat_of_int \ of_int" subsection \The Set of Rational Numbers\ context field_char_0 begin definition Rats :: "'a set" ("\") where "\ = range of_rat" end lemma Rats_cases [cases set: Rats]: assumes "q \ \" obtains (of_rat) r where "q = of_rat r" proof - from \q \ \\ have "q \ range of_rat" by (simp only: Rats_def) then obtain r where "q = of_rat r" .. then show thesis .. qed lemma Rats_of_rat [simp]: "of_rat r \ \" by (simp add: Rats_def) lemma Rats_of_int [simp]: "of_int z \ \" by (subst of_rat_of_int_eq [symmetric]) (rule Rats_of_rat) lemma Ints_subset_Rats: "\ \ \" using Ints_cases Rats_of_int by blast lemma Rats_of_nat [simp]: "of_nat n \ \" by (subst of_rat_of_nat_eq [symmetric]) (rule Rats_of_rat) lemma Nats_subset_Rats: "\ \ \" using Ints_subset_Rats Nats_subset_Ints by blast lemma Rats_number_of [simp]: "numeral w \ \" by (subst of_rat_numeral_eq [symmetric]) (rule Rats_of_rat) lemma Rats_0 [simp]: "0 \ \" unfolding Rats_def by (rule range_eqI) (rule of_rat_0 [symmetric]) lemma Rats_1 [simp]: "1 \ \" unfolding Rats_def by (rule range_eqI) (rule of_rat_1 [symmetric]) lemma Rats_add [simp]: "a \ \ \ b \ \ \ a + b \ \" apply (auto simp add: Rats_def) apply (rule range_eqI) apply (rule of_rat_add [symmetric]) done lemma Rats_minus_iff [simp]: "- a \ \ \ a \ \" by (metis Rats_cases Rats_of_rat add.inverse_inverse of_rat_minus) lemma Rats_diff [simp]: "a \ \ \ b \ \ \ a - b \ \" apply (auto simp add: Rats_def) apply (rule range_eqI) apply (rule of_rat_diff [symmetric]) done lemma Rats_mult [simp]: "a \ \ \ b \ \ \ a * b \ \" apply (auto simp add: Rats_def) apply (rule range_eqI) apply (rule of_rat_mult [symmetric]) done lemma Rats_inverse [simp]: "a \ \ \ inverse a \ \" for a :: "'a::field_char_0" apply (auto simp add: Rats_def) apply (rule range_eqI) apply (rule of_rat_inverse [symmetric]) done lemma Rats_divide [simp]: "a \ \ \ b \ \ \ a / b \ \" for a b :: "'a::field_char_0" apply (auto simp add: Rats_def) apply (rule range_eqI) apply (rule of_rat_divide [symmetric]) done lemma Rats_power [simp]: "a \ \ \ a ^ n \ \" for a :: "'a::field_char_0" apply (auto simp add: Rats_def) apply (rule range_eqI) apply (rule of_rat_power [symmetric]) done lemma Rats_induct [case_names of_rat, induct set: Rats]: "q \ \ \ (\r. P (of_rat r)) \ P q" by (rule Rats_cases) auto lemma Rats_infinite: "\ finite \" by (auto dest!: finite_imageD simp: inj_on_def infinite_UNIV_char_0 Rats_def) subsection \Implementation of rational numbers as pairs of integers\ text \Formal constructor\ definition Frct :: "int \ int \ rat" where [simp]: "Frct p = Fract (fst p) (snd p)" lemma [code abstype]: "Frct (quotient_of q) = q" by (cases q) (auto intro: quotient_of_eq) text \Numerals\ declare quotient_of_Fract [code abstract] definition of_int :: "int \ rat" where [code_abbrev]: "of_int = Int.of_int" hide_const (open) of_int lemma quotient_of_int [code abstract]: "quotient_of (Rat.of_int a) = (a, 1)" by (simp add: of_int_def of_int_rat quotient_of_Fract) lemma [code_unfold]: "numeral k = Rat.of_int (numeral k)" by (simp add: Rat.of_int_def) lemma [code_unfold]: "- numeral k = Rat.of_int (- numeral k)" by (simp add: Rat.of_int_def) lemma Frct_code_post [code_post]: "Frct (0, a) = 0" "Frct (a, 0) = 0" "Frct (1, 1) = 1" "Frct (numeral k, 1) = numeral k" "Frct (1, numeral k) = 1 / numeral k" "Frct (numeral k, numeral l) = numeral k / numeral l" "Frct (- a, b) = - Frct (a, b)" "Frct (a, - b) = - Frct (a, b)" "- (- Frct q) = Frct q" by (simp_all add: Fract_of_int_quotient) text \Operations\ lemma rat_zero_code [code abstract]: "quotient_of 0 = (0, 1)" by (simp add: Zero_rat_def quotient_of_Fract normalize_def) lemma rat_one_code [code abstract]: "quotient_of 1 = (1, 1)" by (simp add: One_rat_def quotient_of_Fract normalize_def) lemma rat_plus_code [code abstract]: "quotient_of (p + q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q in normalize (a * d + b * c, c * d))" by (cases p, cases q) (simp add: quotient_of_Fract) lemma rat_uminus_code [code abstract]: "quotient_of (- p) = (let (a, b) = quotient_of p in (- a, b))" by (cases p) (simp add: quotient_of_Fract) lemma rat_minus_code [code abstract]: "quotient_of (p - q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q in normalize (a * d - b * c, c * d))" by (cases p, cases q) (simp add: quotient_of_Fract) lemma rat_times_code [code abstract]: "quotient_of (p * q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q in normalize (a * b, c * d))" by (cases p, cases q) (simp add: quotient_of_Fract) lemma rat_inverse_code [code abstract]: "quotient_of (inverse p) = (let (a, b) = quotient_of p in if a = 0 then (0, 1) else (sgn a * b, \a\))" proof (cases p) case (Fract a b) then show ?thesis by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract ac_simps) qed lemma rat_divide_code [code abstract]: "quotient_of (p / q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q in normalize (a * d, c * b))" by (cases p, cases q) (simp add: quotient_of_Fract) lemma rat_abs_code [code abstract]: "quotient_of \p\ = (let (a, b) = quotient_of p in (\a\, b))" by (cases p) (simp add: quotient_of_Fract) lemma rat_sgn_code [code abstract]: "quotient_of (sgn p) = (sgn (fst (quotient_of p)), 1)" proof (cases p) case (Fract a b) then show ?thesis by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract) qed lemma rat_floor_code [code]: "\p\ = (let (a, b) = quotient_of p in a div b)" by (cases p) (simp add: quotient_of_Fract floor_Fract) instantiation rat :: equal begin definition [code]: "HOL.equal a b \ quotient_of a = quotient_of b" instance by standard (simp add: equal_rat_def quotient_of_inject_eq) lemma rat_eq_refl [code nbe]: "HOL.equal (r::rat) r \ True" by (rule equal_refl) end lemma rat_less_eq_code [code]: "p \ q \ (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d \ c * b)" by (cases p, cases q) (simp add: quotient_of_Fract mult.commute) lemma rat_less_code [code]: "p < q \ (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d < c * b)" by (cases p, cases q) (simp add: quotient_of_Fract mult.commute) lemma [code]: "of_rat p = (let (a, b) = quotient_of p in of_int a / of_int b)" by (cases p) (simp add: quotient_of_Fract of_rat_rat) text \Quickcheck\ definition (in term_syntax) valterm_fract :: "int \ (unit \ Code_Evaluation.term) \ int \ (unit \ Code_Evaluation.term) \ rat \ (unit \ Code_Evaluation.term)" where [code_unfold]: "valterm_fract k l = Code_Evaluation.valtermify Fract {\} k {\} l" notation fcomp (infixl "\>" 60) notation scomp (infixl "\\" 60) instantiation rat :: random begin definition "Quickcheck_Random.random i = Quickcheck_Random.random i \\ (\num. Random.range i \\ (\denom. Pair (let j = int_of_integer (integer_of_natural (denom + 1)) in valterm_fract num (j, \u. Code_Evaluation.term_of j))))" instance .. end no_notation fcomp (infixl "\>" 60) no_notation scomp (infixl "\\" 60) instantiation rat :: exhaustive begin definition "exhaustive_rat f d = Quickcheck_Exhaustive.exhaustive (\l. Quickcheck_Exhaustive.exhaustive (\k. f (Fract k (int_of_integer (integer_of_natural l) + 1))) d) d" instance .. end instantiation rat :: full_exhaustive begin definition "full_exhaustive_rat f d = Quickcheck_Exhaustive.full_exhaustive (\(l, _). Quickcheck_Exhaustive.full_exhaustive (\k. f (let j = int_of_integer (integer_of_natural l) + 1 in valterm_fract k (j, \_. Code_Evaluation.term_of j))) d) d" instance .. end instance rat :: partial_term_of .. lemma [code]: "partial_term_of (ty :: rat itself) (Quickcheck_Narrowing.Narrowing_variable p tt) \ Code_Evaluation.Free (STR ''_'') (Typerep.Typerep (STR ''Rat.rat'') [])" "partial_term_of (ty :: rat itself) (Quickcheck_Narrowing.Narrowing_constructor 0 [l, k]) \ Code_Evaluation.App (Code_Evaluation.Const (STR ''Rat.Frct'') (Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Product_Type.prod'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Int.int'') []], Typerep.Typerep (STR ''Rat.rat'') []])) (Code_Evaluation.App (Code_Evaluation.App (Code_Evaluation.Const (STR ''Product_Type.Pair'') (Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Product_Type.prod'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Int.int'') []]]])) (partial_term_of (TYPE(int)) l)) (partial_term_of (TYPE(int)) k))" by (rule partial_term_of_anything)+ instantiation rat :: narrowing begin definition "narrowing = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.apply (Quickcheck_Narrowing.cons (\nom denom. Fract nom denom)) narrowing) narrowing" instance .. end subsection \Setup for Nitpick\ declaration \ Nitpick_HOL.register_frac_type \<^type_name>\rat\ [(\<^const_name>\Abs_Rat\, \<^const_name>\Nitpick.Abs_Frac\), (\<^const_name>\zero_rat_inst.zero_rat\, \<^const_name>\Nitpick.zero_frac\), (\<^const_name>\one_rat_inst.one_rat\, \<^const_name>\Nitpick.one_frac\), (\<^const_name>\plus_rat_inst.plus_rat\, \<^const_name>\Nitpick.plus_frac\), (\<^const_name>\times_rat_inst.times_rat\, \<^const_name>\Nitpick.times_frac\), (\<^const_name>\uminus_rat_inst.uminus_rat\, \<^const_name>\Nitpick.uminus_frac\), (\<^const_name>\inverse_rat_inst.inverse_rat\, \<^const_name>\Nitpick.inverse_frac\), (\<^const_name>\ord_rat_inst.less_rat\, \<^const_name>\Nitpick.less_frac\), (\<^const_name>\ord_rat_inst.less_eq_rat\, \<^const_name>\Nitpick.less_eq_frac\), (\<^const_name>\field_char_0_class.of_rat\, \<^const_name>\Nitpick.of_frac\)] \ lemmas [nitpick_unfold] = inverse_rat_inst.inverse_rat one_rat_inst.one_rat ord_rat_inst.less_rat ord_rat_inst.less_eq_rat plus_rat_inst.plus_rat times_rat_inst.times_rat uminus_rat_inst.uminus_rat zero_rat_inst.zero_rat subsection \Float syntax\ syntax "_Float" :: "float_const \ 'a" ("_") parse_translation \ let fun mk_frac str = let val {mant = i, exp = n} = Lexicon.read_float str; val exp = Syntax.const \<^const_syntax>\Power.power\; val ten = Numeral.mk_number_syntax 10; val exp10 = if n = 1 then ten else exp $ ten $ Numeral.mk_number_syntax n; in Syntax.const \<^const_syntax>\Fields.inverse_divide\ $ Numeral.mk_number_syntax i $ exp10 end; fun float_tr [(c as Const (\<^syntax_const>\_constrain\, _)) $ t $ u] = c $ float_tr [t] $ u | float_tr [t as Const (str, _)] = mk_frac str | float_tr ts = raise TERM ("float_tr", ts); in [(\<^syntax_const>\_Float\, K float_tr)] end \ text\Test:\ lemma "123.456 = -111.111 + 200 + 30 + 4 + 5/10 + 6/100 + (7/1000::rat)" by simp subsection \Hiding implementation details\ hide_const (open) normalize positive lifting_update rat.lifting lifting_forget rat.lifting end