1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * tools/testing/selftests/kvm/include/x86_64/processor.h
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8#ifndef SELFTEST_KVM_PROCESSOR_H
9#define SELFTEST_KVM_PROCESSOR_H
10
11#include <assert.h>
12#include <stdint.h>
13#include <syscall.h>
14
15#include <asm/msr-index.h>
16#include <asm/prctl.h>
17
18#include <linux/kvm_para.h>
19#include <linux/stringify.h>
20
21#include "../kvm_util.h"
22
23extern bool host_cpu_is_intel;
24extern bool host_cpu_is_amd;
25
26enum vm_guest_x86_subtype {
27	VM_SUBTYPE_NONE = 0,
28	VM_SUBTYPE_SEV,
29	VM_SUBTYPE_SEV_ES,
30};
31
32/* Forced emulation prefix, used to invoke the emulator unconditionally. */
33#define KVM_FEP "ud2; .byte 'k', 'v', 'm';"
34
35#define NMI_VECTOR		0x02
36
37#define X86_EFLAGS_FIXED	 (1u << 1)
38
39#define X86_CR4_VME		(1ul << 0)
40#define X86_CR4_PVI		(1ul << 1)
41#define X86_CR4_TSD		(1ul << 2)
42#define X86_CR4_DE		(1ul << 3)
43#define X86_CR4_PSE		(1ul << 4)
44#define X86_CR4_PAE		(1ul << 5)
45#define X86_CR4_MCE		(1ul << 6)
46#define X86_CR4_PGE		(1ul << 7)
47#define X86_CR4_PCE		(1ul << 8)
48#define X86_CR4_OSFXSR		(1ul << 9)
49#define X86_CR4_OSXMMEXCPT	(1ul << 10)
50#define X86_CR4_UMIP		(1ul << 11)
51#define X86_CR4_LA57		(1ul << 12)
52#define X86_CR4_VMXE		(1ul << 13)
53#define X86_CR4_SMXE		(1ul << 14)
54#define X86_CR4_FSGSBASE	(1ul << 16)
55#define X86_CR4_PCIDE		(1ul << 17)
56#define X86_CR4_OSXSAVE		(1ul << 18)
57#define X86_CR4_SMEP		(1ul << 20)
58#define X86_CR4_SMAP		(1ul << 21)
59#define X86_CR4_PKE		(1ul << 22)
60
61struct xstate_header {
62	u64				xstate_bv;
63	u64				xcomp_bv;
64	u64				reserved[6];
65} __attribute__((packed));
66
67struct xstate {
68	u8				i387[512];
69	struct xstate_header		header;
70	u8				extended_state_area[0];
71} __attribute__ ((packed, aligned (64)));
72
73#define XFEATURE_MASK_FP		BIT_ULL(0)
74#define XFEATURE_MASK_SSE		BIT_ULL(1)
75#define XFEATURE_MASK_YMM		BIT_ULL(2)
76#define XFEATURE_MASK_BNDREGS		BIT_ULL(3)
77#define XFEATURE_MASK_BNDCSR		BIT_ULL(4)
78#define XFEATURE_MASK_OPMASK		BIT_ULL(5)
79#define XFEATURE_MASK_ZMM_Hi256		BIT_ULL(6)
80#define XFEATURE_MASK_Hi16_ZMM		BIT_ULL(7)
81#define XFEATURE_MASK_PT		BIT_ULL(8)
82#define XFEATURE_MASK_PKRU		BIT_ULL(9)
83#define XFEATURE_MASK_PASID		BIT_ULL(10)
84#define XFEATURE_MASK_CET_USER		BIT_ULL(11)
85#define XFEATURE_MASK_CET_KERNEL	BIT_ULL(12)
86#define XFEATURE_MASK_LBR		BIT_ULL(15)
87#define XFEATURE_MASK_XTILE_CFG		BIT_ULL(17)
88#define XFEATURE_MASK_XTILE_DATA	BIT_ULL(18)
89
90#define XFEATURE_MASK_AVX512		(XFEATURE_MASK_OPMASK | \
91					 XFEATURE_MASK_ZMM_Hi256 | \
92					 XFEATURE_MASK_Hi16_ZMM)
93#define XFEATURE_MASK_XTILE		(XFEATURE_MASK_XTILE_DATA | \
94					 XFEATURE_MASK_XTILE_CFG)
95
96/* Note, these are ordered alphabetically to match kvm_cpuid_entry2.  Eww. */
97enum cpuid_output_regs {
98	KVM_CPUID_EAX,
99	KVM_CPUID_EBX,
100	KVM_CPUID_ECX,
101	KVM_CPUID_EDX
102};
103
104/*
105 * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
106 * passed by value with no overhead.
107 */
108struct kvm_x86_cpu_feature {
109	u32	function;
110	u16	index;
111	u8	reg;
112	u8	bit;
113};
114#define	KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit)				\
115({										\
116	struct kvm_x86_cpu_feature feature = {					\
117		.function = fn,							\
118		.index = idx,							\
119		.reg = KVM_CPUID_##gpr,						\
120		.bit = __bit,							\
121	};									\
122										\
123	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
124			  (fn & 0xc0000000) == 0x40000000 ||			\
125			  (fn & 0xc0000000) == 0x80000000 ||			\
126			  (fn & 0xc0000000) == 0xc0000000);			\
127	kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE));	\
128	feature;								\
129})
130
131/*
132 * Basic Leafs, a.k.a. Intel defined
133 */
134#define	X86_FEATURE_MWAIT		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
135#define	X86_FEATURE_VMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
136#define	X86_FEATURE_SMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
137#define	X86_FEATURE_PDCM		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
138#define	X86_FEATURE_PCID		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
139#define X86_FEATURE_X2APIC		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
140#define	X86_FEATURE_MOVBE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
141#define	X86_FEATURE_TSC_DEADLINE_TIMER	KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
142#define	X86_FEATURE_XSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
143#define	X86_FEATURE_OSXSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
144#define	X86_FEATURE_RDRAND		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
145#define	X86_FEATURE_HYPERVISOR		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
146#define X86_FEATURE_PAE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
147#define	X86_FEATURE_MCE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
148#define	X86_FEATURE_APIC		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
149#define	X86_FEATURE_CLFLUSH		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
150#define	X86_FEATURE_XMM			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
151#define	X86_FEATURE_XMM2		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
152#define	X86_FEATURE_FSGSBASE		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
153#define	X86_FEATURE_TSC_ADJUST		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
154#define	X86_FEATURE_SGX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
155#define	X86_FEATURE_HLE			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
156#define	X86_FEATURE_SMEP	        KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
157#define	X86_FEATURE_INVPCID		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
158#define	X86_FEATURE_RTM			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
159#define	X86_FEATURE_MPX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
160#define	X86_FEATURE_SMAP		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
161#define	X86_FEATURE_PCOMMIT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
162#define	X86_FEATURE_CLFLUSHOPT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
163#define	X86_FEATURE_CLWB		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
164#define	X86_FEATURE_UMIP		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
165#define	X86_FEATURE_PKU			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
166#define	X86_FEATURE_OSPKE		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4)
167#define	X86_FEATURE_LA57		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
168#define	X86_FEATURE_RDPID		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
169#define	X86_FEATURE_SGX_LC		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
170#define	X86_FEATURE_SHSTK		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
171#define	X86_FEATURE_IBT			KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
172#define	X86_FEATURE_AMX_TILE		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
173#define	X86_FEATURE_SPEC_CTRL		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
174#define	X86_FEATURE_ARCH_CAPABILITIES	KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
175#define	X86_FEATURE_PKS			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
176#define	X86_FEATURE_XTILECFG		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
177#define	X86_FEATURE_XTILEDATA		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
178#define	X86_FEATURE_XSAVES		KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
179#define	X86_FEATURE_XFD			KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
180#define X86_FEATURE_XTILEDATA_XFD	KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
181
182/*
183 * Extended Leafs, a.k.a. AMD defined
184 */
185#define	X86_FEATURE_SVM			KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
186#define	X86_FEATURE_NX			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
187#define	X86_FEATURE_GBPAGES		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
188#define	X86_FEATURE_RDTSCP		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
189#define	X86_FEATURE_LM			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
190#define	X86_FEATURE_INVTSC		KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
191#define	X86_FEATURE_RDPRU		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
192#define	X86_FEATURE_AMD_IBPB		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
193#define	X86_FEATURE_NPT			KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
194#define	X86_FEATURE_LBRV		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
195#define	X86_FEATURE_NRIPS		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
196#define X86_FEATURE_TSCRATEMSR          KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
197#define X86_FEATURE_PAUSEFILTER         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
198#define X86_FEATURE_PFTHRESHOLD         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
199#define	X86_FEATURE_VGIF		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
200#define X86_FEATURE_SEV			KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
201#define X86_FEATURE_SEV_ES		KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
202
203/*
204 * KVM defined paravirt features.
205 */
206#define X86_FEATURE_KVM_CLOCKSOURCE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
207#define X86_FEATURE_KVM_NOP_IO_DELAY	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
208#define X86_FEATURE_KVM_MMU_OP		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
209#define X86_FEATURE_KVM_CLOCKSOURCE2	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
210#define X86_FEATURE_KVM_ASYNC_PF	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
211#define X86_FEATURE_KVM_STEAL_TIME	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
212#define X86_FEATURE_KVM_PV_EOI		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
213#define X86_FEATURE_KVM_PV_UNHALT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
214/* Bit 8 apparently isn't used?!?! */
215#define X86_FEATURE_KVM_PV_TLB_FLUSH	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
216#define X86_FEATURE_KVM_ASYNC_PF_VMEXIT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
217#define X86_FEATURE_KVM_PV_SEND_IPI	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
218#define X86_FEATURE_KVM_POLL_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
219#define X86_FEATURE_KVM_PV_SCHED_YIELD	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
220#define X86_FEATURE_KVM_ASYNC_PF_INT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
221#define X86_FEATURE_KVM_MSI_EXT_DEST_ID	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
222#define X86_FEATURE_KVM_HC_MAP_GPA_RANGE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
223#define X86_FEATURE_KVM_MIGRATION_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
224
225/*
226 * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
227 * value/property as opposed to a single-bit feature.  Again, pack the info
228 * into a 64-bit value to pass by value with no overhead.
229 */
230struct kvm_x86_cpu_property {
231	u32	function;
232	u8	index;
233	u8	reg;
234	u8	lo_bit;
235	u8	hi_bit;
236};
237#define	KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit)			\
238({										\
239	struct kvm_x86_cpu_property property = {				\
240		.function = fn,							\
241		.index = idx,							\
242		.reg = KVM_CPUID_##gpr,						\
243		.lo_bit = low_bit,						\
244		.hi_bit = high_bit,						\
245	};									\
246										\
247	kvm_static_assert(low_bit < high_bit);					\
248	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
249			  (fn & 0xc0000000) == 0x40000000 ||			\
250			  (fn & 0xc0000000) == 0x80000000 ||			\
251			  (fn & 0xc0000000) == 0xc0000000);			\
252	kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE));	\
253	property;								\
254})
255
256#define X86_PROPERTY_MAX_BASIC_LEAF		KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
257#define X86_PROPERTY_PMU_VERSION		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
258#define X86_PROPERTY_PMU_NR_GP_COUNTERS		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
259#define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
260#define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
261#define X86_PROPERTY_PMU_EVENTS_MASK		KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7)
262#define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK	KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
263#define X86_PROPERTY_PMU_NR_FIXED_COUNTERS	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
264#define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
265
266#define X86_PROPERTY_SUPPORTED_XCR0_LO		KVM_X86_CPU_PROPERTY(0xd,  0, EAX,  0, 31)
267#define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0	KVM_X86_CPU_PROPERTY(0xd,  0, EBX,  0, 31)
268#define X86_PROPERTY_XSTATE_MAX_SIZE		KVM_X86_CPU_PROPERTY(0xd,  0, ECX,  0, 31)
269#define X86_PROPERTY_SUPPORTED_XCR0_HI		KVM_X86_CPU_PROPERTY(0xd,  0, EDX,  0, 31)
270
271#define X86_PROPERTY_XSTATE_TILE_SIZE		KVM_X86_CPU_PROPERTY(0xd, 18, EAX,  0, 31)
272#define X86_PROPERTY_XSTATE_TILE_OFFSET		KVM_X86_CPU_PROPERTY(0xd, 18, EBX,  0, 31)
273#define X86_PROPERTY_AMX_MAX_PALETTE_TABLES	KVM_X86_CPU_PROPERTY(0x1d, 0, EAX,  0, 31)
274#define X86_PROPERTY_AMX_TOTAL_TILE_BYTES	KVM_X86_CPU_PROPERTY(0x1d, 1, EAX,  0, 15)
275#define X86_PROPERTY_AMX_BYTES_PER_TILE		KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
276#define X86_PROPERTY_AMX_BYTES_PER_ROW		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0,  15)
277#define X86_PROPERTY_AMX_NR_TILE_REGS		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
278#define X86_PROPERTY_AMX_MAX_ROWS		KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0,  15)
279
280#define X86_PROPERTY_MAX_KVM_LEAF		KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
281
282#define X86_PROPERTY_MAX_EXT_LEAF		KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
283#define X86_PROPERTY_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
284#define X86_PROPERTY_MAX_VIRT_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
285#define X86_PROPERTY_SEV_C_BIT			KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5)
286#define X86_PROPERTY_PHYS_ADDR_REDUCTION	KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
287
288#define X86_PROPERTY_MAX_CENTAUR_LEAF		KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
289
290/*
291 * Intel's architectural PMU events are bizarre.  They have a "feature" bit
292 * that indicates the feature is _not_ supported, and a property that states
293 * the length of the bit mask of unsupported features.  A feature is supported
294 * if the size of the bit mask is larger than the "unavailable" bit, and said
295 * bit is not set.  Fixed counters also bizarre enumeration, but inverted from
296 * arch events for general purpose counters.  Fixed counters are supported if a
297 * feature flag is set **OR** the total number of fixed counters is greater
298 * than index of the counter.
299 *
300 * Wrap the events for general purpose and fixed counters to simplify checking
301 * whether or not a given architectural event is supported.
302 */
303struct kvm_x86_pmu_feature {
304	struct kvm_x86_cpu_feature f;
305};
306#define	KVM_X86_PMU_FEATURE(__reg, __bit)				\
307({									\
308	struct kvm_x86_pmu_feature feature = {				\
309		.f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit),		\
310	};								\
311									\
312	kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX ||		\
313			  KVM_CPUID_##__reg == KVM_CPUID_ECX);		\
314	feature;							\
315})
316
317#define X86_PMU_FEATURE_CPU_CYCLES			KVM_X86_PMU_FEATURE(EBX, 0)
318#define X86_PMU_FEATURE_INSNS_RETIRED			KVM_X86_PMU_FEATURE(EBX, 1)
319#define X86_PMU_FEATURE_REFERENCE_CYCLES		KVM_X86_PMU_FEATURE(EBX, 2)
320#define X86_PMU_FEATURE_LLC_REFERENCES			KVM_X86_PMU_FEATURE(EBX, 3)
321#define X86_PMU_FEATURE_LLC_MISSES			KVM_X86_PMU_FEATURE(EBX, 4)
322#define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED		KVM_X86_PMU_FEATURE(EBX, 5)
323#define X86_PMU_FEATURE_BRANCHES_MISPREDICTED		KVM_X86_PMU_FEATURE(EBX, 6)
324#define X86_PMU_FEATURE_TOPDOWN_SLOTS			KVM_X86_PMU_FEATURE(EBX, 7)
325
326#define X86_PMU_FEATURE_INSNS_RETIRED_FIXED		KVM_X86_PMU_FEATURE(ECX, 0)
327#define X86_PMU_FEATURE_CPU_CYCLES_FIXED		KVM_X86_PMU_FEATURE(ECX, 1)
328#define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED	KVM_X86_PMU_FEATURE(ECX, 2)
329#define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED		KVM_X86_PMU_FEATURE(ECX, 3)
330
331static inline unsigned int x86_family(unsigned int eax)
332{
333	unsigned int x86;
334
335	x86 = (eax >> 8) & 0xf;
336
337	if (x86 == 0xf)
338		x86 += (eax >> 20) & 0xff;
339
340	return x86;
341}
342
343static inline unsigned int x86_model(unsigned int eax)
344{
345	return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
346}
347
348/* Page table bitfield declarations */
349#define PTE_PRESENT_MASK        BIT_ULL(0)
350#define PTE_WRITABLE_MASK       BIT_ULL(1)
351#define PTE_USER_MASK           BIT_ULL(2)
352#define PTE_ACCESSED_MASK       BIT_ULL(5)
353#define PTE_DIRTY_MASK          BIT_ULL(6)
354#define PTE_LARGE_MASK          BIT_ULL(7)
355#define PTE_GLOBAL_MASK         BIT_ULL(8)
356#define PTE_NX_MASK             BIT_ULL(63)
357
358#define PHYSICAL_PAGE_MASK      GENMASK_ULL(51, 12)
359
360#define PAGE_SHIFT		12
361#define PAGE_SIZE		(1ULL << PAGE_SHIFT)
362#define PAGE_MASK		(~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
363
364#define HUGEPAGE_SHIFT(x)	(PAGE_SHIFT + (((x) - 1) * 9))
365#define HUGEPAGE_SIZE(x)	(1UL << HUGEPAGE_SHIFT(x))
366#define HUGEPAGE_MASK(x)	(~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
367
368#define PTE_GET_PA(pte)		((pte) & PHYSICAL_PAGE_MASK)
369#define PTE_GET_PFN(pte)        (PTE_GET_PA(pte) >> PAGE_SHIFT)
370
371/* General Registers in 64-Bit Mode */
372struct gpr64_regs {
373	u64 rax;
374	u64 rcx;
375	u64 rdx;
376	u64 rbx;
377	u64 rsp;
378	u64 rbp;
379	u64 rsi;
380	u64 rdi;
381	u64 r8;
382	u64 r9;
383	u64 r10;
384	u64 r11;
385	u64 r12;
386	u64 r13;
387	u64 r14;
388	u64 r15;
389};
390
391struct desc64 {
392	uint16_t limit0;
393	uint16_t base0;
394	unsigned base1:8, type:4, s:1, dpl:2, p:1;
395	unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
396	uint32_t base3;
397	uint32_t zero1;
398} __attribute__((packed));
399
400struct desc_ptr {
401	uint16_t size;
402	uint64_t address;
403} __attribute__((packed));
404
405struct kvm_x86_state {
406	struct kvm_xsave *xsave;
407	struct kvm_vcpu_events events;
408	struct kvm_mp_state mp_state;
409	struct kvm_regs regs;
410	struct kvm_xcrs xcrs;
411	struct kvm_sregs sregs;
412	struct kvm_debugregs debugregs;
413	union {
414		struct kvm_nested_state nested;
415		char nested_[16384];
416	};
417	struct kvm_msrs msrs;
418};
419
420static inline uint64_t get_desc64_base(const struct desc64 *desc)
421{
422	return ((uint64_t)desc->base3 << 32) |
423		(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
424}
425
426static inline uint64_t rdtsc(void)
427{
428	uint32_t eax, edx;
429	uint64_t tsc_val;
430	/*
431	 * The lfence is to wait (on Intel CPUs) until all previous
432	 * instructions have been executed. If software requires RDTSC to be
433	 * executed prior to execution of any subsequent instruction, it can
434	 * execute LFENCE immediately after RDTSC
435	 */
436	__asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
437	tsc_val = ((uint64_t)edx) << 32 | eax;
438	return tsc_val;
439}
440
441static inline uint64_t rdtscp(uint32_t *aux)
442{
443	uint32_t eax, edx;
444
445	__asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
446	return ((uint64_t)edx) << 32 | eax;
447}
448
449static inline uint64_t rdmsr(uint32_t msr)
450{
451	uint32_t a, d;
452
453	__asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
454
455	return a | ((uint64_t) d << 32);
456}
457
458static inline void wrmsr(uint32_t msr, uint64_t value)
459{
460	uint32_t a = value;
461	uint32_t d = value >> 32;
462
463	__asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
464}
465
466
467static inline uint16_t inw(uint16_t port)
468{
469	uint16_t tmp;
470
471	__asm__ __volatile__("in %%dx, %%ax"
472		: /* output */ "=a" (tmp)
473		: /* input */ "d" (port));
474
475	return tmp;
476}
477
478static inline uint16_t get_es(void)
479{
480	uint16_t es;
481
482	__asm__ __volatile__("mov %%es, %[es]"
483			     : /* output */ [es]"=rm"(es));
484	return es;
485}
486
487static inline uint16_t get_cs(void)
488{
489	uint16_t cs;
490
491	__asm__ __volatile__("mov %%cs, %[cs]"
492			     : /* output */ [cs]"=rm"(cs));
493	return cs;
494}
495
496static inline uint16_t get_ss(void)
497{
498	uint16_t ss;
499
500	__asm__ __volatile__("mov %%ss, %[ss]"
501			     : /* output */ [ss]"=rm"(ss));
502	return ss;
503}
504
505static inline uint16_t get_ds(void)
506{
507	uint16_t ds;
508
509	__asm__ __volatile__("mov %%ds, %[ds]"
510			     : /* output */ [ds]"=rm"(ds));
511	return ds;
512}
513
514static inline uint16_t get_fs(void)
515{
516	uint16_t fs;
517
518	__asm__ __volatile__("mov %%fs, %[fs]"
519			     : /* output */ [fs]"=rm"(fs));
520	return fs;
521}
522
523static inline uint16_t get_gs(void)
524{
525	uint16_t gs;
526
527	__asm__ __volatile__("mov %%gs, %[gs]"
528			     : /* output */ [gs]"=rm"(gs));
529	return gs;
530}
531
532static inline uint16_t get_tr(void)
533{
534	uint16_t tr;
535
536	__asm__ __volatile__("str %[tr]"
537			     : /* output */ [tr]"=rm"(tr));
538	return tr;
539}
540
541static inline uint64_t get_cr0(void)
542{
543	uint64_t cr0;
544
545	__asm__ __volatile__("mov %%cr0, %[cr0]"
546			     : /* output */ [cr0]"=r"(cr0));
547	return cr0;
548}
549
550static inline uint64_t get_cr3(void)
551{
552	uint64_t cr3;
553
554	__asm__ __volatile__("mov %%cr3, %[cr3]"
555			     : /* output */ [cr3]"=r"(cr3));
556	return cr3;
557}
558
559static inline uint64_t get_cr4(void)
560{
561	uint64_t cr4;
562
563	__asm__ __volatile__("mov %%cr4, %[cr4]"
564			     : /* output */ [cr4]"=r"(cr4));
565	return cr4;
566}
567
568static inline void set_cr4(uint64_t val)
569{
570	__asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
571}
572
573static inline u64 xgetbv(u32 index)
574{
575	u32 eax, edx;
576
577	__asm__ __volatile__("xgetbv;"
578		     : "=a" (eax), "=d" (edx)
579		     : "c" (index));
580	return eax | ((u64)edx << 32);
581}
582
583static inline void xsetbv(u32 index, u64 value)
584{
585	u32 eax = value;
586	u32 edx = value >> 32;
587
588	__asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
589}
590
591static inline void wrpkru(u32 pkru)
592{
593	/* Note, ECX and EDX are architecturally required to be '0'. */
594	asm volatile(".byte 0x0f,0x01,0xef\n\t"
595		     : : "a" (pkru), "c"(0), "d"(0));
596}
597
598static inline struct desc_ptr get_gdt(void)
599{
600	struct desc_ptr gdt;
601	__asm__ __volatile__("sgdt %[gdt]"
602			     : /* output */ [gdt]"=m"(gdt));
603	return gdt;
604}
605
606static inline struct desc_ptr get_idt(void)
607{
608	struct desc_ptr idt;
609	__asm__ __volatile__("sidt %[idt]"
610			     : /* output */ [idt]"=m"(idt));
611	return idt;
612}
613
614static inline void outl(uint16_t port, uint32_t value)
615{
616	__asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
617}
618
619static inline void __cpuid(uint32_t function, uint32_t index,
620			   uint32_t *eax, uint32_t *ebx,
621			   uint32_t *ecx, uint32_t *edx)
622{
623	*eax = function;
624	*ecx = index;
625
626	asm volatile("cpuid"
627	    : "=a" (*eax),
628	      "=b" (*ebx),
629	      "=c" (*ecx),
630	      "=d" (*edx)
631	    : "0" (*eax), "2" (*ecx)
632	    : "memory");
633}
634
635static inline void cpuid(uint32_t function,
636			 uint32_t *eax, uint32_t *ebx,
637			 uint32_t *ecx, uint32_t *edx)
638{
639	return __cpuid(function, 0, eax, ebx, ecx, edx);
640}
641
642static inline uint32_t this_cpu_fms(void)
643{
644	uint32_t eax, ebx, ecx, edx;
645
646	cpuid(1, &eax, &ebx, &ecx, &edx);
647	return eax;
648}
649
650static inline uint32_t this_cpu_family(void)
651{
652	return x86_family(this_cpu_fms());
653}
654
655static inline uint32_t this_cpu_model(void)
656{
657	return x86_model(this_cpu_fms());
658}
659
660static inline bool this_cpu_vendor_string_is(const char *vendor)
661{
662	const uint32_t *chunk = (const uint32_t *)vendor;
663	uint32_t eax, ebx, ecx, edx;
664
665	cpuid(0, &eax, &ebx, &ecx, &edx);
666	return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
667}
668
669static inline bool this_cpu_is_intel(void)
670{
671	return this_cpu_vendor_string_is("GenuineIntel");
672}
673
674/*
675 * Exclude early K5 samples with a vendor string of "AMDisbetter!"
676 */
677static inline bool this_cpu_is_amd(void)
678{
679	return this_cpu_vendor_string_is("AuthenticAMD");
680}
681
682static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
683				      uint8_t reg, uint8_t lo, uint8_t hi)
684{
685	uint32_t gprs[4];
686
687	__cpuid(function, index,
688		&gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
689		&gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
690
691	return (gprs[reg] & GENMASK(hi, lo)) >> lo;
692}
693
694static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
695{
696	return __this_cpu_has(feature.function, feature.index,
697			      feature.reg, feature.bit, feature.bit);
698}
699
700static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
701{
702	return __this_cpu_has(property.function, property.index,
703			      property.reg, property.lo_bit, property.hi_bit);
704}
705
706static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
707{
708	uint32_t max_leaf;
709
710	switch (property.function & 0xc0000000) {
711	case 0:
712		max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
713		break;
714	case 0x40000000:
715		max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
716		break;
717	case 0x80000000:
718		max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
719		break;
720	case 0xc0000000:
721		max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
722	}
723	return max_leaf >= property.function;
724}
725
726static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
727{
728	uint32_t nr_bits;
729
730	if (feature.f.reg == KVM_CPUID_EBX) {
731		nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
732		return nr_bits > feature.f.bit && !this_cpu_has(feature.f);
733	}
734
735	GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX);
736	nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
737	return nr_bits > feature.f.bit || this_cpu_has(feature.f);
738}
739
740static __always_inline uint64_t this_cpu_supported_xcr0(void)
741{
742	if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
743		return 0;
744
745	return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
746	       ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
747}
748
749typedef u32		__attribute__((vector_size(16))) sse128_t;
750#define __sse128_u	union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
751#define sse128_lo(x)	({ __sse128_u t; t.vec = x; t.as_u64[0]; })
752#define sse128_hi(x)	({ __sse128_u t; t.vec = x; t.as_u64[1]; })
753
754static inline void read_sse_reg(int reg, sse128_t *data)
755{
756	switch (reg) {
757	case 0:
758		asm("movdqa %%xmm0, %0" : "=m"(*data));
759		break;
760	case 1:
761		asm("movdqa %%xmm1, %0" : "=m"(*data));
762		break;
763	case 2:
764		asm("movdqa %%xmm2, %0" : "=m"(*data));
765		break;
766	case 3:
767		asm("movdqa %%xmm3, %0" : "=m"(*data));
768		break;
769	case 4:
770		asm("movdqa %%xmm4, %0" : "=m"(*data));
771		break;
772	case 5:
773		asm("movdqa %%xmm5, %0" : "=m"(*data));
774		break;
775	case 6:
776		asm("movdqa %%xmm6, %0" : "=m"(*data));
777		break;
778	case 7:
779		asm("movdqa %%xmm7, %0" : "=m"(*data));
780		break;
781	default:
782		BUG();
783	}
784}
785
786static inline void write_sse_reg(int reg, const sse128_t *data)
787{
788	switch (reg) {
789	case 0:
790		asm("movdqa %0, %%xmm0" : : "m"(*data));
791		break;
792	case 1:
793		asm("movdqa %0, %%xmm1" : : "m"(*data));
794		break;
795	case 2:
796		asm("movdqa %0, %%xmm2" : : "m"(*data));
797		break;
798	case 3:
799		asm("movdqa %0, %%xmm3" : : "m"(*data));
800		break;
801	case 4:
802		asm("movdqa %0, %%xmm4" : : "m"(*data));
803		break;
804	case 5:
805		asm("movdqa %0, %%xmm5" : : "m"(*data));
806		break;
807	case 6:
808		asm("movdqa %0, %%xmm6" : : "m"(*data));
809		break;
810	case 7:
811		asm("movdqa %0, %%xmm7" : : "m"(*data));
812		break;
813	default:
814		BUG();
815	}
816}
817
818static inline void cpu_relax(void)
819{
820	asm volatile("rep; nop" ::: "memory");
821}
822
823#define ud2()			\
824	__asm__ __volatile__(	\
825		"ud2\n"	\
826		)
827
828#define hlt()			\
829	__asm__ __volatile__(	\
830		"hlt\n"	\
831		)
832
833struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
834void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
835void kvm_x86_state_cleanup(struct kvm_x86_state *state);
836
837const struct kvm_msr_list *kvm_get_msr_index_list(void);
838const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
839bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
840uint64_t kvm_get_feature_msr(uint64_t msr_index);
841
842static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
843				 struct kvm_msrs *msrs)
844{
845	int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
846
847	TEST_ASSERT(r == msrs->nmsrs,
848		    "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
849		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
850}
851static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
852{
853	int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
854
855	TEST_ASSERT(r == msrs->nmsrs,
856		    "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
857		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
858}
859static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
860				      struct kvm_debugregs *debugregs)
861{
862	vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
863}
864static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
865				      struct kvm_debugregs *debugregs)
866{
867	vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
868}
869static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
870				  struct kvm_xsave *xsave)
871{
872	vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
873}
874static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
875				   struct kvm_xsave *xsave)
876{
877	vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
878}
879static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
880				  struct kvm_xsave *xsave)
881{
882	vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
883}
884static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
885				 struct kvm_xcrs *xcrs)
886{
887	vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
888}
889static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
890{
891	vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
892}
893
894const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
895					       uint32_t function, uint32_t index);
896const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
897const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void);
898const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu);
899
900static inline uint32_t kvm_cpu_fms(void)
901{
902	return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
903}
904
905static inline uint32_t kvm_cpu_family(void)
906{
907	return x86_family(kvm_cpu_fms());
908}
909
910static inline uint32_t kvm_cpu_model(void)
911{
912	return x86_model(kvm_cpu_fms());
913}
914
915bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
916		   struct kvm_x86_cpu_feature feature);
917
918static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
919{
920	return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
921}
922
923uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
924			    struct kvm_x86_cpu_property property);
925
926static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
927{
928	return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
929}
930
931static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
932{
933	uint32_t max_leaf;
934
935	switch (property.function & 0xc0000000) {
936	case 0:
937		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
938		break;
939	case 0x40000000:
940		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
941		break;
942	case 0x80000000:
943		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
944		break;
945	case 0xc0000000:
946		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
947	}
948	return max_leaf >= property.function;
949}
950
951static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
952{
953	uint32_t nr_bits;
954
955	if (feature.f.reg == KVM_CPUID_EBX) {
956		nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
957		return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f);
958	}
959
960	TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX);
961	nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
962	return nr_bits > feature.f.bit || kvm_cpu_has(feature.f);
963}
964
965static __always_inline uint64_t kvm_cpu_supported_xcr0(void)
966{
967	if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
968		return 0;
969
970	return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
971	       ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
972}
973
974static inline size_t kvm_cpuid2_size(int nr_entries)
975{
976	return sizeof(struct kvm_cpuid2) +
977	       sizeof(struct kvm_cpuid_entry2) * nr_entries;
978}
979
980/*
981 * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
982 * entries sized to hold @nr_entries.  The caller is responsible for freeing
983 * the struct.
984 */
985static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
986{
987	struct kvm_cpuid2 *cpuid;
988
989	cpuid = malloc(kvm_cpuid2_size(nr_entries));
990	TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
991
992	cpuid->nent = nr_entries;
993
994	return cpuid;
995}
996
997void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
998void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu);
999
1000static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1001							      uint32_t function,
1002							      uint32_t index)
1003{
1004	return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
1005							  function, index);
1006}
1007
1008static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1009							    uint32_t function)
1010{
1011	return __vcpu_get_cpuid_entry(vcpu, function, 0);
1012}
1013
1014static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1015{
1016	int r;
1017
1018	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1019	r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1020	if (r)
1021		return r;
1022
1023	/* On success, refresh the cache to pick up adjustments made by KVM. */
1024	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1025	return 0;
1026}
1027
1028static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1029{
1030	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1031	vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1032
1033	/* Refresh the cache to pick up adjustments made by KVM. */
1034	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1035}
1036
1037void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
1038			     struct kvm_x86_cpu_property property,
1039			     uint32_t value);
1040void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
1041
1042void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
1043
1044static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu,
1045				  struct kvm_x86_cpu_feature feature)
1046{
1047	struct kvm_cpuid_entry2 *entry;
1048
1049	entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
1050	return *((&entry->eax) + feature.reg) & BIT(feature.bit);
1051}
1052
1053void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1054				     struct kvm_x86_cpu_feature feature,
1055				     bool set);
1056
1057static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
1058					  struct kvm_x86_cpu_feature feature)
1059{
1060	vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
1061
1062}
1063
1064static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1065					    struct kvm_x86_cpu_feature feature)
1066{
1067	vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
1068}
1069
1070uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
1071int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
1072
1073/*
1074 * Assert on an MSR access(es) and pretty print the MSR name when possible.
1075 * Note, the caller provides the stringified name so that the name of macro is
1076 * printed, not the value the macro resolves to (due to macro expansion).
1077 */
1078#define TEST_ASSERT_MSR(cond, fmt, msr, str, args...)				\
1079do {										\
1080	if (__builtin_constant_p(msr)) {					\
1081		TEST_ASSERT(cond, fmt, str, args);				\
1082	} else if (!(cond)) {							\
1083		char buf[16];							\
1084										\
1085		snprintf(buf, sizeof(buf), "MSR 0x%x", msr);			\
1086		TEST_ASSERT(cond, fmt, buf, args);				\
1087	}									\
1088} while (0)
1089
1090/*
1091 * Returns true if KVM should return the last written value when reading an MSR
1092 * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1093 * is changing, etc.  This is NOT an exhaustive list!  The intent is to filter
1094 * out MSRs that are not durable _and_ that a selftest wants to write.
1095 */
1096static inline bool is_durable_msr(uint32_t msr)
1097{
1098	return msr != MSR_IA32_TSC;
1099}
1100
1101#define vcpu_set_msr(vcpu, msr, val)							\
1102do {											\
1103	uint64_t r, v = val;								\
1104											\
1105	TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1,				\
1106			"KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v);	\
1107	if (!is_durable_msr(msr))							\
1108		break;									\
1109	r = vcpu_get_msr(vcpu, msr);							\
1110	TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1111} while (0)
1112
1113void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1114void kvm_init_vm_address_properties(struct kvm_vm *vm);
1115bool vm_is_unrestricted_guest(struct kvm_vm *vm);
1116
1117struct ex_regs {
1118	uint64_t rax, rcx, rdx, rbx;
1119	uint64_t rbp, rsi, rdi;
1120	uint64_t r8, r9, r10, r11;
1121	uint64_t r12, r13, r14, r15;
1122	uint64_t vector;
1123	uint64_t error_code;
1124	uint64_t rip;
1125	uint64_t cs;
1126	uint64_t rflags;
1127};
1128
1129struct idt_entry {
1130	uint16_t offset0;
1131	uint16_t selector;
1132	uint16_t ist : 3;
1133	uint16_t : 5;
1134	uint16_t type : 4;
1135	uint16_t : 1;
1136	uint16_t dpl : 2;
1137	uint16_t p : 1;
1138	uint16_t offset1;
1139	uint32_t offset2; uint32_t reserved;
1140};
1141
1142void vm_init_descriptor_tables(struct kvm_vm *vm);
1143void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu);
1144void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1145			void (*handler)(struct ex_regs *));
1146
1147/* If a toddler were to say "abracadabra". */
1148#define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1149
1150/*
1151 * KVM selftest exception fixup uses registers to coordinate with the exception
1152 * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1153 * per-CPU data.  Using only registers avoids having to map memory into the
1154 * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1155 * for recursive faults when accessing memory in the handler.  The downside to
1156 * using registers is that it restricts what registers can be used by the actual
1157 * instruction.  But, selftests are 64-bit only, making register* pressure a
1158 * minor concern.  Use r9-r11 as they are volatile, i.e. don't need to be saved
1159 * by the callee, and except for r11 are not implicit parameters to any
1160 * instructions.  Ideally, fixup would use r8-r10 and thus avoid implicit
1161 * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1162 * is higher priority than testing non-faulting SYSCALL/SYSRET.
1163 *
1164 * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1165 * is guaranteed to be non-zero on fault.
1166 *
1167 * REGISTER INPUTS:
1168 * r9  = MAGIC
1169 * r10 = RIP
1170 * r11 = new RIP on fault
1171 *
1172 * REGISTER OUTPUTS:
1173 * r9  = exception vector (non-zero)
1174 * r10 = error code
1175 */
1176#define __KVM_ASM_SAFE(insn, fep)				\
1177	"mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t"	\
1178	"lea 1f(%%rip), %%r10\n\t"				\
1179	"lea 2f(%%rip), %%r11\n\t"				\
1180	fep "1: " insn "\n\t"					\
1181	"xor %%r9, %%r9\n\t"					\
1182	"2:\n\t"						\
1183	"mov  %%r9b, %[vector]\n\t"				\
1184	"mov  %%r10, %[error_code]\n\t"
1185
1186#define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "")
1187#define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP)
1188
1189#define KVM_ASM_SAFE_OUTPUTS(v, ec)	[vector] "=qm"(v), [error_code] "=rm"(ec)
1190#define KVM_ASM_SAFE_CLOBBERS	"r9", "r10", "r11"
1191
1192#define kvm_asm_safe(insn, inputs...)					\
1193({									\
1194	uint64_t ign_error_code;					\
1195	uint8_t vector;							\
1196									\
1197	asm volatile(KVM_ASM_SAFE(insn)					\
1198		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1199		     : inputs						\
1200		     : KVM_ASM_SAFE_CLOBBERS);				\
1201	vector;								\
1202})
1203
1204#define kvm_asm_safe_ec(insn, error_code, inputs...)			\
1205({									\
1206	uint8_t vector;							\
1207									\
1208	asm volatile(KVM_ASM_SAFE(insn)					\
1209		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1210		     : inputs						\
1211		     : KVM_ASM_SAFE_CLOBBERS);				\
1212	vector;								\
1213})
1214
1215#define kvm_asm_safe_fep(insn, inputs...)				\
1216({									\
1217	uint64_t ign_error_code;					\
1218	uint8_t vector;							\
1219									\
1220	asm volatile(KVM_ASM_SAFE(insn)					\
1221		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1222		     : inputs						\
1223		     : KVM_ASM_SAFE_CLOBBERS);				\
1224	vector;								\
1225})
1226
1227#define kvm_asm_safe_ec_fep(insn, error_code, inputs...)		\
1228({									\
1229	uint8_t vector;							\
1230									\
1231	asm volatile(KVM_ASM_SAFE_FEP(insn)				\
1232		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1233		     : inputs						\
1234		     : KVM_ASM_SAFE_CLOBBERS);				\
1235	vector;								\
1236})
1237
1238#define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1239static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val)	\
1240{									\
1241	uint64_t error_code;						\
1242	uint8_t vector;							\
1243	uint32_t a, d;							\
1244									\
1245	asm volatile(KVM_ASM_SAFE##_FEP(#insn)				\
1246		     : "=a"(a), "=d"(d),				\
1247		       KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1248		     : "c"(idx)						\
1249		     : KVM_ASM_SAFE_CLOBBERS);				\
1250									\
1251	*val = (uint64_t)a | ((uint64_t)d << 32);			\
1252	return vector;							\
1253}
1254
1255/*
1256 * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that
1257 * use ECX as in input index, and EDX:EAX as a 64-bit output.
1258 */
1259#define BUILD_READ_U64_SAFE_HELPERS(insn)				\
1260	BUILD_READ_U64_SAFE_HELPER(insn, , )				\
1261	BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1262
1263BUILD_READ_U64_SAFE_HELPERS(rdmsr)
1264BUILD_READ_U64_SAFE_HELPERS(rdpmc)
1265BUILD_READ_U64_SAFE_HELPERS(xgetbv)
1266
1267static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1268{
1269	return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1270}
1271
1272static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1273{
1274	u32 eax = value;
1275	u32 edx = value >> 32;
1276
1277	return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1278}
1279
1280bool kvm_is_tdp_enabled(void);
1281
1282static inline bool kvm_is_pmu_enabled(void)
1283{
1284	return get_kvm_param_bool("enable_pmu");
1285}
1286
1287static inline bool kvm_is_forced_emulation_enabled(void)
1288{
1289	return !!get_kvm_param_integer("force_emulation_prefix");
1290}
1291
1292uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1293				    int *level);
1294uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1295
1296uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1297		       uint64_t a3);
1298uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1299void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1300
1301static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa,
1302						     uint64_t size, uint64_t flags)
1303{
1304	return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0);
1305}
1306
1307static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size,
1308					       uint64_t flags)
1309{
1310	uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags);
1311
1312	GUEST_ASSERT(!ret);
1313}
1314
1315void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1316
1317#define vm_xsave_require_permission(xfeature)	\
1318	__vm_xsave_require_permission(xfeature, #xfeature)
1319
1320enum pg_level {
1321	PG_LEVEL_NONE,
1322	PG_LEVEL_4K,
1323	PG_LEVEL_2M,
1324	PG_LEVEL_1G,
1325	PG_LEVEL_512G,
1326	PG_LEVEL_NUM
1327};
1328
1329#define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1330#define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1331
1332#define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1333#define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1334#define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1335
1336void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1337void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1338		    uint64_t nr_bytes, int level);
1339
1340/*
1341 * Basic CPU control in CR0
1342 */
1343#define X86_CR0_PE          (1UL<<0) /* Protection Enable */
1344#define X86_CR0_MP          (1UL<<1) /* Monitor Coprocessor */
1345#define X86_CR0_EM          (1UL<<2) /* Emulation */
1346#define X86_CR0_TS          (1UL<<3) /* Task Switched */
1347#define X86_CR0_ET          (1UL<<4) /* Extension Type */
1348#define X86_CR0_NE          (1UL<<5) /* Numeric Error */
1349#define X86_CR0_WP          (1UL<<16) /* Write Protect */
1350#define X86_CR0_AM          (1UL<<18) /* Alignment Mask */
1351#define X86_CR0_NW          (1UL<<29) /* Not Write-through */
1352#define X86_CR0_CD          (1UL<<30) /* Cache Disable */
1353#define X86_CR0_PG          (1UL<<31) /* Paging */
1354
1355#define PFERR_PRESENT_BIT 0
1356#define PFERR_WRITE_BIT 1
1357#define PFERR_USER_BIT 2
1358#define PFERR_RSVD_BIT 3
1359#define PFERR_FETCH_BIT 4
1360#define PFERR_PK_BIT 5
1361#define PFERR_SGX_BIT 15
1362#define PFERR_GUEST_FINAL_BIT 32
1363#define PFERR_GUEST_PAGE_BIT 33
1364#define PFERR_IMPLICIT_ACCESS_BIT 48
1365
1366#define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
1367#define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
1368#define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
1369#define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
1370#define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
1371#define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
1372#define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
1373#define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
1374#define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
1375#define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1376
1377bool sys_clocksource_is_based_on_tsc(void);
1378
1379#endif /* SELFTEST_KVM_PROCESSOR_H */
1380