1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *
4 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5 *     & Swedish University of Agricultural Sciences.
6 *
7 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
8 *     Agricultural Sciences.
9 *
10 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
11 *
12 * This work is based on the LPC-trie which is originally described in:
13 *
14 * An experimental study of compression methods for dynamic tries
15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
17 *
18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20 *
21 * Code from fib_hash has been reused which includes the following header:
22 *
23 * INET		An implementation of the TCP/IP protocol suite for the LINUX
24 *		operating system.  INET is implemented using the  BSD Socket
25 *		interface as the means of communication with the user level.
26 *
27 *		IPv4 FIB: lookup engine and maintenance routines.
28 *
29 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30 *
31 * Substantial contributions to this work comes from:
32 *
33 *		David S. Miller, <davem@davemloft.net>
34 *		Stephen Hemminger <shemminger@osdl.org>
35 *		Paul E. McKenney <paulmck@us.ibm.com>
36 *		Patrick McHardy <kaber@trash.net>
37 */
38#include <linux/cache.h>
39#include <linux/uaccess.h>
40#include <linux/bitops.h>
41#include <linux/types.h>
42#include <linux/kernel.h>
43#include <linux/mm.h>
44#include <linux/string.h>
45#include <linux/socket.h>
46#include <linux/sockios.h>
47#include <linux/errno.h>
48#include <linux/in.h>
49#include <linux/inet.h>
50#include <linux/inetdevice.h>
51#include <linux/netdevice.h>
52#include <linux/if_arp.h>
53#include <linux/proc_fs.h>
54#include <linux/rcupdate.h>
55#include <linux/rcupdate_wait.h>
56#include <linux/skbuff.h>
57#include <linux/netlink.h>
58#include <linux/init.h>
59#include <linux/list.h>
60#include <linux/slab.h>
61#include <linux/export.h>
62#include <linux/vmalloc.h>
63#include <linux/notifier.h>
64#include <net/net_namespace.h>
65#include <net/inet_dscp.h>
66#include <net/ip.h>
67#include <net/protocol.h>
68#include <net/route.h>
69#include <net/tcp.h>
70#include <net/sock.h>
71#include <net/ip_fib.h>
72#include <net/fib_notifier.h>
73#include <trace/events/fib.h>
74#include "fib_lookup.h"
75
76static int call_fib_entry_notifier(struct notifier_block *nb,
77				   enum fib_event_type event_type, u32 dst,
78				   int dst_len, struct fib_alias *fa,
79				   struct netlink_ext_ack *extack)
80{
81	struct fib_entry_notifier_info info = {
82		.info.extack = extack,
83		.dst = dst,
84		.dst_len = dst_len,
85		.fi = fa->fa_info,
86		.dscp = fa->fa_dscp,
87		.type = fa->fa_type,
88		.tb_id = fa->tb_id,
89	};
90	return call_fib4_notifier(nb, event_type, &info.info);
91}
92
93static int call_fib_entry_notifiers(struct net *net,
94				    enum fib_event_type event_type, u32 dst,
95				    int dst_len, struct fib_alias *fa,
96				    struct netlink_ext_ack *extack)
97{
98	struct fib_entry_notifier_info info = {
99		.info.extack = extack,
100		.dst = dst,
101		.dst_len = dst_len,
102		.fi = fa->fa_info,
103		.dscp = fa->fa_dscp,
104		.type = fa->fa_type,
105		.tb_id = fa->tb_id,
106	};
107	return call_fib4_notifiers(net, event_type, &info.info);
108}
109
110#define MAX_STAT_DEPTH 32
111
112#define KEYLENGTH	(8*sizeof(t_key))
113#define KEY_MAX		((t_key)~0)
114
115typedef unsigned int t_key;
116
117#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
118#define IS_TNODE(n)	((n)->bits)
119#define IS_LEAF(n)	(!(n)->bits)
120
121struct key_vector {
122	t_key key;
123	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
124	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
125	unsigned char slen;
126	union {
127		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
128		struct hlist_head leaf;
129		/* This array is valid if (pos | bits) > 0 (TNODE) */
130		DECLARE_FLEX_ARRAY(struct key_vector __rcu *, tnode);
131	};
132};
133
134struct tnode {
135	struct rcu_head rcu;
136	t_key empty_children;		/* KEYLENGTH bits needed */
137	t_key full_children;		/* KEYLENGTH bits needed */
138	struct key_vector __rcu *parent;
139	struct key_vector kv[1];
140#define tn_bits kv[0].bits
141};
142
143#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
144#define LEAF_SIZE	TNODE_SIZE(1)
145
146#ifdef CONFIG_IP_FIB_TRIE_STATS
147struct trie_use_stats {
148	unsigned int gets;
149	unsigned int backtrack;
150	unsigned int semantic_match_passed;
151	unsigned int semantic_match_miss;
152	unsigned int null_node_hit;
153	unsigned int resize_node_skipped;
154};
155#endif
156
157struct trie_stat {
158	unsigned int totdepth;
159	unsigned int maxdepth;
160	unsigned int tnodes;
161	unsigned int leaves;
162	unsigned int nullpointers;
163	unsigned int prefixes;
164	unsigned int nodesizes[MAX_STAT_DEPTH];
165};
166
167struct trie {
168	struct key_vector kv[1];
169#ifdef CONFIG_IP_FIB_TRIE_STATS
170	struct trie_use_stats __percpu *stats;
171#endif
172};
173
174static struct key_vector *resize(struct trie *t, struct key_vector *tn);
175static unsigned int tnode_free_size;
176
177/*
178 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
179 * especially useful before resizing the root node with PREEMPT_NONE configs;
180 * the value was obtained experimentally, aiming to avoid visible slowdown.
181 */
182unsigned int sysctl_fib_sync_mem = 512 * 1024;
183unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
184unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
185
186static struct kmem_cache *fn_alias_kmem __ro_after_init;
187static struct kmem_cache *trie_leaf_kmem __ro_after_init;
188
189static inline struct tnode *tn_info(struct key_vector *kv)
190{
191	return container_of(kv, struct tnode, kv[0]);
192}
193
194/* caller must hold RTNL */
195#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
196#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
197
198/* caller must hold RCU read lock or RTNL */
199#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
200#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
201
202/* wrapper for rcu_assign_pointer */
203static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
204{
205	if (n)
206		rcu_assign_pointer(tn_info(n)->parent, tp);
207}
208
209#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
210
211/* This provides us with the number of children in this node, in the case of a
212 * leaf this will return 0 meaning none of the children are accessible.
213 */
214static inline unsigned long child_length(const struct key_vector *tn)
215{
216	return (1ul << tn->bits) & ~(1ul);
217}
218
219#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
220
221static inline unsigned long get_index(t_key key, struct key_vector *kv)
222{
223	unsigned long index = key ^ kv->key;
224
225	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
226		return 0;
227
228	return index >> kv->pos;
229}
230
231/* To understand this stuff, an understanding of keys and all their bits is
232 * necessary. Every node in the trie has a key associated with it, but not
233 * all of the bits in that key are significant.
234 *
235 * Consider a node 'n' and its parent 'tp'.
236 *
237 * If n is a leaf, every bit in its key is significant. Its presence is
238 * necessitated by path compression, since during a tree traversal (when
239 * searching for a leaf - unless we are doing an insertion) we will completely
240 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
241 * a potentially successful search, that we have indeed been walking the
242 * correct key path.
243 *
244 * Note that we can never "miss" the correct key in the tree if present by
245 * following the wrong path. Path compression ensures that segments of the key
246 * that are the same for all keys with a given prefix are skipped, but the
247 * skipped part *is* identical for each node in the subtrie below the skipped
248 * bit! trie_insert() in this implementation takes care of that.
249 *
250 * if n is an internal node - a 'tnode' here, the various parts of its key
251 * have many different meanings.
252 *
253 * Example:
254 * _________________________________________________________________
255 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
256 * -----------------------------------------------------------------
257 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
258 *
259 * _________________________________________________________________
260 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
261 * -----------------------------------------------------------------
262 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
263 *
264 * tp->pos = 22
265 * tp->bits = 3
266 * n->pos = 13
267 * n->bits = 4
268 *
269 * First, let's just ignore the bits that come before the parent tp, that is
270 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
271 * point we do not use them for anything.
272 *
273 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
274 * index into the parent's child array. That is, they will be used to find
275 * 'n' among tp's children.
276 *
277 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
278 * for the node n.
279 *
280 * All the bits we have seen so far are significant to the node n. The rest
281 * of the bits are really not needed or indeed known in n->key.
282 *
283 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
284 * n's child array, and will of course be different for each child.
285 *
286 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
287 * at this point.
288 */
289
290static const int halve_threshold = 25;
291static const int inflate_threshold = 50;
292static const int halve_threshold_root = 15;
293static const int inflate_threshold_root = 30;
294
295static void __alias_free_mem(struct rcu_head *head)
296{
297	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
298	kmem_cache_free(fn_alias_kmem, fa);
299}
300
301static inline void alias_free_mem_rcu(struct fib_alias *fa)
302{
303	call_rcu(&fa->rcu, __alias_free_mem);
304}
305
306#define TNODE_VMALLOC_MAX \
307	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
308
309static void __node_free_rcu(struct rcu_head *head)
310{
311	struct tnode *n = container_of(head, struct tnode, rcu);
312
313	if (!n->tn_bits)
314		kmem_cache_free(trie_leaf_kmem, n);
315	else
316		kvfree(n);
317}
318
319#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
320
321static struct tnode *tnode_alloc(int bits)
322{
323	size_t size;
324
325	/* verify bits is within bounds */
326	if (bits > TNODE_VMALLOC_MAX)
327		return NULL;
328
329	/* determine size and verify it is non-zero and didn't overflow */
330	size = TNODE_SIZE(1ul << bits);
331
332	if (size <= PAGE_SIZE)
333		return kzalloc(size, GFP_KERNEL);
334	else
335		return vzalloc(size);
336}
337
338static inline void empty_child_inc(struct key_vector *n)
339{
340	tn_info(n)->empty_children++;
341
342	if (!tn_info(n)->empty_children)
343		tn_info(n)->full_children++;
344}
345
346static inline void empty_child_dec(struct key_vector *n)
347{
348	if (!tn_info(n)->empty_children)
349		tn_info(n)->full_children--;
350
351	tn_info(n)->empty_children--;
352}
353
354static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
355{
356	struct key_vector *l;
357	struct tnode *kv;
358
359	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
360	if (!kv)
361		return NULL;
362
363	/* initialize key vector */
364	l = kv->kv;
365	l->key = key;
366	l->pos = 0;
367	l->bits = 0;
368	l->slen = fa->fa_slen;
369
370	/* link leaf to fib alias */
371	INIT_HLIST_HEAD(&l->leaf);
372	hlist_add_head(&fa->fa_list, &l->leaf);
373
374	return l;
375}
376
377static struct key_vector *tnode_new(t_key key, int pos, int bits)
378{
379	unsigned int shift = pos + bits;
380	struct key_vector *tn;
381	struct tnode *tnode;
382
383	/* verify bits and pos their msb bits clear and values are valid */
384	BUG_ON(!bits || (shift > KEYLENGTH));
385
386	tnode = tnode_alloc(bits);
387	if (!tnode)
388		return NULL;
389
390	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
391		 sizeof(struct key_vector *) << bits);
392
393	if (bits == KEYLENGTH)
394		tnode->full_children = 1;
395	else
396		tnode->empty_children = 1ul << bits;
397
398	tn = tnode->kv;
399	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
400	tn->pos = pos;
401	tn->bits = bits;
402	tn->slen = pos;
403
404	return tn;
405}
406
407/* Check whether a tnode 'n' is "full", i.e. it is an internal node
408 * and no bits are skipped. See discussion in dyntree paper p. 6
409 */
410static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
411{
412	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
413}
414
415/* Add a child at position i overwriting the old value.
416 * Update the value of full_children and empty_children.
417 */
418static void put_child(struct key_vector *tn, unsigned long i,
419		      struct key_vector *n)
420{
421	struct key_vector *chi = get_child(tn, i);
422	int isfull, wasfull;
423
424	BUG_ON(i >= child_length(tn));
425
426	/* update emptyChildren, overflow into fullChildren */
427	if (!n && chi)
428		empty_child_inc(tn);
429	if (n && !chi)
430		empty_child_dec(tn);
431
432	/* update fullChildren */
433	wasfull = tnode_full(tn, chi);
434	isfull = tnode_full(tn, n);
435
436	if (wasfull && !isfull)
437		tn_info(tn)->full_children--;
438	else if (!wasfull && isfull)
439		tn_info(tn)->full_children++;
440
441	if (n && (tn->slen < n->slen))
442		tn->slen = n->slen;
443
444	rcu_assign_pointer(tn->tnode[i], n);
445}
446
447static void update_children(struct key_vector *tn)
448{
449	unsigned long i;
450
451	/* update all of the child parent pointers */
452	for (i = child_length(tn); i;) {
453		struct key_vector *inode = get_child(tn, --i);
454
455		if (!inode)
456			continue;
457
458		/* Either update the children of a tnode that
459		 * already belongs to us or update the child
460		 * to point to ourselves.
461		 */
462		if (node_parent(inode) == tn)
463			update_children(inode);
464		else
465			node_set_parent(inode, tn);
466	}
467}
468
469static inline void put_child_root(struct key_vector *tp, t_key key,
470				  struct key_vector *n)
471{
472	if (IS_TRIE(tp))
473		rcu_assign_pointer(tp->tnode[0], n);
474	else
475		put_child(tp, get_index(key, tp), n);
476}
477
478static inline void tnode_free_init(struct key_vector *tn)
479{
480	tn_info(tn)->rcu.next = NULL;
481}
482
483static inline void tnode_free_append(struct key_vector *tn,
484				     struct key_vector *n)
485{
486	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
487	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
488}
489
490static void tnode_free(struct key_vector *tn)
491{
492	struct callback_head *head = &tn_info(tn)->rcu;
493
494	while (head) {
495		head = head->next;
496		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
497		node_free(tn);
498
499		tn = container_of(head, struct tnode, rcu)->kv;
500	}
501
502	if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
503		tnode_free_size = 0;
504		synchronize_net();
505	}
506}
507
508static struct key_vector *replace(struct trie *t,
509				  struct key_vector *oldtnode,
510				  struct key_vector *tn)
511{
512	struct key_vector *tp = node_parent(oldtnode);
513	unsigned long i;
514
515	/* setup the parent pointer out of and back into this node */
516	NODE_INIT_PARENT(tn, tp);
517	put_child_root(tp, tn->key, tn);
518
519	/* update all of the child parent pointers */
520	update_children(tn);
521
522	/* all pointers should be clean so we are done */
523	tnode_free(oldtnode);
524
525	/* resize children now that oldtnode is freed */
526	for (i = child_length(tn); i;) {
527		struct key_vector *inode = get_child(tn, --i);
528
529		/* resize child node */
530		if (tnode_full(tn, inode))
531			tn = resize(t, inode);
532	}
533
534	return tp;
535}
536
537static struct key_vector *inflate(struct trie *t,
538				  struct key_vector *oldtnode)
539{
540	struct key_vector *tn;
541	unsigned long i;
542	t_key m;
543
544	pr_debug("In inflate\n");
545
546	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
547	if (!tn)
548		goto notnode;
549
550	/* prepare oldtnode to be freed */
551	tnode_free_init(oldtnode);
552
553	/* Assemble all of the pointers in our cluster, in this case that
554	 * represents all of the pointers out of our allocated nodes that
555	 * point to existing tnodes and the links between our allocated
556	 * nodes.
557	 */
558	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
559		struct key_vector *inode = get_child(oldtnode, --i);
560		struct key_vector *node0, *node1;
561		unsigned long j, k;
562
563		/* An empty child */
564		if (!inode)
565			continue;
566
567		/* A leaf or an internal node with skipped bits */
568		if (!tnode_full(oldtnode, inode)) {
569			put_child(tn, get_index(inode->key, tn), inode);
570			continue;
571		}
572
573		/* drop the node in the old tnode free list */
574		tnode_free_append(oldtnode, inode);
575
576		/* An internal node with two children */
577		if (inode->bits == 1) {
578			put_child(tn, 2 * i + 1, get_child(inode, 1));
579			put_child(tn, 2 * i, get_child(inode, 0));
580			continue;
581		}
582
583		/* We will replace this node 'inode' with two new
584		 * ones, 'node0' and 'node1', each with half of the
585		 * original children. The two new nodes will have
586		 * a position one bit further down the key and this
587		 * means that the "significant" part of their keys
588		 * (see the discussion near the top of this file)
589		 * will differ by one bit, which will be "0" in
590		 * node0's key and "1" in node1's key. Since we are
591		 * moving the key position by one step, the bit that
592		 * we are moving away from - the bit at position
593		 * (tn->pos) - is the one that will differ between
594		 * node0 and node1. So... we synthesize that bit in the
595		 * two new keys.
596		 */
597		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
598		if (!node1)
599			goto nomem;
600		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
601
602		tnode_free_append(tn, node1);
603		if (!node0)
604			goto nomem;
605		tnode_free_append(tn, node0);
606
607		/* populate child pointers in new nodes */
608		for (k = child_length(inode), j = k / 2; j;) {
609			put_child(node1, --j, get_child(inode, --k));
610			put_child(node0, j, get_child(inode, j));
611			put_child(node1, --j, get_child(inode, --k));
612			put_child(node0, j, get_child(inode, j));
613		}
614
615		/* link new nodes to parent */
616		NODE_INIT_PARENT(node1, tn);
617		NODE_INIT_PARENT(node0, tn);
618
619		/* link parent to nodes */
620		put_child(tn, 2 * i + 1, node1);
621		put_child(tn, 2 * i, node0);
622	}
623
624	/* setup the parent pointers into and out of this node */
625	return replace(t, oldtnode, tn);
626nomem:
627	/* all pointers should be clean so we are done */
628	tnode_free(tn);
629notnode:
630	return NULL;
631}
632
633static struct key_vector *halve(struct trie *t,
634				struct key_vector *oldtnode)
635{
636	struct key_vector *tn;
637	unsigned long i;
638
639	pr_debug("In halve\n");
640
641	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
642	if (!tn)
643		goto notnode;
644
645	/* prepare oldtnode to be freed */
646	tnode_free_init(oldtnode);
647
648	/* Assemble all of the pointers in our cluster, in this case that
649	 * represents all of the pointers out of our allocated nodes that
650	 * point to existing tnodes and the links between our allocated
651	 * nodes.
652	 */
653	for (i = child_length(oldtnode); i;) {
654		struct key_vector *node1 = get_child(oldtnode, --i);
655		struct key_vector *node0 = get_child(oldtnode, --i);
656		struct key_vector *inode;
657
658		/* At least one of the children is empty */
659		if (!node1 || !node0) {
660			put_child(tn, i / 2, node1 ? : node0);
661			continue;
662		}
663
664		/* Two nonempty children */
665		inode = tnode_new(node0->key, oldtnode->pos, 1);
666		if (!inode)
667			goto nomem;
668		tnode_free_append(tn, inode);
669
670		/* initialize pointers out of node */
671		put_child(inode, 1, node1);
672		put_child(inode, 0, node0);
673		NODE_INIT_PARENT(inode, tn);
674
675		/* link parent to node */
676		put_child(tn, i / 2, inode);
677	}
678
679	/* setup the parent pointers into and out of this node */
680	return replace(t, oldtnode, tn);
681nomem:
682	/* all pointers should be clean so we are done */
683	tnode_free(tn);
684notnode:
685	return NULL;
686}
687
688static struct key_vector *collapse(struct trie *t,
689				   struct key_vector *oldtnode)
690{
691	struct key_vector *n, *tp;
692	unsigned long i;
693
694	/* scan the tnode looking for that one child that might still exist */
695	for (n = NULL, i = child_length(oldtnode); !n && i;)
696		n = get_child(oldtnode, --i);
697
698	/* compress one level */
699	tp = node_parent(oldtnode);
700	put_child_root(tp, oldtnode->key, n);
701	node_set_parent(n, tp);
702
703	/* drop dead node */
704	node_free(oldtnode);
705
706	return tp;
707}
708
709static unsigned char update_suffix(struct key_vector *tn)
710{
711	unsigned char slen = tn->pos;
712	unsigned long stride, i;
713	unsigned char slen_max;
714
715	/* only vector 0 can have a suffix length greater than or equal to
716	 * tn->pos + tn->bits, the second highest node will have a suffix
717	 * length at most of tn->pos + tn->bits - 1
718	 */
719	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
720
721	/* search though the list of children looking for nodes that might
722	 * have a suffix greater than the one we currently have.  This is
723	 * why we start with a stride of 2 since a stride of 1 would
724	 * represent the nodes with suffix length equal to tn->pos
725	 */
726	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
727		struct key_vector *n = get_child(tn, i);
728
729		if (!n || (n->slen <= slen))
730			continue;
731
732		/* update stride and slen based on new value */
733		stride <<= (n->slen - slen);
734		slen = n->slen;
735		i &= ~(stride - 1);
736
737		/* stop searching if we have hit the maximum possible value */
738		if (slen >= slen_max)
739			break;
740	}
741
742	tn->slen = slen;
743
744	return slen;
745}
746
747/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
748 * the Helsinki University of Technology and Matti Tikkanen of Nokia
749 * Telecommunications, page 6:
750 * "A node is doubled if the ratio of non-empty children to all
751 * children in the *doubled* node is at least 'high'."
752 *
753 * 'high' in this instance is the variable 'inflate_threshold'. It
754 * is expressed as a percentage, so we multiply it with
755 * child_length() and instead of multiplying by 2 (since the
756 * child array will be doubled by inflate()) and multiplying
757 * the left-hand side by 100 (to handle the percentage thing) we
758 * multiply the left-hand side by 50.
759 *
760 * The left-hand side may look a bit weird: child_length(tn)
761 * - tn->empty_children is of course the number of non-null children
762 * in the current node. tn->full_children is the number of "full"
763 * children, that is non-null tnodes with a skip value of 0.
764 * All of those will be doubled in the resulting inflated tnode, so
765 * we just count them one extra time here.
766 *
767 * A clearer way to write this would be:
768 *
769 * to_be_doubled = tn->full_children;
770 * not_to_be_doubled = child_length(tn) - tn->empty_children -
771 *     tn->full_children;
772 *
773 * new_child_length = child_length(tn) * 2;
774 *
775 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
776 *      new_child_length;
777 * if (new_fill_factor >= inflate_threshold)
778 *
779 * ...and so on, tho it would mess up the while () loop.
780 *
781 * anyway,
782 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
783 *      inflate_threshold
784 *
785 * avoid a division:
786 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
787 *      inflate_threshold * new_child_length
788 *
789 * expand not_to_be_doubled and to_be_doubled, and shorten:
790 * 100 * (child_length(tn) - tn->empty_children +
791 *    tn->full_children) >= inflate_threshold * new_child_length
792 *
793 * expand new_child_length:
794 * 100 * (child_length(tn) - tn->empty_children +
795 *    tn->full_children) >=
796 *      inflate_threshold * child_length(tn) * 2
797 *
798 * shorten again:
799 * 50 * (tn->full_children + child_length(tn) -
800 *    tn->empty_children) >= inflate_threshold *
801 *    child_length(tn)
802 *
803 */
804static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
805{
806	unsigned long used = child_length(tn);
807	unsigned long threshold = used;
808
809	/* Keep root node larger */
810	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
811	used -= tn_info(tn)->empty_children;
812	used += tn_info(tn)->full_children;
813
814	/* if bits == KEYLENGTH then pos = 0, and will fail below */
815
816	return (used > 1) && tn->pos && ((50 * used) >= threshold);
817}
818
819static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
820{
821	unsigned long used = child_length(tn);
822	unsigned long threshold = used;
823
824	/* Keep root node larger */
825	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
826	used -= tn_info(tn)->empty_children;
827
828	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
829
830	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
831}
832
833static inline bool should_collapse(struct key_vector *tn)
834{
835	unsigned long used = child_length(tn);
836
837	used -= tn_info(tn)->empty_children;
838
839	/* account for bits == KEYLENGTH case */
840	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
841		used -= KEY_MAX;
842
843	/* One child or none, time to drop us from the trie */
844	return used < 2;
845}
846
847#define MAX_WORK 10
848static struct key_vector *resize(struct trie *t, struct key_vector *tn)
849{
850#ifdef CONFIG_IP_FIB_TRIE_STATS
851	struct trie_use_stats __percpu *stats = t->stats;
852#endif
853	struct key_vector *tp = node_parent(tn);
854	unsigned long cindex = get_index(tn->key, tp);
855	int max_work = MAX_WORK;
856
857	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
858		 tn, inflate_threshold, halve_threshold);
859
860	/* track the tnode via the pointer from the parent instead of
861	 * doing it ourselves.  This way we can let RCU fully do its
862	 * thing without us interfering
863	 */
864	BUG_ON(tn != get_child(tp, cindex));
865
866	/* Double as long as the resulting node has a number of
867	 * nonempty nodes that are above the threshold.
868	 */
869	while (should_inflate(tp, tn) && max_work) {
870		tp = inflate(t, tn);
871		if (!tp) {
872#ifdef CONFIG_IP_FIB_TRIE_STATS
873			this_cpu_inc(stats->resize_node_skipped);
874#endif
875			break;
876		}
877
878		max_work--;
879		tn = get_child(tp, cindex);
880	}
881
882	/* update parent in case inflate failed */
883	tp = node_parent(tn);
884
885	/* Return if at least one inflate is run */
886	if (max_work != MAX_WORK)
887		return tp;
888
889	/* Halve as long as the number of empty children in this
890	 * node is above threshold.
891	 */
892	while (should_halve(tp, tn) && max_work) {
893		tp = halve(t, tn);
894		if (!tp) {
895#ifdef CONFIG_IP_FIB_TRIE_STATS
896			this_cpu_inc(stats->resize_node_skipped);
897#endif
898			break;
899		}
900
901		max_work--;
902		tn = get_child(tp, cindex);
903	}
904
905	/* Only one child remains */
906	if (should_collapse(tn))
907		return collapse(t, tn);
908
909	/* update parent in case halve failed */
910	return node_parent(tn);
911}
912
913static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
914{
915	unsigned char node_slen = tn->slen;
916
917	while ((node_slen > tn->pos) && (node_slen > slen)) {
918		slen = update_suffix(tn);
919		if (node_slen == slen)
920			break;
921
922		tn = node_parent(tn);
923		node_slen = tn->slen;
924	}
925}
926
927static void node_push_suffix(struct key_vector *tn, unsigned char slen)
928{
929	while (tn->slen < slen) {
930		tn->slen = slen;
931		tn = node_parent(tn);
932	}
933}
934
935/* rcu_read_lock needs to be hold by caller from readside */
936static struct key_vector *fib_find_node(struct trie *t,
937					struct key_vector **tp, u32 key)
938{
939	struct key_vector *pn, *n = t->kv;
940	unsigned long index = 0;
941
942	do {
943		pn = n;
944		n = get_child_rcu(n, index);
945
946		if (!n)
947			break;
948
949		index = get_cindex(key, n);
950
951		/* This bit of code is a bit tricky but it combines multiple
952		 * checks into a single check.  The prefix consists of the
953		 * prefix plus zeros for the bits in the cindex. The index
954		 * is the difference between the key and this value.  From
955		 * this we can actually derive several pieces of data.
956		 *   if (index >= (1ul << bits))
957		 *     we have a mismatch in skip bits and failed
958		 *   else
959		 *     we know the value is cindex
960		 *
961		 * This check is safe even if bits == KEYLENGTH due to the
962		 * fact that we can only allocate a node with 32 bits if a
963		 * long is greater than 32 bits.
964		 */
965		if (index >= (1ul << n->bits)) {
966			n = NULL;
967			break;
968		}
969
970		/* keep searching until we find a perfect match leaf or NULL */
971	} while (IS_TNODE(n));
972
973	*tp = pn;
974
975	return n;
976}
977
978/* Return the first fib alias matching DSCP with
979 * priority less than or equal to PRIO.
980 * If 'find_first' is set, return the first matching
981 * fib alias, regardless of DSCP and priority.
982 */
983static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
984					dscp_t dscp, u32 prio, u32 tb_id,
985					bool find_first)
986{
987	struct fib_alias *fa;
988
989	if (!fah)
990		return NULL;
991
992	hlist_for_each_entry(fa, fah, fa_list) {
993		/* Avoid Sparse warning when using dscp_t in inequalities */
994		u8 __fa_dscp = inet_dscp_to_dsfield(fa->fa_dscp);
995		u8 __dscp = inet_dscp_to_dsfield(dscp);
996
997		if (fa->fa_slen < slen)
998			continue;
999		if (fa->fa_slen != slen)
1000			break;
1001		if (fa->tb_id > tb_id)
1002			continue;
1003		if (fa->tb_id != tb_id)
1004			break;
1005		if (find_first)
1006			return fa;
1007		if (__fa_dscp > __dscp)
1008			continue;
1009		if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp)
1010			return fa;
1011	}
1012
1013	return NULL;
1014}
1015
1016static struct fib_alias *
1017fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1018{
1019	u8 slen = KEYLENGTH - fri->dst_len;
1020	struct key_vector *l, *tp;
1021	struct fib_table *tb;
1022	struct fib_alias *fa;
1023	struct trie *t;
1024
1025	tb = fib_get_table(net, fri->tb_id);
1026	if (!tb)
1027		return NULL;
1028
1029	t = (struct trie *)tb->tb_data;
1030	l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1031	if (!l)
1032		return NULL;
1033
1034	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1035		if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1036		    fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi &&
1037		    fa->fa_type == fri->type)
1038			return fa;
1039	}
1040
1041	return NULL;
1042}
1043
1044void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1045{
1046	u8 fib_notify_on_flag_change;
1047	struct fib_alias *fa_match;
1048	struct sk_buff *skb;
1049	int err;
1050
1051	rcu_read_lock();
1052
1053	fa_match = fib_find_matching_alias(net, fri);
1054	if (!fa_match)
1055		goto out;
1056
1057	/* These are paired with the WRITE_ONCE() happening in this function.
1058	 * The reason is that we are only protected by RCU at this point.
1059	 */
1060	if (READ_ONCE(fa_match->offload) == fri->offload &&
1061	    READ_ONCE(fa_match->trap) == fri->trap &&
1062	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1063		goto out;
1064
1065	WRITE_ONCE(fa_match->offload, fri->offload);
1066	WRITE_ONCE(fa_match->trap, fri->trap);
1067
1068	fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change);
1069
1070	/* 2 means send notifications only if offload_failed was changed. */
1071	if (fib_notify_on_flag_change == 2 &&
1072	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1073		goto out;
1074
1075	WRITE_ONCE(fa_match->offload_failed, fri->offload_failed);
1076
1077	if (!fib_notify_on_flag_change)
1078		goto out;
1079
1080	skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1081	if (!skb) {
1082		err = -ENOBUFS;
1083		goto errout;
1084	}
1085
1086	err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1087	if (err < 0) {
1088		/* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1089		WARN_ON(err == -EMSGSIZE);
1090		kfree_skb(skb);
1091		goto errout;
1092	}
1093
1094	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1095	goto out;
1096
1097errout:
1098	rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1099out:
1100	rcu_read_unlock();
1101}
1102EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1103
1104static void trie_rebalance(struct trie *t, struct key_vector *tn)
1105{
1106	while (!IS_TRIE(tn))
1107		tn = resize(t, tn);
1108}
1109
1110static int fib_insert_node(struct trie *t, struct key_vector *tp,
1111			   struct fib_alias *new, t_key key)
1112{
1113	struct key_vector *n, *l;
1114
1115	l = leaf_new(key, new);
1116	if (!l)
1117		goto noleaf;
1118
1119	/* retrieve child from parent node */
1120	n = get_child(tp, get_index(key, tp));
1121
1122	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1123	 *
1124	 *  Add a new tnode here
1125	 *  first tnode need some special handling
1126	 *  leaves us in position for handling as case 3
1127	 */
1128	if (n) {
1129		struct key_vector *tn;
1130
1131		tn = tnode_new(key, __fls(key ^ n->key), 1);
1132		if (!tn)
1133			goto notnode;
1134
1135		/* initialize routes out of node */
1136		NODE_INIT_PARENT(tn, tp);
1137		put_child(tn, get_index(key, tn) ^ 1, n);
1138
1139		/* start adding routes into the node */
1140		put_child_root(tp, key, tn);
1141		node_set_parent(n, tn);
1142
1143		/* parent now has a NULL spot where the leaf can go */
1144		tp = tn;
1145	}
1146
1147	/* Case 3: n is NULL, and will just insert a new leaf */
1148	node_push_suffix(tp, new->fa_slen);
1149	NODE_INIT_PARENT(l, tp);
1150	put_child_root(tp, key, l);
1151	trie_rebalance(t, tp);
1152
1153	return 0;
1154notnode:
1155	node_free(l);
1156noleaf:
1157	return -ENOMEM;
1158}
1159
1160static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1161			    struct key_vector *l, struct fib_alias *new,
1162			    struct fib_alias *fa, t_key key)
1163{
1164	if (!l)
1165		return fib_insert_node(t, tp, new, key);
1166
1167	if (fa) {
1168		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1169	} else {
1170		struct fib_alias *last;
1171
1172		hlist_for_each_entry(last, &l->leaf, fa_list) {
1173			if (new->fa_slen < last->fa_slen)
1174				break;
1175			if ((new->fa_slen == last->fa_slen) &&
1176			    (new->tb_id > last->tb_id))
1177				break;
1178			fa = last;
1179		}
1180
1181		if (fa)
1182			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1183		else
1184			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1185	}
1186
1187	/* if we added to the tail node then we need to update slen */
1188	if (l->slen < new->fa_slen) {
1189		l->slen = new->fa_slen;
1190		node_push_suffix(tp, new->fa_slen);
1191	}
1192
1193	return 0;
1194}
1195
1196static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1197{
1198	if (plen > KEYLENGTH) {
1199		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1200		return false;
1201	}
1202
1203	if ((plen < KEYLENGTH) && (key << plen)) {
1204		NL_SET_ERR_MSG(extack,
1205			       "Invalid prefix for given prefix length");
1206		return false;
1207	}
1208
1209	return true;
1210}
1211
1212static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1213			     struct key_vector *l, struct fib_alias *old);
1214
1215/* Caller must hold RTNL. */
1216int fib_table_insert(struct net *net, struct fib_table *tb,
1217		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1218{
1219	struct trie *t = (struct trie *)tb->tb_data;
1220	struct fib_alias *fa, *new_fa;
1221	struct key_vector *l, *tp;
1222	u16 nlflags = NLM_F_EXCL;
1223	struct fib_info *fi;
1224	u8 plen = cfg->fc_dst_len;
1225	u8 slen = KEYLENGTH - plen;
1226	dscp_t dscp;
1227	u32 key;
1228	int err;
1229
1230	key = ntohl(cfg->fc_dst);
1231
1232	if (!fib_valid_key_len(key, plen, extack))
1233		return -EINVAL;
1234
1235	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1236
1237	fi = fib_create_info(cfg, extack);
1238	if (IS_ERR(fi)) {
1239		err = PTR_ERR(fi);
1240		goto err;
1241	}
1242
1243	dscp = cfg->fc_dscp;
1244	l = fib_find_node(t, &tp, key);
1245	fa = l ? fib_find_alias(&l->leaf, slen, dscp, fi->fib_priority,
1246				tb->tb_id, false) : NULL;
1247
1248	/* Now fa, if non-NULL, points to the first fib alias
1249	 * with the same keys [prefix,dscp,priority], if such key already
1250	 * exists or to the node before which we will insert new one.
1251	 *
1252	 * If fa is NULL, we will need to allocate a new one and
1253	 * insert to the tail of the section matching the suffix length
1254	 * of the new alias.
1255	 */
1256
1257	if (fa && fa->fa_dscp == dscp &&
1258	    fa->fa_info->fib_priority == fi->fib_priority) {
1259		struct fib_alias *fa_first, *fa_match;
1260
1261		err = -EEXIST;
1262		if (cfg->fc_nlflags & NLM_F_EXCL)
1263			goto out;
1264
1265		nlflags &= ~NLM_F_EXCL;
1266
1267		/* We have 2 goals:
1268		 * 1. Find exact match for type, scope, fib_info to avoid
1269		 * duplicate routes
1270		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1271		 */
1272		fa_match = NULL;
1273		fa_first = fa;
1274		hlist_for_each_entry_from(fa, fa_list) {
1275			if ((fa->fa_slen != slen) ||
1276			    (fa->tb_id != tb->tb_id) ||
1277			    (fa->fa_dscp != dscp))
1278				break;
1279			if (fa->fa_info->fib_priority != fi->fib_priority)
1280				break;
1281			if (fa->fa_type == cfg->fc_type &&
1282			    fa->fa_info == fi) {
1283				fa_match = fa;
1284				break;
1285			}
1286		}
1287
1288		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1289			struct fib_info *fi_drop;
1290			u8 state;
1291
1292			nlflags |= NLM_F_REPLACE;
1293			fa = fa_first;
1294			if (fa_match) {
1295				if (fa == fa_match)
1296					err = 0;
1297				goto out;
1298			}
1299			err = -ENOBUFS;
1300			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1301			if (!new_fa)
1302				goto out;
1303
1304			fi_drop = fa->fa_info;
1305			new_fa->fa_dscp = fa->fa_dscp;
1306			new_fa->fa_info = fi;
1307			new_fa->fa_type = cfg->fc_type;
1308			state = fa->fa_state;
1309			new_fa->fa_state = state & ~FA_S_ACCESSED;
1310			new_fa->fa_slen = fa->fa_slen;
1311			new_fa->tb_id = tb->tb_id;
1312			new_fa->fa_default = -1;
1313			new_fa->offload = 0;
1314			new_fa->trap = 0;
1315			new_fa->offload_failed = 0;
1316
1317			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1318
1319			if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1320					   tb->tb_id, true) == new_fa) {
1321				enum fib_event_type fib_event;
1322
1323				fib_event = FIB_EVENT_ENTRY_REPLACE;
1324				err = call_fib_entry_notifiers(net, fib_event,
1325							       key, plen,
1326							       new_fa, extack);
1327				if (err) {
1328					hlist_replace_rcu(&new_fa->fa_list,
1329							  &fa->fa_list);
1330					goto out_free_new_fa;
1331				}
1332			}
1333
1334			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1335				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1336
1337			alias_free_mem_rcu(fa);
1338
1339			fib_release_info(fi_drop);
1340			if (state & FA_S_ACCESSED)
1341				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1342
1343			goto succeeded;
1344		}
1345		/* Error if we find a perfect match which
1346		 * uses the same scope, type, and nexthop
1347		 * information.
1348		 */
1349		if (fa_match)
1350			goto out;
1351
1352		if (cfg->fc_nlflags & NLM_F_APPEND)
1353			nlflags |= NLM_F_APPEND;
1354		else
1355			fa = fa_first;
1356	}
1357	err = -ENOENT;
1358	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1359		goto out;
1360
1361	nlflags |= NLM_F_CREATE;
1362	err = -ENOBUFS;
1363	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1364	if (!new_fa)
1365		goto out;
1366
1367	new_fa->fa_info = fi;
1368	new_fa->fa_dscp = dscp;
1369	new_fa->fa_type = cfg->fc_type;
1370	new_fa->fa_state = 0;
1371	new_fa->fa_slen = slen;
1372	new_fa->tb_id = tb->tb_id;
1373	new_fa->fa_default = -1;
1374	new_fa->offload = 0;
1375	new_fa->trap = 0;
1376	new_fa->offload_failed = 0;
1377
1378	/* Insert new entry to the list. */
1379	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1380	if (err)
1381		goto out_free_new_fa;
1382
1383	/* The alias was already inserted, so the node must exist. */
1384	l = l ? l : fib_find_node(t, &tp, key);
1385	if (WARN_ON_ONCE(!l)) {
1386		err = -ENOENT;
1387		goto out_free_new_fa;
1388	}
1389
1390	if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1391	    new_fa) {
1392		enum fib_event_type fib_event;
1393
1394		fib_event = FIB_EVENT_ENTRY_REPLACE;
1395		err = call_fib_entry_notifiers(net, fib_event, key, plen,
1396					       new_fa, extack);
1397		if (err)
1398			goto out_remove_new_fa;
1399	}
1400
1401	if (!plen)
1402		tb->tb_num_default++;
1403
1404	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1405	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1406		  &cfg->fc_nlinfo, nlflags);
1407succeeded:
1408	return 0;
1409
1410out_remove_new_fa:
1411	fib_remove_alias(t, tp, l, new_fa);
1412out_free_new_fa:
1413	kmem_cache_free(fn_alias_kmem, new_fa);
1414out:
1415	fib_release_info(fi);
1416err:
1417	return err;
1418}
1419
1420static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1421{
1422	t_key prefix = n->key;
1423
1424	return (key ^ prefix) & (prefix | -prefix);
1425}
1426
1427bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1428			 const struct flowi4 *flp)
1429{
1430	if (nhc->nhc_flags & RTNH_F_DEAD)
1431		return false;
1432
1433	if (ip_ignore_linkdown(nhc->nhc_dev) &&
1434	    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1435	    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1436		return false;
1437
1438	if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif)
1439		return false;
1440
1441	return true;
1442}
1443
1444/* should be called with rcu_read_lock */
1445int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1446		     struct fib_result *res, int fib_flags)
1447{
1448	struct trie *t = (struct trie *) tb->tb_data;
1449#ifdef CONFIG_IP_FIB_TRIE_STATS
1450	struct trie_use_stats __percpu *stats = t->stats;
1451#endif
1452	const t_key key = ntohl(flp->daddr);
1453	struct key_vector *n, *pn;
1454	struct fib_alias *fa;
1455	unsigned long index;
1456	t_key cindex;
1457
1458	pn = t->kv;
1459	cindex = 0;
1460
1461	n = get_child_rcu(pn, cindex);
1462	if (!n) {
1463		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1464		return -EAGAIN;
1465	}
1466
1467#ifdef CONFIG_IP_FIB_TRIE_STATS
1468	this_cpu_inc(stats->gets);
1469#endif
1470
1471	/* Step 1: Travel to the longest prefix match in the trie */
1472	for (;;) {
1473		index = get_cindex(key, n);
1474
1475		/* This bit of code is a bit tricky but it combines multiple
1476		 * checks into a single check.  The prefix consists of the
1477		 * prefix plus zeros for the "bits" in the prefix. The index
1478		 * is the difference between the key and this value.  From
1479		 * this we can actually derive several pieces of data.
1480		 *   if (index >= (1ul << bits))
1481		 *     we have a mismatch in skip bits and failed
1482		 *   else
1483		 *     we know the value is cindex
1484		 *
1485		 * This check is safe even if bits == KEYLENGTH due to the
1486		 * fact that we can only allocate a node with 32 bits if a
1487		 * long is greater than 32 bits.
1488		 */
1489		if (index >= (1ul << n->bits))
1490			break;
1491
1492		/* we have found a leaf. Prefixes have already been compared */
1493		if (IS_LEAF(n))
1494			goto found;
1495
1496		/* only record pn and cindex if we are going to be chopping
1497		 * bits later.  Otherwise we are just wasting cycles.
1498		 */
1499		if (n->slen > n->pos) {
1500			pn = n;
1501			cindex = index;
1502		}
1503
1504		n = get_child_rcu(n, index);
1505		if (unlikely(!n))
1506			goto backtrace;
1507	}
1508
1509	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1510	for (;;) {
1511		/* record the pointer where our next node pointer is stored */
1512		struct key_vector __rcu **cptr = n->tnode;
1513
1514		/* This test verifies that none of the bits that differ
1515		 * between the key and the prefix exist in the region of
1516		 * the lsb and higher in the prefix.
1517		 */
1518		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1519			goto backtrace;
1520
1521		/* exit out and process leaf */
1522		if (unlikely(IS_LEAF(n)))
1523			break;
1524
1525		/* Don't bother recording parent info.  Since we are in
1526		 * prefix match mode we will have to come back to wherever
1527		 * we started this traversal anyway
1528		 */
1529
1530		while ((n = rcu_dereference(*cptr)) == NULL) {
1531backtrace:
1532#ifdef CONFIG_IP_FIB_TRIE_STATS
1533			if (!n)
1534				this_cpu_inc(stats->null_node_hit);
1535#endif
1536			/* If we are at cindex 0 there are no more bits for
1537			 * us to strip at this level so we must ascend back
1538			 * up one level to see if there are any more bits to
1539			 * be stripped there.
1540			 */
1541			while (!cindex) {
1542				t_key pkey = pn->key;
1543
1544				/* If we don't have a parent then there is
1545				 * nothing for us to do as we do not have any
1546				 * further nodes to parse.
1547				 */
1548				if (IS_TRIE(pn)) {
1549					trace_fib_table_lookup(tb->tb_id, flp,
1550							       NULL, -EAGAIN);
1551					return -EAGAIN;
1552				}
1553#ifdef CONFIG_IP_FIB_TRIE_STATS
1554				this_cpu_inc(stats->backtrack);
1555#endif
1556				/* Get Child's index */
1557				pn = node_parent_rcu(pn);
1558				cindex = get_index(pkey, pn);
1559			}
1560
1561			/* strip the least significant bit from the cindex */
1562			cindex &= cindex - 1;
1563
1564			/* grab pointer for next child node */
1565			cptr = &pn->tnode[cindex];
1566		}
1567	}
1568
1569found:
1570	/* this line carries forward the xor from earlier in the function */
1571	index = key ^ n->key;
1572
1573	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1574	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1575		struct fib_info *fi = fa->fa_info;
1576		struct fib_nh_common *nhc;
1577		int nhsel, err;
1578
1579		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1580			if (index >= (1ul << fa->fa_slen))
1581				continue;
1582		}
1583		if (fa->fa_dscp &&
1584		    inet_dscp_to_dsfield(fa->fa_dscp) != flp->flowi4_tos)
1585			continue;
1586		/* Paired with WRITE_ONCE() in fib_release_info() */
1587		if (READ_ONCE(fi->fib_dead))
1588			continue;
1589		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1590			continue;
1591		fib_alias_accessed(fa);
1592		err = fib_props[fa->fa_type].error;
1593		if (unlikely(err < 0)) {
1594out_reject:
1595#ifdef CONFIG_IP_FIB_TRIE_STATS
1596			this_cpu_inc(stats->semantic_match_passed);
1597#endif
1598			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1599			return err;
1600		}
1601		if (fi->fib_flags & RTNH_F_DEAD)
1602			continue;
1603
1604		if (unlikely(fi->nh)) {
1605			if (nexthop_is_blackhole(fi->nh)) {
1606				err = fib_props[RTN_BLACKHOLE].error;
1607				goto out_reject;
1608			}
1609
1610			nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1611						     &nhsel);
1612			if (nhc)
1613				goto set_result;
1614			goto miss;
1615		}
1616
1617		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1618			nhc = fib_info_nhc(fi, nhsel);
1619
1620			if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1621				continue;
1622set_result:
1623			if (!(fib_flags & FIB_LOOKUP_NOREF))
1624				refcount_inc(&fi->fib_clntref);
1625
1626			res->prefix = htonl(n->key);
1627			res->prefixlen = KEYLENGTH - fa->fa_slen;
1628			res->nh_sel = nhsel;
1629			res->nhc = nhc;
1630			res->type = fa->fa_type;
1631			res->scope = fi->fib_scope;
1632			res->fi = fi;
1633			res->table = tb;
1634			res->fa_head = &n->leaf;
1635#ifdef CONFIG_IP_FIB_TRIE_STATS
1636			this_cpu_inc(stats->semantic_match_passed);
1637#endif
1638			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1639
1640			return err;
1641		}
1642	}
1643miss:
1644#ifdef CONFIG_IP_FIB_TRIE_STATS
1645	this_cpu_inc(stats->semantic_match_miss);
1646#endif
1647	goto backtrace;
1648}
1649EXPORT_SYMBOL_GPL(fib_table_lookup);
1650
1651static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1652			     struct key_vector *l, struct fib_alias *old)
1653{
1654	/* record the location of the previous list_info entry */
1655	struct hlist_node **pprev = old->fa_list.pprev;
1656	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1657
1658	/* remove the fib_alias from the list */
1659	hlist_del_rcu(&old->fa_list);
1660
1661	/* if we emptied the list this leaf will be freed and we can sort
1662	 * out parent suffix lengths as a part of trie_rebalance
1663	 */
1664	if (hlist_empty(&l->leaf)) {
1665		if (tp->slen == l->slen)
1666			node_pull_suffix(tp, tp->pos);
1667		put_child_root(tp, l->key, NULL);
1668		node_free(l);
1669		trie_rebalance(t, tp);
1670		return;
1671	}
1672
1673	/* only access fa if it is pointing at the last valid hlist_node */
1674	if (*pprev)
1675		return;
1676
1677	/* update the trie with the latest suffix length */
1678	l->slen = fa->fa_slen;
1679	node_pull_suffix(tp, fa->fa_slen);
1680}
1681
1682static void fib_notify_alias_delete(struct net *net, u32 key,
1683				    struct hlist_head *fah,
1684				    struct fib_alias *fa_to_delete,
1685				    struct netlink_ext_ack *extack)
1686{
1687	struct fib_alias *fa_next, *fa_to_notify;
1688	u32 tb_id = fa_to_delete->tb_id;
1689	u8 slen = fa_to_delete->fa_slen;
1690	enum fib_event_type fib_event;
1691
1692	/* Do not notify if we do not care about the route. */
1693	if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1694		return;
1695
1696	/* Determine if the route should be replaced by the next route in the
1697	 * list.
1698	 */
1699	fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1700				   struct fib_alias, fa_list);
1701	if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1702		fib_event = FIB_EVENT_ENTRY_REPLACE;
1703		fa_to_notify = fa_next;
1704	} else {
1705		fib_event = FIB_EVENT_ENTRY_DEL;
1706		fa_to_notify = fa_to_delete;
1707	}
1708	call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1709				 fa_to_notify, extack);
1710}
1711
1712/* Caller must hold RTNL. */
1713int fib_table_delete(struct net *net, struct fib_table *tb,
1714		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1715{
1716	struct trie *t = (struct trie *) tb->tb_data;
1717	struct fib_alias *fa, *fa_to_delete;
1718	struct key_vector *l, *tp;
1719	u8 plen = cfg->fc_dst_len;
1720	u8 slen = KEYLENGTH - plen;
1721	dscp_t dscp;
1722	u32 key;
1723
1724	key = ntohl(cfg->fc_dst);
1725
1726	if (!fib_valid_key_len(key, plen, extack))
1727		return -EINVAL;
1728
1729	l = fib_find_node(t, &tp, key);
1730	if (!l)
1731		return -ESRCH;
1732
1733	dscp = cfg->fc_dscp;
1734	fa = fib_find_alias(&l->leaf, slen, dscp, 0, tb->tb_id, false);
1735	if (!fa)
1736		return -ESRCH;
1737
1738	pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen,
1739		 inet_dscp_to_dsfield(dscp), t);
1740
1741	fa_to_delete = NULL;
1742	hlist_for_each_entry_from(fa, fa_list) {
1743		struct fib_info *fi = fa->fa_info;
1744
1745		if ((fa->fa_slen != slen) ||
1746		    (fa->tb_id != tb->tb_id) ||
1747		    (fa->fa_dscp != dscp))
1748			break;
1749
1750		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1751		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1752		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1753		    (!cfg->fc_prefsrc ||
1754		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1755		    (!cfg->fc_protocol ||
1756		     fi->fib_protocol == cfg->fc_protocol) &&
1757		    fib_nh_match(net, cfg, fi, extack) == 0 &&
1758		    fib_metrics_match(cfg, fi)) {
1759			fa_to_delete = fa;
1760			break;
1761		}
1762	}
1763
1764	if (!fa_to_delete)
1765		return -ESRCH;
1766
1767	fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1768	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1769		  &cfg->fc_nlinfo, 0);
1770
1771	if (!plen)
1772		tb->tb_num_default--;
1773
1774	fib_remove_alias(t, tp, l, fa_to_delete);
1775
1776	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1777		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1778
1779	fib_release_info(fa_to_delete->fa_info);
1780	alias_free_mem_rcu(fa_to_delete);
1781	return 0;
1782}
1783
1784/* Scan for the next leaf starting at the provided key value */
1785static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1786{
1787	struct key_vector *pn, *n = *tn;
1788	unsigned long cindex;
1789
1790	/* this loop is meant to try and find the key in the trie */
1791	do {
1792		/* record parent and next child index */
1793		pn = n;
1794		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1795
1796		if (cindex >> pn->bits)
1797			break;
1798
1799		/* descend into the next child */
1800		n = get_child_rcu(pn, cindex++);
1801		if (!n)
1802			break;
1803
1804		/* guarantee forward progress on the keys */
1805		if (IS_LEAF(n) && (n->key >= key))
1806			goto found;
1807	} while (IS_TNODE(n));
1808
1809	/* this loop will search for the next leaf with a greater key */
1810	while (!IS_TRIE(pn)) {
1811		/* if we exhausted the parent node we will need to climb */
1812		if (cindex >= (1ul << pn->bits)) {
1813			t_key pkey = pn->key;
1814
1815			pn = node_parent_rcu(pn);
1816			cindex = get_index(pkey, pn) + 1;
1817			continue;
1818		}
1819
1820		/* grab the next available node */
1821		n = get_child_rcu(pn, cindex++);
1822		if (!n)
1823			continue;
1824
1825		/* no need to compare keys since we bumped the index */
1826		if (IS_LEAF(n))
1827			goto found;
1828
1829		/* Rescan start scanning in new node */
1830		pn = n;
1831		cindex = 0;
1832	}
1833
1834	*tn = pn;
1835	return NULL; /* Root of trie */
1836found:
1837	/* if we are at the limit for keys just return NULL for the tnode */
1838	*tn = pn;
1839	return n;
1840}
1841
1842static void fib_trie_free(struct fib_table *tb)
1843{
1844	struct trie *t = (struct trie *)tb->tb_data;
1845	struct key_vector *pn = t->kv;
1846	unsigned long cindex = 1;
1847	struct hlist_node *tmp;
1848	struct fib_alias *fa;
1849
1850	/* walk trie in reverse order and free everything */
1851	for (;;) {
1852		struct key_vector *n;
1853
1854		if (!(cindex--)) {
1855			t_key pkey = pn->key;
1856
1857			if (IS_TRIE(pn))
1858				break;
1859
1860			n = pn;
1861			pn = node_parent(pn);
1862
1863			/* drop emptied tnode */
1864			put_child_root(pn, n->key, NULL);
1865			node_free(n);
1866
1867			cindex = get_index(pkey, pn);
1868
1869			continue;
1870		}
1871
1872		/* grab the next available node */
1873		n = get_child(pn, cindex);
1874		if (!n)
1875			continue;
1876
1877		if (IS_TNODE(n)) {
1878			/* record pn and cindex for leaf walking */
1879			pn = n;
1880			cindex = 1ul << n->bits;
1881
1882			continue;
1883		}
1884
1885		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1886			hlist_del_rcu(&fa->fa_list);
1887			alias_free_mem_rcu(fa);
1888		}
1889
1890		put_child_root(pn, n->key, NULL);
1891		node_free(n);
1892	}
1893
1894#ifdef CONFIG_IP_FIB_TRIE_STATS
1895	free_percpu(t->stats);
1896#endif
1897	kfree(tb);
1898}
1899
1900struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1901{
1902	struct trie *ot = (struct trie *)oldtb->tb_data;
1903	struct key_vector *l, *tp = ot->kv;
1904	struct fib_table *local_tb;
1905	struct fib_alias *fa;
1906	struct trie *lt;
1907	t_key key = 0;
1908
1909	if (oldtb->tb_data == oldtb->__data)
1910		return oldtb;
1911
1912	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1913	if (!local_tb)
1914		return NULL;
1915
1916	lt = (struct trie *)local_tb->tb_data;
1917
1918	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1919		struct key_vector *local_l = NULL, *local_tp;
1920
1921		hlist_for_each_entry(fa, &l->leaf, fa_list) {
1922			struct fib_alias *new_fa;
1923
1924			if (local_tb->tb_id != fa->tb_id)
1925				continue;
1926
1927			/* clone fa for new local table */
1928			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1929			if (!new_fa)
1930				goto out;
1931
1932			memcpy(new_fa, fa, sizeof(*fa));
1933
1934			/* insert clone into table */
1935			if (!local_l)
1936				local_l = fib_find_node(lt, &local_tp, l->key);
1937
1938			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1939					     NULL, l->key)) {
1940				kmem_cache_free(fn_alias_kmem, new_fa);
1941				goto out;
1942			}
1943		}
1944
1945		/* stop loop if key wrapped back to 0 */
1946		key = l->key + 1;
1947		if (key < l->key)
1948			break;
1949	}
1950
1951	return local_tb;
1952out:
1953	fib_trie_free(local_tb);
1954
1955	return NULL;
1956}
1957
1958/* Caller must hold RTNL */
1959void fib_table_flush_external(struct fib_table *tb)
1960{
1961	struct trie *t = (struct trie *)tb->tb_data;
1962	struct key_vector *pn = t->kv;
1963	unsigned long cindex = 1;
1964	struct hlist_node *tmp;
1965	struct fib_alias *fa;
1966
1967	/* walk trie in reverse order */
1968	for (;;) {
1969		unsigned char slen = 0;
1970		struct key_vector *n;
1971
1972		if (!(cindex--)) {
1973			t_key pkey = pn->key;
1974
1975			/* cannot resize the trie vector */
1976			if (IS_TRIE(pn))
1977				break;
1978
1979			/* update the suffix to address pulled leaves */
1980			if (pn->slen > pn->pos)
1981				update_suffix(pn);
1982
1983			/* resize completed node */
1984			pn = resize(t, pn);
1985			cindex = get_index(pkey, pn);
1986
1987			continue;
1988		}
1989
1990		/* grab the next available node */
1991		n = get_child(pn, cindex);
1992		if (!n)
1993			continue;
1994
1995		if (IS_TNODE(n)) {
1996			/* record pn and cindex for leaf walking */
1997			pn = n;
1998			cindex = 1ul << n->bits;
1999
2000			continue;
2001		}
2002
2003		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2004			/* if alias was cloned to local then we just
2005			 * need to remove the local copy from main
2006			 */
2007			if (tb->tb_id != fa->tb_id) {
2008				hlist_del_rcu(&fa->fa_list);
2009				alias_free_mem_rcu(fa);
2010				continue;
2011			}
2012
2013			/* record local slen */
2014			slen = fa->fa_slen;
2015		}
2016
2017		/* update leaf slen */
2018		n->slen = slen;
2019
2020		if (hlist_empty(&n->leaf)) {
2021			put_child_root(pn, n->key, NULL);
2022			node_free(n);
2023		}
2024	}
2025}
2026
2027/* Caller must hold RTNL. */
2028int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2029{
2030	struct trie *t = (struct trie *)tb->tb_data;
2031	struct nl_info info = { .nl_net = net };
2032	struct key_vector *pn = t->kv;
2033	unsigned long cindex = 1;
2034	struct hlist_node *tmp;
2035	struct fib_alias *fa;
2036	int found = 0;
2037
2038	/* walk trie in reverse order */
2039	for (;;) {
2040		unsigned char slen = 0;
2041		struct key_vector *n;
2042
2043		if (!(cindex--)) {
2044			t_key pkey = pn->key;
2045
2046			/* cannot resize the trie vector */
2047			if (IS_TRIE(pn))
2048				break;
2049
2050			/* update the suffix to address pulled leaves */
2051			if (pn->slen > pn->pos)
2052				update_suffix(pn);
2053
2054			/* resize completed node */
2055			pn = resize(t, pn);
2056			cindex = get_index(pkey, pn);
2057
2058			continue;
2059		}
2060
2061		/* grab the next available node */
2062		n = get_child(pn, cindex);
2063		if (!n)
2064			continue;
2065
2066		if (IS_TNODE(n)) {
2067			/* record pn and cindex for leaf walking */
2068			pn = n;
2069			cindex = 1ul << n->bits;
2070
2071			continue;
2072		}
2073
2074		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2075			struct fib_info *fi = fa->fa_info;
2076
2077			if (!fi || tb->tb_id != fa->tb_id ||
2078			    (!(fi->fib_flags & RTNH_F_DEAD) &&
2079			     !fib_props[fa->fa_type].error)) {
2080				slen = fa->fa_slen;
2081				continue;
2082			}
2083
2084			/* Do not flush error routes if network namespace is
2085			 * not being dismantled
2086			 */
2087			if (!flush_all && fib_props[fa->fa_type].error) {
2088				slen = fa->fa_slen;
2089				continue;
2090			}
2091
2092			fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2093						NULL);
2094			if (fi->pfsrc_removed)
2095				rtmsg_fib(RTM_DELROUTE, htonl(n->key), fa,
2096					  KEYLENGTH - fa->fa_slen, tb->tb_id, &info, 0);
2097			hlist_del_rcu(&fa->fa_list);
2098			fib_release_info(fa->fa_info);
2099			alias_free_mem_rcu(fa);
2100			found++;
2101		}
2102
2103		/* update leaf slen */
2104		n->slen = slen;
2105
2106		if (hlist_empty(&n->leaf)) {
2107			put_child_root(pn, n->key, NULL);
2108			node_free(n);
2109		}
2110	}
2111
2112	pr_debug("trie_flush found=%d\n", found);
2113	return found;
2114}
2115
2116/* derived from fib_trie_free */
2117static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2118				     struct nl_info *info)
2119{
2120	struct trie *t = (struct trie *)tb->tb_data;
2121	struct key_vector *pn = t->kv;
2122	unsigned long cindex = 1;
2123	struct fib_alias *fa;
2124
2125	for (;;) {
2126		struct key_vector *n;
2127
2128		if (!(cindex--)) {
2129			t_key pkey = pn->key;
2130
2131			if (IS_TRIE(pn))
2132				break;
2133
2134			pn = node_parent(pn);
2135			cindex = get_index(pkey, pn);
2136			continue;
2137		}
2138
2139		/* grab the next available node */
2140		n = get_child(pn, cindex);
2141		if (!n)
2142			continue;
2143
2144		if (IS_TNODE(n)) {
2145			/* record pn and cindex for leaf walking */
2146			pn = n;
2147			cindex = 1ul << n->bits;
2148
2149			continue;
2150		}
2151
2152		hlist_for_each_entry(fa, &n->leaf, fa_list) {
2153			struct fib_info *fi = fa->fa_info;
2154
2155			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2156				continue;
2157
2158			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2159				  KEYLENGTH - fa->fa_slen, tb->tb_id,
2160				  info, NLM_F_REPLACE);
2161		}
2162	}
2163}
2164
2165void fib_info_notify_update(struct net *net, struct nl_info *info)
2166{
2167	unsigned int h;
2168
2169	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2170		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2171		struct fib_table *tb;
2172
2173		hlist_for_each_entry_rcu(tb, head, tb_hlist,
2174					 lockdep_rtnl_is_held())
2175			__fib_info_notify_update(net, tb, info);
2176	}
2177}
2178
2179static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2180			   struct notifier_block *nb,
2181			   struct netlink_ext_ack *extack)
2182{
2183	struct fib_alias *fa;
2184	int last_slen = -1;
2185	int err;
2186
2187	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2188		struct fib_info *fi = fa->fa_info;
2189
2190		if (!fi)
2191			continue;
2192
2193		/* local and main table can share the same trie,
2194		 * so don't notify twice for the same entry.
2195		 */
2196		if (tb->tb_id != fa->tb_id)
2197			continue;
2198
2199		if (fa->fa_slen == last_slen)
2200			continue;
2201
2202		last_slen = fa->fa_slen;
2203		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2204					      l->key, KEYLENGTH - fa->fa_slen,
2205					      fa, extack);
2206		if (err)
2207			return err;
2208	}
2209	return 0;
2210}
2211
2212static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2213			    struct netlink_ext_ack *extack)
2214{
2215	struct trie *t = (struct trie *)tb->tb_data;
2216	struct key_vector *l, *tp = t->kv;
2217	t_key key = 0;
2218	int err;
2219
2220	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2221		err = fib_leaf_notify(l, tb, nb, extack);
2222		if (err)
2223			return err;
2224
2225		key = l->key + 1;
2226		/* stop in case of wrap around */
2227		if (key < l->key)
2228			break;
2229	}
2230	return 0;
2231}
2232
2233int fib_notify(struct net *net, struct notifier_block *nb,
2234	       struct netlink_ext_ack *extack)
2235{
2236	unsigned int h;
2237	int err;
2238
2239	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2240		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2241		struct fib_table *tb;
2242
2243		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2244			err = fib_table_notify(tb, nb, extack);
2245			if (err)
2246				return err;
2247		}
2248	}
2249	return 0;
2250}
2251
2252static void __trie_free_rcu(struct rcu_head *head)
2253{
2254	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2255#ifdef CONFIG_IP_FIB_TRIE_STATS
2256	struct trie *t = (struct trie *)tb->tb_data;
2257
2258	if (tb->tb_data == tb->__data)
2259		free_percpu(t->stats);
2260#endif /* CONFIG_IP_FIB_TRIE_STATS */
2261	kfree(tb);
2262}
2263
2264void fib_free_table(struct fib_table *tb)
2265{
2266	call_rcu(&tb->rcu, __trie_free_rcu);
2267}
2268
2269static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2270			     struct sk_buff *skb, struct netlink_callback *cb,
2271			     struct fib_dump_filter *filter)
2272{
2273	unsigned int flags = NLM_F_MULTI;
2274	__be32 xkey = htonl(l->key);
2275	int i, s_i, i_fa, s_fa, err;
2276	struct fib_alias *fa;
2277
2278	if (filter->filter_set ||
2279	    !filter->dump_exceptions || !filter->dump_routes)
2280		flags |= NLM_F_DUMP_FILTERED;
2281
2282	s_i = cb->args[4];
2283	s_fa = cb->args[5];
2284	i = 0;
2285
2286	/* rcu_read_lock is hold by caller */
2287	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2288		struct fib_info *fi = fa->fa_info;
2289
2290		if (i < s_i)
2291			goto next;
2292
2293		i_fa = 0;
2294
2295		if (tb->tb_id != fa->tb_id)
2296			goto next;
2297
2298		if (filter->filter_set) {
2299			if (filter->rt_type && fa->fa_type != filter->rt_type)
2300				goto next;
2301
2302			if ((filter->protocol &&
2303			     fi->fib_protocol != filter->protocol))
2304				goto next;
2305
2306			if (filter->dev &&
2307			    !fib_info_nh_uses_dev(fi, filter->dev))
2308				goto next;
2309		}
2310
2311		if (filter->dump_routes) {
2312			if (!s_fa) {
2313				struct fib_rt_info fri;
2314
2315				fri.fi = fi;
2316				fri.tb_id = tb->tb_id;
2317				fri.dst = xkey;
2318				fri.dst_len = KEYLENGTH - fa->fa_slen;
2319				fri.dscp = fa->fa_dscp;
2320				fri.type = fa->fa_type;
2321				fri.offload = READ_ONCE(fa->offload);
2322				fri.trap = READ_ONCE(fa->trap);
2323				fri.offload_failed = READ_ONCE(fa->offload_failed);
2324				err = fib_dump_info(skb,
2325						    NETLINK_CB(cb->skb).portid,
2326						    cb->nlh->nlmsg_seq,
2327						    RTM_NEWROUTE, &fri, flags);
2328				if (err < 0)
2329					goto stop;
2330			}
2331
2332			i_fa++;
2333		}
2334
2335		if (filter->dump_exceptions) {
2336			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2337						 &i_fa, s_fa, flags);
2338			if (err < 0)
2339				goto stop;
2340		}
2341
2342next:
2343		i++;
2344	}
2345
2346	cb->args[4] = i;
2347	return skb->len;
2348
2349stop:
2350	cb->args[4] = i;
2351	cb->args[5] = i_fa;
2352	return err;
2353}
2354
2355/* rcu_read_lock needs to be hold by caller from readside */
2356int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2357		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2358{
2359	struct trie *t = (struct trie *)tb->tb_data;
2360	struct key_vector *l, *tp = t->kv;
2361	/* Dump starting at last key.
2362	 * Note: 0.0.0.0/0 (ie default) is first key.
2363	 */
2364	int count = cb->args[2];
2365	t_key key = cb->args[3];
2366
2367	/* First time here, count and key are both always 0. Count > 0
2368	 * and key == 0 means the dump has wrapped around and we are done.
2369	 */
2370	if (count && !key)
2371		return 0;
2372
2373	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2374		int err;
2375
2376		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2377		if (err < 0) {
2378			cb->args[3] = key;
2379			cb->args[2] = count;
2380			return err;
2381		}
2382
2383		++count;
2384		key = l->key + 1;
2385
2386		memset(&cb->args[4], 0,
2387		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2388
2389		/* stop loop if key wrapped back to 0 */
2390		if (key < l->key)
2391			break;
2392	}
2393
2394	cb->args[3] = key;
2395	cb->args[2] = count;
2396
2397	return 0;
2398}
2399
2400void __init fib_trie_init(void)
2401{
2402	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2403					  sizeof(struct fib_alias),
2404					  0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2405
2406	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2407					   LEAF_SIZE,
2408					   0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2409}
2410
2411struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2412{
2413	struct fib_table *tb;
2414	struct trie *t;
2415	size_t sz = sizeof(*tb);
2416
2417	if (!alias)
2418		sz += sizeof(struct trie);
2419
2420	tb = kzalloc(sz, GFP_KERNEL);
2421	if (!tb)
2422		return NULL;
2423
2424	tb->tb_id = id;
2425	tb->tb_num_default = 0;
2426	tb->tb_data = (alias ? alias->__data : tb->__data);
2427
2428	if (alias)
2429		return tb;
2430
2431	t = (struct trie *) tb->tb_data;
2432	t->kv[0].pos = KEYLENGTH;
2433	t->kv[0].slen = KEYLENGTH;
2434#ifdef CONFIG_IP_FIB_TRIE_STATS
2435	t->stats = alloc_percpu(struct trie_use_stats);
2436	if (!t->stats) {
2437		kfree(tb);
2438		tb = NULL;
2439	}
2440#endif
2441
2442	return tb;
2443}
2444
2445#ifdef CONFIG_PROC_FS
2446/* Depth first Trie walk iterator */
2447struct fib_trie_iter {
2448	struct seq_net_private p;
2449	struct fib_table *tb;
2450	struct key_vector *tnode;
2451	unsigned int index;
2452	unsigned int depth;
2453};
2454
2455static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2456{
2457	unsigned long cindex = iter->index;
2458	struct key_vector *pn = iter->tnode;
2459	t_key pkey;
2460
2461	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2462		 iter->tnode, iter->index, iter->depth);
2463
2464	while (!IS_TRIE(pn)) {
2465		while (cindex < child_length(pn)) {
2466			struct key_vector *n = get_child_rcu(pn, cindex++);
2467
2468			if (!n)
2469				continue;
2470
2471			if (IS_LEAF(n)) {
2472				iter->tnode = pn;
2473				iter->index = cindex;
2474			} else {
2475				/* push down one level */
2476				iter->tnode = n;
2477				iter->index = 0;
2478				++iter->depth;
2479			}
2480
2481			return n;
2482		}
2483
2484		/* Current node exhausted, pop back up */
2485		pkey = pn->key;
2486		pn = node_parent_rcu(pn);
2487		cindex = get_index(pkey, pn) + 1;
2488		--iter->depth;
2489	}
2490
2491	/* record root node so further searches know we are done */
2492	iter->tnode = pn;
2493	iter->index = 0;
2494
2495	return NULL;
2496}
2497
2498static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2499					     struct trie *t)
2500{
2501	struct key_vector *n, *pn;
2502
2503	if (!t)
2504		return NULL;
2505
2506	pn = t->kv;
2507	n = rcu_dereference(pn->tnode[0]);
2508	if (!n)
2509		return NULL;
2510
2511	if (IS_TNODE(n)) {
2512		iter->tnode = n;
2513		iter->index = 0;
2514		iter->depth = 1;
2515	} else {
2516		iter->tnode = pn;
2517		iter->index = 0;
2518		iter->depth = 0;
2519	}
2520
2521	return n;
2522}
2523
2524static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2525{
2526	struct key_vector *n;
2527	struct fib_trie_iter iter;
2528
2529	memset(s, 0, sizeof(*s));
2530
2531	rcu_read_lock();
2532	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2533		if (IS_LEAF(n)) {
2534			struct fib_alias *fa;
2535
2536			s->leaves++;
2537			s->totdepth += iter.depth;
2538			if (iter.depth > s->maxdepth)
2539				s->maxdepth = iter.depth;
2540
2541			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2542				++s->prefixes;
2543		} else {
2544			s->tnodes++;
2545			if (n->bits < MAX_STAT_DEPTH)
2546				s->nodesizes[n->bits]++;
2547			s->nullpointers += tn_info(n)->empty_children;
2548		}
2549	}
2550	rcu_read_unlock();
2551}
2552
2553/*
2554 *	This outputs /proc/net/fib_triestats
2555 */
2556static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2557{
2558	unsigned int i, max, pointers, bytes, avdepth;
2559
2560	if (stat->leaves)
2561		avdepth = stat->totdepth*100 / stat->leaves;
2562	else
2563		avdepth = 0;
2564
2565	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2566		   avdepth / 100, avdepth % 100);
2567	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2568
2569	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2570	bytes = LEAF_SIZE * stat->leaves;
2571
2572	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2573	bytes += sizeof(struct fib_alias) * stat->prefixes;
2574
2575	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2576	bytes += TNODE_SIZE(0) * stat->tnodes;
2577
2578	max = MAX_STAT_DEPTH;
2579	while (max > 0 && stat->nodesizes[max-1] == 0)
2580		max--;
2581
2582	pointers = 0;
2583	for (i = 1; i < max; i++)
2584		if (stat->nodesizes[i] != 0) {
2585			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2586			pointers += (1<<i) * stat->nodesizes[i];
2587		}
2588	seq_putc(seq, '\n');
2589	seq_printf(seq, "\tPointers: %u\n", pointers);
2590
2591	bytes += sizeof(struct key_vector *) * pointers;
2592	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2593	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2594}
2595
2596#ifdef CONFIG_IP_FIB_TRIE_STATS
2597static void trie_show_usage(struct seq_file *seq,
2598			    const struct trie_use_stats __percpu *stats)
2599{
2600	struct trie_use_stats s = { 0 };
2601	int cpu;
2602
2603	/* loop through all of the CPUs and gather up the stats */
2604	for_each_possible_cpu(cpu) {
2605		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2606
2607		s.gets += pcpu->gets;
2608		s.backtrack += pcpu->backtrack;
2609		s.semantic_match_passed += pcpu->semantic_match_passed;
2610		s.semantic_match_miss += pcpu->semantic_match_miss;
2611		s.null_node_hit += pcpu->null_node_hit;
2612		s.resize_node_skipped += pcpu->resize_node_skipped;
2613	}
2614
2615	seq_printf(seq, "\nCounters:\n---------\n");
2616	seq_printf(seq, "gets = %u\n", s.gets);
2617	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2618	seq_printf(seq, "semantic match passed = %u\n",
2619		   s.semantic_match_passed);
2620	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2621	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2622	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2623}
2624#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2625
2626static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2627{
2628	if (tb->tb_id == RT_TABLE_LOCAL)
2629		seq_puts(seq, "Local:\n");
2630	else if (tb->tb_id == RT_TABLE_MAIN)
2631		seq_puts(seq, "Main:\n");
2632	else
2633		seq_printf(seq, "Id %d:\n", tb->tb_id);
2634}
2635
2636
2637static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2638{
2639	struct net *net = seq->private;
2640	unsigned int h;
2641
2642	seq_printf(seq,
2643		   "Basic info: size of leaf:"
2644		   " %zd bytes, size of tnode: %zd bytes.\n",
2645		   LEAF_SIZE, TNODE_SIZE(0));
2646
2647	rcu_read_lock();
2648	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2649		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2650		struct fib_table *tb;
2651
2652		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2653			struct trie *t = (struct trie *) tb->tb_data;
2654			struct trie_stat stat;
2655
2656			if (!t)
2657				continue;
2658
2659			fib_table_print(seq, tb);
2660
2661			trie_collect_stats(t, &stat);
2662			trie_show_stats(seq, &stat);
2663#ifdef CONFIG_IP_FIB_TRIE_STATS
2664			trie_show_usage(seq, t->stats);
2665#endif
2666		}
2667		cond_resched_rcu();
2668	}
2669	rcu_read_unlock();
2670
2671	return 0;
2672}
2673
2674static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2675{
2676	struct fib_trie_iter *iter = seq->private;
2677	struct net *net = seq_file_net(seq);
2678	loff_t idx = 0;
2679	unsigned int h;
2680
2681	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2682		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2683		struct fib_table *tb;
2684
2685		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2686			struct key_vector *n;
2687
2688			for (n = fib_trie_get_first(iter,
2689						    (struct trie *) tb->tb_data);
2690			     n; n = fib_trie_get_next(iter))
2691				if (pos == idx++) {
2692					iter->tb = tb;
2693					return n;
2694				}
2695		}
2696	}
2697
2698	return NULL;
2699}
2700
2701static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2702	__acquires(RCU)
2703{
2704	rcu_read_lock();
2705	return fib_trie_get_idx(seq, *pos);
2706}
2707
2708static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2709{
2710	struct fib_trie_iter *iter = seq->private;
2711	struct net *net = seq_file_net(seq);
2712	struct fib_table *tb = iter->tb;
2713	struct hlist_node *tb_node;
2714	unsigned int h;
2715	struct key_vector *n;
2716
2717	++*pos;
2718	/* next node in same table */
2719	n = fib_trie_get_next(iter);
2720	if (n)
2721		return n;
2722
2723	/* walk rest of this hash chain */
2724	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2725	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2726		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2727		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2728		if (n)
2729			goto found;
2730	}
2731
2732	/* new hash chain */
2733	while (++h < FIB_TABLE_HASHSZ) {
2734		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2735		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2736			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2737			if (n)
2738				goto found;
2739		}
2740	}
2741	return NULL;
2742
2743found:
2744	iter->tb = tb;
2745	return n;
2746}
2747
2748static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2749	__releases(RCU)
2750{
2751	rcu_read_unlock();
2752}
2753
2754static void seq_indent(struct seq_file *seq, int n)
2755{
2756	while (n-- > 0)
2757		seq_puts(seq, "   ");
2758}
2759
2760static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2761{
2762	switch (s) {
2763	case RT_SCOPE_UNIVERSE: return "universe";
2764	case RT_SCOPE_SITE:	return "site";
2765	case RT_SCOPE_LINK:	return "link";
2766	case RT_SCOPE_HOST:	return "host";
2767	case RT_SCOPE_NOWHERE:	return "nowhere";
2768	default:
2769		snprintf(buf, len, "scope=%d", s);
2770		return buf;
2771	}
2772}
2773
2774static const char *const rtn_type_names[__RTN_MAX] = {
2775	[RTN_UNSPEC] = "UNSPEC",
2776	[RTN_UNICAST] = "UNICAST",
2777	[RTN_LOCAL] = "LOCAL",
2778	[RTN_BROADCAST] = "BROADCAST",
2779	[RTN_ANYCAST] = "ANYCAST",
2780	[RTN_MULTICAST] = "MULTICAST",
2781	[RTN_BLACKHOLE] = "BLACKHOLE",
2782	[RTN_UNREACHABLE] = "UNREACHABLE",
2783	[RTN_PROHIBIT] = "PROHIBIT",
2784	[RTN_THROW] = "THROW",
2785	[RTN_NAT] = "NAT",
2786	[RTN_XRESOLVE] = "XRESOLVE",
2787};
2788
2789static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2790{
2791	if (t < __RTN_MAX && rtn_type_names[t])
2792		return rtn_type_names[t];
2793	snprintf(buf, len, "type %u", t);
2794	return buf;
2795}
2796
2797/* Pretty print the trie */
2798static int fib_trie_seq_show(struct seq_file *seq, void *v)
2799{
2800	const struct fib_trie_iter *iter = seq->private;
2801	struct key_vector *n = v;
2802
2803	if (IS_TRIE(node_parent_rcu(n)))
2804		fib_table_print(seq, iter->tb);
2805
2806	if (IS_TNODE(n)) {
2807		__be32 prf = htonl(n->key);
2808
2809		seq_indent(seq, iter->depth-1);
2810		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2811			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2812			   tn_info(n)->full_children,
2813			   tn_info(n)->empty_children);
2814	} else {
2815		__be32 val = htonl(n->key);
2816		struct fib_alias *fa;
2817
2818		seq_indent(seq, iter->depth);
2819		seq_printf(seq, "  |-- %pI4\n", &val);
2820
2821		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2822			char buf1[32], buf2[32];
2823
2824			seq_indent(seq, iter->depth + 1);
2825			seq_printf(seq, "  /%zu %s %s",
2826				   KEYLENGTH - fa->fa_slen,
2827				   rtn_scope(buf1, sizeof(buf1),
2828					     fa->fa_info->fib_scope),
2829				   rtn_type(buf2, sizeof(buf2),
2830					    fa->fa_type));
2831			if (fa->fa_dscp)
2832				seq_printf(seq, " tos=%d",
2833					   inet_dscp_to_dsfield(fa->fa_dscp));
2834			seq_putc(seq, '\n');
2835		}
2836	}
2837
2838	return 0;
2839}
2840
2841static const struct seq_operations fib_trie_seq_ops = {
2842	.start  = fib_trie_seq_start,
2843	.next   = fib_trie_seq_next,
2844	.stop   = fib_trie_seq_stop,
2845	.show   = fib_trie_seq_show,
2846};
2847
2848struct fib_route_iter {
2849	struct seq_net_private p;
2850	struct fib_table *main_tb;
2851	struct key_vector *tnode;
2852	loff_t	pos;
2853	t_key	key;
2854};
2855
2856static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2857					    loff_t pos)
2858{
2859	struct key_vector *l, **tp = &iter->tnode;
2860	t_key key;
2861
2862	/* use cached location of previously found key */
2863	if (iter->pos > 0 && pos >= iter->pos) {
2864		key = iter->key;
2865	} else {
2866		iter->pos = 1;
2867		key = 0;
2868	}
2869
2870	pos -= iter->pos;
2871
2872	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2873		key = l->key + 1;
2874		iter->pos++;
2875		l = NULL;
2876
2877		/* handle unlikely case of a key wrap */
2878		if (!key)
2879			break;
2880	}
2881
2882	if (l)
2883		iter->key = l->key;	/* remember it */
2884	else
2885		iter->pos = 0;		/* forget it */
2886
2887	return l;
2888}
2889
2890static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2891	__acquires(RCU)
2892{
2893	struct fib_route_iter *iter = seq->private;
2894	struct fib_table *tb;
2895	struct trie *t;
2896
2897	rcu_read_lock();
2898
2899	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2900	if (!tb)
2901		return NULL;
2902
2903	iter->main_tb = tb;
2904	t = (struct trie *)tb->tb_data;
2905	iter->tnode = t->kv;
2906
2907	if (*pos != 0)
2908		return fib_route_get_idx(iter, *pos);
2909
2910	iter->pos = 0;
2911	iter->key = KEY_MAX;
2912
2913	return SEQ_START_TOKEN;
2914}
2915
2916static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2917{
2918	struct fib_route_iter *iter = seq->private;
2919	struct key_vector *l = NULL;
2920	t_key key = iter->key + 1;
2921
2922	++*pos;
2923
2924	/* only allow key of 0 for start of sequence */
2925	if ((v == SEQ_START_TOKEN) || key)
2926		l = leaf_walk_rcu(&iter->tnode, key);
2927
2928	if (l) {
2929		iter->key = l->key;
2930		iter->pos++;
2931	} else {
2932		iter->pos = 0;
2933	}
2934
2935	return l;
2936}
2937
2938static void fib_route_seq_stop(struct seq_file *seq, void *v)
2939	__releases(RCU)
2940{
2941	rcu_read_unlock();
2942}
2943
2944static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2945{
2946	unsigned int flags = 0;
2947
2948	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2949		flags = RTF_REJECT;
2950	if (fi) {
2951		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2952
2953		if (nhc->nhc_gw.ipv4)
2954			flags |= RTF_GATEWAY;
2955	}
2956	if (mask == htonl(0xFFFFFFFF))
2957		flags |= RTF_HOST;
2958	flags |= RTF_UP;
2959	return flags;
2960}
2961
2962/*
2963 *	This outputs /proc/net/route.
2964 *	The format of the file is not supposed to be changed
2965 *	and needs to be same as fib_hash output to avoid breaking
2966 *	legacy utilities
2967 */
2968static int fib_route_seq_show(struct seq_file *seq, void *v)
2969{
2970	struct fib_route_iter *iter = seq->private;
2971	struct fib_table *tb = iter->main_tb;
2972	struct fib_alias *fa;
2973	struct key_vector *l = v;
2974	__be32 prefix;
2975
2976	if (v == SEQ_START_TOKEN) {
2977		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2978			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2979			   "\tWindow\tIRTT");
2980		return 0;
2981	}
2982
2983	prefix = htonl(l->key);
2984
2985	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2986		struct fib_info *fi = fa->fa_info;
2987		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2988		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2989
2990		if ((fa->fa_type == RTN_BROADCAST) ||
2991		    (fa->fa_type == RTN_MULTICAST))
2992			continue;
2993
2994		if (fa->tb_id != tb->tb_id)
2995			continue;
2996
2997		seq_setwidth(seq, 127);
2998
2999		if (fi) {
3000			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
3001			__be32 gw = 0;
3002
3003			if (nhc->nhc_gw_family == AF_INET)
3004				gw = nhc->nhc_gw.ipv4;
3005
3006			seq_printf(seq,
3007				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
3008				   "%d\t%08X\t%d\t%u\t%u",
3009				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
3010				   prefix, gw, flags, 0, 0,
3011				   fi->fib_priority,
3012				   mask,
3013				   (fi->fib_advmss ?
3014				    fi->fib_advmss + 40 : 0),
3015				   fi->fib_window,
3016				   fi->fib_rtt >> 3);
3017		} else {
3018			seq_printf(seq,
3019				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
3020				   "%d\t%08X\t%d\t%u\t%u",
3021				   prefix, 0, flags, 0, 0, 0,
3022				   mask, 0, 0, 0);
3023		}
3024		seq_pad(seq, '\n');
3025	}
3026
3027	return 0;
3028}
3029
3030static const struct seq_operations fib_route_seq_ops = {
3031	.start  = fib_route_seq_start,
3032	.next   = fib_route_seq_next,
3033	.stop   = fib_route_seq_stop,
3034	.show   = fib_route_seq_show,
3035};
3036
3037int __net_init fib_proc_init(struct net *net)
3038{
3039	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3040			sizeof(struct fib_trie_iter)))
3041		goto out1;
3042
3043	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3044			fib_triestat_seq_show, NULL))
3045		goto out2;
3046
3047	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3048			sizeof(struct fib_route_iter)))
3049		goto out3;
3050
3051	return 0;
3052
3053out3:
3054	remove_proc_entry("fib_triestat", net->proc_net);
3055out2:
3056	remove_proc_entry("fib_trie", net->proc_net);
3057out1:
3058	return -ENOMEM;
3059}
3060
3061void __net_exit fib_proc_exit(struct net *net)
3062{
3063	remove_proc_entry("fib_trie", net->proc_net);
3064	remove_proc_entry("fib_triestat", net->proc_net);
3065	remove_proc_entry("route", net->proc_net);
3066}
3067
3068#endif /* CONFIG_PROC_FS */
3069