1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2018 Red Hat, Inc.
5 * All rights reserved.
6 */
7
8#include "xfs.h"
9#include "xfs_fs.h"
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_bit.h"
14#include "xfs_sb.h"
15#include "xfs_mount.h"
16#include "xfs_btree.h"
17#include "xfs_alloc_btree.h"
18#include "xfs_rmap_btree.h"
19#include "xfs_alloc.h"
20#include "xfs_ialloc.h"
21#include "xfs_rmap.h"
22#include "xfs_ag.h"
23#include "xfs_ag_resv.h"
24#include "xfs_health.h"
25#include "xfs_error.h"
26#include "xfs_bmap.h"
27#include "xfs_defer.h"
28#include "xfs_log_format.h"
29#include "xfs_trans.h"
30#include "xfs_trace.h"
31#include "xfs_inode.h"
32#include "xfs_icache.h"
33
34
35/*
36 * Passive reference counting access wrappers to the perag structures.  If the
37 * per-ag structure is to be freed, the freeing code is responsible for cleaning
38 * up objects with passive references before freeing the structure. This is
39 * things like cached buffers.
40 */
41struct xfs_perag *
42xfs_perag_get(
43	struct xfs_mount	*mp,
44	xfs_agnumber_t		agno)
45{
46	struct xfs_perag	*pag;
47
48	rcu_read_lock();
49	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
50	if (pag) {
51		trace_xfs_perag_get(pag, _RET_IP_);
52		ASSERT(atomic_read(&pag->pag_ref) >= 0);
53		atomic_inc(&pag->pag_ref);
54	}
55	rcu_read_unlock();
56	return pag;
57}
58
59/*
60 * search from @first to find the next perag with the given tag set.
61 */
62struct xfs_perag *
63xfs_perag_get_tag(
64	struct xfs_mount	*mp,
65	xfs_agnumber_t		first,
66	unsigned int		tag)
67{
68	struct xfs_perag	*pag;
69	int			found;
70
71	rcu_read_lock();
72	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
73					(void **)&pag, first, 1, tag);
74	if (found <= 0) {
75		rcu_read_unlock();
76		return NULL;
77	}
78	trace_xfs_perag_get_tag(pag, _RET_IP_);
79	atomic_inc(&pag->pag_ref);
80	rcu_read_unlock();
81	return pag;
82}
83
84/* Get a passive reference to the given perag. */
85struct xfs_perag *
86xfs_perag_hold(
87	struct xfs_perag	*pag)
88{
89	ASSERT(atomic_read(&pag->pag_ref) > 0 ||
90	       atomic_read(&pag->pag_active_ref) > 0);
91
92	trace_xfs_perag_hold(pag, _RET_IP_);
93	atomic_inc(&pag->pag_ref);
94	return pag;
95}
96
97void
98xfs_perag_put(
99	struct xfs_perag	*pag)
100{
101	trace_xfs_perag_put(pag, _RET_IP_);
102	ASSERT(atomic_read(&pag->pag_ref) > 0);
103	atomic_dec(&pag->pag_ref);
104}
105
106/*
107 * Active references for perag structures. This is for short term access to the
108 * per ag structures for walking trees or accessing state. If an AG is being
109 * shrunk or is offline, then this will fail to find that AG and return NULL
110 * instead.
111 */
112struct xfs_perag *
113xfs_perag_grab(
114	struct xfs_mount	*mp,
115	xfs_agnumber_t		agno)
116{
117	struct xfs_perag	*pag;
118
119	rcu_read_lock();
120	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
121	if (pag) {
122		trace_xfs_perag_grab(pag, _RET_IP_);
123		if (!atomic_inc_not_zero(&pag->pag_active_ref))
124			pag = NULL;
125	}
126	rcu_read_unlock();
127	return pag;
128}
129
130/*
131 * search from @first to find the next perag with the given tag set.
132 */
133struct xfs_perag *
134xfs_perag_grab_tag(
135	struct xfs_mount	*mp,
136	xfs_agnumber_t		first,
137	int			tag)
138{
139	struct xfs_perag	*pag;
140	int			found;
141
142	rcu_read_lock();
143	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
144					(void **)&pag, first, 1, tag);
145	if (found <= 0) {
146		rcu_read_unlock();
147		return NULL;
148	}
149	trace_xfs_perag_grab_tag(pag, _RET_IP_);
150	if (!atomic_inc_not_zero(&pag->pag_active_ref))
151		pag = NULL;
152	rcu_read_unlock();
153	return pag;
154}
155
156void
157xfs_perag_rele(
158	struct xfs_perag	*pag)
159{
160	trace_xfs_perag_rele(pag, _RET_IP_);
161	if (atomic_dec_and_test(&pag->pag_active_ref))
162		wake_up(&pag->pag_active_wq);
163}
164
165/*
166 * xfs_initialize_perag_data
167 *
168 * Read in each per-ag structure so we can count up the number of
169 * allocated inodes, free inodes and used filesystem blocks as this
170 * information is no longer persistent in the superblock. Once we have
171 * this information, write it into the in-core superblock structure.
172 */
173int
174xfs_initialize_perag_data(
175	struct xfs_mount	*mp,
176	xfs_agnumber_t		agcount)
177{
178	xfs_agnumber_t		index;
179	struct xfs_perag	*pag;
180	struct xfs_sb		*sbp = &mp->m_sb;
181	uint64_t		ifree = 0;
182	uint64_t		ialloc = 0;
183	uint64_t		bfree = 0;
184	uint64_t		bfreelst = 0;
185	uint64_t		btree = 0;
186	uint64_t		fdblocks;
187	int			error = 0;
188
189	for (index = 0; index < agcount; index++) {
190		/*
191		 * Read the AGF and AGI buffers to populate the per-ag
192		 * structures for us.
193		 */
194		pag = xfs_perag_get(mp, index);
195		error = xfs_alloc_read_agf(pag, NULL, 0, NULL);
196		if (!error)
197			error = xfs_ialloc_read_agi(pag, NULL, NULL);
198		if (error) {
199			xfs_perag_put(pag);
200			return error;
201		}
202
203		ifree += pag->pagi_freecount;
204		ialloc += pag->pagi_count;
205		bfree += pag->pagf_freeblks;
206		bfreelst += pag->pagf_flcount;
207		btree += pag->pagf_btreeblks;
208		xfs_perag_put(pag);
209	}
210	fdblocks = bfree + bfreelst + btree;
211
212	/*
213	 * If the new summary counts are obviously incorrect, fail the
214	 * mount operation because that implies the AGFs are also corrupt.
215	 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which
216	 * will prevent xfs_repair from fixing anything.
217	 */
218	if (fdblocks > sbp->sb_dblocks || ifree > ialloc) {
219		xfs_alert(mp, "AGF corruption. Please run xfs_repair.");
220		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
221		error = -EFSCORRUPTED;
222		goto out;
223	}
224
225	/* Overwrite incore superblock counters with just-read data */
226	spin_lock(&mp->m_sb_lock);
227	sbp->sb_ifree = ifree;
228	sbp->sb_icount = ialloc;
229	sbp->sb_fdblocks = fdblocks;
230	spin_unlock(&mp->m_sb_lock);
231
232	xfs_reinit_percpu_counters(mp);
233out:
234	xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS);
235	return error;
236}
237
238STATIC void
239__xfs_free_perag(
240	struct rcu_head	*head)
241{
242	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
243
244	ASSERT(!delayed_work_pending(&pag->pag_blockgc_work));
245	kfree(pag);
246}
247
248/*
249 * Free up the per-ag resources associated with the mount structure.
250 */
251void
252xfs_free_perag(
253	struct xfs_mount	*mp)
254{
255	struct xfs_perag	*pag;
256	xfs_agnumber_t		agno;
257
258	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
259		spin_lock(&mp->m_perag_lock);
260		pag = radix_tree_delete(&mp->m_perag_tree, agno);
261		spin_unlock(&mp->m_perag_lock);
262		ASSERT(pag);
263		XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0);
264		xfs_defer_drain_free(&pag->pag_intents_drain);
265
266		cancel_delayed_work_sync(&pag->pag_blockgc_work);
267		xfs_buf_cache_destroy(&pag->pag_bcache);
268
269		/* drop the mount's active reference */
270		xfs_perag_rele(pag);
271		XFS_IS_CORRUPT(pag->pag_mount,
272				atomic_read(&pag->pag_active_ref) != 0);
273		call_rcu(&pag->rcu_head, __xfs_free_perag);
274	}
275}
276
277/* Find the size of the AG, in blocks. */
278static xfs_agblock_t
279__xfs_ag_block_count(
280	struct xfs_mount	*mp,
281	xfs_agnumber_t		agno,
282	xfs_agnumber_t		agcount,
283	xfs_rfsblock_t		dblocks)
284{
285	ASSERT(agno < agcount);
286
287	if (agno < agcount - 1)
288		return mp->m_sb.sb_agblocks;
289	return dblocks - (agno * mp->m_sb.sb_agblocks);
290}
291
292xfs_agblock_t
293xfs_ag_block_count(
294	struct xfs_mount	*mp,
295	xfs_agnumber_t		agno)
296{
297	return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount,
298			mp->m_sb.sb_dblocks);
299}
300
301/* Calculate the first and last possible inode number in an AG. */
302static void
303__xfs_agino_range(
304	struct xfs_mount	*mp,
305	xfs_agblock_t		eoag,
306	xfs_agino_t		*first,
307	xfs_agino_t		*last)
308{
309	xfs_agblock_t		bno;
310
311	/*
312	 * Calculate the first inode, which will be in the first
313	 * cluster-aligned block after the AGFL.
314	 */
315	bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align);
316	*first = XFS_AGB_TO_AGINO(mp, bno);
317
318	/*
319	 * Calculate the last inode, which will be at the end of the
320	 * last (aligned) cluster that can be allocated in the AG.
321	 */
322	bno = round_down(eoag, M_IGEO(mp)->cluster_align);
323	*last = XFS_AGB_TO_AGINO(mp, bno) - 1;
324}
325
326void
327xfs_agino_range(
328	struct xfs_mount	*mp,
329	xfs_agnumber_t		agno,
330	xfs_agino_t		*first,
331	xfs_agino_t		*last)
332{
333	return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last);
334}
335
336/*
337 * Free perag within the specified AG range, it is only used to free unused
338 * perags under the error handling path.
339 */
340void
341xfs_free_unused_perag_range(
342	struct xfs_mount	*mp,
343	xfs_agnumber_t		agstart,
344	xfs_agnumber_t		agend)
345{
346	struct xfs_perag	*pag;
347	xfs_agnumber_t		index;
348
349	for (index = agstart; index < agend; index++) {
350		spin_lock(&mp->m_perag_lock);
351		pag = radix_tree_delete(&mp->m_perag_tree, index);
352		spin_unlock(&mp->m_perag_lock);
353		if (!pag)
354			break;
355		xfs_buf_cache_destroy(&pag->pag_bcache);
356		xfs_defer_drain_free(&pag->pag_intents_drain);
357		kfree(pag);
358	}
359}
360
361int
362xfs_initialize_perag(
363	struct xfs_mount	*mp,
364	xfs_agnumber_t		agcount,
365	xfs_rfsblock_t		dblocks,
366	xfs_agnumber_t		*maxagi)
367{
368	struct xfs_perag	*pag;
369	xfs_agnumber_t		index;
370	xfs_agnumber_t		first_initialised = NULLAGNUMBER;
371	int			error;
372
373	/*
374	 * Walk the current per-ag tree so we don't try to initialise AGs
375	 * that already exist (growfs case). Allocate and insert all the
376	 * AGs we don't find ready for initialisation.
377	 */
378	for (index = 0; index < agcount; index++) {
379		pag = xfs_perag_get(mp, index);
380		if (pag) {
381			xfs_perag_put(pag);
382			continue;
383		}
384
385		pag = kzalloc(sizeof(*pag), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
386		if (!pag) {
387			error = -ENOMEM;
388			goto out_unwind_new_pags;
389		}
390		pag->pag_agno = index;
391		pag->pag_mount = mp;
392
393		error = radix_tree_preload(GFP_KERNEL | __GFP_RETRY_MAYFAIL);
394		if (error)
395			goto out_free_pag;
396
397		spin_lock(&mp->m_perag_lock);
398		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
399			WARN_ON_ONCE(1);
400			spin_unlock(&mp->m_perag_lock);
401			radix_tree_preload_end();
402			error = -EEXIST;
403			goto out_free_pag;
404		}
405		spin_unlock(&mp->m_perag_lock);
406		radix_tree_preload_end();
407
408#ifdef __KERNEL__
409		/* Place kernel structure only init below this point. */
410		spin_lock_init(&pag->pag_ici_lock);
411		spin_lock_init(&pag->pagb_lock);
412		spin_lock_init(&pag->pag_state_lock);
413		INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker);
414		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
415		xfs_defer_drain_init(&pag->pag_intents_drain);
416		init_waitqueue_head(&pag->pagb_wait);
417		init_waitqueue_head(&pag->pag_active_wq);
418		pag->pagb_count = 0;
419		pag->pagb_tree = RB_ROOT;
420		xfs_hooks_init(&pag->pag_rmap_update_hooks);
421#endif /* __KERNEL__ */
422
423		error = xfs_buf_cache_init(&pag->pag_bcache);
424		if (error)
425			goto out_remove_pag;
426
427		/* Active ref owned by mount indicates AG is online. */
428		atomic_set(&pag->pag_active_ref, 1);
429
430		/* first new pag is fully initialized */
431		if (first_initialised == NULLAGNUMBER)
432			first_initialised = index;
433
434		/*
435		 * Pre-calculated geometry
436		 */
437		pag->block_count = __xfs_ag_block_count(mp, index, agcount,
438				dblocks);
439		pag->min_block = XFS_AGFL_BLOCK(mp);
440		__xfs_agino_range(mp, pag->block_count, &pag->agino_min,
441				&pag->agino_max);
442	}
443
444	index = xfs_set_inode_alloc(mp, agcount);
445
446	if (maxagi)
447		*maxagi = index;
448
449	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
450	return 0;
451
452out_remove_pag:
453	xfs_defer_drain_free(&pag->pag_intents_drain);
454	spin_lock(&mp->m_perag_lock);
455	radix_tree_delete(&mp->m_perag_tree, index);
456	spin_unlock(&mp->m_perag_lock);
457out_free_pag:
458	kfree(pag);
459out_unwind_new_pags:
460	/* unwind any prior newly initialized pags */
461	xfs_free_unused_perag_range(mp, first_initialised, agcount);
462	return error;
463}
464
465static int
466xfs_get_aghdr_buf(
467	struct xfs_mount	*mp,
468	xfs_daddr_t		blkno,
469	size_t			numblks,
470	struct xfs_buf		**bpp,
471	const struct xfs_buf_ops *ops)
472{
473	struct xfs_buf		*bp;
474	int			error;
475
476	error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp);
477	if (error)
478		return error;
479
480	bp->b_maps[0].bm_bn = blkno;
481	bp->b_ops = ops;
482
483	*bpp = bp;
484	return 0;
485}
486
487/*
488 * Generic btree root block init function
489 */
490static void
491xfs_btroot_init(
492	struct xfs_mount	*mp,
493	struct xfs_buf		*bp,
494	struct aghdr_init_data	*id)
495{
496	xfs_btree_init_buf(mp, bp, id->bc_ops, 0, 0, id->agno);
497}
498
499/* Finish initializing a free space btree. */
500static void
501xfs_freesp_init_recs(
502	struct xfs_mount	*mp,
503	struct xfs_buf		*bp,
504	struct aghdr_init_data	*id)
505{
506	struct xfs_alloc_rec	*arec;
507	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
508
509	arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
510	arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
511
512	if (xfs_ag_contains_log(mp, id->agno)) {
513		struct xfs_alloc_rec	*nrec;
514		xfs_agblock_t		start = XFS_FSB_TO_AGBNO(mp,
515							mp->m_sb.sb_logstart);
516
517		ASSERT(start >= mp->m_ag_prealloc_blocks);
518		if (start != mp->m_ag_prealloc_blocks) {
519			/*
520			 * Modify first record to pad stripe align of log and
521			 * bump the record count.
522			 */
523			arec->ar_blockcount = cpu_to_be32(start -
524						mp->m_ag_prealloc_blocks);
525			be16_add_cpu(&block->bb_numrecs, 1);
526			nrec = arec + 1;
527
528			/*
529			 * Insert second record at start of internal log
530			 * which then gets trimmed.
531			 */
532			nrec->ar_startblock = cpu_to_be32(
533					be32_to_cpu(arec->ar_startblock) +
534					be32_to_cpu(arec->ar_blockcount));
535			arec = nrec;
536		}
537		/*
538		 * Change record start to after the internal log
539		 */
540		be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks);
541	}
542
543	/*
544	 * Calculate the block count of this record; if it is nonzero,
545	 * increment the record count.
546	 */
547	arec->ar_blockcount = cpu_to_be32(id->agsize -
548					  be32_to_cpu(arec->ar_startblock));
549	if (arec->ar_blockcount)
550		be16_add_cpu(&block->bb_numrecs, 1);
551}
552
553/*
554 * bnobt/cntbt btree root block init functions
555 */
556static void
557xfs_bnoroot_init(
558	struct xfs_mount	*mp,
559	struct xfs_buf		*bp,
560	struct aghdr_init_data	*id)
561{
562	xfs_btree_init_buf(mp, bp, id->bc_ops, 0, 0, id->agno);
563	xfs_freesp_init_recs(mp, bp, id);
564}
565
566/*
567 * Reverse map root block init
568 */
569static void
570xfs_rmaproot_init(
571	struct xfs_mount	*mp,
572	struct xfs_buf		*bp,
573	struct aghdr_init_data	*id)
574{
575	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
576	struct xfs_rmap_rec	*rrec;
577
578	xfs_btree_init_buf(mp, bp, id->bc_ops, 0, 4, id->agno);
579
580	/*
581	 * mark the AG header regions as static metadata The BNO
582	 * btree block is the first block after the headers, so
583	 * it's location defines the size of region the static
584	 * metadata consumes.
585	 *
586	 * Note: unlike mkfs, we never have to account for log
587	 * space when growing the data regions
588	 */
589	rrec = XFS_RMAP_REC_ADDR(block, 1);
590	rrec->rm_startblock = 0;
591	rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
592	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
593	rrec->rm_offset = 0;
594
595	/* account freespace btree root blocks */
596	rrec = XFS_RMAP_REC_ADDR(block, 2);
597	rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
598	rrec->rm_blockcount = cpu_to_be32(2);
599	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
600	rrec->rm_offset = 0;
601
602	/* account inode btree root blocks */
603	rrec = XFS_RMAP_REC_ADDR(block, 3);
604	rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
605	rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
606					  XFS_IBT_BLOCK(mp));
607	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
608	rrec->rm_offset = 0;
609
610	/* account for rmap btree root */
611	rrec = XFS_RMAP_REC_ADDR(block, 4);
612	rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
613	rrec->rm_blockcount = cpu_to_be32(1);
614	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
615	rrec->rm_offset = 0;
616
617	/* account for refc btree root */
618	if (xfs_has_reflink(mp)) {
619		rrec = XFS_RMAP_REC_ADDR(block, 5);
620		rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp));
621		rrec->rm_blockcount = cpu_to_be32(1);
622		rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
623		rrec->rm_offset = 0;
624		be16_add_cpu(&block->bb_numrecs, 1);
625	}
626
627	/* account for the log space */
628	if (xfs_ag_contains_log(mp, id->agno)) {
629		rrec = XFS_RMAP_REC_ADDR(block,
630				be16_to_cpu(block->bb_numrecs) + 1);
631		rrec->rm_startblock = cpu_to_be32(
632				XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart));
633		rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks);
634		rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG);
635		rrec->rm_offset = 0;
636		be16_add_cpu(&block->bb_numrecs, 1);
637	}
638}
639
640/*
641 * Initialise new secondary superblocks with the pre-grow geometry, but mark
642 * them as "in progress" so we know they haven't yet been activated. This will
643 * get cleared when the update with the new geometry information is done after
644 * changes to the primary are committed. This isn't strictly necessary, but we
645 * get it for free with the delayed buffer write lists and it means we can tell
646 * if a grow operation didn't complete properly after the fact.
647 */
648static void
649xfs_sbblock_init(
650	struct xfs_mount	*mp,
651	struct xfs_buf		*bp,
652	struct aghdr_init_data	*id)
653{
654	struct xfs_dsb		*dsb = bp->b_addr;
655
656	xfs_sb_to_disk(dsb, &mp->m_sb);
657	dsb->sb_inprogress = 1;
658}
659
660static void
661xfs_agfblock_init(
662	struct xfs_mount	*mp,
663	struct xfs_buf		*bp,
664	struct aghdr_init_data	*id)
665{
666	struct xfs_agf		*agf = bp->b_addr;
667	xfs_extlen_t		tmpsize;
668
669	agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
670	agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
671	agf->agf_seqno = cpu_to_be32(id->agno);
672	agf->agf_length = cpu_to_be32(id->agsize);
673	agf->agf_bno_root = cpu_to_be32(XFS_BNO_BLOCK(mp));
674	agf->agf_cnt_root = cpu_to_be32(XFS_CNT_BLOCK(mp));
675	agf->agf_bno_level = cpu_to_be32(1);
676	agf->agf_cnt_level = cpu_to_be32(1);
677	if (xfs_has_rmapbt(mp)) {
678		agf->agf_rmap_root = cpu_to_be32(XFS_RMAP_BLOCK(mp));
679		agf->agf_rmap_level = cpu_to_be32(1);
680		agf->agf_rmap_blocks = cpu_to_be32(1);
681	}
682
683	agf->agf_flfirst = cpu_to_be32(1);
684	agf->agf_fllast = 0;
685	agf->agf_flcount = 0;
686	tmpsize = id->agsize - mp->m_ag_prealloc_blocks;
687	agf->agf_freeblks = cpu_to_be32(tmpsize);
688	agf->agf_longest = cpu_to_be32(tmpsize);
689	if (xfs_has_crc(mp))
690		uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
691	if (xfs_has_reflink(mp)) {
692		agf->agf_refcount_root = cpu_to_be32(
693				xfs_refc_block(mp));
694		agf->agf_refcount_level = cpu_to_be32(1);
695		agf->agf_refcount_blocks = cpu_to_be32(1);
696	}
697
698	if (xfs_ag_contains_log(mp, id->agno)) {
699		int64_t	logblocks = mp->m_sb.sb_logblocks;
700
701		be32_add_cpu(&agf->agf_freeblks, -logblocks);
702		agf->agf_longest = cpu_to_be32(id->agsize -
703			XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks);
704	}
705}
706
707static void
708xfs_agflblock_init(
709	struct xfs_mount	*mp,
710	struct xfs_buf		*bp,
711	struct aghdr_init_data	*id)
712{
713	struct xfs_agfl		*agfl = XFS_BUF_TO_AGFL(bp);
714	__be32			*agfl_bno;
715	int			bucket;
716
717	if (xfs_has_crc(mp)) {
718		agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
719		agfl->agfl_seqno = cpu_to_be32(id->agno);
720		uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
721	}
722
723	agfl_bno = xfs_buf_to_agfl_bno(bp);
724	for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
725		agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
726}
727
728static void
729xfs_agiblock_init(
730	struct xfs_mount	*mp,
731	struct xfs_buf		*bp,
732	struct aghdr_init_data	*id)
733{
734	struct xfs_agi		*agi = bp->b_addr;
735	int			bucket;
736
737	agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
738	agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
739	agi->agi_seqno = cpu_to_be32(id->agno);
740	agi->agi_length = cpu_to_be32(id->agsize);
741	agi->agi_count = 0;
742	agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
743	agi->agi_level = cpu_to_be32(1);
744	agi->agi_freecount = 0;
745	agi->agi_newino = cpu_to_be32(NULLAGINO);
746	agi->agi_dirino = cpu_to_be32(NULLAGINO);
747	if (xfs_has_crc(mp))
748		uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
749	if (xfs_has_finobt(mp)) {
750		agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
751		agi->agi_free_level = cpu_to_be32(1);
752	}
753	for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
754		agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
755	if (xfs_has_inobtcounts(mp)) {
756		agi->agi_iblocks = cpu_to_be32(1);
757		if (xfs_has_finobt(mp))
758			agi->agi_fblocks = cpu_to_be32(1);
759	}
760}
761
762typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,
763				  struct aghdr_init_data *id);
764static int
765xfs_ag_init_hdr(
766	struct xfs_mount	*mp,
767	struct aghdr_init_data	*id,
768	aghdr_init_work_f	work,
769	const struct xfs_buf_ops *ops)
770{
771	struct xfs_buf		*bp;
772	int			error;
773
774	error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops);
775	if (error)
776		return error;
777
778	(*work)(mp, bp, id);
779
780	xfs_buf_delwri_queue(bp, &id->buffer_list);
781	xfs_buf_relse(bp);
782	return 0;
783}
784
785struct xfs_aghdr_grow_data {
786	xfs_daddr_t		daddr;
787	size_t			numblks;
788	const struct xfs_buf_ops *ops;
789	aghdr_init_work_f	work;
790	const struct xfs_btree_ops *bc_ops;
791	bool			need_init;
792};
793
794/*
795 * Prepare new AG headers to be written to disk. We use uncached buffers here,
796 * as it is assumed these new AG headers are currently beyond the currently
797 * valid filesystem address space. Using cached buffers would trip over EOFS
798 * corruption detection alogrithms in the buffer cache lookup routines.
799 *
800 * This is a non-transactional function, but the prepared buffers are added to a
801 * delayed write buffer list supplied by the caller so they can submit them to
802 * disk and wait on them as required.
803 */
804int
805xfs_ag_init_headers(
806	struct xfs_mount	*mp,
807	struct aghdr_init_data	*id)
808
809{
810	struct xfs_aghdr_grow_data aghdr_data[] = {
811	{ /* SB */
812		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR),
813		.numblks = XFS_FSS_TO_BB(mp, 1),
814		.ops = &xfs_sb_buf_ops,
815		.work = &xfs_sbblock_init,
816		.need_init = true
817	},
818	{ /* AGF */
819		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)),
820		.numblks = XFS_FSS_TO_BB(mp, 1),
821		.ops = &xfs_agf_buf_ops,
822		.work = &xfs_agfblock_init,
823		.need_init = true
824	},
825	{ /* AGFL */
826		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)),
827		.numblks = XFS_FSS_TO_BB(mp, 1),
828		.ops = &xfs_agfl_buf_ops,
829		.work = &xfs_agflblock_init,
830		.need_init = true
831	},
832	{ /* AGI */
833		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)),
834		.numblks = XFS_FSS_TO_BB(mp, 1),
835		.ops = &xfs_agi_buf_ops,
836		.work = &xfs_agiblock_init,
837		.need_init = true
838	},
839	{ /* BNO root block */
840		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)),
841		.numblks = BTOBB(mp->m_sb.sb_blocksize),
842		.ops = &xfs_bnobt_buf_ops,
843		.work = &xfs_bnoroot_init,
844		.bc_ops = &xfs_bnobt_ops,
845		.need_init = true
846	},
847	{ /* CNT root block */
848		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)),
849		.numblks = BTOBB(mp->m_sb.sb_blocksize),
850		.ops = &xfs_cntbt_buf_ops,
851		.work = &xfs_bnoroot_init,
852		.bc_ops = &xfs_cntbt_ops,
853		.need_init = true
854	},
855	{ /* INO root block */
856		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)),
857		.numblks = BTOBB(mp->m_sb.sb_blocksize),
858		.ops = &xfs_inobt_buf_ops,
859		.work = &xfs_btroot_init,
860		.bc_ops = &xfs_inobt_ops,
861		.need_init = true
862	},
863	{ /* FINO root block */
864		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)),
865		.numblks = BTOBB(mp->m_sb.sb_blocksize),
866		.ops = &xfs_finobt_buf_ops,
867		.work = &xfs_btroot_init,
868		.bc_ops = &xfs_finobt_ops,
869		.need_init =  xfs_has_finobt(mp)
870	},
871	{ /* RMAP root block */
872		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)),
873		.numblks = BTOBB(mp->m_sb.sb_blocksize),
874		.ops = &xfs_rmapbt_buf_ops,
875		.work = &xfs_rmaproot_init,
876		.bc_ops = &xfs_rmapbt_ops,
877		.need_init = xfs_has_rmapbt(mp)
878	},
879	{ /* REFC root block */
880		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)),
881		.numblks = BTOBB(mp->m_sb.sb_blocksize),
882		.ops = &xfs_refcountbt_buf_ops,
883		.work = &xfs_btroot_init,
884		.bc_ops = &xfs_refcountbt_ops,
885		.need_init = xfs_has_reflink(mp)
886	},
887	{ /* NULL terminating block */
888		.daddr = XFS_BUF_DADDR_NULL,
889	}
890	};
891	struct  xfs_aghdr_grow_data *dp;
892	int			error = 0;
893
894	/* Account for AG free space in new AG */
895	id->nfree += id->agsize - mp->m_ag_prealloc_blocks;
896	for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) {
897		if (!dp->need_init)
898			continue;
899
900		id->daddr = dp->daddr;
901		id->numblks = dp->numblks;
902		id->bc_ops = dp->bc_ops;
903		error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops);
904		if (error)
905			break;
906	}
907	return error;
908}
909
910int
911xfs_ag_shrink_space(
912	struct xfs_perag	*pag,
913	struct xfs_trans	**tpp,
914	xfs_extlen_t		delta)
915{
916	struct xfs_mount	*mp = pag->pag_mount;
917	struct xfs_alloc_arg	args = {
918		.tp	= *tpp,
919		.mp	= mp,
920		.pag	= pag,
921		.minlen = delta,
922		.maxlen = delta,
923		.oinfo	= XFS_RMAP_OINFO_SKIP_UPDATE,
924		.resv	= XFS_AG_RESV_NONE,
925		.prod	= 1
926	};
927	struct xfs_buf		*agibp, *agfbp;
928	struct xfs_agi		*agi;
929	struct xfs_agf		*agf;
930	xfs_agblock_t		aglen;
931	int			error, err2;
932
933	ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1);
934	error = xfs_ialloc_read_agi(pag, *tpp, &agibp);
935	if (error)
936		return error;
937
938	agi = agibp->b_addr;
939
940	error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp);
941	if (error)
942		return error;
943
944	agf = agfbp->b_addr;
945	aglen = be32_to_cpu(agi->agi_length);
946	/* some extra paranoid checks before we shrink the ag */
947	if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length)) {
948		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF);
949		return -EFSCORRUPTED;
950	}
951	if (delta >= aglen)
952		return -EINVAL;
953
954	/*
955	 * Make sure that the last inode cluster cannot overlap with the new
956	 * end of the AG, even if it's sparse.
957	 */
958	error = xfs_ialloc_check_shrink(pag, *tpp, agibp, aglen - delta);
959	if (error)
960		return error;
961
962	/*
963	 * Disable perag reservations so it doesn't cause the allocation request
964	 * to fail. We'll reestablish reservation before we return.
965	 */
966	error = xfs_ag_resv_free(pag);
967	if (error)
968		return error;
969
970	/* internal log shouldn't also show up in the free space btrees */
971	error = xfs_alloc_vextent_exact_bno(&args,
972			XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta));
973	if (!error && args.agbno == NULLAGBLOCK)
974		error = -ENOSPC;
975
976	if (error) {
977		/*
978		 * If extent allocation fails, need to roll the transaction to
979		 * ensure that the AGFL fixup has been committed anyway.
980		 *
981		 * We need to hold the AGF across the roll to ensure nothing can
982		 * access the AG for allocation until the shrink is fully
983		 * cleaned up. And due to the resetting of the AG block
984		 * reservation space needing to lock the AGI, we also have to
985		 * hold that so we don't get AGI/AGF lock order inversions in
986		 * the error handling path.
987		 */
988		xfs_trans_bhold(*tpp, agfbp);
989		xfs_trans_bhold(*tpp, agibp);
990		err2 = xfs_trans_roll(tpp);
991		if (err2)
992			return err2;
993		xfs_trans_bjoin(*tpp, agfbp);
994		xfs_trans_bjoin(*tpp, agibp);
995		goto resv_init_out;
996	}
997
998	/*
999	 * if successfully deleted from freespace btrees, need to confirm
1000	 * per-AG reservation works as expected.
1001	 */
1002	be32_add_cpu(&agi->agi_length, -delta);
1003	be32_add_cpu(&agf->agf_length, -delta);
1004
1005	err2 = xfs_ag_resv_init(pag, *tpp);
1006	if (err2) {
1007		be32_add_cpu(&agi->agi_length, delta);
1008		be32_add_cpu(&agf->agf_length, delta);
1009		if (err2 != -ENOSPC)
1010			goto resv_err;
1011
1012		err2 = xfs_free_extent_later(*tpp, args.fsbno, delta, NULL,
1013				XFS_AG_RESV_NONE, true);
1014		if (err2)
1015			goto resv_err;
1016
1017		/*
1018		 * Roll the transaction before trying to re-init the per-ag
1019		 * reservation. The new transaction is clean so it will cancel
1020		 * without any side effects.
1021		 */
1022		error = xfs_defer_finish(tpp);
1023		if (error)
1024			return error;
1025
1026		error = -ENOSPC;
1027		goto resv_init_out;
1028	}
1029
1030	/* Update perag geometry */
1031	pag->block_count -= delta;
1032	__xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
1033				&pag->agino_max);
1034
1035	xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH);
1036	xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH);
1037	return 0;
1038
1039resv_init_out:
1040	err2 = xfs_ag_resv_init(pag, *tpp);
1041	if (!err2)
1042		return error;
1043resv_err:
1044	xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2);
1045	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1046	return err2;
1047}
1048
1049/*
1050 * Extent the AG indicated by the @id by the length passed in
1051 */
1052int
1053xfs_ag_extend_space(
1054	struct xfs_perag	*pag,
1055	struct xfs_trans	*tp,
1056	xfs_extlen_t		len)
1057{
1058	struct xfs_buf		*bp;
1059	struct xfs_agi		*agi;
1060	struct xfs_agf		*agf;
1061	int			error;
1062
1063	ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1);
1064
1065	error = xfs_ialloc_read_agi(pag, tp, &bp);
1066	if (error)
1067		return error;
1068
1069	agi = bp->b_addr;
1070	be32_add_cpu(&agi->agi_length, len);
1071	xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
1072
1073	/*
1074	 * Change agf length.
1075	 */
1076	error = xfs_alloc_read_agf(pag, tp, 0, &bp);
1077	if (error)
1078		return error;
1079
1080	agf = bp->b_addr;
1081	be32_add_cpu(&agf->agf_length, len);
1082	ASSERT(agf->agf_length == agi->agi_length);
1083	xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
1084
1085	/*
1086	 * Free the new space.
1087	 *
1088	 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that
1089	 * this doesn't actually exist in the rmap btree.
1090	 */
1091	error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len,
1092				len, &XFS_RMAP_OINFO_SKIP_UPDATE);
1093	if (error)
1094		return error;
1095
1096	error = xfs_free_extent(tp, pag, be32_to_cpu(agf->agf_length) - len,
1097			len, &XFS_RMAP_OINFO_SKIP_UPDATE, XFS_AG_RESV_NONE);
1098	if (error)
1099		return error;
1100
1101	/* Update perag geometry */
1102	pag->block_count = be32_to_cpu(agf->agf_length);
1103	__xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
1104				&pag->agino_max);
1105	return 0;
1106}
1107
1108/* Retrieve AG geometry. */
1109int
1110xfs_ag_get_geometry(
1111	struct xfs_perag	*pag,
1112	struct xfs_ag_geometry	*ageo)
1113{
1114	struct xfs_buf		*agi_bp;
1115	struct xfs_buf		*agf_bp;
1116	struct xfs_agi		*agi;
1117	struct xfs_agf		*agf;
1118	unsigned int		freeblks;
1119	int			error;
1120
1121	/* Lock the AG headers. */
1122	error = xfs_ialloc_read_agi(pag, NULL, &agi_bp);
1123	if (error)
1124		return error;
1125	error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp);
1126	if (error)
1127		goto out_agi;
1128
1129	/* Fill out form. */
1130	memset(ageo, 0, sizeof(*ageo));
1131	ageo->ag_number = pag->pag_agno;
1132
1133	agi = agi_bp->b_addr;
1134	ageo->ag_icount = be32_to_cpu(agi->agi_count);
1135	ageo->ag_ifree = be32_to_cpu(agi->agi_freecount);
1136
1137	agf = agf_bp->b_addr;
1138	ageo->ag_length = be32_to_cpu(agf->agf_length);
1139	freeblks = pag->pagf_freeblks +
1140		   pag->pagf_flcount +
1141		   pag->pagf_btreeblks -
1142		   xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE);
1143	ageo->ag_freeblks = freeblks;
1144	xfs_ag_geom_health(pag, ageo);
1145
1146	/* Release resources. */
1147	xfs_buf_relse(agf_bp);
1148out_agi:
1149	xfs_buf_relse(agi_bp);
1150	return error;
1151}
1152