/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * Copyright (c) 2018 Red Hat, Inc. * All rights reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_sb.h" #include "xfs_mount.h" #include "xfs_btree.h" #include "xfs_alloc_btree.h" #include "xfs_rmap_btree.h" #include "xfs_alloc.h" #include "xfs_ialloc.h" #include "xfs_rmap.h" #include "xfs_ag.h" #include "xfs_ag_resv.h" #include "xfs_health.h" #include "xfs_error.h" #include "xfs_bmap.h" #include "xfs_defer.h" #include "xfs_log_format.h" #include "xfs_trans.h" #include "xfs_trace.h" #include "xfs_inode.h" #include "xfs_icache.h" /* * Passive reference counting access wrappers to the perag structures. If the * per-ag structure is to be freed, the freeing code is responsible for cleaning * up objects with passive references before freeing the structure. This is * things like cached buffers. */ struct xfs_perag * xfs_perag_get( struct xfs_mount *mp, xfs_agnumber_t agno) { struct xfs_perag *pag; rcu_read_lock(); pag = radix_tree_lookup(&mp->m_perag_tree, agno); if (pag) { trace_xfs_perag_get(pag, _RET_IP_); ASSERT(atomic_read(&pag->pag_ref) >= 0); atomic_inc(&pag->pag_ref); } rcu_read_unlock(); return pag; } /* * search from @first to find the next perag with the given tag set. */ struct xfs_perag * xfs_perag_get_tag( struct xfs_mount *mp, xfs_agnumber_t first, unsigned int tag) { struct xfs_perag *pag; int found; rcu_read_lock(); found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, (void **)&pag, first, 1, tag); if (found <= 0) { rcu_read_unlock(); return NULL; } trace_xfs_perag_get_tag(pag, _RET_IP_); atomic_inc(&pag->pag_ref); rcu_read_unlock(); return pag; } /* Get a passive reference to the given perag. */ struct xfs_perag * xfs_perag_hold( struct xfs_perag *pag) { ASSERT(atomic_read(&pag->pag_ref) > 0 || atomic_read(&pag->pag_active_ref) > 0); trace_xfs_perag_hold(pag, _RET_IP_); atomic_inc(&pag->pag_ref); return pag; } void xfs_perag_put( struct xfs_perag *pag) { trace_xfs_perag_put(pag, _RET_IP_); ASSERT(atomic_read(&pag->pag_ref) > 0); atomic_dec(&pag->pag_ref); } /* * Active references for perag structures. This is for short term access to the * per ag structures for walking trees or accessing state. If an AG is being * shrunk or is offline, then this will fail to find that AG and return NULL * instead. */ struct xfs_perag * xfs_perag_grab( struct xfs_mount *mp, xfs_agnumber_t agno) { struct xfs_perag *pag; rcu_read_lock(); pag = radix_tree_lookup(&mp->m_perag_tree, agno); if (pag) { trace_xfs_perag_grab(pag, _RET_IP_); if (!atomic_inc_not_zero(&pag->pag_active_ref)) pag = NULL; } rcu_read_unlock(); return pag; } /* * search from @first to find the next perag with the given tag set. */ struct xfs_perag * xfs_perag_grab_tag( struct xfs_mount *mp, xfs_agnumber_t first, int tag) { struct xfs_perag *pag; int found; rcu_read_lock(); found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, (void **)&pag, first, 1, tag); if (found <= 0) { rcu_read_unlock(); return NULL; } trace_xfs_perag_grab_tag(pag, _RET_IP_); if (!atomic_inc_not_zero(&pag->pag_active_ref)) pag = NULL; rcu_read_unlock(); return pag; } void xfs_perag_rele( struct xfs_perag *pag) { trace_xfs_perag_rele(pag, _RET_IP_); if (atomic_dec_and_test(&pag->pag_active_ref)) wake_up(&pag->pag_active_wq); } /* * xfs_initialize_perag_data * * Read in each per-ag structure so we can count up the number of * allocated inodes, free inodes and used filesystem blocks as this * information is no longer persistent in the superblock. Once we have * this information, write it into the in-core superblock structure. */ int xfs_initialize_perag_data( struct xfs_mount *mp, xfs_agnumber_t agcount) { xfs_agnumber_t index; struct xfs_perag *pag; struct xfs_sb *sbp = &mp->m_sb; uint64_t ifree = 0; uint64_t ialloc = 0; uint64_t bfree = 0; uint64_t bfreelst = 0; uint64_t btree = 0; uint64_t fdblocks; int error = 0; for (index = 0; index < agcount; index++) { /* * Read the AGF and AGI buffers to populate the per-ag * structures for us. */ pag = xfs_perag_get(mp, index); error = xfs_alloc_read_agf(pag, NULL, 0, NULL); if (!error) error = xfs_ialloc_read_agi(pag, NULL, NULL); if (error) { xfs_perag_put(pag); return error; } ifree += pag->pagi_freecount; ialloc += pag->pagi_count; bfree += pag->pagf_freeblks; bfreelst += pag->pagf_flcount; btree += pag->pagf_btreeblks; xfs_perag_put(pag); } fdblocks = bfree + bfreelst + btree; /* * If the new summary counts are obviously incorrect, fail the * mount operation because that implies the AGFs are also corrupt. * Clear FS_COUNTERS so that we don't unmount with a dirty log, which * will prevent xfs_repair from fixing anything. */ if (fdblocks > sbp->sb_dblocks || ifree > ialloc) { xfs_alert(mp, "AGF corruption. Please run xfs_repair."); xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); error = -EFSCORRUPTED; goto out; } /* Overwrite incore superblock counters with just-read data */ spin_lock(&mp->m_sb_lock); sbp->sb_ifree = ifree; sbp->sb_icount = ialloc; sbp->sb_fdblocks = fdblocks; spin_unlock(&mp->m_sb_lock); xfs_reinit_percpu_counters(mp); out: xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS); return error; } STATIC void __xfs_free_perag( struct rcu_head *head) { struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); ASSERT(!delayed_work_pending(&pag->pag_blockgc_work)); kfree(pag); } /* * Free up the per-ag resources associated with the mount structure. */ void xfs_free_perag( struct xfs_mount *mp) { struct xfs_perag *pag; xfs_agnumber_t agno; for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { spin_lock(&mp->m_perag_lock); pag = radix_tree_delete(&mp->m_perag_tree, agno); spin_unlock(&mp->m_perag_lock); ASSERT(pag); XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0); xfs_defer_drain_free(&pag->pag_intents_drain); cancel_delayed_work_sync(&pag->pag_blockgc_work); xfs_buf_cache_destroy(&pag->pag_bcache); /* drop the mount's active reference */ xfs_perag_rele(pag); XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_active_ref) != 0); call_rcu(&pag->rcu_head, __xfs_free_perag); } } /* Find the size of the AG, in blocks. */ static xfs_agblock_t __xfs_ag_block_count( struct xfs_mount *mp, xfs_agnumber_t agno, xfs_agnumber_t agcount, xfs_rfsblock_t dblocks) { ASSERT(agno < agcount); if (agno < agcount - 1) return mp->m_sb.sb_agblocks; return dblocks - (agno * mp->m_sb.sb_agblocks); } xfs_agblock_t xfs_ag_block_count( struct xfs_mount *mp, xfs_agnumber_t agno) { return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount, mp->m_sb.sb_dblocks); } /* Calculate the first and last possible inode number in an AG. */ static void __xfs_agino_range( struct xfs_mount *mp, xfs_agblock_t eoag, xfs_agino_t *first, xfs_agino_t *last) { xfs_agblock_t bno; /* * Calculate the first inode, which will be in the first * cluster-aligned block after the AGFL. */ bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align); *first = XFS_AGB_TO_AGINO(mp, bno); /* * Calculate the last inode, which will be at the end of the * last (aligned) cluster that can be allocated in the AG. */ bno = round_down(eoag, M_IGEO(mp)->cluster_align); *last = XFS_AGB_TO_AGINO(mp, bno) - 1; } void xfs_agino_range( struct xfs_mount *mp, xfs_agnumber_t agno, xfs_agino_t *first, xfs_agino_t *last) { return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last); } /* * Free perag within the specified AG range, it is only used to free unused * perags under the error handling path. */ void xfs_free_unused_perag_range( struct xfs_mount *mp, xfs_agnumber_t agstart, xfs_agnumber_t agend) { struct xfs_perag *pag; xfs_agnumber_t index; for (index = agstart; index < agend; index++) { spin_lock(&mp->m_perag_lock); pag = radix_tree_delete(&mp->m_perag_tree, index); spin_unlock(&mp->m_perag_lock); if (!pag) break; xfs_buf_cache_destroy(&pag->pag_bcache); xfs_defer_drain_free(&pag->pag_intents_drain); kfree(pag); } } int xfs_initialize_perag( struct xfs_mount *mp, xfs_agnumber_t agcount, xfs_rfsblock_t dblocks, xfs_agnumber_t *maxagi) { struct xfs_perag *pag; xfs_agnumber_t index; xfs_agnumber_t first_initialised = NULLAGNUMBER; int error; /* * Walk the current per-ag tree so we don't try to initialise AGs * that already exist (growfs case). Allocate and insert all the * AGs we don't find ready for initialisation. */ for (index = 0; index < agcount; index++) { pag = xfs_perag_get(mp, index); if (pag) { xfs_perag_put(pag); continue; } pag = kzalloc(sizeof(*pag), GFP_KERNEL | __GFP_RETRY_MAYFAIL); if (!pag) { error = -ENOMEM; goto out_unwind_new_pags; } pag->pag_agno = index; pag->pag_mount = mp; error = radix_tree_preload(GFP_KERNEL | __GFP_RETRY_MAYFAIL); if (error) goto out_free_pag; spin_lock(&mp->m_perag_lock); if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { WARN_ON_ONCE(1); spin_unlock(&mp->m_perag_lock); radix_tree_preload_end(); error = -EEXIST; goto out_free_pag; } spin_unlock(&mp->m_perag_lock); radix_tree_preload_end(); #ifdef __KERNEL__ /* Place kernel structure only init below this point. */ spin_lock_init(&pag->pag_ici_lock); spin_lock_init(&pag->pagb_lock); spin_lock_init(&pag->pag_state_lock); INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker); INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); xfs_defer_drain_init(&pag->pag_intents_drain); init_waitqueue_head(&pag->pagb_wait); init_waitqueue_head(&pag->pag_active_wq); pag->pagb_count = 0; pag->pagb_tree = RB_ROOT; xfs_hooks_init(&pag->pag_rmap_update_hooks); #endif /* __KERNEL__ */ error = xfs_buf_cache_init(&pag->pag_bcache); if (error) goto out_remove_pag; /* Active ref owned by mount indicates AG is online. */ atomic_set(&pag->pag_active_ref, 1); /* first new pag is fully initialized */ if (first_initialised == NULLAGNUMBER) first_initialised = index; /* * Pre-calculated geometry */ pag->block_count = __xfs_ag_block_count(mp, index, agcount, dblocks); pag->min_block = XFS_AGFL_BLOCK(mp); __xfs_agino_range(mp, pag->block_count, &pag->agino_min, &pag->agino_max); } index = xfs_set_inode_alloc(mp, agcount); if (maxagi) *maxagi = index; mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); return 0; out_remove_pag: xfs_defer_drain_free(&pag->pag_intents_drain); spin_lock(&mp->m_perag_lock); radix_tree_delete(&mp->m_perag_tree, index); spin_unlock(&mp->m_perag_lock); out_free_pag: kfree(pag); out_unwind_new_pags: /* unwind any prior newly initialized pags */ xfs_free_unused_perag_range(mp, first_initialised, agcount); return error; } static int xfs_get_aghdr_buf( struct xfs_mount *mp, xfs_daddr_t blkno, size_t numblks, struct xfs_buf **bpp, const struct xfs_buf_ops *ops) { struct xfs_buf *bp; int error; error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp); if (error) return error; bp->b_maps[0].bm_bn = blkno; bp->b_ops = ops; *bpp = bp; return 0; } /* * Generic btree root block init function */ static void xfs_btroot_init( struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id) { xfs_btree_init_buf(mp, bp, id->bc_ops, 0, 0, id->agno); } /* Finish initializing a free space btree. */ static void xfs_freesp_init_recs( struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id) { struct xfs_alloc_rec *arec; struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1); arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks); if (xfs_ag_contains_log(mp, id->agno)) { struct xfs_alloc_rec *nrec; xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart); ASSERT(start >= mp->m_ag_prealloc_blocks); if (start != mp->m_ag_prealloc_blocks) { /* * Modify first record to pad stripe align of log and * bump the record count. */ arec->ar_blockcount = cpu_to_be32(start - mp->m_ag_prealloc_blocks); be16_add_cpu(&block->bb_numrecs, 1); nrec = arec + 1; /* * Insert second record at start of internal log * which then gets trimmed. */ nrec->ar_startblock = cpu_to_be32( be32_to_cpu(arec->ar_startblock) + be32_to_cpu(arec->ar_blockcount)); arec = nrec; } /* * Change record start to after the internal log */ be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks); } /* * Calculate the block count of this record; if it is nonzero, * increment the record count. */ arec->ar_blockcount = cpu_to_be32(id->agsize - be32_to_cpu(arec->ar_startblock)); if (arec->ar_blockcount) be16_add_cpu(&block->bb_numrecs, 1); } /* * bnobt/cntbt btree root block init functions */ static void xfs_bnoroot_init( struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id) { xfs_btree_init_buf(mp, bp, id->bc_ops, 0, 0, id->agno); xfs_freesp_init_recs(mp, bp, id); } /* * Reverse map root block init */ static void xfs_rmaproot_init( struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id) { struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); struct xfs_rmap_rec *rrec; xfs_btree_init_buf(mp, bp, id->bc_ops, 0, 4, id->agno); /* * mark the AG header regions as static metadata The BNO * btree block is the first block after the headers, so * it's location defines the size of region the static * metadata consumes. * * Note: unlike mkfs, we never have to account for log * space when growing the data regions */ rrec = XFS_RMAP_REC_ADDR(block, 1); rrec->rm_startblock = 0; rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp)); rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS); rrec->rm_offset = 0; /* account freespace btree root blocks */ rrec = XFS_RMAP_REC_ADDR(block, 2); rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp)); rrec->rm_blockcount = cpu_to_be32(2); rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); rrec->rm_offset = 0; /* account inode btree root blocks */ rrec = XFS_RMAP_REC_ADDR(block, 3); rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp)); rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) - XFS_IBT_BLOCK(mp)); rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT); rrec->rm_offset = 0; /* account for rmap btree root */ rrec = XFS_RMAP_REC_ADDR(block, 4); rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp)); rrec->rm_blockcount = cpu_to_be32(1); rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); rrec->rm_offset = 0; /* account for refc btree root */ if (xfs_has_reflink(mp)) { rrec = XFS_RMAP_REC_ADDR(block, 5); rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp)); rrec->rm_blockcount = cpu_to_be32(1); rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC); rrec->rm_offset = 0; be16_add_cpu(&block->bb_numrecs, 1); } /* account for the log space */ if (xfs_ag_contains_log(mp, id->agno)) { rrec = XFS_RMAP_REC_ADDR(block, be16_to_cpu(block->bb_numrecs) + 1); rrec->rm_startblock = cpu_to_be32( XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart)); rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks); rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG); rrec->rm_offset = 0; be16_add_cpu(&block->bb_numrecs, 1); } } /* * Initialise new secondary superblocks with the pre-grow geometry, but mark * them as "in progress" so we know they haven't yet been activated. This will * get cleared when the update with the new geometry information is done after * changes to the primary are committed. This isn't strictly necessary, but we * get it for free with the delayed buffer write lists and it means we can tell * if a grow operation didn't complete properly after the fact. */ static void xfs_sbblock_init( struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id) { struct xfs_dsb *dsb = bp->b_addr; xfs_sb_to_disk(dsb, &mp->m_sb); dsb->sb_inprogress = 1; } static void xfs_agfblock_init( struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id) { struct xfs_agf *agf = bp->b_addr; xfs_extlen_t tmpsize; agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC); agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION); agf->agf_seqno = cpu_to_be32(id->agno); agf->agf_length = cpu_to_be32(id->agsize); agf->agf_bno_root = cpu_to_be32(XFS_BNO_BLOCK(mp)); agf->agf_cnt_root = cpu_to_be32(XFS_CNT_BLOCK(mp)); agf->agf_bno_level = cpu_to_be32(1); agf->agf_cnt_level = cpu_to_be32(1); if (xfs_has_rmapbt(mp)) { agf->agf_rmap_root = cpu_to_be32(XFS_RMAP_BLOCK(mp)); agf->agf_rmap_level = cpu_to_be32(1); agf->agf_rmap_blocks = cpu_to_be32(1); } agf->agf_flfirst = cpu_to_be32(1); agf->agf_fllast = 0; agf->agf_flcount = 0; tmpsize = id->agsize - mp->m_ag_prealloc_blocks; agf->agf_freeblks = cpu_to_be32(tmpsize); agf->agf_longest = cpu_to_be32(tmpsize); if (xfs_has_crc(mp)) uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid); if (xfs_has_reflink(mp)) { agf->agf_refcount_root = cpu_to_be32( xfs_refc_block(mp)); agf->agf_refcount_level = cpu_to_be32(1); agf->agf_refcount_blocks = cpu_to_be32(1); } if (xfs_ag_contains_log(mp, id->agno)) { int64_t logblocks = mp->m_sb.sb_logblocks; be32_add_cpu(&agf->agf_freeblks, -logblocks); agf->agf_longest = cpu_to_be32(id->agsize - XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks); } } static void xfs_agflblock_init( struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id) { struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); __be32 *agfl_bno; int bucket; if (xfs_has_crc(mp)) { agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC); agfl->agfl_seqno = cpu_to_be32(id->agno); uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid); } agfl_bno = xfs_buf_to_agfl_bno(bp); for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++) agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK); } static void xfs_agiblock_init( struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id) { struct xfs_agi *agi = bp->b_addr; int bucket; agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC); agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION); agi->agi_seqno = cpu_to_be32(id->agno); agi->agi_length = cpu_to_be32(id->agsize); agi->agi_count = 0; agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp)); agi->agi_level = cpu_to_be32(1); agi->agi_freecount = 0; agi->agi_newino = cpu_to_be32(NULLAGINO); agi->agi_dirino = cpu_to_be32(NULLAGINO); if (xfs_has_crc(mp)) uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid); if (xfs_has_finobt(mp)) { agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp)); agi->agi_free_level = cpu_to_be32(1); } for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); if (xfs_has_inobtcounts(mp)) { agi->agi_iblocks = cpu_to_be32(1); if (xfs_has_finobt(mp)) agi->agi_fblocks = cpu_to_be32(1); } } typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id); static int xfs_ag_init_hdr( struct xfs_mount *mp, struct aghdr_init_data *id, aghdr_init_work_f work, const struct xfs_buf_ops *ops) { struct xfs_buf *bp; int error; error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops); if (error) return error; (*work)(mp, bp, id); xfs_buf_delwri_queue(bp, &id->buffer_list); xfs_buf_relse(bp); return 0; } struct xfs_aghdr_grow_data { xfs_daddr_t daddr; size_t numblks; const struct xfs_buf_ops *ops; aghdr_init_work_f work; const struct xfs_btree_ops *bc_ops; bool need_init; }; /* * Prepare new AG headers to be written to disk. We use uncached buffers here, * as it is assumed these new AG headers are currently beyond the currently * valid filesystem address space. Using cached buffers would trip over EOFS * corruption detection alogrithms in the buffer cache lookup routines. * * This is a non-transactional function, but the prepared buffers are added to a * delayed write buffer list supplied by the caller so they can submit them to * disk and wait on them as required. */ int xfs_ag_init_headers( struct xfs_mount *mp, struct aghdr_init_data *id) { struct xfs_aghdr_grow_data aghdr_data[] = { { /* SB */ .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR), .numblks = XFS_FSS_TO_BB(mp, 1), .ops = &xfs_sb_buf_ops, .work = &xfs_sbblock_init, .need_init = true }, { /* AGF */ .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)), .numblks = XFS_FSS_TO_BB(mp, 1), .ops = &xfs_agf_buf_ops, .work = &xfs_agfblock_init, .need_init = true }, { /* AGFL */ .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)), .numblks = XFS_FSS_TO_BB(mp, 1), .ops = &xfs_agfl_buf_ops, .work = &xfs_agflblock_init, .need_init = true }, { /* AGI */ .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)), .numblks = XFS_FSS_TO_BB(mp, 1), .ops = &xfs_agi_buf_ops, .work = &xfs_agiblock_init, .need_init = true }, { /* BNO root block */ .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)), .numblks = BTOBB(mp->m_sb.sb_blocksize), .ops = &xfs_bnobt_buf_ops, .work = &xfs_bnoroot_init, .bc_ops = &xfs_bnobt_ops, .need_init = true }, { /* CNT root block */ .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)), .numblks = BTOBB(mp->m_sb.sb_blocksize), .ops = &xfs_cntbt_buf_ops, .work = &xfs_bnoroot_init, .bc_ops = &xfs_cntbt_ops, .need_init = true }, { /* INO root block */ .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)), .numblks = BTOBB(mp->m_sb.sb_blocksize), .ops = &xfs_inobt_buf_ops, .work = &xfs_btroot_init, .bc_ops = &xfs_inobt_ops, .need_init = true }, { /* FINO root block */ .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)), .numblks = BTOBB(mp->m_sb.sb_blocksize), .ops = &xfs_finobt_buf_ops, .work = &xfs_btroot_init, .bc_ops = &xfs_finobt_ops, .need_init = xfs_has_finobt(mp) }, { /* RMAP root block */ .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)), .numblks = BTOBB(mp->m_sb.sb_blocksize), .ops = &xfs_rmapbt_buf_ops, .work = &xfs_rmaproot_init, .bc_ops = &xfs_rmapbt_ops, .need_init = xfs_has_rmapbt(mp) }, { /* REFC root block */ .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)), .numblks = BTOBB(mp->m_sb.sb_blocksize), .ops = &xfs_refcountbt_buf_ops, .work = &xfs_btroot_init, .bc_ops = &xfs_refcountbt_ops, .need_init = xfs_has_reflink(mp) }, { /* NULL terminating block */ .daddr = XFS_BUF_DADDR_NULL, } }; struct xfs_aghdr_grow_data *dp; int error = 0; /* Account for AG free space in new AG */ id->nfree += id->agsize - mp->m_ag_prealloc_blocks; for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) { if (!dp->need_init) continue; id->daddr = dp->daddr; id->numblks = dp->numblks; id->bc_ops = dp->bc_ops; error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops); if (error) break; } return error; } int xfs_ag_shrink_space( struct xfs_perag *pag, struct xfs_trans **tpp, xfs_extlen_t delta) { struct xfs_mount *mp = pag->pag_mount; struct xfs_alloc_arg args = { .tp = *tpp, .mp = mp, .pag = pag, .minlen = delta, .maxlen = delta, .oinfo = XFS_RMAP_OINFO_SKIP_UPDATE, .resv = XFS_AG_RESV_NONE, .prod = 1 }; struct xfs_buf *agibp, *agfbp; struct xfs_agi *agi; struct xfs_agf *agf; xfs_agblock_t aglen; int error, err2; ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1); error = xfs_ialloc_read_agi(pag, *tpp, &agibp); if (error) return error; agi = agibp->b_addr; error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp); if (error) return error; agf = agfbp->b_addr; aglen = be32_to_cpu(agi->agi_length); /* some extra paranoid checks before we shrink the ag */ if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length)) { xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF); return -EFSCORRUPTED; } if (delta >= aglen) return -EINVAL; /* * Make sure that the last inode cluster cannot overlap with the new * end of the AG, even if it's sparse. */ error = xfs_ialloc_check_shrink(pag, *tpp, agibp, aglen - delta); if (error) return error; /* * Disable perag reservations so it doesn't cause the allocation request * to fail. We'll reestablish reservation before we return. */ error = xfs_ag_resv_free(pag); if (error) return error; /* internal log shouldn't also show up in the free space btrees */ error = xfs_alloc_vextent_exact_bno(&args, XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta)); if (!error && args.agbno == NULLAGBLOCK) error = -ENOSPC; if (error) { /* * If extent allocation fails, need to roll the transaction to * ensure that the AGFL fixup has been committed anyway. * * We need to hold the AGF across the roll to ensure nothing can * access the AG for allocation until the shrink is fully * cleaned up. And due to the resetting of the AG block * reservation space needing to lock the AGI, we also have to * hold that so we don't get AGI/AGF lock order inversions in * the error handling path. */ xfs_trans_bhold(*tpp, agfbp); xfs_trans_bhold(*tpp, agibp); err2 = xfs_trans_roll(tpp); if (err2) return err2; xfs_trans_bjoin(*tpp, agfbp); xfs_trans_bjoin(*tpp, agibp); goto resv_init_out; } /* * if successfully deleted from freespace btrees, need to confirm * per-AG reservation works as expected. */ be32_add_cpu(&agi->agi_length, -delta); be32_add_cpu(&agf->agf_length, -delta); err2 = xfs_ag_resv_init(pag, *tpp); if (err2) { be32_add_cpu(&agi->agi_length, delta); be32_add_cpu(&agf->agf_length, delta); if (err2 != -ENOSPC) goto resv_err; err2 = xfs_free_extent_later(*tpp, args.fsbno, delta, NULL, XFS_AG_RESV_NONE, true); if (err2) goto resv_err; /* * Roll the transaction before trying to re-init the per-ag * reservation. The new transaction is clean so it will cancel * without any side effects. */ error = xfs_defer_finish(tpp); if (error) return error; error = -ENOSPC; goto resv_init_out; } /* Update perag geometry */ pag->block_count -= delta; __xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min, &pag->agino_max); xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH); xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH); return 0; resv_init_out: err2 = xfs_ag_resv_init(pag, *tpp); if (!err2) return error; resv_err: xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2); xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); return err2; } /* * Extent the AG indicated by the @id by the length passed in */ int xfs_ag_extend_space( struct xfs_perag *pag, struct xfs_trans *tp, xfs_extlen_t len) { struct xfs_buf *bp; struct xfs_agi *agi; struct xfs_agf *agf; int error; ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1); error = xfs_ialloc_read_agi(pag, tp, &bp); if (error) return error; agi = bp->b_addr; be32_add_cpu(&agi->agi_length, len); xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH); /* * Change agf length. */ error = xfs_alloc_read_agf(pag, tp, 0, &bp); if (error) return error; agf = bp->b_addr; be32_add_cpu(&agf->agf_length, len); ASSERT(agf->agf_length == agi->agi_length); xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH); /* * Free the new space. * * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that * this doesn't actually exist in the rmap btree. */ error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len, len, &XFS_RMAP_OINFO_SKIP_UPDATE); if (error) return error; error = xfs_free_extent(tp, pag, be32_to_cpu(agf->agf_length) - len, len, &XFS_RMAP_OINFO_SKIP_UPDATE, XFS_AG_RESV_NONE); if (error) return error; /* Update perag geometry */ pag->block_count = be32_to_cpu(agf->agf_length); __xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min, &pag->agino_max); return 0; } /* Retrieve AG geometry. */ int xfs_ag_get_geometry( struct xfs_perag *pag, struct xfs_ag_geometry *ageo) { struct xfs_buf *agi_bp; struct xfs_buf *agf_bp; struct xfs_agi *agi; struct xfs_agf *agf; unsigned int freeblks; int error; /* Lock the AG headers. */ error = xfs_ialloc_read_agi(pag, NULL, &agi_bp); if (error) return error; error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp); if (error) goto out_agi; /* Fill out form. */ memset(ageo, 0, sizeof(*ageo)); ageo->ag_number = pag->pag_agno; agi = agi_bp->b_addr; ageo->ag_icount = be32_to_cpu(agi->agi_count); ageo->ag_ifree = be32_to_cpu(agi->agi_freecount); agf = agf_bp->b_addr; ageo->ag_length = be32_to_cpu(agf->agf_length); freeblks = pag->pagf_freeblks + pag->pagf_flcount + pag->pagf_btreeblks - xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE); ageo->ag_freeblks = freeblks; xfs_ag_geom_health(pag, ageo); /* Release resources. */ xfs_buf_relse(agf_bp); out_agi: xfs_buf_relse(agi_bp); return error; }