1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9#include <linux/delay.h>
10#include <linux/idr.h>
11#include <linux/module.h>
12#include <linux/nvmem-provider.h>
13#include <linux/pm_runtime.h>
14#include <linux/sched/signal.h>
15#include <linux/sizes.h>
16#include <linux/slab.h>
17#include <linux/string_helpers.h>
18
19#include "tb.h"
20
21/* Switch NVM support */
22
23struct nvm_auth_status {
24	struct list_head list;
25	uuid_t uuid;
26	u32 status;
27};
28
29/*
30 * Hold NVM authentication failure status per switch This information
31 * needs to stay around even when the switch gets power cycled so we
32 * keep it separately.
33 */
34static LIST_HEAD(nvm_auth_status_cache);
35static DEFINE_MUTEX(nvm_auth_status_lock);
36
37static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
38{
39	struct nvm_auth_status *st;
40
41	list_for_each_entry(st, &nvm_auth_status_cache, list) {
42		if (uuid_equal(&st->uuid, sw->uuid))
43			return st;
44	}
45
46	return NULL;
47}
48
49static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
50{
51	struct nvm_auth_status *st;
52
53	mutex_lock(&nvm_auth_status_lock);
54	st = __nvm_get_auth_status(sw);
55	mutex_unlock(&nvm_auth_status_lock);
56
57	*status = st ? st->status : 0;
58}
59
60static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
61{
62	struct nvm_auth_status *st;
63
64	if (WARN_ON(!sw->uuid))
65		return;
66
67	mutex_lock(&nvm_auth_status_lock);
68	st = __nvm_get_auth_status(sw);
69
70	if (!st) {
71		st = kzalloc(sizeof(*st), GFP_KERNEL);
72		if (!st)
73			goto unlock;
74
75		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76		INIT_LIST_HEAD(&st->list);
77		list_add_tail(&st->list, &nvm_auth_status_cache);
78	}
79
80	st->status = status;
81unlock:
82	mutex_unlock(&nvm_auth_status_lock);
83}
84
85static void nvm_clear_auth_status(const struct tb_switch *sw)
86{
87	struct nvm_auth_status *st;
88
89	mutex_lock(&nvm_auth_status_lock);
90	st = __nvm_get_auth_status(sw);
91	if (st) {
92		list_del(&st->list);
93		kfree(st);
94	}
95	mutex_unlock(&nvm_auth_status_lock);
96}
97
98static int nvm_validate_and_write(struct tb_switch *sw)
99{
100	unsigned int image_size;
101	const u8 *buf;
102	int ret;
103
104	ret = tb_nvm_validate(sw->nvm);
105	if (ret)
106		return ret;
107
108	ret = tb_nvm_write_headers(sw->nvm);
109	if (ret)
110		return ret;
111
112	buf = sw->nvm->buf_data_start;
113	image_size = sw->nvm->buf_data_size;
114
115	if (tb_switch_is_usb4(sw))
116		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
117	else
118		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
119	if (ret)
120		return ret;
121
122	sw->nvm->flushed = true;
123	return 0;
124}
125
126static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
127{
128	int ret = 0;
129
130	/*
131	 * Root switch NVM upgrade requires that we disconnect the
132	 * existing paths first (in case it is not in safe mode
133	 * already).
134	 */
135	if (!sw->safe_mode) {
136		u32 status;
137
138		ret = tb_domain_disconnect_all_paths(sw->tb);
139		if (ret)
140			return ret;
141		/*
142		 * The host controller goes away pretty soon after this if
143		 * everything goes well so getting timeout is expected.
144		 */
145		ret = dma_port_flash_update_auth(sw->dma_port);
146		if (!ret || ret == -ETIMEDOUT)
147			return 0;
148
149		/*
150		 * Any error from update auth operation requires power
151		 * cycling of the host router.
152		 */
153		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
154		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
155			nvm_set_auth_status(sw, status);
156	}
157
158	/*
159	 * From safe mode we can get out by just power cycling the
160	 * switch.
161	 */
162	dma_port_power_cycle(sw->dma_port);
163	return ret;
164}
165
166static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
167{
168	int ret, retries = 10;
169
170	ret = dma_port_flash_update_auth(sw->dma_port);
171	switch (ret) {
172	case 0:
173	case -ETIMEDOUT:
174	case -EACCES:
175	case -EINVAL:
176		/* Power cycle is required */
177		break;
178	default:
179		return ret;
180	}
181
182	/*
183	 * Poll here for the authentication status. It takes some time
184	 * for the device to respond (we get timeout for a while). Once
185	 * we get response the device needs to be power cycled in order
186	 * to the new NVM to be taken into use.
187	 */
188	do {
189		u32 status;
190
191		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
192		if (ret < 0 && ret != -ETIMEDOUT)
193			return ret;
194		if (ret > 0) {
195			if (status) {
196				tb_sw_warn(sw, "failed to authenticate NVM\n");
197				nvm_set_auth_status(sw, status);
198			}
199
200			tb_sw_info(sw, "power cycling the switch now\n");
201			dma_port_power_cycle(sw->dma_port);
202			return 0;
203		}
204
205		msleep(500);
206	} while (--retries);
207
208	return -ETIMEDOUT;
209}
210
211static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
212{
213	struct pci_dev *root_port;
214
215	/*
216	 * During host router NVM upgrade we should not allow root port to
217	 * go into D3cold because some root ports cannot trigger PME
218	 * itself. To be on the safe side keep the root port in D0 during
219	 * the whole upgrade process.
220	 */
221	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
222	if (root_port)
223		pm_runtime_get_noresume(&root_port->dev);
224}
225
226static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
227{
228	struct pci_dev *root_port;
229
230	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
231	if (root_port)
232		pm_runtime_put(&root_port->dev);
233}
234
235static inline bool nvm_readable(struct tb_switch *sw)
236{
237	if (tb_switch_is_usb4(sw)) {
238		/*
239		 * USB4 devices must support NVM operations but it is
240		 * optional for hosts. Therefore we query the NVM sector
241		 * size here and if it is supported assume NVM
242		 * operations are implemented.
243		 */
244		return usb4_switch_nvm_sector_size(sw) > 0;
245	}
246
247	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
248	return !!sw->dma_port;
249}
250
251static inline bool nvm_upgradeable(struct tb_switch *sw)
252{
253	if (sw->no_nvm_upgrade)
254		return false;
255	return nvm_readable(sw);
256}
257
258static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
259{
260	int ret;
261
262	if (tb_switch_is_usb4(sw)) {
263		if (auth_only) {
264			ret = usb4_switch_nvm_set_offset(sw, 0);
265			if (ret)
266				return ret;
267		}
268		sw->nvm->authenticating = true;
269		return usb4_switch_nvm_authenticate(sw);
270	}
271	if (auth_only)
272		return -EOPNOTSUPP;
273
274	sw->nvm->authenticating = true;
275	if (!tb_route(sw)) {
276		nvm_authenticate_start_dma_port(sw);
277		ret = nvm_authenticate_host_dma_port(sw);
278	} else {
279		ret = nvm_authenticate_device_dma_port(sw);
280	}
281
282	return ret;
283}
284
285/**
286 * tb_switch_nvm_read() - Read router NVM
287 * @sw: Router whose NVM to read
288 * @address: Start address on the NVM
289 * @buf: Buffer where the read data is copied
290 * @size: Size of the buffer in bytes
291 *
292 * Reads from router NVM and returns the requested data in @buf. Locking
293 * is up to the caller. Returns %0 in success and negative errno in case
294 * of failure.
295 */
296int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
297		       size_t size)
298{
299	if (tb_switch_is_usb4(sw))
300		return usb4_switch_nvm_read(sw, address, buf, size);
301	return dma_port_flash_read(sw->dma_port, address, buf, size);
302}
303
304static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
305{
306	struct tb_nvm *nvm = priv;
307	struct tb_switch *sw = tb_to_switch(nvm->dev);
308	int ret;
309
310	pm_runtime_get_sync(&sw->dev);
311
312	if (!mutex_trylock(&sw->tb->lock)) {
313		ret = restart_syscall();
314		goto out;
315	}
316
317	ret = tb_switch_nvm_read(sw, offset, val, bytes);
318	mutex_unlock(&sw->tb->lock);
319
320out:
321	pm_runtime_mark_last_busy(&sw->dev);
322	pm_runtime_put_autosuspend(&sw->dev);
323
324	return ret;
325}
326
327static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
328{
329	struct tb_nvm *nvm = priv;
330	struct tb_switch *sw = tb_to_switch(nvm->dev);
331	int ret;
332
333	if (!mutex_trylock(&sw->tb->lock))
334		return restart_syscall();
335
336	/*
337	 * Since writing the NVM image might require some special steps,
338	 * for example when CSS headers are written, we cache the image
339	 * locally here and handle the special cases when the user asks
340	 * us to authenticate the image.
341	 */
342	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
343	mutex_unlock(&sw->tb->lock);
344
345	return ret;
346}
347
348static int tb_switch_nvm_add(struct tb_switch *sw)
349{
350	struct tb_nvm *nvm;
351	int ret;
352
353	if (!nvm_readable(sw))
354		return 0;
355
356	nvm = tb_nvm_alloc(&sw->dev);
357	if (IS_ERR(nvm)) {
358		ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
359		goto err_nvm;
360	}
361
362	ret = tb_nvm_read_version(nvm);
363	if (ret)
364		goto err_nvm;
365
366	/*
367	 * If the switch is in safe-mode the only accessible portion of
368	 * the NVM is the non-active one where userspace is expected to
369	 * write new functional NVM.
370	 */
371	if (!sw->safe_mode) {
372		ret = tb_nvm_add_active(nvm, nvm_read);
373		if (ret)
374			goto err_nvm;
375		tb_sw_dbg(sw, "NVM version %x.%x\n", nvm->major, nvm->minor);
376	}
377
378	if (!sw->no_nvm_upgrade) {
379		ret = tb_nvm_add_non_active(nvm, nvm_write);
380		if (ret)
381			goto err_nvm;
382	}
383
384	sw->nvm = nvm;
385	return 0;
386
387err_nvm:
388	tb_sw_dbg(sw, "NVM upgrade disabled\n");
389	sw->no_nvm_upgrade = true;
390	if (!IS_ERR(nvm))
391		tb_nvm_free(nvm);
392
393	return ret;
394}
395
396static void tb_switch_nvm_remove(struct tb_switch *sw)
397{
398	struct tb_nvm *nvm;
399
400	nvm = sw->nvm;
401	sw->nvm = NULL;
402
403	if (!nvm)
404		return;
405
406	/* Remove authentication status in case the switch is unplugged */
407	if (!nvm->authenticating)
408		nvm_clear_auth_status(sw);
409
410	tb_nvm_free(nvm);
411}
412
413/* port utility functions */
414
415static const char *tb_port_type(const struct tb_regs_port_header *port)
416{
417	switch (port->type >> 16) {
418	case 0:
419		switch ((u8) port->type) {
420		case 0:
421			return "Inactive";
422		case 1:
423			return "Port";
424		case 2:
425			return "NHI";
426		default:
427			return "unknown";
428		}
429	case 0x2:
430		return "Ethernet";
431	case 0x8:
432		return "SATA";
433	case 0xe:
434		return "DP/HDMI";
435	case 0x10:
436		return "PCIe";
437	case 0x20:
438		return "USB";
439	default:
440		return "unknown";
441	}
442}
443
444static void tb_dump_port(struct tb *tb, const struct tb_port *port)
445{
446	const struct tb_regs_port_header *regs = &port->config;
447
448	tb_dbg(tb,
449	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
450	       regs->port_number, regs->vendor_id, regs->device_id,
451	       regs->revision, regs->thunderbolt_version, tb_port_type(regs),
452	       regs->type);
453	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
454	       regs->max_in_hop_id, regs->max_out_hop_id);
455	tb_dbg(tb, "  Max counters: %d\n", regs->max_counters);
456	tb_dbg(tb, "  NFC Credits: %#x\n", regs->nfc_credits);
457	tb_dbg(tb, "  Credits (total/control): %u/%u\n", port->total_credits,
458	       port->ctl_credits);
459}
460
461/**
462 * tb_port_state() - get connectedness state of a port
463 * @port: the port to check
464 *
465 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
466 *
467 * Return: Returns an enum tb_port_state on success or an error code on failure.
468 */
469int tb_port_state(struct tb_port *port)
470{
471	struct tb_cap_phy phy;
472	int res;
473	if (port->cap_phy == 0) {
474		tb_port_WARN(port, "does not have a PHY\n");
475		return -EINVAL;
476	}
477	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
478	if (res)
479		return res;
480	return phy.state;
481}
482
483/**
484 * tb_wait_for_port() - wait for a port to become ready
485 * @port: Port to wait
486 * @wait_if_unplugged: Wait also when port is unplugged
487 *
488 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
489 * wait_if_unplugged is set then we also wait if the port is in state
490 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
491 * switch resume). Otherwise we only wait if a device is registered but the link
492 * has not yet been established.
493 *
494 * Return: Returns an error code on failure. Returns 0 if the port is not
495 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
496 * if the port is connected and in state TB_PORT_UP.
497 */
498int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
499{
500	int retries = 10;
501	int state;
502	if (!port->cap_phy) {
503		tb_port_WARN(port, "does not have PHY\n");
504		return -EINVAL;
505	}
506	if (tb_is_upstream_port(port)) {
507		tb_port_WARN(port, "is the upstream port\n");
508		return -EINVAL;
509	}
510
511	while (retries--) {
512		state = tb_port_state(port);
513		switch (state) {
514		case TB_PORT_DISABLED:
515			tb_port_dbg(port, "is disabled (state: 0)\n");
516			return 0;
517
518		case TB_PORT_UNPLUGGED:
519			if (wait_if_unplugged) {
520				/* used during resume */
521				tb_port_dbg(port,
522					    "is unplugged (state: 7), retrying...\n");
523				msleep(100);
524				break;
525			}
526			tb_port_dbg(port, "is unplugged (state: 7)\n");
527			return 0;
528
529		case TB_PORT_UP:
530		case TB_PORT_TX_CL0S:
531		case TB_PORT_RX_CL0S:
532		case TB_PORT_CL1:
533		case TB_PORT_CL2:
534			tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
535			return 1;
536
537		default:
538			if (state < 0)
539				return state;
540
541			/*
542			 * After plug-in the state is TB_PORT_CONNECTING. Give it some
543			 * time.
544			 */
545			tb_port_dbg(port,
546				    "is connected, link is not up (state: %d), retrying...\n",
547				    state);
548			msleep(100);
549		}
550
551	}
552	tb_port_warn(port,
553		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
554	return 0;
555}
556
557/**
558 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
559 * @port: Port to add/remove NFC credits
560 * @credits: Credits to add/remove
561 *
562 * Change the number of NFC credits allocated to @port by @credits. To remove
563 * NFC credits pass a negative amount of credits.
564 *
565 * Return: Returns 0 on success or an error code on failure.
566 */
567int tb_port_add_nfc_credits(struct tb_port *port, int credits)
568{
569	u32 nfc_credits;
570
571	if (credits == 0 || port->sw->is_unplugged)
572		return 0;
573
574	/*
575	 * USB4 restricts programming NFC buffers to lane adapters only
576	 * so skip other ports.
577	 */
578	if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
579		return 0;
580
581	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
582	if (credits < 0)
583		credits = max_t(int, -nfc_credits, credits);
584
585	nfc_credits += credits;
586
587	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
588		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
589
590	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
591	port->config.nfc_credits |= nfc_credits;
592
593	return tb_port_write(port, &port->config.nfc_credits,
594			     TB_CFG_PORT, ADP_CS_4, 1);
595}
596
597/**
598 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
599 * @port: Port whose counters to clear
600 * @counter: Counter index to clear
601 *
602 * Return: Returns 0 on success or an error code on failure.
603 */
604int tb_port_clear_counter(struct tb_port *port, int counter)
605{
606	u32 zero[3] = { 0, 0, 0 };
607	tb_port_dbg(port, "clearing counter %d\n", counter);
608	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
609}
610
611/**
612 * tb_port_unlock() - Unlock downstream port
613 * @port: Port to unlock
614 *
615 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
616 * downstream router accessible for CM.
617 */
618int tb_port_unlock(struct tb_port *port)
619{
620	if (tb_switch_is_icm(port->sw))
621		return 0;
622	if (!tb_port_is_null(port))
623		return -EINVAL;
624	if (tb_switch_is_usb4(port->sw))
625		return usb4_port_unlock(port);
626	return 0;
627}
628
629static int __tb_port_enable(struct tb_port *port, bool enable)
630{
631	int ret;
632	u32 phy;
633
634	if (!tb_port_is_null(port))
635		return -EINVAL;
636
637	ret = tb_port_read(port, &phy, TB_CFG_PORT,
638			   port->cap_phy + LANE_ADP_CS_1, 1);
639	if (ret)
640		return ret;
641
642	if (enable)
643		phy &= ~LANE_ADP_CS_1_LD;
644	else
645		phy |= LANE_ADP_CS_1_LD;
646
647
648	ret = tb_port_write(port, &phy, TB_CFG_PORT,
649			    port->cap_phy + LANE_ADP_CS_1, 1);
650	if (ret)
651		return ret;
652
653	tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
654	return 0;
655}
656
657/**
658 * tb_port_enable() - Enable lane adapter
659 * @port: Port to enable (can be %NULL)
660 *
661 * This is used for lane 0 and 1 adapters to enable it.
662 */
663int tb_port_enable(struct tb_port *port)
664{
665	return __tb_port_enable(port, true);
666}
667
668/**
669 * tb_port_disable() - Disable lane adapter
670 * @port: Port to disable (can be %NULL)
671 *
672 * This is used for lane 0 and 1 adapters to disable it.
673 */
674int tb_port_disable(struct tb_port *port)
675{
676	return __tb_port_enable(port, false);
677}
678
679static int tb_port_reset(struct tb_port *port)
680{
681	if (tb_switch_is_usb4(port->sw))
682		return port->cap_usb4 ? usb4_port_reset(port) : 0;
683	return tb_lc_reset_port(port);
684}
685
686/*
687 * tb_init_port() - initialize a port
688 *
689 * This is a helper method for tb_switch_alloc. Does not check or initialize
690 * any downstream switches.
691 *
692 * Return: Returns 0 on success or an error code on failure.
693 */
694static int tb_init_port(struct tb_port *port)
695{
696	int res;
697	int cap;
698
699	INIT_LIST_HEAD(&port->list);
700
701	/* Control adapter does not have configuration space */
702	if (!port->port)
703		return 0;
704
705	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
706	if (res) {
707		if (res == -ENODEV) {
708			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
709			       port->port);
710			port->disabled = true;
711			return 0;
712		}
713		return res;
714	}
715
716	/* Port 0 is the switch itself and has no PHY. */
717	if (port->config.type == TB_TYPE_PORT) {
718		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
719
720		if (cap > 0)
721			port->cap_phy = cap;
722		else
723			tb_port_WARN(port, "non switch port without a PHY\n");
724
725		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
726		if (cap > 0)
727			port->cap_usb4 = cap;
728
729		/*
730		 * USB4 ports the buffers allocated for the control path
731		 * can be read from the path config space. Legacy
732		 * devices we use hard-coded value.
733		 */
734		if (port->cap_usb4) {
735			struct tb_regs_hop hop;
736
737			if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
738				port->ctl_credits = hop.initial_credits;
739		}
740		if (!port->ctl_credits)
741			port->ctl_credits = 2;
742
743	} else {
744		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
745		if (cap > 0)
746			port->cap_adap = cap;
747	}
748
749	port->total_credits =
750		(port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
751		ADP_CS_4_TOTAL_BUFFERS_SHIFT;
752
753	tb_dump_port(port->sw->tb, port);
754	return 0;
755}
756
757static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
758			       int max_hopid)
759{
760	int port_max_hopid;
761	struct ida *ida;
762
763	if (in) {
764		port_max_hopid = port->config.max_in_hop_id;
765		ida = &port->in_hopids;
766	} else {
767		port_max_hopid = port->config.max_out_hop_id;
768		ida = &port->out_hopids;
769	}
770
771	/*
772	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
773	 * reserved.
774	 */
775	if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
776		min_hopid = TB_PATH_MIN_HOPID;
777
778	if (max_hopid < 0 || max_hopid > port_max_hopid)
779		max_hopid = port_max_hopid;
780
781	return ida_alloc_range(ida, min_hopid, max_hopid, GFP_KERNEL);
782}
783
784/**
785 * tb_port_alloc_in_hopid() - Allocate input HopID from port
786 * @port: Port to allocate HopID for
787 * @min_hopid: Minimum acceptable input HopID
788 * @max_hopid: Maximum acceptable input HopID
789 *
790 * Return: HopID between @min_hopid and @max_hopid or negative errno in
791 * case of error.
792 */
793int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
794{
795	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
796}
797
798/**
799 * tb_port_alloc_out_hopid() - Allocate output HopID from port
800 * @port: Port to allocate HopID for
801 * @min_hopid: Minimum acceptable output HopID
802 * @max_hopid: Maximum acceptable output HopID
803 *
804 * Return: HopID between @min_hopid and @max_hopid or negative errno in
805 * case of error.
806 */
807int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
808{
809	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
810}
811
812/**
813 * tb_port_release_in_hopid() - Release allocated input HopID from port
814 * @port: Port whose HopID to release
815 * @hopid: HopID to release
816 */
817void tb_port_release_in_hopid(struct tb_port *port, int hopid)
818{
819	ida_free(&port->in_hopids, hopid);
820}
821
822/**
823 * tb_port_release_out_hopid() - Release allocated output HopID from port
824 * @port: Port whose HopID to release
825 * @hopid: HopID to release
826 */
827void tb_port_release_out_hopid(struct tb_port *port, int hopid)
828{
829	ida_free(&port->out_hopids, hopid);
830}
831
832static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
833					  const struct tb_switch *sw)
834{
835	u64 mask = (1ULL << parent->config.depth * 8) - 1;
836	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
837}
838
839/**
840 * tb_next_port_on_path() - Return next port for given port on a path
841 * @start: Start port of the walk
842 * @end: End port of the walk
843 * @prev: Previous port (%NULL if this is the first)
844 *
845 * This function can be used to walk from one port to another if they
846 * are connected through zero or more switches. If the @prev is dual
847 * link port, the function follows that link and returns another end on
848 * that same link.
849 *
850 * If the @end port has been reached, return %NULL.
851 *
852 * Domain tb->lock must be held when this function is called.
853 */
854struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
855				     struct tb_port *prev)
856{
857	struct tb_port *next;
858
859	if (!prev)
860		return start;
861
862	if (prev->sw == end->sw) {
863		if (prev == end)
864			return NULL;
865		return end;
866	}
867
868	if (tb_switch_is_reachable(prev->sw, end->sw)) {
869		next = tb_port_at(tb_route(end->sw), prev->sw);
870		/* Walk down the topology if next == prev */
871		if (prev->remote &&
872		    (next == prev || next->dual_link_port == prev))
873			next = prev->remote;
874	} else {
875		if (tb_is_upstream_port(prev)) {
876			next = prev->remote;
877		} else {
878			next = tb_upstream_port(prev->sw);
879			/*
880			 * Keep the same link if prev and next are both
881			 * dual link ports.
882			 */
883			if (next->dual_link_port &&
884			    next->link_nr != prev->link_nr) {
885				next = next->dual_link_port;
886			}
887		}
888	}
889
890	return next != prev ? next : NULL;
891}
892
893/**
894 * tb_port_get_link_speed() - Get current link speed
895 * @port: Port to check (USB4 or CIO)
896 *
897 * Returns link speed in Gb/s or negative errno in case of failure.
898 */
899int tb_port_get_link_speed(struct tb_port *port)
900{
901	u32 val, speed;
902	int ret;
903
904	if (!port->cap_phy)
905		return -EINVAL;
906
907	ret = tb_port_read(port, &val, TB_CFG_PORT,
908			   port->cap_phy + LANE_ADP_CS_1, 1);
909	if (ret)
910		return ret;
911
912	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
913		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
914
915	switch (speed) {
916	case LANE_ADP_CS_1_CURRENT_SPEED_GEN4:
917		return 40;
918	case LANE_ADP_CS_1_CURRENT_SPEED_GEN3:
919		return 20;
920	default:
921		return 10;
922	}
923}
924
925/**
926 * tb_port_get_link_generation() - Returns link generation
927 * @port: Lane adapter
928 *
929 * Returns link generation as number or negative errno in case of
930 * failure. Does not distinguish between Thunderbolt 1 and Thunderbolt 2
931 * links so for those always returns 2.
932 */
933int tb_port_get_link_generation(struct tb_port *port)
934{
935	int ret;
936
937	ret = tb_port_get_link_speed(port);
938	if (ret < 0)
939		return ret;
940
941	switch (ret) {
942	case 40:
943		return 4;
944	case 20:
945		return 3;
946	default:
947		return 2;
948	}
949}
950
951/**
952 * tb_port_get_link_width() - Get current link width
953 * @port: Port to check (USB4 or CIO)
954 *
955 * Returns link width. Return the link width as encoded in &enum
956 * tb_link_width or negative errno in case of failure.
957 */
958int tb_port_get_link_width(struct tb_port *port)
959{
960	u32 val;
961	int ret;
962
963	if (!port->cap_phy)
964		return -EINVAL;
965
966	ret = tb_port_read(port, &val, TB_CFG_PORT,
967			   port->cap_phy + LANE_ADP_CS_1, 1);
968	if (ret)
969		return ret;
970
971	/* Matches the values in enum tb_link_width */
972	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
973		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
974}
975
976/**
977 * tb_port_width_supported() - Is the given link width supported
978 * @port: Port to check
979 * @width: Widths to check (bitmask)
980 *
981 * Can be called to any lane adapter. Checks if given @width is
982 * supported by the hardware and returns %true if it is.
983 */
984bool tb_port_width_supported(struct tb_port *port, unsigned int width)
985{
986	u32 phy, widths;
987	int ret;
988
989	if (!port->cap_phy)
990		return false;
991
992	if (width & (TB_LINK_WIDTH_ASYM_TX | TB_LINK_WIDTH_ASYM_RX)) {
993		if (tb_port_get_link_generation(port) < 4 ||
994		    !usb4_port_asym_supported(port))
995			return false;
996	}
997
998	ret = tb_port_read(port, &phy, TB_CFG_PORT,
999			   port->cap_phy + LANE_ADP_CS_0, 1);
1000	if (ret)
1001		return false;
1002
1003	/*
1004	 * The field encoding is the same as &enum tb_link_width (which is
1005	 * passed to @width).
1006	 */
1007	widths = FIELD_GET(LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK, phy);
1008	return widths & width;
1009}
1010
1011/**
1012 * tb_port_set_link_width() - Set target link width of the lane adapter
1013 * @port: Lane adapter
1014 * @width: Target link width
1015 *
1016 * Sets the target link width of the lane adapter to @width. Does not
1017 * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
1018 *
1019 * Return: %0 in case of success and negative errno in case of error
1020 */
1021int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width)
1022{
1023	u32 val;
1024	int ret;
1025
1026	if (!port->cap_phy)
1027		return -EINVAL;
1028
1029	ret = tb_port_read(port, &val, TB_CFG_PORT,
1030			   port->cap_phy + LANE_ADP_CS_1, 1);
1031	if (ret)
1032		return ret;
1033
1034	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1035	switch (width) {
1036	case TB_LINK_WIDTH_SINGLE:
1037		/* Gen 4 link cannot be single */
1038		if (tb_port_get_link_generation(port) >= 4)
1039			return -EOPNOTSUPP;
1040		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1041			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1042		break;
1043
1044	case TB_LINK_WIDTH_DUAL:
1045		if (tb_port_get_link_generation(port) >= 4)
1046			return usb4_port_asym_set_link_width(port, width);
1047		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1048			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1049		break;
1050
1051	case TB_LINK_WIDTH_ASYM_TX:
1052	case TB_LINK_WIDTH_ASYM_RX:
1053		return usb4_port_asym_set_link_width(port, width);
1054
1055	default:
1056		return -EINVAL;
1057	}
1058
1059	return tb_port_write(port, &val, TB_CFG_PORT,
1060			     port->cap_phy + LANE_ADP_CS_1, 1);
1061}
1062
1063/**
1064 * tb_port_set_lane_bonding() - Enable/disable lane bonding
1065 * @port: Lane adapter
1066 * @bonding: enable/disable bonding
1067 *
1068 * Enables or disables lane bonding. This should be called after target
1069 * link width has been set (tb_port_set_link_width()). Note in most
1070 * cases one should use tb_port_lane_bonding_enable() instead to enable
1071 * lane bonding.
1072 *
1073 * Return: %0 in case of success and negative errno in case of error
1074 */
1075static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1076{
1077	u32 val;
1078	int ret;
1079
1080	if (!port->cap_phy)
1081		return -EINVAL;
1082
1083	ret = tb_port_read(port, &val, TB_CFG_PORT,
1084			   port->cap_phy + LANE_ADP_CS_1, 1);
1085	if (ret)
1086		return ret;
1087
1088	if (bonding)
1089		val |= LANE_ADP_CS_1_LB;
1090	else
1091		val &= ~LANE_ADP_CS_1_LB;
1092
1093	return tb_port_write(port, &val, TB_CFG_PORT,
1094			     port->cap_phy + LANE_ADP_CS_1, 1);
1095}
1096
1097/**
1098 * tb_port_lane_bonding_enable() - Enable bonding on port
1099 * @port: port to enable
1100 *
1101 * Enable bonding by setting the link width of the port and the other
1102 * port in case of dual link port. Does not wait for the link to
1103 * actually reach the bonded state so caller needs to call
1104 * tb_port_wait_for_link_width() before enabling any paths through the
1105 * link to make sure the link is in expected state.
1106 *
1107 * Return: %0 in case of success and negative errno in case of error
1108 */
1109int tb_port_lane_bonding_enable(struct tb_port *port)
1110{
1111	enum tb_link_width width;
1112	int ret;
1113
1114	/*
1115	 * Enable lane bonding for both links if not already enabled by
1116	 * for example the boot firmware.
1117	 */
1118	width = tb_port_get_link_width(port);
1119	if (width == TB_LINK_WIDTH_SINGLE) {
1120		ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL);
1121		if (ret)
1122			goto err_lane0;
1123	}
1124
1125	width = tb_port_get_link_width(port->dual_link_port);
1126	if (width == TB_LINK_WIDTH_SINGLE) {
1127		ret = tb_port_set_link_width(port->dual_link_port,
1128					     TB_LINK_WIDTH_DUAL);
1129		if (ret)
1130			goto err_lane1;
1131	}
1132
1133	/*
1134	 * Only set bonding if the link was not already bonded. This
1135	 * avoids the lane adapter to re-enter bonding state.
1136	 */
1137	if (width == TB_LINK_WIDTH_SINGLE && !tb_is_upstream_port(port)) {
1138		ret = tb_port_set_lane_bonding(port, true);
1139		if (ret)
1140			goto err_lane1;
1141	}
1142
1143	/*
1144	 * When lane 0 bonding is set it will affect lane 1 too so
1145	 * update both.
1146	 */
1147	port->bonded = true;
1148	port->dual_link_port->bonded = true;
1149
1150	return 0;
1151
1152err_lane1:
1153	tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1154err_lane0:
1155	tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1156
1157	return ret;
1158}
1159
1160/**
1161 * tb_port_lane_bonding_disable() - Disable bonding on port
1162 * @port: port to disable
1163 *
1164 * Disable bonding by setting the link width of the port and the
1165 * other port in case of dual link port.
1166 */
1167void tb_port_lane_bonding_disable(struct tb_port *port)
1168{
1169	tb_port_set_lane_bonding(port, false);
1170	tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1171	tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1172	port->dual_link_port->bonded = false;
1173	port->bonded = false;
1174}
1175
1176/**
1177 * tb_port_wait_for_link_width() - Wait until link reaches specific width
1178 * @port: Port to wait for
1179 * @width: Expected link width (bitmask)
1180 * @timeout_msec: Timeout in ms how long to wait
1181 *
1182 * Should be used after both ends of the link have been bonded (or
1183 * bonding has been disabled) to wait until the link actually reaches
1184 * the expected state. Returns %-ETIMEDOUT if the width was not reached
1185 * within the given timeout, %0 if it did. Can be passed a mask of
1186 * expected widths and succeeds if any of the widths is reached.
1187 */
1188int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width,
1189				int timeout_msec)
1190{
1191	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1192	int ret;
1193
1194	/* Gen 4 link does not support single lane */
1195	if ((width & TB_LINK_WIDTH_SINGLE) &&
1196	    tb_port_get_link_generation(port) >= 4)
1197		return -EOPNOTSUPP;
1198
1199	do {
1200		ret = tb_port_get_link_width(port);
1201		if (ret < 0) {
1202			/*
1203			 * Sometimes we get port locked error when
1204			 * polling the lanes so we can ignore it and
1205			 * retry.
1206			 */
1207			if (ret != -EACCES)
1208				return ret;
1209		} else if (ret & width) {
1210			return 0;
1211		}
1212
1213		usleep_range(1000, 2000);
1214	} while (ktime_before(ktime_get(), timeout));
1215
1216	return -ETIMEDOUT;
1217}
1218
1219static int tb_port_do_update_credits(struct tb_port *port)
1220{
1221	u32 nfc_credits;
1222	int ret;
1223
1224	ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1225	if (ret)
1226		return ret;
1227
1228	if (nfc_credits != port->config.nfc_credits) {
1229		u32 total;
1230
1231		total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1232			ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1233
1234		tb_port_dbg(port, "total credits changed %u -> %u\n",
1235			    port->total_credits, total);
1236
1237		port->config.nfc_credits = nfc_credits;
1238		port->total_credits = total;
1239	}
1240
1241	return 0;
1242}
1243
1244/**
1245 * tb_port_update_credits() - Re-read port total credits
1246 * @port: Port to update
1247 *
1248 * After the link is bonded (or bonding was disabled) the port total
1249 * credits may change, so this function needs to be called to re-read
1250 * the credits. Updates also the second lane adapter.
1251 */
1252int tb_port_update_credits(struct tb_port *port)
1253{
1254	int ret;
1255
1256	ret = tb_port_do_update_credits(port);
1257	if (ret)
1258		return ret;
1259
1260	if (!port->dual_link_port)
1261		return 0;
1262	return tb_port_do_update_credits(port->dual_link_port);
1263}
1264
1265static int tb_port_start_lane_initialization(struct tb_port *port)
1266{
1267	int ret;
1268
1269	if (tb_switch_is_usb4(port->sw))
1270		return 0;
1271
1272	ret = tb_lc_start_lane_initialization(port);
1273	return ret == -EINVAL ? 0 : ret;
1274}
1275
1276/*
1277 * Returns true if the port had something (router, XDomain) connected
1278 * before suspend.
1279 */
1280static bool tb_port_resume(struct tb_port *port)
1281{
1282	bool has_remote = tb_port_has_remote(port);
1283
1284	if (port->usb4) {
1285		usb4_port_device_resume(port->usb4);
1286	} else if (!has_remote) {
1287		/*
1288		 * For disconnected downstream lane adapters start lane
1289		 * initialization now so we detect future connects.
1290		 *
1291		 * For XDomain start the lane initialzation now so the
1292		 * link gets re-established.
1293		 *
1294		 * This is only needed for non-USB4 ports.
1295		 */
1296		if (!tb_is_upstream_port(port) || port->xdomain)
1297			tb_port_start_lane_initialization(port);
1298	}
1299
1300	return has_remote || port->xdomain;
1301}
1302
1303/**
1304 * tb_port_is_enabled() - Is the adapter port enabled
1305 * @port: Port to check
1306 */
1307bool tb_port_is_enabled(struct tb_port *port)
1308{
1309	switch (port->config.type) {
1310	case TB_TYPE_PCIE_UP:
1311	case TB_TYPE_PCIE_DOWN:
1312		return tb_pci_port_is_enabled(port);
1313
1314	case TB_TYPE_DP_HDMI_IN:
1315	case TB_TYPE_DP_HDMI_OUT:
1316		return tb_dp_port_is_enabled(port);
1317
1318	case TB_TYPE_USB3_UP:
1319	case TB_TYPE_USB3_DOWN:
1320		return tb_usb3_port_is_enabled(port);
1321
1322	default:
1323		return false;
1324	}
1325}
1326
1327/**
1328 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1329 * @port: USB3 adapter port to check
1330 */
1331bool tb_usb3_port_is_enabled(struct tb_port *port)
1332{
1333	u32 data;
1334
1335	if (tb_port_read(port, &data, TB_CFG_PORT,
1336			 port->cap_adap + ADP_USB3_CS_0, 1))
1337		return false;
1338
1339	return !!(data & ADP_USB3_CS_0_PE);
1340}
1341
1342/**
1343 * tb_usb3_port_enable() - Enable USB3 adapter port
1344 * @port: USB3 adapter port to enable
1345 * @enable: Enable/disable the USB3 adapter
1346 */
1347int tb_usb3_port_enable(struct tb_port *port, bool enable)
1348{
1349	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1350			  : ADP_USB3_CS_0_V;
1351
1352	if (!port->cap_adap)
1353		return -ENXIO;
1354	return tb_port_write(port, &word, TB_CFG_PORT,
1355			     port->cap_adap + ADP_USB3_CS_0, 1);
1356}
1357
1358/**
1359 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1360 * @port: PCIe port to check
1361 */
1362bool tb_pci_port_is_enabled(struct tb_port *port)
1363{
1364	u32 data;
1365
1366	if (tb_port_read(port, &data, TB_CFG_PORT,
1367			 port->cap_adap + ADP_PCIE_CS_0, 1))
1368		return false;
1369
1370	return !!(data & ADP_PCIE_CS_0_PE);
1371}
1372
1373/**
1374 * tb_pci_port_enable() - Enable PCIe adapter port
1375 * @port: PCIe port to enable
1376 * @enable: Enable/disable the PCIe adapter
1377 */
1378int tb_pci_port_enable(struct tb_port *port, bool enable)
1379{
1380	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1381	if (!port->cap_adap)
1382		return -ENXIO;
1383	return tb_port_write(port, &word, TB_CFG_PORT,
1384			     port->cap_adap + ADP_PCIE_CS_0, 1);
1385}
1386
1387/**
1388 * tb_dp_port_hpd_is_active() - Is HPD already active
1389 * @port: DP out port to check
1390 *
1391 * Checks if the DP OUT adapter port has HPD bit already set.
1392 */
1393int tb_dp_port_hpd_is_active(struct tb_port *port)
1394{
1395	u32 data;
1396	int ret;
1397
1398	ret = tb_port_read(port, &data, TB_CFG_PORT,
1399			   port->cap_adap + ADP_DP_CS_2, 1);
1400	if (ret)
1401		return ret;
1402
1403	return !!(data & ADP_DP_CS_2_HPD);
1404}
1405
1406/**
1407 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1408 * @port: Port to clear HPD
1409 *
1410 * If the DP IN port has HPD set, this function can be used to clear it.
1411 */
1412int tb_dp_port_hpd_clear(struct tb_port *port)
1413{
1414	u32 data;
1415	int ret;
1416
1417	ret = tb_port_read(port, &data, TB_CFG_PORT,
1418			   port->cap_adap + ADP_DP_CS_3, 1);
1419	if (ret)
1420		return ret;
1421
1422	data |= ADP_DP_CS_3_HPDC;
1423	return tb_port_write(port, &data, TB_CFG_PORT,
1424			     port->cap_adap + ADP_DP_CS_3, 1);
1425}
1426
1427/**
1428 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1429 * @port: DP IN/OUT port to set hops
1430 * @video: Video Hop ID
1431 * @aux_tx: AUX TX Hop ID
1432 * @aux_rx: AUX RX Hop ID
1433 *
1434 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1435 * router DP adapters too but does not program the values as the fields
1436 * are read-only.
1437 */
1438int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1439			unsigned int aux_tx, unsigned int aux_rx)
1440{
1441	u32 data[2];
1442	int ret;
1443
1444	if (tb_switch_is_usb4(port->sw))
1445		return 0;
1446
1447	ret = tb_port_read(port, data, TB_CFG_PORT,
1448			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1449	if (ret)
1450		return ret;
1451
1452	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1453	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1454	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1455
1456	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1457		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1458	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1459	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1460		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1461
1462	return tb_port_write(port, data, TB_CFG_PORT,
1463			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1464}
1465
1466/**
1467 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1468 * @port: DP adapter port to check
1469 */
1470bool tb_dp_port_is_enabled(struct tb_port *port)
1471{
1472	u32 data[2];
1473
1474	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1475			 ARRAY_SIZE(data)))
1476		return false;
1477
1478	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1479}
1480
1481/**
1482 * tb_dp_port_enable() - Enables/disables DP paths of a port
1483 * @port: DP IN/OUT port
1484 * @enable: Enable/disable DP path
1485 *
1486 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1487 * calling this function.
1488 */
1489int tb_dp_port_enable(struct tb_port *port, bool enable)
1490{
1491	u32 data[2];
1492	int ret;
1493
1494	ret = tb_port_read(port, data, TB_CFG_PORT,
1495			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1496	if (ret)
1497		return ret;
1498
1499	if (enable)
1500		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1501	else
1502		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1503
1504	return tb_port_write(port, data, TB_CFG_PORT,
1505			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1506}
1507
1508/* switch utility functions */
1509
1510static const char *tb_switch_generation_name(const struct tb_switch *sw)
1511{
1512	switch (sw->generation) {
1513	case 1:
1514		return "Thunderbolt 1";
1515	case 2:
1516		return "Thunderbolt 2";
1517	case 3:
1518		return "Thunderbolt 3";
1519	case 4:
1520		return "USB4";
1521	default:
1522		return "Unknown";
1523	}
1524}
1525
1526static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1527{
1528	const struct tb_regs_switch_header *regs = &sw->config;
1529
1530	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1531	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1532	       regs->revision, regs->thunderbolt_version);
1533	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1534	tb_dbg(tb, "  Config:\n");
1535	tb_dbg(tb,
1536		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1537	       regs->upstream_port_number, regs->depth,
1538	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1539	       regs->enabled, regs->plug_events_delay);
1540	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1541	       regs->__unknown1, regs->__unknown4);
1542}
1543
1544static int tb_switch_reset_host(struct tb_switch *sw)
1545{
1546	if (sw->generation > 1) {
1547		struct tb_port *port;
1548
1549		tb_switch_for_each_port(sw, port) {
1550			int i, ret;
1551
1552			/*
1553			 * For lane adapters we issue downstream port
1554			 * reset and clear up path config spaces.
1555			 *
1556			 * For protocol adapters we disable the path and
1557			 * clear path config space one by one (from 8 to
1558			 * Max Input HopID of the adapter).
1559			 */
1560			if (tb_port_is_null(port) && !tb_is_upstream_port(port)) {
1561				ret = tb_port_reset(port);
1562				if (ret)
1563					return ret;
1564			} else if (tb_port_is_usb3_down(port) ||
1565				   tb_port_is_usb3_up(port)) {
1566				tb_usb3_port_enable(port, false);
1567			} else if (tb_port_is_dpin(port) ||
1568				   tb_port_is_dpout(port)) {
1569				tb_dp_port_enable(port, false);
1570			} else if (tb_port_is_pcie_down(port) ||
1571				   tb_port_is_pcie_up(port)) {
1572				tb_pci_port_enable(port, false);
1573			} else {
1574				continue;
1575			}
1576
1577			/* Cleanup path config space of protocol adapter */
1578			for (i = TB_PATH_MIN_HOPID;
1579			     i <= port->config.max_in_hop_id; i++) {
1580				ret = tb_path_deactivate_hop(port, i);
1581				if (ret)
1582					return ret;
1583			}
1584		}
1585	} else {
1586		struct tb_cfg_result res;
1587
1588		/* Thunderbolt 1 uses the "reset" config space packet */
1589		res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1590				      TB_CFG_SWITCH, 2, 2);
1591		if (res.err)
1592			return res.err;
1593		res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1594		if (res.err > 0)
1595			return -EIO;
1596		else if (res.err < 0)
1597			return res.err;
1598	}
1599
1600	return 0;
1601}
1602
1603static int tb_switch_reset_device(struct tb_switch *sw)
1604{
1605	return tb_port_reset(tb_switch_downstream_port(sw));
1606}
1607
1608static bool tb_switch_enumerated(struct tb_switch *sw)
1609{
1610	u32 val;
1611	int ret;
1612
1613	/*
1614	 * Read directly from the hardware because we use this also
1615	 * during system sleep where sw->config.enabled is already set
1616	 * by us.
1617	 */
1618	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_3, 1);
1619	if (ret)
1620		return false;
1621
1622	return !!(val & ROUTER_CS_3_V);
1623}
1624
1625/**
1626 * tb_switch_reset() - Perform reset to the router
1627 * @sw: Router to reset
1628 *
1629 * Issues reset to the router @sw. Can be used for any router. For host
1630 * routers, resets all the downstream ports and cleans up path config
1631 * spaces accordingly. For device routers issues downstream port reset
1632 * through the parent router, so as side effect there will be unplug
1633 * soon after this is finished.
1634 *
1635 * If the router is not enumerated does nothing.
1636 *
1637 * Returns %0 on success or negative errno in case of failure.
1638 */
1639int tb_switch_reset(struct tb_switch *sw)
1640{
1641	int ret;
1642
1643	/*
1644	 * We cannot access the port config spaces unless the router is
1645	 * already enumerated. If the router is not enumerated it is
1646	 * equal to being reset so we can skip that here.
1647	 */
1648	if (!tb_switch_enumerated(sw))
1649		return 0;
1650
1651	tb_sw_dbg(sw, "resetting\n");
1652
1653	if (tb_route(sw))
1654		ret = tb_switch_reset_device(sw);
1655	else
1656		ret = tb_switch_reset_host(sw);
1657
1658	if (ret)
1659		tb_sw_warn(sw, "failed to reset\n");
1660
1661	return ret;
1662}
1663
1664/**
1665 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1666 * @sw: Router to read the offset value from
1667 * @offset: Offset in the router config space to read from
1668 * @bit: Bit mask in the offset to wait for
1669 * @value: Value of the bits to wait for
1670 * @timeout_msec: Timeout in ms how long to wait
1671 *
1672 * Wait till the specified bits in specified offset reach specified value.
1673 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1674 * within the given timeout or a negative errno in case of failure.
1675 */
1676int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1677			   u32 value, int timeout_msec)
1678{
1679	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1680
1681	do {
1682		u32 val;
1683		int ret;
1684
1685		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1686		if (ret)
1687			return ret;
1688
1689		if ((val & bit) == value)
1690			return 0;
1691
1692		usleep_range(50, 100);
1693	} while (ktime_before(ktime_get(), timeout));
1694
1695	return -ETIMEDOUT;
1696}
1697
1698/*
1699 * tb_plug_events_active() - enable/disable plug events on a switch
1700 *
1701 * Also configures a sane plug_events_delay of 255ms.
1702 *
1703 * Return: Returns 0 on success or an error code on failure.
1704 */
1705static int tb_plug_events_active(struct tb_switch *sw, bool active)
1706{
1707	u32 data;
1708	int res;
1709
1710	if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1711		return 0;
1712
1713	sw->config.plug_events_delay = 0xff;
1714	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1715	if (res)
1716		return res;
1717
1718	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1719	if (res)
1720		return res;
1721
1722	if (active) {
1723		data = data & 0xFFFFFF83;
1724		switch (sw->config.device_id) {
1725		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1726		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1727		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1728			break;
1729		default:
1730			/*
1731			 * Skip Alpine Ridge, it needs to have vendor
1732			 * specific USB hotplug event enabled for the
1733			 * internal xHCI to work.
1734			 */
1735			if (!tb_switch_is_alpine_ridge(sw))
1736				data |= TB_PLUG_EVENTS_USB_DISABLE;
1737		}
1738	} else {
1739		data = data | 0x7c;
1740	}
1741	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1742			   sw->cap_plug_events + 1, 1);
1743}
1744
1745static ssize_t authorized_show(struct device *dev,
1746			       struct device_attribute *attr,
1747			       char *buf)
1748{
1749	struct tb_switch *sw = tb_to_switch(dev);
1750
1751	return sysfs_emit(buf, "%u\n", sw->authorized);
1752}
1753
1754static int disapprove_switch(struct device *dev, void *not_used)
1755{
1756	char *envp[] = { "AUTHORIZED=0", NULL };
1757	struct tb_switch *sw;
1758
1759	sw = tb_to_switch(dev);
1760	if (sw && sw->authorized) {
1761		int ret;
1762
1763		/* First children */
1764		ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1765		if (ret)
1766			return ret;
1767
1768		ret = tb_domain_disapprove_switch(sw->tb, sw);
1769		if (ret)
1770			return ret;
1771
1772		sw->authorized = 0;
1773		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1774	}
1775
1776	return 0;
1777}
1778
1779static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1780{
1781	char envp_string[13];
1782	int ret = -EINVAL;
1783	char *envp[] = { envp_string, NULL };
1784
1785	if (!mutex_trylock(&sw->tb->lock))
1786		return restart_syscall();
1787
1788	if (!!sw->authorized == !!val)
1789		goto unlock;
1790
1791	switch (val) {
1792	/* Disapprove switch */
1793	case 0:
1794		if (tb_route(sw)) {
1795			ret = disapprove_switch(&sw->dev, NULL);
1796			goto unlock;
1797		}
1798		break;
1799
1800	/* Approve switch */
1801	case 1:
1802		if (sw->key)
1803			ret = tb_domain_approve_switch_key(sw->tb, sw);
1804		else
1805			ret = tb_domain_approve_switch(sw->tb, sw);
1806		break;
1807
1808	/* Challenge switch */
1809	case 2:
1810		if (sw->key)
1811			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1812		break;
1813
1814	default:
1815		break;
1816	}
1817
1818	if (!ret) {
1819		sw->authorized = val;
1820		/*
1821		 * Notify status change to the userspace, informing the new
1822		 * value of /sys/bus/thunderbolt/devices/.../authorized.
1823		 */
1824		sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1825		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1826	}
1827
1828unlock:
1829	mutex_unlock(&sw->tb->lock);
1830	return ret;
1831}
1832
1833static ssize_t authorized_store(struct device *dev,
1834				struct device_attribute *attr,
1835				const char *buf, size_t count)
1836{
1837	struct tb_switch *sw = tb_to_switch(dev);
1838	unsigned int val;
1839	ssize_t ret;
1840
1841	ret = kstrtouint(buf, 0, &val);
1842	if (ret)
1843		return ret;
1844	if (val > 2)
1845		return -EINVAL;
1846
1847	pm_runtime_get_sync(&sw->dev);
1848	ret = tb_switch_set_authorized(sw, val);
1849	pm_runtime_mark_last_busy(&sw->dev);
1850	pm_runtime_put_autosuspend(&sw->dev);
1851
1852	return ret ? ret : count;
1853}
1854static DEVICE_ATTR_RW(authorized);
1855
1856static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1857			 char *buf)
1858{
1859	struct tb_switch *sw = tb_to_switch(dev);
1860
1861	return sysfs_emit(buf, "%u\n", sw->boot);
1862}
1863static DEVICE_ATTR_RO(boot);
1864
1865static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1866			   char *buf)
1867{
1868	struct tb_switch *sw = tb_to_switch(dev);
1869
1870	return sysfs_emit(buf, "%#x\n", sw->device);
1871}
1872static DEVICE_ATTR_RO(device);
1873
1874static ssize_t
1875device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1876{
1877	struct tb_switch *sw = tb_to_switch(dev);
1878
1879	return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1880}
1881static DEVICE_ATTR_RO(device_name);
1882
1883static ssize_t
1884generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1885{
1886	struct tb_switch *sw = tb_to_switch(dev);
1887
1888	return sysfs_emit(buf, "%u\n", sw->generation);
1889}
1890static DEVICE_ATTR_RO(generation);
1891
1892static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1893			char *buf)
1894{
1895	struct tb_switch *sw = tb_to_switch(dev);
1896	ssize_t ret;
1897
1898	if (!mutex_trylock(&sw->tb->lock))
1899		return restart_syscall();
1900
1901	if (sw->key)
1902		ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1903	else
1904		ret = sysfs_emit(buf, "\n");
1905
1906	mutex_unlock(&sw->tb->lock);
1907	return ret;
1908}
1909
1910static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1911			 const char *buf, size_t count)
1912{
1913	struct tb_switch *sw = tb_to_switch(dev);
1914	u8 key[TB_SWITCH_KEY_SIZE];
1915	ssize_t ret = count;
1916	bool clear = false;
1917
1918	if (!strcmp(buf, "\n"))
1919		clear = true;
1920	else if (hex2bin(key, buf, sizeof(key)))
1921		return -EINVAL;
1922
1923	if (!mutex_trylock(&sw->tb->lock))
1924		return restart_syscall();
1925
1926	if (sw->authorized) {
1927		ret = -EBUSY;
1928	} else {
1929		kfree(sw->key);
1930		if (clear) {
1931			sw->key = NULL;
1932		} else {
1933			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1934			if (!sw->key)
1935				ret = -ENOMEM;
1936		}
1937	}
1938
1939	mutex_unlock(&sw->tb->lock);
1940	return ret;
1941}
1942static DEVICE_ATTR(key, 0600, key_show, key_store);
1943
1944static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1945			  char *buf)
1946{
1947	struct tb_switch *sw = tb_to_switch(dev);
1948
1949	return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1950}
1951
1952/*
1953 * Currently all lanes must run at the same speed but we expose here
1954 * both directions to allow possible asymmetric links in the future.
1955 */
1956static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1957static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1958
1959static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr,
1960			     char *buf)
1961{
1962	struct tb_switch *sw = tb_to_switch(dev);
1963	unsigned int width;
1964
1965	switch (sw->link_width) {
1966	case TB_LINK_WIDTH_SINGLE:
1967	case TB_LINK_WIDTH_ASYM_TX:
1968		width = 1;
1969		break;
1970	case TB_LINK_WIDTH_DUAL:
1971		width = 2;
1972		break;
1973	case TB_LINK_WIDTH_ASYM_RX:
1974		width = 3;
1975		break;
1976	default:
1977		WARN_ON_ONCE(1);
1978		return -EINVAL;
1979	}
1980
1981	return sysfs_emit(buf, "%u\n", width);
1982}
1983static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL);
1984
1985static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr,
1986			     char *buf)
1987{
1988	struct tb_switch *sw = tb_to_switch(dev);
1989	unsigned int width;
1990
1991	switch (sw->link_width) {
1992	case TB_LINK_WIDTH_SINGLE:
1993	case TB_LINK_WIDTH_ASYM_RX:
1994		width = 1;
1995		break;
1996	case TB_LINK_WIDTH_DUAL:
1997		width = 2;
1998		break;
1999	case TB_LINK_WIDTH_ASYM_TX:
2000		width = 3;
2001		break;
2002	default:
2003		WARN_ON_ONCE(1);
2004		return -EINVAL;
2005	}
2006
2007	return sysfs_emit(buf, "%u\n", width);
2008}
2009static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL);
2010
2011static ssize_t nvm_authenticate_show(struct device *dev,
2012	struct device_attribute *attr, char *buf)
2013{
2014	struct tb_switch *sw = tb_to_switch(dev);
2015	u32 status;
2016
2017	nvm_get_auth_status(sw, &status);
2018	return sysfs_emit(buf, "%#x\n", status);
2019}
2020
2021static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
2022				      bool disconnect)
2023{
2024	struct tb_switch *sw = tb_to_switch(dev);
2025	int val, ret;
2026
2027	pm_runtime_get_sync(&sw->dev);
2028
2029	if (!mutex_trylock(&sw->tb->lock)) {
2030		ret = restart_syscall();
2031		goto exit_rpm;
2032	}
2033
2034	if (sw->no_nvm_upgrade) {
2035		ret = -EOPNOTSUPP;
2036		goto exit_unlock;
2037	}
2038
2039	/* If NVMem devices are not yet added */
2040	if (!sw->nvm) {
2041		ret = -EAGAIN;
2042		goto exit_unlock;
2043	}
2044
2045	ret = kstrtoint(buf, 10, &val);
2046	if (ret)
2047		goto exit_unlock;
2048
2049	/* Always clear the authentication status */
2050	nvm_clear_auth_status(sw);
2051
2052	if (val > 0) {
2053		if (val == AUTHENTICATE_ONLY) {
2054			if (disconnect)
2055				ret = -EINVAL;
2056			else
2057				ret = nvm_authenticate(sw, true);
2058		} else {
2059			if (!sw->nvm->flushed) {
2060				if (!sw->nvm->buf) {
2061					ret = -EINVAL;
2062					goto exit_unlock;
2063				}
2064
2065				ret = nvm_validate_and_write(sw);
2066				if (ret || val == WRITE_ONLY)
2067					goto exit_unlock;
2068			}
2069			if (val == WRITE_AND_AUTHENTICATE) {
2070				if (disconnect)
2071					ret = tb_lc_force_power(sw);
2072				else
2073					ret = nvm_authenticate(sw, false);
2074			}
2075		}
2076	}
2077
2078exit_unlock:
2079	mutex_unlock(&sw->tb->lock);
2080exit_rpm:
2081	pm_runtime_mark_last_busy(&sw->dev);
2082	pm_runtime_put_autosuspend(&sw->dev);
2083
2084	return ret;
2085}
2086
2087static ssize_t nvm_authenticate_store(struct device *dev,
2088	struct device_attribute *attr, const char *buf, size_t count)
2089{
2090	int ret = nvm_authenticate_sysfs(dev, buf, false);
2091	if (ret)
2092		return ret;
2093	return count;
2094}
2095static DEVICE_ATTR_RW(nvm_authenticate);
2096
2097static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
2098	struct device_attribute *attr, char *buf)
2099{
2100	return nvm_authenticate_show(dev, attr, buf);
2101}
2102
2103static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
2104	struct device_attribute *attr, const char *buf, size_t count)
2105{
2106	int ret;
2107
2108	ret = nvm_authenticate_sysfs(dev, buf, true);
2109	return ret ? ret : count;
2110}
2111static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
2112
2113static ssize_t nvm_version_show(struct device *dev,
2114				struct device_attribute *attr, char *buf)
2115{
2116	struct tb_switch *sw = tb_to_switch(dev);
2117	int ret;
2118
2119	if (!mutex_trylock(&sw->tb->lock))
2120		return restart_syscall();
2121
2122	if (sw->safe_mode)
2123		ret = -ENODATA;
2124	else if (!sw->nvm)
2125		ret = -EAGAIN;
2126	else
2127		ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
2128
2129	mutex_unlock(&sw->tb->lock);
2130
2131	return ret;
2132}
2133static DEVICE_ATTR_RO(nvm_version);
2134
2135static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
2136			   char *buf)
2137{
2138	struct tb_switch *sw = tb_to_switch(dev);
2139
2140	return sysfs_emit(buf, "%#x\n", sw->vendor);
2141}
2142static DEVICE_ATTR_RO(vendor);
2143
2144static ssize_t
2145vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
2146{
2147	struct tb_switch *sw = tb_to_switch(dev);
2148
2149	return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
2150}
2151static DEVICE_ATTR_RO(vendor_name);
2152
2153static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2154			      char *buf)
2155{
2156	struct tb_switch *sw = tb_to_switch(dev);
2157
2158	return sysfs_emit(buf, "%pUb\n", sw->uuid);
2159}
2160static DEVICE_ATTR_RO(unique_id);
2161
2162static struct attribute *switch_attrs[] = {
2163	&dev_attr_authorized.attr,
2164	&dev_attr_boot.attr,
2165	&dev_attr_device.attr,
2166	&dev_attr_device_name.attr,
2167	&dev_attr_generation.attr,
2168	&dev_attr_key.attr,
2169	&dev_attr_nvm_authenticate.attr,
2170	&dev_attr_nvm_authenticate_on_disconnect.attr,
2171	&dev_attr_nvm_version.attr,
2172	&dev_attr_rx_speed.attr,
2173	&dev_attr_rx_lanes.attr,
2174	&dev_attr_tx_speed.attr,
2175	&dev_attr_tx_lanes.attr,
2176	&dev_attr_vendor.attr,
2177	&dev_attr_vendor_name.attr,
2178	&dev_attr_unique_id.attr,
2179	NULL,
2180};
2181
2182static umode_t switch_attr_is_visible(struct kobject *kobj,
2183				      struct attribute *attr, int n)
2184{
2185	struct device *dev = kobj_to_dev(kobj);
2186	struct tb_switch *sw = tb_to_switch(dev);
2187
2188	if (attr == &dev_attr_authorized.attr) {
2189		if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2190		    sw->tb->security_level == TB_SECURITY_DPONLY)
2191			return 0;
2192	} else if (attr == &dev_attr_device.attr) {
2193		if (!sw->device)
2194			return 0;
2195	} else if (attr == &dev_attr_device_name.attr) {
2196		if (!sw->device_name)
2197			return 0;
2198	} else if (attr == &dev_attr_vendor.attr)  {
2199		if (!sw->vendor)
2200			return 0;
2201	} else if (attr == &dev_attr_vendor_name.attr)  {
2202		if (!sw->vendor_name)
2203			return 0;
2204	} else if (attr == &dev_attr_key.attr) {
2205		if (tb_route(sw) &&
2206		    sw->tb->security_level == TB_SECURITY_SECURE &&
2207		    sw->security_level == TB_SECURITY_SECURE)
2208			return attr->mode;
2209		return 0;
2210	} else if (attr == &dev_attr_rx_speed.attr ||
2211		   attr == &dev_attr_rx_lanes.attr ||
2212		   attr == &dev_attr_tx_speed.attr ||
2213		   attr == &dev_attr_tx_lanes.attr) {
2214		if (tb_route(sw))
2215			return attr->mode;
2216		return 0;
2217	} else if (attr == &dev_attr_nvm_authenticate.attr) {
2218		if (nvm_upgradeable(sw))
2219			return attr->mode;
2220		return 0;
2221	} else if (attr == &dev_attr_nvm_version.attr) {
2222		if (nvm_readable(sw))
2223			return attr->mode;
2224		return 0;
2225	} else if (attr == &dev_attr_boot.attr) {
2226		if (tb_route(sw))
2227			return attr->mode;
2228		return 0;
2229	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2230		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2231			return attr->mode;
2232		return 0;
2233	}
2234
2235	return sw->safe_mode ? 0 : attr->mode;
2236}
2237
2238static const struct attribute_group switch_group = {
2239	.is_visible = switch_attr_is_visible,
2240	.attrs = switch_attrs,
2241};
2242
2243static const struct attribute_group *switch_groups[] = {
2244	&switch_group,
2245	NULL,
2246};
2247
2248static void tb_switch_release(struct device *dev)
2249{
2250	struct tb_switch *sw = tb_to_switch(dev);
2251	struct tb_port *port;
2252
2253	dma_port_free(sw->dma_port);
2254
2255	tb_switch_for_each_port(sw, port) {
2256		ida_destroy(&port->in_hopids);
2257		ida_destroy(&port->out_hopids);
2258	}
2259
2260	kfree(sw->uuid);
2261	kfree(sw->device_name);
2262	kfree(sw->vendor_name);
2263	kfree(sw->ports);
2264	kfree(sw->drom);
2265	kfree(sw->key);
2266	kfree(sw);
2267}
2268
2269static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2270{
2271	const struct tb_switch *sw = tb_to_switch(dev);
2272	const char *type;
2273
2274	if (tb_switch_is_usb4(sw)) {
2275		if (add_uevent_var(env, "USB4_VERSION=%u.0",
2276				   usb4_switch_version(sw)))
2277			return -ENOMEM;
2278	}
2279
2280	if (!tb_route(sw)) {
2281		type = "host";
2282	} else {
2283		const struct tb_port *port;
2284		bool hub = false;
2285
2286		/* Device is hub if it has any downstream ports */
2287		tb_switch_for_each_port(sw, port) {
2288			if (!port->disabled && !tb_is_upstream_port(port) &&
2289			     tb_port_is_null(port)) {
2290				hub = true;
2291				break;
2292			}
2293		}
2294
2295		type = hub ? "hub" : "device";
2296	}
2297
2298	if (add_uevent_var(env, "USB4_TYPE=%s", type))
2299		return -ENOMEM;
2300	return 0;
2301}
2302
2303/*
2304 * Currently only need to provide the callbacks. Everything else is handled
2305 * in the connection manager.
2306 */
2307static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2308{
2309	struct tb_switch *sw = tb_to_switch(dev);
2310	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2311
2312	if (cm_ops->runtime_suspend_switch)
2313		return cm_ops->runtime_suspend_switch(sw);
2314
2315	return 0;
2316}
2317
2318static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2319{
2320	struct tb_switch *sw = tb_to_switch(dev);
2321	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2322
2323	if (cm_ops->runtime_resume_switch)
2324		return cm_ops->runtime_resume_switch(sw);
2325	return 0;
2326}
2327
2328static const struct dev_pm_ops tb_switch_pm_ops = {
2329	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2330			   NULL)
2331};
2332
2333const struct device_type tb_switch_type = {
2334	.name = "thunderbolt_device",
2335	.release = tb_switch_release,
2336	.uevent = tb_switch_uevent,
2337	.pm = &tb_switch_pm_ops,
2338};
2339
2340static int tb_switch_get_generation(struct tb_switch *sw)
2341{
2342	if (tb_switch_is_usb4(sw))
2343		return 4;
2344
2345	if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
2346		switch (sw->config.device_id) {
2347		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2348		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2349		case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2350		case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2351		case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2352		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2353		case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2354		case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2355			return 1;
2356
2357		case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2358		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2359		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2360			return 2;
2361
2362		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2363		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2364		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2365		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2366		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2367		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2368		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2369		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2370		case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2371		case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2372			return 3;
2373		}
2374	}
2375
2376	/*
2377	 * For unknown switches assume generation to be 1 to be on the
2378	 * safe side.
2379	 */
2380	tb_sw_warn(sw, "unsupported switch device id %#x\n",
2381		   sw->config.device_id);
2382	return 1;
2383}
2384
2385static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2386{
2387	int max_depth;
2388
2389	if (tb_switch_is_usb4(sw) ||
2390	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2391		max_depth = USB4_SWITCH_MAX_DEPTH;
2392	else
2393		max_depth = TB_SWITCH_MAX_DEPTH;
2394
2395	return depth > max_depth;
2396}
2397
2398/**
2399 * tb_switch_alloc() - allocate a switch
2400 * @tb: Pointer to the owning domain
2401 * @parent: Parent device for this switch
2402 * @route: Route string for this switch
2403 *
2404 * Allocates and initializes a switch. Will not upload configuration to
2405 * the switch. For that you need to call tb_switch_configure()
2406 * separately. The returned switch should be released by calling
2407 * tb_switch_put().
2408 *
2409 * Return: Pointer to the allocated switch or ERR_PTR() in case of
2410 * failure.
2411 */
2412struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2413				  u64 route)
2414{
2415	struct tb_switch *sw;
2416	int upstream_port;
2417	int i, ret, depth;
2418
2419	/* Unlock the downstream port so we can access the switch below */
2420	if (route) {
2421		struct tb_switch *parent_sw = tb_to_switch(parent);
2422		struct tb_port *down;
2423
2424		down = tb_port_at(route, parent_sw);
2425		tb_port_unlock(down);
2426	}
2427
2428	depth = tb_route_length(route);
2429
2430	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2431	if (upstream_port < 0)
2432		return ERR_PTR(upstream_port);
2433
2434	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2435	if (!sw)
2436		return ERR_PTR(-ENOMEM);
2437
2438	sw->tb = tb;
2439	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2440	if (ret)
2441		goto err_free_sw_ports;
2442
2443	sw->generation = tb_switch_get_generation(sw);
2444
2445	tb_dbg(tb, "current switch config:\n");
2446	tb_dump_switch(tb, sw);
2447
2448	/* configure switch */
2449	sw->config.upstream_port_number = upstream_port;
2450	sw->config.depth = depth;
2451	sw->config.route_hi = upper_32_bits(route);
2452	sw->config.route_lo = lower_32_bits(route);
2453	sw->config.enabled = 0;
2454
2455	/* Make sure we do not exceed maximum topology limit */
2456	if (tb_switch_exceeds_max_depth(sw, depth)) {
2457		ret = -EADDRNOTAVAIL;
2458		goto err_free_sw_ports;
2459	}
2460
2461	/* initialize ports */
2462	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2463				GFP_KERNEL);
2464	if (!sw->ports) {
2465		ret = -ENOMEM;
2466		goto err_free_sw_ports;
2467	}
2468
2469	for (i = 0; i <= sw->config.max_port_number; i++) {
2470		/* minimum setup for tb_find_cap and tb_drom_read to work */
2471		sw->ports[i].sw = sw;
2472		sw->ports[i].port = i;
2473
2474		/* Control port does not need HopID allocation */
2475		if (i) {
2476			ida_init(&sw->ports[i].in_hopids);
2477			ida_init(&sw->ports[i].out_hopids);
2478		}
2479	}
2480
2481	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2482	if (ret > 0)
2483		sw->cap_plug_events = ret;
2484
2485	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2486	if (ret > 0)
2487		sw->cap_vsec_tmu = ret;
2488
2489	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2490	if (ret > 0)
2491		sw->cap_lc = ret;
2492
2493	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2494	if (ret > 0)
2495		sw->cap_lp = ret;
2496
2497	/* Root switch is always authorized */
2498	if (!route)
2499		sw->authorized = true;
2500
2501	device_initialize(&sw->dev);
2502	sw->dev.parent = parent;
2503	sw->dev.bus = &tb_bus_type;
2504	sw->dev.type = &tb_switch_type;
2505	sw->dev.groups = switch_groups;
2506	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2507
2508	return sw;
2509
2510err_free_sw_ports:
2511	kfree(sw->ports);
2512	kfree(sw);
2513
2514	return ERR_PTR(ret);
2515}
2516
2517/**
2518 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2519 * @tb: Pointer to the owning domain
2520 * @parent: Parent device for this switch
2521 * @route: Route string for this switch
2522 *
2523 * This creates a switch in safe mode. This means the switch pretty much
2524 * lacks all capabilities except DMA configuration port before it is
2525 * flashed with a valid NVM firmware.
2526 *
2527 * The returned switch must be released by calling tb_switch_put().
2528 *
2529 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2530 */
2531struct tb_switch *
2532tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2533{
2534	struct tb_switch *sw;
2535
2536	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2537	if (!sw)
2538		return ERR_PTR(-ENOMEM);
2539
2540	sw->tb = tb;
2541	sw->config.depth = tb_route_length(route);
2542	sw->config.route_hi = upper_32_bits(route);
2543	sw->config.route_lo = lower_32_bits(route);
2544	sw->safe_mode = true;
2545
2546	device_initialize(&sw->dev);
2547	sw->dev.parent = parent;
2548	sw->dev.bus = &tb_bus_type;
2549	sw->dev.type = &tb_switch_type;
2550	sw->dev.groups = switch_groups;
2551	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2552
2553	return sw;
2554}
2555
2556/**
2557 * tb_switch_configure() - Uploads configuration to the switch
2558 * @sw: Switch to configure
2559 *
2560 * Call this function before the switch is added to the system. It will
2561 * upload configuration to the switch and makes it available for the
2562 * connection manager to use. Can be called to the switch again after
2563 * resume from low power states to re-initialize it.
2564 *
2565 * Return: %0 in case of success and negative errno in case of failure
2566 */
2567int tb_switch_configure(struct tb_switch *sw)
2568{
2569	struct tb *tb = sw->tb;
2570	u64 route;
2571	int ret;
2572
2573	route = tb_route(sw);
2574
2575	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2576	       sw->config.enabled ? "restoring" : "initializing", route,
2577	       tb_route_length(route), sw->config.upstream_port_number);
2578
2579	sw->config.enabled = 1;
2580
2581	if (tb_switch_is_usb4(sw)) {
2582		/*
2583		 * For USB4 devices, we need to program the CM version
2584		 * accordingly so that it knows to expose all the
2585		 * additional capabilities. Program it according to USB4
2586		 * version to avoid changing existing (v1) routers behaviour.
2587		 */
2588		if (usb4_switch_version(sw) < 2)
2589			sw->config.cmuv = ROUTER_CS_4_CMUV_V1;
2590		else
2591			sw->config.cmuv = ROUTER_CS_4_CMUV_V2;
2592		sw->config.plug_events_delay = 0xa;
2593
2594		/* Enumerate the switch */
2595		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2596				  ROUTER_CS_1, 4);
2597		if (ret)
2598			return ret;
2599
2600		ret = usb4_switch_setup(sw);
2601	} else {
2602		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2603			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2604				   sw->config.vendor_id);
2605
2606		if (!sw->cap_plug_events) {
2607			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2608			return -ENODEV;
2609		}
2610
2611		/* Enumerate the switch */
2612		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2613				  ROUTER_CS_1, 3);
2614	}
2615	if (ret)
2616		return ret;
2617
2618	return tb_plug_events_active(sw, true);
2619}
2620
2621/**
2622 * tb_switch_configuration_valid() - Set the tunneling configuration to be valid
2623 * @sw: Router to configure
2624 *
2625 * Needs to be called before any tunnels can be setup through the
2626 * router. Can be called to any router.
2627 *
2628 * Returns %0 in success and negative errno otherwise.
2629 */
2630int tb_switch_configuration_valid(struct tb_switch *sw)
2631{
2632	if (tb_switch_is_usb4(sw))
2633		return usb4_switch_configuration_valid(sw);
2634	return 0;
2635}
2636
2637static int tb_switch_set_uuid(struct tb_switch *sw)
2638{
2639	bool uid = false;
2640	u32 uuid[4];
2641	int ret;
2642
2643	if (sw->uuid)
2644		return 0;
2645
2646	if (tb_switch_is_usb4(sw)) {
2647		ret = usb4_switch_read_uid(sw, &sw->uid);
2648		if (ret)
2649			return ret;
2650		uid = true;
2651	} else {
2652		/*
2653		 * The newer controllers include fused UUID as part of
2654		 * link controller specific registers
2655		 */
2656		ret = tb_lc_read_uuid(sw, uuid);
2657		if (ret) {
2658			if (ret != -EINVAL)
2659				return ret;
2660			uid = true;
2661		}
2662	}
2663
2664	if (uid) {
2665		/*
2666		 * ICM generates UUID based on UID and fills the upper
2667		 * two words with ones. This is not strictly following
2668		 * UUID format but we want to be compatible with it so
2669		 * we do the same here.
2670		 */
2671		uuid[0] = sw->uid & 0xffffffff;
2672		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2673		uuid[2] = 0xffffffff;
2674		uuid[3] = 0xffffffff;
2675	}
2676
2677	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2678	if (!sw->uuid)
2679		return -ENOMEM;
2680	return 0;
2681}
2682
2683static int tb_switch_add_dma_port(struct tb_switch *sw)
2684{
2685	u32 status;
2686	int ret;
2687
2688	switch (sw->generation) {
2689	case 2:
2690		/* Only root switch can be upgraded */
2691		if (tb_route(sw))
2692			return 0;
2693
2694		fallthrough;
2695	case 3:
2696	case 4:
2697		ret = tb_switch_set_uuid(sw);
2698		if (ret)
2699			return ret;
2700		break;
2701
2702	default:
2703		/*
2704		 * DMA port is the only thing available when the switch
2705		 * is in safe mode.
2706		 */
2707		if (!sw->safe_mode)
2708			return 0;
2709		break;
2710	}
2711
2712	if (sw->no_nvm_upgrade)
2713		return 0;
2714
2715	if (tb_switch_is_usb4(sw)) {
2716		ret = usb4_switch_nvm_authenticate_status(sw, &status);
2717		if (ret)
2718			return ret;
2719
2720		if (status) {
2721			tb_sw_info(sw, "switch flash authentication failed\n");
2722			nvm_set_auth_status(sw, status);
2723		}
2724
2725		return 0;
2726	}
2727
2728	/* Root switch DMA port requires running firmware */
2729	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2730		return 0;
2731
2732	sw->dma_port = dma_port_alloc(sw);
2733	if (!sw->dma_port)
2734		return 0;
2735
2736	/*
2737	 * If there is status already set then authentication failed
2738	 * when the dma_port_flash_update_auth() returned. Power cycling
2739	 * is not needed (it was done already) so only thing we do here
2740	 * is to unblock runtime PM of the root port.
2741	 */
2742	nvm_get_auth_status(sw, &status);
2743	if (status) {
2744		if (!tb_route(sw))
2745			nvm_authenticate_complete_dma_port(sw);
2746		return 0;
2747	}
2748
2749	/*
2750	 * Check status of the previous flash authentication. If there
2751	 * is one we need to power cycle the switch in any case to make
2752	 * it functional again.
2753	 */
2754	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2755	if (ret <= 0)
2756		return ret;
2757
2758	/* Now we can allow root port to suspend again */
2759	if (!tb_route(sw))
2760		nvm_authenticate_complete_dma_port(sw);
2761
2762	if (status) {
2763		tb_sw_info(sw, "switch flash authentication failed\n");
2764		nvm_set_auth_status(sw, status);
2765	}
2766
2767	tb_sw_info(sw, "power cycling the switch now\n");
2768	dma_port_power_cycle(sw->dma_port);
2769
2770	/*
2771	 * We return error here which causes the switch adding failure.
2772	 * It should appear back after power cycle is complete.
2773	 */
2774	return -ESHUTDOWN;
2775}
2776
2777static void tb_switch_default_link_ports(struct tb_switch *sw)
2778{
2779	int i;
2780
2781	for (i = 1; i <= sw->config.max_port_number; i++) {
2782		struct tb_port *port = &sw->ports[i];
2783		struct tb_port *subordinate;
2784
2785		if (!tb_port_is_null(port))
2786			continue;
2787
2788		/* Check for the subordinate port */
2789		if (i == sw->config.max_port_number ||
2790		    !tb_port_is_null(&sw->ports[i + 1]))
2791			continue;
2792
2793		/* Link them if not already done so (by DROM) */
2794		subordinate = &sw->ports[i + 1];
2795		if (!port->dual_link_port && !subordinate->dual_link_port) {
2796			port->link_nr = 0;
2797			port->dual_link_port = subordinate;
2798			subordinate->link_nr = 1;
2799			subordinate->dual_link_port = port;
2800
2801			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2802				  port->port, subordinate->port);
2803		}
2804	}
2805}
2806
2807static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2808{
2809	const struct tb_port *up = tb_upstream_port(sw);
2810
2811	if (!up->dual_link_port || !up->dual_link_port->remote)
2812		return false;
2813
2814	if (tb_switch_is_usb4(sw))
2815		return usb4_switch_lane_bonding_possible(sw);
2816	return tb_lc_lane_bonding_possible(sw);
2817}
2818
2819static int tb_switch_update_link_attributes(struct tb_switch *sw)
2820{
2821	struct tb_port *up;
2822	bool change = false;
2823	int ret;
2824
2825	if (!tb_route(sw) || tb_switch_is_icm(sw))
2826		return 0;
2827
2828	up = tb_upstream_port(sw);
2829
2830	ret = tb_port_get_link_speed(up);
2831	if (ret < 0)
2832		return ret;
2833	if (sw->link_speed != ret)
2834		change = true;
2835	sw->link_speed = ret;
2836
2837	ret = tb_port_get_link_width(up);
2838	if (ret < 0)
2839		return ret;
2840	if (sw->link_width != ret)
2841		change = true;
2842	sw->link_width = ret;
2843
2844	/* Notify userspace that there is possible link attribute change */
2845	if (device_is_registered(&sw->dev) && change)
2846		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2847
2848	return 0;
2849}
2850
2851/* Must be called after tb_switch_update_link_attributes() */
2852static void tb_switch_link_init(struct tb_switch *sw)
2853{
2854	struct tb_port *up, *down;
2855	bool bonded;
2856
2857	if (!tb_route(sw) || tb_switch_is_icm(sw))
2858		return;
2859
2860	tb_sw_dbg(sw, "current link speed %u.0 Gb/s\n", sw->link_speed);
2861	tb_sw_dbg(sw, "current link width %s\n", tb_width_name(sw->link_width));
2862
2863	bonded = sw->link_width >= TB_LINK_WIDTH_DUAL;
2864
2865	/*
2866	 * Gen 4 links come up as bonded so update the port structures
2867	 * accordingly.
2868	 */
2869	up = tb_upstream_port(sw);
2870	down = tb_switch_downstream_port(sw);
2871
2872	up->bonded = bonded;
2873	if (up->dual_link_port)
2874		up->dual_link_port->bonded = bonded;
2875	tb_port_update_credits(up);
2876
2877	down->bonded = bonded;
2878	if (down->dual_link_port)
2879		down->dual_link_port->bonded = bonded;
2880	tb_port_update_credits(down);
2881
2882	if (tb_port_get_link_generation(up) < 4)
2883		return;
2884
2885	/*
2886	 * Set the Gen 4 preferred link width. This is what the router
2887	 * prefers when the link is brought up. If the router does not
2888	 * support asymmetric link configuration, this also will be set
2889	 * to TB_LINK_WIDTH_DUAL.
2890	 */
2891	sw->preferred_link_width = sw->link_width;
2892	tb_sw_dbg(sw, "preferred link width %s\n",
2893		  tb_width_name(sw->preferred_link_width));
2894}
2895
2896/**
2897 * tb_switch_lane_bonding_enable() - Enable lane bonding
2898 * @sw: Switch to enable lane bonding
2899 *
2900 * Connection manager can call this function to enable lane bonding of a
2901 * switch. If conditions are correct and both switches support the feature,
2902 * lanes are bonded. It is safe to call this to any switch.
2903 */
2904static int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2905{
2906	struct tb_port *up, *down;
2907	unsigned int width;
2908	int ret;
2909
2910	if (!tb_switch_lane_bonding_possible(sw))
2911		return 0;
2912
2913	up = tb_upstream_port(sw);
2914	down = tb_switch_downstream_port(sw);
2915
2916	if (!tb_port_width_supported(up, TB_LINK_WIDTH_DUAL) ||
2917	    !tb_port_width_supported(down, TB_LINK_WIDTH_DUAL))
2918		return 0;
2919
2920	/*
2921	 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2922	 * CL0 and check just for lane 1.
2923	 */
2924	if (tb_wait_for_port(down->dual_link_port, false) <= 0)
2925		return -ENOTCONN;
2926
2927	ret = tb_port_lane_bonding_enable(up);
2928	if (ret) {
2929		tb_port_warn(up, "failed to enable lane bonding\n");
2930		return ret;
2931	}
2932
2933	ret = tb_port_lane_bonding_enable(down);
2934	if (ret) {
2935		tb_port_warn(down, "failed to enable lane bonding\n");
2936		tb_port_lane_bonding_disable(up);
2937		return ret;
2938	}
2939
2940	/* Any of the widths are all bonded */
2941	width = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX |
2942		TB_LINK_WIDTH_ASYM_RX;
2943
2944	return tb_port_wait_for_link_width(down, width, 100);
2945}
2946
2947/**
2948 * tb_switch_lane_bonding_disable() - Disable lane bonding
2949 * @sw: Switch whose lane bonding to disable
2950 *
2951 * Disables lane bonding between @sw and parent. This can be called even
2952 * if lanes were not bonded originally.
2953 */
2954static int tb_switch_lane_bonding_disable(struct tb_switch *sw)
2955{
2956	struct tb_port *up, *down;
2957	int ret;
2958
2959	up = tb_upstream_port(sw);
2960	if (!up->bonded)
2961		return 0;
2962
2963	/*
2964	 * If the link is Gen 4 there is no way to switch the link to
2965	 * two single lane links so avoid that here. Also don't bother
2966	 * if the link is not up anymore (sw is unplugged).
2967	 */
2968	ret = tb_port_get_link_generation(up);
2969	if (ret < 0)
2970		return ret;
2971	if (ret >= 4)
2972		return -EOPNOTSUPP;
2973
2974	down = tb_switch_downstream_port(sw);
2975	tb_port_lane_bonding_disable(up);
2976	tb_port_lane_bonding_disable(down);
2977
2978	/*
2979	 * It is fine if we get other errors as the router might have
2980	 * been unplugged.
2981	 */
2982	return tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100);
2983}
2984
2985/* Note updating sw->link_width done in tb_switch_update_link_attributes() */
2986static int tb_switch_asym_enable(struct tb_switch *sw, enum tb_link_width width)
2987{
2988	struct tb_port *up, *down, *port;
2989	enum tb_link_width down_width;
2990	int ret;
2991
2992	up = tb_upstream_port(sw);
2993	down = tb_switch_downstream_port(sw);
2994
2995	if (width == TB_LINK_WIDTH_ASYM_TX) {
2996		down_width = TB_LINK_WIDTH_ASYM_RX;
2997		port = down;
2998	} else {
2999		down_width = TB_LINK_WIDTH_ASYM_TX;
3000		port = up;
3001	}
3002
3003	ret = tb_port_set_link_width(up, width);
3004	if (ret)
3005		return ret;
3006
3007	ret = tb_port_set_link_width(down, down_width);
3008	if (ret)
3009		return ret;
3010
3011	/*
3012	 * Initiate the change in the router that one of its TX lanes is
3013	 * changing to RX but do so only if there is an actual change.
3014	 */
3015	if (sw->link_width != width) {
3016		ret = usb4_port_asym_start(port);
3017		if (ret)
3018			return ret;
3019
3020		ret = tb_port_wait_for_link_width(up, width, 100);
3021		if (ret)
3022			return ret;
3023	}
3024
3025	return 0;
3026}
3027
3028/* Note updating sw->link_width done in tb_switch_update_link_attributes() */
3029static int tb_switch_asym_disable(struct tb_switch *sw)
3030{
3031	struct tb_port *up, *down;
3032	int ret;
3033
3034	up = tb_upstream_port(sw);
3035	down = tb_switch_downstream_port(sw);
3036
3037	ret = tb_port_set_link_width(up, TB_LINK_WIDTH_DUAL);
3038	if (ret)
3039		return ret;
3040
3041	ret = tb_port_set_link_width(down, TB_LINK_WIDTH_DUAL);
3042	if (ret)
3043		return ret;
3044
3045	/*
3046	 * Initiate the change in the router that has three TX lanes and
3047	 * is changing one of its TX lanes to RX but only if there is a
3048	 * change in the link width.
3049	 */
3050	if (sw->link_width > TB_LINK_WIDTH_DUAL) {
3051		if (sw->link_width == TB_LINK_WIDTH_ASYM_TX)
3052			ret = usb4_port_asym_start(up);
3053		else
3054			ret = usb4_port_asym_start(down);
3055		if (ret)
3056			return ret;
3057
3058		ret = tb_port_wait_for_link_width(up, TB_LINK_WIDTH_DUAL, 100);
3059		if (ret)
3060			return ret;
3061	}
3062
3063	return 0;
3064}
3065
3066/**
3067 * tb_switch_set_link_width() - Configure router link width
3068 * @sw: Router to configure
3069 * @width: The new link width
3070 *
3071 * Set device router link width to @width from router upstream port
3072 * perspective. Supports also asymmetric links if the routers boths side
3073 * of the link supports it.
3074 *
3075 * Does nothing for host router.
3076 *
3077 * Returns %0 in case of success, negative errno otherwise.
3078 */
3079int tb_switch_set_link_width(struct tb_switch *sw, enum tb_link_width width)
3080{
3081	struct tb_port *up, *down;
3082	int ret = 0;
3083
3084	if (!tb_route(sw))
3085		return 0;
3086
3087	up = tb_upstream_port(sw);
3088	down = tb_switch_downstream_port(sw);
3089
3090	switch (width) {
3091	case TB_LINK_WIDTH_SINGLE:
3092		ret = tb_switch_lane_bonding_disable(sw);
3093		break;
3094
3095	case TB_LINK_WIDTH_DUAL:
3096		if (sw->link_width == TB_LINK_WIDTH_ASYM_TX ||
3097		    sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
3098			ret = tb_switch_asym_disable(sw);
3099			if (ret)
3100				break;
3101		}
3102		ret = tb_switch_lane_bonding_enable(sw);
3103		break;
3104
3105	case TB_LINK_WIDTH_ASYM_TX:
3106	case TB_LINK_WIDTH_ASYM_RX:
3107		ret = tb_switch_asym_enable(sw, width);
3108		break;
3109	}
3110
3111	switch (ret) {
3112	case 0:
3113		break;
3114
3115	case -ETIMEDOUT:
3116		tb_sw_warn(sw, "timeout changing link width\n");
3117		return ret;
3118
3119	case -ENOTCONN:
3120	case -EOPNOTSUPP:
3121	case -ENODEV:
3122		return ret;
3123
3124	default:
3125		tb_sw_dbg(sw, "failed to change link width: %d\n", ret);
3126		return ret;
3127	}
3128
3129	tb_port_update_credits(down);
3130	tb_port_update_credits(up);
3131
3132	tb_switch_update_link_attributes(sw);
3133
3134	tb_sw_dbg(sw, "link width set to %s\n", tb_width_name(width));
3135	return ret;
3136}
3137
3138/**
3139 * tb_switch_configure_link() - Set link configured
3140 * @sw: Switch whose link is configured
3141 *
3142 * Sets the link upstream from @sw configured (from both ends) so that
3143 * it will not be disconnected when the domain exits sleep. Can be
3144 * called for any switch.
3145 *
3146 * It is recommended that this is called after lane bonding is enabled.
3147 *
3148 * Returns %0 on success and negative errno in case of error.
3149 */
3150int tb_switch_configure_link(struct tb_switch *sw)
3151{
3152	struct tb_port *up, *down;
3153	int ret;
3154
3155	if (!tb_route(sw) || tb_switch_is_icm(sw))
3156		return 0;
3157
3158	up = tb_upstream_port(sw);
3159	if (tb_switch_is_usb4(up->sw))
3160		ret = usb4_port_configure(up);
3161	else
3162		ret = tb_lc_configure_port(up);
3163	if (ret)
3164		return ret;
3165
3166	down = up->remote;
3167	if (tb_switch_is_usb4(down->sw))
3168		return usb4_port_configure(down);
3169	return tb_lc_configure_port(down);
3170}
3171
3172/**
3173 * tb_switch_unconfigure_link() - Unconfigure link
3174 * @sw: Switch whose link is unconfigured
3175 *
3176 * Sets the link unconfigured so the @sw will be disconnected if the
3177 * domain exists sleep.
3178 */
3179void tb_switch_unconfigure_link(struct tb_switch *sw)
3180{
3181	struct tb_port *up, *down;
3182
3183	if (!tb_route(sw) || tb_switch_is_icm(sw))
3184		return;
3185
3186	/*
3187	 * Unconfigure downstream port so that wake-on-connect can be
3188	 * configured after router unplug. No need to unconfigure upstream port
3189	 * since its router is unplugged.
3190	 */
3191	up = tb_upstream_port(sw);
3192	down = up->remote;
3193	if (tb_switch_is_usb4(down->sw))
3194		usb4_port_unconfigure(down);
3195	else
3196		tb_lc_unconfigure_port(down);
3197
3198	if (sw->is_unplugged)
3199		return;
3200
3201	up = tb_upstream_port(sw);
3202	if (tb_switch_is_usb4(up->sw))
3203		usb4_port_unconfigure(up);
3204	else
3205		tb_lc_unconfigure_port(up);
3206}
3207
3208static void tb_switch_credits_init(struct tb_switch *sw)
3209{
3210	if (tb_switch_is_icm(sw))
3211		return;
3212	if (!tb_switch_is_usb4(sw))
3213		return;
3214	if (usb4_switch_credits_init(sw))
3215		tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
3216}
3217
3218static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
3219{
3220	struct tb_port *port;
3221
3222	if (tb_switch_is_icm(sw))
3223		return 0;
3224
3225	tb_switch_for_each_port(sw, port) {
3226		int res;
3227
3228		if (!port->cap_usb4)
3229			continue;
3230
3231		res = usb4_port_hotplug_enable(port);
3232		if (res)
3233			return res;
3234	}
3235	return 0;
3236}
3237
3238/**
3239 * tb_switch_add() - Add a switch to the domain
3240 * @sw: Switch to add
3241 *
3242 * This is the last step in adding switch to the domain. It will read
3243 * identification information from DROM and initializes ports so that
3244 * they can be used to connect other switches. The switch will be
3245 * exposed to the userspace when this function successfully returns. To
3246 * remove and release the switch, call tb_switch_remove().
3247 *
3248 * Return: %0 in case of success and negative errno in case of failure
3249 */
3250int tb_switch_add(struct tb_switch *sw)
3251{
3252	int i, ret;
3253
3254	/*
3255	 * Initialize DMA control port now before we read DROM. Recent
3256	 * host controllers have more complete DROM on NVM that includes
3257	 * vendor and model identification strings which we then expose
3258	 * to the userspace. NVM can be accessed through DMA
3259	 * configuration based mailbox.
3260	 */
3261	ret = tb_switch_add_dma_port(sw);
3262	if (ret) {
3263		dev_err(&sw->dev, "failed to add DMA port\n");
3264		return ret;
3265	}
3266
3267	if (!sw->safe_mode) {
3268		tb_switch_credits_init(sw);
3269
3270		/* read drom */
3271		ret = tb_drom_read(sw);
3272		if (ret)
3273			dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
3274		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
3275
3276		ret = tb_switch_set_uuid(sw);
3277		if (ret) {
3278			dev_err(&sw->dev, "failed to set UUID\n");
3279			return ret;
3280		}
3281
3282		for (i = 0; i <= sw->config.max_port_number; i++) {
3283			if (sw->ports[i].disabled) {
3284				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
3285				continue;
3286			}
3287			ret = tb_init_port(&sw->ports[i]);
3288			if (ret) {
3289				dev_err(&sw->dev, "failed to initialize port %d\n", i);
3290				return ret;
3291			}
3292		}
3293
3294		tb_check_quirks(sw);
3295
3296		tb_switch_default_link_ports(sw);
3297
3298		ret = tb_switch_update_link_attributes(sw);
3299		if (ret)
3300			return ret;
3301
3302		tb_switch_link_init(sw);
3303
3304		ret = tb_switch_clx_init(sw);
3305		if (ret)
3306			return ret;
3307
3308		ret = tb_switch_tmu_init(sw);
3309		if (ret)
3310			return ret;
3311	}
3312
3313	ret = tb_switch_port_hotplug_enable(sw);
3314	if (ret)
3315		return ret;
3316
3317	ret = device_add(&sw->dev);
3318	if (ret) {
3319		dev_err(&sw->dev, "failed to add device: %d\n", ret);
3320		return ret;
3321	}
3322
3323	if (tb_route(sw)) {
3324		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
3325			 sw->vendor, sw->device);
3326		if (sw->vendor_name && sw->device_name)
3327			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
3328				 sw->device_name);
3329	}
3330
3331	ret = usb4_switch_add_ports(sw);
3332	if (ret) {
3333		dev_err(&sw->dev, "failed to add USB4 ports\n");
3334		goto err_del;
3335	}
3336
3337	ret = tb_switch_nvm_add(sw);
3338	if (ret) {
3339		dev_err(&sw->dev, "failed to add NVM devices\n");
3340		goto err_ports;
3341	}
3342
3343	/*
3344	 * Thunderbolt routers do not generate wakeups themselves but
3345	 * they forward wakeups from tunneled protocols, so enable it
3346	 * here.
3347	 */
3348	device_init_wakeup(&sw->dev, true);
3349
3350	pm_runtime_set_active(&sw->dev);
3351	if (sw->rpm) {
3352		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3353		pm_runtime_use_autosuspend(&sw->dev);
3354		pm_runtime_mark_last_busy(&sw->dev);
3355		pm_runtime_enable(&sw->dev);
3356		pm_request_autosuspend(&sw->dev);
3357	}
3358
3359	tb_switch_debugfs_init(sw);
3360	return 0;
3361
3362err_ports:
3363	usb4_switch_remove_ports(sw);
3364err_del:
3365	device_del(&sw->dev);
3366
3367	return ret;
3368}
3369
3370/**
3371 * tb_switch_remove() - Remove and release a switch
3372 * @sw: Switch to remove
3373 *
3374 * This will remove the switch from the domain and release it after last
3375 * reference count drops to zero. If there are switches connected below
3376 * this switch, they will be removed as well.
3377 */
3378void tb_switch_remove(struct tb_switch *sw)
3379{
3380	struct tb_port *port;
3381
3382	tb_switch_debugfs_remove(sw);
3383
3384	if (sw->rpm) {
3385		pm_runtime_get_sync(&sw->dev);
3386		pm_runtime_disable(&sw->dev);
3387	}
3388
3389	/* port 0 is the switch itself and never has a remote */
3390	tb_switch_for_each_port(sw, port) {
3391		if (tb_port_has_remote(port)) {
3392			tb_switch_remove(port->remote->sw);
3393			port->remote = NULL;
3394		} else if (port->xdomain) {
3395			tb_xdomain_remove(port->xdomain);
3396			port->xdomain = NULL;
3397		}
3398
3399		/* Remove any downstream retimers */
3400		tb_retimer_remove_all(port);
3401	}
3402
3403	if (!sw->is_unplugged)
3404		tb_plug_events_active(sw, false);
3405
3406	tb_switch_nvm_remove(sw);
3407	usb4_switch_remove_ports(sw);
3408
3409	if (tb_route(sw))
3410		dev_info(&sw->dev, "device disconnected\n");
3411	device_unregister(&sw->dev);
3412}
3413
3414/**
3415 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3416 * @sw: Router to mark unplugged
3417 */
3418void tb_sw_set_unplugged(struct tb_switch *sw)
3419{
3420	struct tb_port *port;
3421
3422	if (sw == sw->tb->root_switch) {
3423		tb_sw_WARN(sw, "cannot unplug root switch\n");
3424		return;
3425	}
3426	if (sw->is_unplugged) {
3427		tb_sw_WARN(sw, "is_unplugged already set\n");
3428		return;
3429	}
3430	sw->is_unplugged = true;
3431	tb_switch_for_each_port(sw, port) {
3432		if (tb_port_has_remote(port))
3433			tb_sw_set_unplugged(port->remote->sw);
3434		else if (port->xdomain)
3435			port->xdomain->is_unplugged = true;
3436	}
3437}
3438
3439static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3440{
3441	if (flags)
3442		tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3443	else
3444		tb_sw_dbg(sw, "disabling wakeup\n");
3445
3446	if (tb_switch_is_usb4(sw))
3447		return usb4_switch_set_wake(sw, flags);
3448	return tb_lc_set_wake(sw, flags);
3449}
3450
3451static void tb_switch_check_wakes(struct tb_switch *sw)
3452{
3453	if (device_may_wakeup(&sw->dev)) {
3454		if (tb_switch_is_usb4(sw))
3455			usb4_switch_check_wakes(sw);
3456	}
3457}
3458
3459/**
3460 * tb_switch_resume() - Resume a switch after sleep
3461 * @sw: Switch to resume
3462 * @runtime: Is this resume from runtime suspend or system sleep
3463 *
3464 * Resumes and re-enumerates router (and all its children), if still plugged
3465 * after suspend. Don't enumerate device router whose UID was changed during
3466 * suspend. If this is resume from system sleep, notifies PM core about the
3467 * wakes occurred during suspend. Disables all wakes, except USB4 wake of
3468 * upstream port for USB4 routers that shall be always enabled.
3469 */
3470int tb_switch_resume(struct tb_switch *sw, bool runtime)
3471{
3472	struct tb_port *port;
3473	int err;
3474
3475	tb_sw_dbg(sw, "resuming switch\n");
3476
3477	/*
3478	 * Check for UID of the connected switches except for root
3479	 * switch which we assume cannot be removed.
3480	 */
3481	if (tb_route(sw)) {
3482		u64 uid;
3483
3484		/*
3485		 * Check first that we can still read the switch config
3486		 * space. It may be that there is now another domain
3487		 * connected.
3488		 */
3489		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3490		if (err < 0) {
3491			tb_sw_info(sw, "switch not present anymore\n");
3492			return err;
3493		}
3494
3495		/* We don't have any way to confirm this was the same device */
3496		if (!sw->uid)
3497			return -ENODEV;
3498
3499		if (tb_switch_is_usb4(sw))
3500			err = usb4_switch_read_uid(sw, &uid);
3501		else
3502			err = tb_drom_read_uid_only(sw, &uid);
3503		if (err) {
3504			tb_sw_warn(sw, "uid read failed\n");
3505			return err;
3506		}
3507		if (sw->uid != uid) {
3508			tb_sw_info(sw,
3509				"changed while suspended (uid %#llx -> %#llx)\n",
3510				sw->uid, uid);
3511			return -ENODEV;
3512		}
3513	}
3514
3515	err = tb_switch_configure(sw);
3516	if (err)
3517		return err;
3518
3519	if (!runtime)
3520		tb_switch_check_wakes(sw);
3521
3522	/* Disable wakes */
3523	tb_switch_set_wake(sw, 0);
3524
3525	err = tb_switch_tmu_init(sw);
3526	if (err)
3527		return err;
3528
3529	/* check for surviving downstream switches */
3530	tb_switch_for_each_port(sw, port) {
3531		if (!tb_port_is_null(port))
3532			continue;
3533
3534		if (!tb_port_resume(port))
3535			continue;
3536
3537		if (tb_wait_for_port(port, true) <= 0) {
3538			tb_port_warn(port,
3539				     "lost during suspend, disconnecting\n");
3540			if (tb_port_has_remote(port))
3541				tb_sw_set_unplugged(port->remote->sw);
3542			else if (port->xdomain)
3543				port->xdomain->is_unplugged = true;
3544		} else {
3545			/*
3546			 * Always unlock the port so the downstream
3547			 * switch/domain is accessible.
3548			 */
3549			if (tb_port_unlock(port))
3550				tb_port_warn(port, "failed to unlock port\n");
3551			if (port->remote &&
3552			    tb_switch_resume(port->remote->sw, runtime)) {
3553				tb_port_warn(port,
3554					     "lost during suspend, disconnecting\n");
3555				tb_sw_set_unplugged(port->remote->sw);
3556			}
3557		}
3558	}
3559	return 0;
3560}
3561
3562/**
3563 * tb_switch_suspend() - Put a switch to sleep
3564 * @sw: Switch to suspend
3565 * @runtime: Is this runtime suspend or system sleep
3566 *
3567 * Suspends router and all its children. Enables wakes according to
3568 * value of @runtime and then sets sleep bit for the router. If @sw is
3569 * host router the domain is ready to go to sleep once this function
3570 * returns.
3571 */
3572void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3573{
3574	unsigned int flags = 0;
3575	struct tb_port *port;
3576	int err;
3577
3578	tb_sw_dbg(sw, "suspending switch\n");
3579
3580	/*
3581	 * Actually only needed for Titan Ridge but for simplicity can be
3582	 * done for USB4 device too as CLx is re-enabled at resume.
3583	 */
3584	tb_switch_clx_disable(sw);
3585
3586	err = tb_plug_events_active(sw, false);
3587	if (err)
3588		return;
3589
3590	tb_switch_for_each_port(sw, port) {
3591		if (tb_port_has_remote(port))
3592			tb_switch_suspend(port->remote->sw, runtime);
3593	}
3594
3595	if (runtime) {
3596		/* Trigger wake when something is plugged in/out */
3597		flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3598		flags |= TB_WAKE_ON_USB4;
3599		flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3600	} else if (device_may_wakeup(&sw->dev)) {
3601		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3602	}
3603
3604	tb_switch_set_wake(sw, flags);
3605
3606	if (tb_switch_is_usb4(sw))
3607		usb4_switch_set_sleep(sw);
3608	else
3609		tb_lc_set_sleep(sw);
3610}
3611
3612/**
3613 * tb_switch_query_dp_resource() - Query availability of DP resource
3614 * @sw: Switch whose DP resource is queried
3615 * @in: DP IN port
3616 *
3617 * Queries availability of DP resource for DP tunneling using switch
3618 * specific means. Returns %true if resource is available.
3619 */
3620bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3621{
3622	if (tb_switch_is_usb4(sw))
3623		return usb4_switch_query_dp_resource(sw, in);
3624	return tb_lc_dp_sink_query(sw, in);
3625}
3626
3627/**
3628 * tb_switch_alloc_dp_resource() - Allocate available DP resource
3629 * @sw: Switch whose DP resource is allocated
3630 * @in: DP IN port
3631 *
3632 * Allocates DP resource for DP tunneling. The resource must be
3633 * available for this to succeed (see tb_switch_query_dp_resource()).
3634 * Returns %0 in success and negative errno otherwise.
3635 */
3636int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3637{
3638	int ret;
3639
3640	if (tb_switch_is_usb4(sw))
3641		ret = usb4_switch_alloc_dp_resource(sw, in);
3642	else
3643		ret = tb_lc_dp_sink_alloc(sw, in);
3644
3645	if (ret)
3646		tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3647			   in->port);
3648	else
3649		tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3650
3651	return ret;
3652}
3653
3654/**
3655 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3656 * @sw: Switch whose DP resource is de-allocated
3657 * @in: DP IN port
3658 *
3659 * De-allocates DP resource that was previously allocated for DP
3660 * tunneling.
3661 */
3662void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3663{
3664	int ret;
3665
3666	if (tb_switch_is_usb4(sw))
3667		ret = usb4_switch_dealloc_dp_resource(sw, in);
3668	else
3669		ret = tb_lc_dp_sink_dealloc(sw, in);
3670
3671	if (ret)
3672		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3673			   in->port);
3674	else
3675		tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3676}
3677
3678struct tb_sw_lookup {
3679	struct tb *tb;
3680	u8 link;
3681	u8 depth;
3682	const uuid_t *uuid;
3683	u64 route;
3684};
3685
3686static int tb_switch_match(struct device *dev, const void *data)
3687{
3688	struct tb_switch *sw = tb_to_switch(dev);
3689	const struct tb_sw_lookup *lookup = data;
3690
3691	if (!sw)
3692		return 0;
3693	if (sw->tb != lookup->tb)
3694		return 0;
3695
3696	if (lookup->uuid)
3697		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3698
3699	if (lookup->route) {
3700		return sw->config.route_lo == lower_32_bits(lookup->route) &&
3701		       sw->config.route_hi == upper_32_bits(lookup->route);
3702	}
3703
3704	/* Root switch is matched only by depth */
3705	if (!lookup->depth)
3706		return !sw->depth;
3707
3708	return sw->link == lookup->link && sw->depth == lookup->depth;
3709}
3710
3711/**
3712 * tb_switch_find_by_link_depth() - Find switch by link and depth
3713 * @tb: Domain the switch belongs
3714 * @link: Link number the switch is connected
3715 * @depth: Depth of the switch in link
3716 *
3717 * Returned switch has reference count increased so the caller needs to
3718 * call tb_switch_put() when done with the switch.
3719 */
3720struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3721{
3722	struct tb_sw_lookup lookup;
3723	struct device *dev;
3724
3725	memset(&lookup, 0, sizeof(lookup));
3726	lookup.tb = tb;
3727	lookup.link = link;
3728	lookup.depth = depth;
3729
3730	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3731	if (dev)
3732		return tb_to_switch(dev);
3733
3734	return NULL;
3735}
3736
3737/**
3738 * tb_switch_find_by_uuid() - Find switch by UUID
3739 * @tb: Domain the switch belongs
3740 * @uuid: UUID to look for
3741 *
3742 * Returned switch has reference count increased so the caller needs to
3743 * call tb_switch_put() when done with the switch.
3744 */
3745struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3746{
3747	struct tb_sw_lookup lookup;
3748	struct device *dev;
3749
3750	memset(&lookup, 0, sizeof(lookup));
3751	lookup.tb = tb;
3752	lookup.uuid = uuid;
3753
3754	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3755	if (dev)
3756		return tb_to_switch(dev);
3757
3758	return NULL;
3759}
3760
3761/**
3762 * tb_switch_find_by_route() - Find switch by route string
3763 * @tb: Domain the switch belongs
3764 * @route: Route string to look for
3765 *
3766 * Returned switch has reference count increased so the caller needs to
3767 * call tb_switch_put() when done with the switch.
3768 */
3769struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3770{
3771	struct tb_sw_lookup lookup;
3772	struct device *dev;
3773
3774	if (!route)
3775		return tb_switch_get(tb->root_switch);
3776
3777	memset(&lookup, 0, sizeof(lookup));
3778	lookup.tb = tb;
3779	lookup.route = route;
3780
3781	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3782	if (dev)
3783		return tb_to_switch(dev);
3784
3785	return NULL;
3786}
3787
3788/**
3789 * tb_switch_find_port() - return the first port of @type on @sw or NULL
3790 * @sw: Switch to find the port from
3791 * @type: Port type to look for
3792 */
3793struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3794				    enum tb_port_type type)
3795{
3796	struct tb_port *port;
3797
3798	tb_switch_for_each_port(sw, port) {
3799		if (port->config.type == type)
3800			return port;
3801	}
3802
3803	return NULL;
3804}
3805
3806/*
3807 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3808 * device. For now used only for Titan Ridge.
3809 */
3810static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3811				       unsigned int pcie_offset, u32 value)
3812{
3813	u32 offset, command, val;
3814	int ret;
3815
3816	if (sw->generation != 3)
3817		return -EOPNOTSUPP;
3818
3819	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3820	ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3821	if (ret)
3822		return ret;
3823
3824	command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3825	command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3826	command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3827	command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3828			<< TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3829	command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3830
3831	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3832
3833	ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3834	if (ret)
3835		return ret;
3836
3837	ret = tb_switch_wait_for_bit(sw, offset,
3838				     TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3839	if (ret)
3840		return ret;
3841
3842	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3843	if (ret)
3844		return ret;
3845
3846	if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3847		return -ETIMEDOUT;
3848
3849	return 0;
3850}
3851
3852/**
3853 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3854 * @sw: Router to enable PCIe L1
3855 *
3856 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3857 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3858 * was configured. Due to Intel platforms limitation, shall be called only
3859 * for first hop switch.
3860 */
3861int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3862{
3863	struct tb_switch *parent = tb_switch_parent(sw);
3864	int ret;
3865
3866	if (!tb_route(sw))
3867		return 0;
3868
3869	if (!tb_switch_is_titan_ridge(sw))
3870		return 0;
3871
3872	/* Enable PCIe L1 enable only for first hop router (depth = 1) */
3873	if (tb_route(parent))
3874		return 0;
3875
3876	/* Write to downstream PCIe bridge #5 aka Dn4 */
3877	ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3878	if (ret)
3879		return ret;
3880
3881	/* Write to Upstream PCIe bridge #0 aka Up0 */
3882	return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3883}
3884
3885/**
3886 * tb_switch_xhci_connect() - Connect internal xHCI
3887 * @sw: Router whose xHCI to connect
3888 *
3889 * Can be called to any router. For Alpine Ridge and Titan Ridge
3890 * performs special flows that bring the xHCI functional for any device
3891 * connected to the type-C port. Call only after PCIe tunnel has been
3892 * established. The function only does the connect if not done already
3893 * so can be called several times for the same router.
3894 */
3895int tb_switch_xhci_connect(struct tb_switch *sw)
3896{
3897	struct tb_port *port1, *port3;
3898	int ret;
3899
3900	if (sw->generation != 3)
3901		return 0;
3902
3903	port1 = &sw->ports[1];
3904	port3 = &sw->ports[3];
3905
3906	if (tb_switch_is_alpine_ridge(sw)) {
3907		bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3908
3909		usb_port1 = tb_lc_is_usb_plugged(port1);
3910		usb_port3 = tb_lc_is_usb_plugged(port3);
3911		xhci_port1 = tb_lc_is_xhci_connected(port1);
3912		xhci_port3 = tb_lc_is_xhci_connected(port3);
3913
3914		/* Figure out correct USB port to connect */
3915		if (usb_port1 && !xhci_port1) {
3916			ret = tb_lc_xhci_connect(port1);
3917			if (ret)
3918				return ret;
3919		}
3920		if (usb_port3 && !xhci_port3)
3921			return tb_lc_xhci_connect(port3);
3922	} else if (tb_switch_is_titan_ridge(sw)) {
3923		ret = tb_lc_xhci_connect(port1);
3924		if (ret)
3925			return ret;
3926		return tb_lc_xhci_connect(port3);
3927	}
3928
3929	return 0;
3930}
3931
3932/**
3933 * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3934 * @sw: Router whose xHCI to disconnect
3935 *
3936 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3937 * ports.
3938 */
3939void tb_switch_xhci_disconnect(struct tb_switch *sw)
3940{
3941	if (sw->generation == 3) {
3942		struct tb_port *port1 = &sw->ports[1];
3943		struct tb_port *port3 = &sw->ports[3];
3944
3945		tb_lc_xhci_disconnect(port1);
3946		tb_port_dbg(port1, "disconnected xHCI\n");
3947		tb_lc_xhci_disconnect(port3);
3948		tb_port_dbg(port3, "disconnected xHCI\n");
3949	}
3950}
3951