1/*
2 * Sonics Silicon Backplane
3 * Broadcom ChipCommon Power Management Unit driver
4 *
5 * Copyright 2009, Michael Buesch <m@bues.ch>
6 * Copyright 2007, Broadcom Corporation
7 *
8 * Licensed under the GNU/GPL. See COPYING for details.
9 */
10
11#include "ssb_private.h"
12
13#include <linux/ssb/ssb.h>
14#include <linux/ssb/ssb_regs.h>
15#include <linux/ssb/ssb_driver_chipcommon.h>
16#include <linux/delay.h>
17#include <linux/export.h>
18#ifdef CONFIG_BCM47XX
19#include <linux/bcm47xx_nvram.h>
20#endif
21
22static u32 ssb_chipco_pll_read(struct ssb_chipcommon *cc, u32 offset)
23{
24	chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
25	return chipco_read32(cc, SSB_CHIPCO_PLLCTL_DATA);
26}
27
28static void ssb_chipco_pll_write(struct ssb_chipcommon *cc,
29				 u32 offset, u32 value)
30{
31	chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
32	chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, value);
33}
34
35static void ssb_chipco_regctl_maskset(struct ssb_chipcommon *cc,
36				   u32 offset, u32 mask, u32 set)
37{
38	u32 value;
39
40	chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
41	chipco_write32(cc, SSB_CHIPCO_REGCTL_ADDR, offset);
42	chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
43	value = chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
44	value &= mask;
45	value |= set;
46	chipco_write32(cc, SSB_CHIPCO_REGCTL_DATA, value);
47	chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
48}
49
50struct pmu0_plltab_entry {
51	u16 freq;	/* Crystal frequency in kHz.*/
52	u8 xf;		/* Crystal frequency value for PMU control */
53	u8 wb_int;
54	u32 wb_frac;
55};
56
57static const struct pmu0_plltab_entry pmu0_plltab[] = {
58	{ .freq = 12000, .xf =  1, .wb_int = 73, .wb_frac = 349525, },
59	{ .freq = 13000, .xf =  2, .wb_int = 67, .wb_frac = 725937, },
60	{ .freq = 14400, .xf =  3, .wb_int = 61, .wb_frac = 116508, },
61	{ .freq = 15360, .xf =  4, .wb_int = 57, .wb_frac = 305834, },
62	{ .freq = 16200, .xf =  5, .wb_int = 54, .wb_frac = 336579, },
63	{ .freq = 16800, .xf =  6, .wb_int = 52, .wb_frac = 399457, },
64	{ .freq = 19200, .xf =  7, .wb_int = 45, .wb_frac = 873813, },
65	{ .freq = 19800, .xf =  8, .wb_int = 44, .wb_frac = 466033, },
66	{ .freq = 20000, .xf =  9, .wb_int = 44, .wb_frac = 0,      },
67	{ .freq = 25000, .xf = 10, .wb_int = 70, .wb_frac = 419430, },
68	{ .freq = 26000, .xf = 11, .wb_int = 67, .wb_frac = 725937, },
69	{ .freq = 30000, .xf = 12, .wb_int = 58, .wb_frac = 699050, },
70	{ .freq = 38400, .xf = 13, .wb_int = 45, .wb_frac = 873813, },
71	{ .freq = 40000, .xf = 14, .wb_int = 45, .wb_frac = 0,      },
72};
73#define SSB_PMU0_DEFAULT_XTALFREQ	20000
74
75static const struct pmu0_plltab_entry * pmu0_plltab_find_entry(u32 crystalfreq)
76{
77	const struct pmu0_plltab_entry *e;
78	unsigned int i;
79
80	for (i = 0; i < ARRAY_SIZE(pmu0_plltab); i++) {
81		e = &pmu0_plltab[i];
82		if (e->freq == crystalfreq)
83			return e;
84	}
85
86	return NULL;
87}
88
89/* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
90static void ssb_pmu0_pllinit_r0(struct ssb_chipcommon *cc,
91				u32 crystalfreq)
92{
93	struct ssb_bus *bus = cc->dev->bus;
94	const struct pmu0_plltab_entry *e = NULL;
95	u32 pmuctl, tmp, pllctl;
96	unsigned int i;
97
98	if (crystalfreq)
99		e = pmu0_plltab_find_entry(crystalfreq);
100	if (!e)
101		e = pmu0_plltab_find_entry(SSB_PMU0_DEFAULT_XTALFREQ);
102	BUG_ON(!e);
103	crystalfreq = e->freq;
104	cc->pmu.crystalfreq = e->freq;
105
106	/* Check if the PLL already is programmed to this frequency. */
107	pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
108	if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
109		/* We're already there... */
110		return;
111	}
112
113	dev_info(cc->dev->dev, "Programming PLL to %u.%03u MHz\n",
114		 crystalfreq / 1000, crystalfreq % 1000);
115
116	/* First turn the PLL off. */
117	switch (bus->chip_id) {
118	case 0x4328:
119		chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
120			      ~(1 << SSB_PMURES_4328_BB_PLL_PU));
121		chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
122			      ~(1 << SSB_PMURES_4328_BB_PLL_PU));
123		break;
124	case 0x5354:
125		chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
126			      ~(1 << SSB_PMURES_5354_BB_PLL_PU));
127		chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
128			      ~(1 << SSB_PMURES_5354_BB_PLL_PU));
129		break;
130	default:
131		WARN_ON(1);
132	}
133	for (i = 1500; i; i--) {
134		tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
135		if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
136			break;
137		udelay(10);
138	}
139	tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
140	if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
141		dev_emerg(cc->dev->dev, "Failed to turn the PLL off!\n");
142
143	/* Set PDIV in PLL control 0. */
144	pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL0);
145	if (crystalfreq >= SSB_PMU0_PLLCTL0_PDIV_FREQ)
146		pllctl |= SSB_PMU0_PLLCTL0_PDIV_MSK;
147	else
148		pllctl &= ~SSB_PMU0_PLLCTL0_PDIV_MSK;
149	ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL0, pllctl);
150
151	/* Set WILD in PLL control 1. */
152	pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL1);
153	pllctl &= ~SSB_PMU0_PLLCTL1_STOPMOD;
154	pllctl &= ~(SSB_PMU0_PLLCTL1_WILD_IMSK | SSB_PMU0_PLLCTL1_WILD_FMSK);
155	pllctl |= ((u32)e->wb_int << SSB_PMU0_PLLCTL1_WILD_IMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_IMSK;
156	pllctl |= ((u32)e->wb_frac << SSB_PMU0_PLLCTL1_WILD_FMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_FMSK;
157	if (e->wb_frac == 0)
158		pllctl |= SSB_PMU0_PLLCTL1_STOPMOD;
159	ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL1, pllctl);
160
161	/* Set WILD in PLL control 2. */
162	pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL2);
163	pllctl &= ~SSB_PMU0_PLLCTL2_WILD_IMSKHI;
164	pllctl |= (((u32)e->wb_int >> 4) << SSB_PMU0_PLLCTL2_WILD_IMSKHI_SHIFT) & SSB_PMU0_PLLCTL2_WILD_IMSKHI;
165	ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL2, pllctl);
166
167	/* Set the crystalfrequency and the divisor. */
168	pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
169	pmuctl &= ~SSB_CHIPCO_PMU_CTL_ILP_DIV;
170	pmuctl |= (((crystalfreq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
171			& SSB_CHIPCO_PMU_CTL_ILP_DIV;
172	pmuctl &= ~SSB_CHIPCO_PMU_CTL_XTALFREQ;
173	pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
174	chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
175}
176
177struct pmu1_plltab_entry {
178	u16 freq;	/* Crystal frequency in kHz.*/
179	u8 xf;		/* Crystal frequency value for PMU control */
180	u8 ndiv_int;
181	u32 ndiv_frac;
182	u8 p1div;
183	u8 p2div;
184};
185
186static const struct pmu1_plltab_entry pmu1_plltab[] = {
187	{ .freq = 12000, .xf =  1, .p1div = 3, .p2div = 22, .ndiv_int =  0x9, .ndiv_frac = 0xFFFFEF, },
188	{ .freq = 13000, .xf =  2, .p1div = 1, .p2div =  6, .ndiv_int =  0xb, .ndiv_frac = 0x483483, },
189	{ .freq = 14400, .xf =  3, .p1div = 1, .p2div = 10, .ndiv_int =  0xa, .ndiv_frac = 0x1C71C7, },
190	{ .freq = 15360, .xf =  4, .p1div = 1, .p2div =  5, .ndiv_int =  0xb, .ndiv_frac = 0x755555, },
191	{ .freq = 16200, .xf =  5, .p1div = 1, .p2div = 10, .ndiv_int =  0x5, .ndiv_frac = 0x6E9E06, },
192	{ .freq = 16800, .xf =  6, .p1div = 1, .p2div = 10, .ndiv_int =  0x5, .ndiv_frac = 0x3CF3CF, },
193	{ .freq = 19200, .xf =  7, .p1div = 1, .p2div =  9, .ndiv_int =  0x5, .ndiv_frac = 0x17B425, },
194	{ .freq = 19800, .xf =  8, .p1div = 1, .p2div = 11, .ndiv_int =  0x4, .ndiv_frac = 0xA57EB,  },
195	{ .freq = 20000, .xf =  9, .p1div = 1, .p2div = 11, .ndiv_int =  0x4, .ndiv_frac = 0,        },
196	{ .freq = 24000, .xf = 10, .p1div = 3, .p2div = 11, .ndiv_int =  0xa, .ndiv_frac = 0,        },
197	{ .freq = 25000, .xf = 11, .p1div = 5, .p2div = 16, .ndiv_int =  0xb, .ndiv_frac = 0,        },
198	{ .freq = 26000, .xf = 12, .p1div = 1, .p2div =  2, .ndiv_int = 0x10, .ndiv_frac = 0xEC4EC4, },
199	{ .freq = 30000, .xf = 13, .p1div = 3, .p2div =  8, .ndiv_int =  0xb, .ndiv_frac = 0,        },
200	{ .freq = 38400, .xf = 14, .p1div = 1, .p2div =  5, .ndiv_int =  0x4, .ndiv_frac = 0x955555, },
201	{ .freq = 40000, .xf = 15, .p1div = 1, .p2div =  2, .ndiv_int =  0xb, .ndiv_frac = 0,        },
202};
203
204#define SSB_PMU1_DEFAULT_XTALFREQ	15360
205
206static const struct pmu1_plltab_entry * pmu1_plltab_find_entry(u32 crystalfreq)
207{
208	const struct pmu1_plltab_entry *e;
209	unsigned int i;
210
211	for (i = 0; i < ARRAY_SIZE(pmu1_plltab); i++) {
212		e = &pmu1_plltab[i];
213		if (e->freq == crystalfreq)
214			return e;
215	}
216
217	return NULL;
218}
219
220/* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
221static void ssb_pmu1_pllinit_r0(struct ssb_chipcommon *cc,
222				u32 crystalfreq)
223{
224	struct ssb_bus *bus = cc->dev->bus;
225	const struct pmu1_plltab_entry *e = NULL;
226	u32 buffer_strength = 0;
227	u32 tmp, pllctl, pmuctl;
228	unsigned int i;
229
230	if (bus->chip_id == 0x4312) {
231		/* We do not touch the BCM4312 PLL and assume
232		 * the default crystal settings work out-of-the-box. */
233		cc->pmu.crystalfreq = 20000;
234		return;
235	}
236
237	if (crystalfreq)
238		e = pmu1_plltab_find_entry(crystalfreq);
239	if (!e)
240		e = pmu1_plltab_find_entry(SSB_PMU1_DEFAULT_XTALFREQ);
241	BUG_ON(!e);
242	crystalfreq = e->freq;
243	cc->pmu.crystalfreq = e->freq;
244
245	/* Check if the PLL already is programmed to this frequency. */
246	pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
247	if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
248		/* We're already there... */
249		return;
250	}
251
252	dev_info(cc->dev->dev, "Programming PLL to %u.%03u MHz\n",
253		 crystalfreq / 1000, crystalfreq % 1000);
254
255	/* First turn the PLL off. */
256	switch (bus->chip_id) {
257	case 0x4325:
258		chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
259			      ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
260				(1 << SSB_PMURES_4325_HT_AVAIL)));
261		chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
262			      ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
263				(1 << SSB_PMURES_4325_HT_AVAIL)));
264		/* Adjust the BBPLL to 2 on all channels later. */
265		buffer_strength = 0x222222;
266		break;
267	default:
268		WARN_ON(1);
269	}
270	for (i = 1500; i; i--) {
271		tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
272		if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
273			break;
274		udelay(10);
275	}
276	tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
277	if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
278		dev_emerg(cc->dev->dev, "Failed to turn the PLL off!\n");
279
280	/* Set p1div and p2div. */
281	pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL0);
282	pllctl &= ~(SSB_PMU1_PLLCTL0_P1DIV | SSB_PMU1_PLLCTL0_P2DIV);
283	pllctl |= ((u32)e->p1div << SSB_PMU1_PLLCTL0_P1DIV_SHIFT) & SSB_PMU1_PLLCTL0_P1DIV;
284	pllctl |= ((u32)e->p2div << SSB_PMU1_PLLCTL0_P2DIV_SHIFT) & SSB_PMU1_PLLCTL0_P2DIV;
285	ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, pllctl);
286
287	/* Set ndiv int and ndiv mode */
288	pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL2);
289	pllctl &= ~(SSB_PMU1_PLLCTL2_NDIVINT | SSB_PMU1_PLLCTL2_NDIVMODE);
290	pllctl |= ((u32)e->ndiv_int << SSB_PMU1_PLLCTL2_NDIVINT_SHIFT) & SSB_PMU1_PLLCTL2_NDIVINT;
291	pllctl |= (1 << SSB_PMU1_PLLCTL2_NDIVMODE_SHIFT) & SSB_PMU1_PLLCTL2_NDIVMODE;
292	ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, pllctl);
293
294	/* Set ndiv frac */
295	pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL3);
296	pllctl &= ~SSB_PMU1_PLLCTL3_NDIVFRAC;
297	pllctl |= ((u32)e->ndiv_frac << SSB_PMU1_PLLCTL3_NDIVFRAC_SHIFT) & SSB_PMU1_PLLCTL3_NDIVFRAC;
298	ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, pllctl);
299
300	/* Change the drive strength, if required. */
301	if (buffer_strength) {
302		pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL5);
303		pllctl &= ~SSB_PMU1_PLLCTL5_CLKDRV;
304		pllctl |= (buffer_strength << SSB_PMU1_PLLCTL5_CLKDRV_SHIFT) & SSB_PMU1_PLLCTL5_CLKDRV;
305		ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, pllctl);
306	}
307
308	/* Tune the crystalfreq and the divisor. */
309	pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
310	pmuctl &= ~(SSB_CHIPCO_PMU_CTL_ILP_DIV | SSB_CHIPCO_PMU_CTL_XTALFREQ);
311	pmuctl |= ((((u32)e->freq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
312			& SSB_CHIPCO_PMU_CTL_ILP_DIV;
313	pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
314	chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
315}
316
317static void ssb_pmu_pll_init(struct ssb_chipcommon *cc)
318{
319	struct ssb_bus *bus = cc->dev->bus;
320	u32 crystalfreq = 0; /* in kHz. 0 = keep default freq. */
321
322	if (bus->bustype == SSB_BUSTYPE_SSB) {
323#ifdef CONFIG_BCM47XX
324		char buf[20];
325		if (bcm47xx_nvram_getenv("xtalfreq", buf, sizeof(buf)) >= 0)
326			crystalfreq = simple_strtoul(buf, NULL, 0);
327#endif
328	}
329
330	switch (bus->chip_id) {
331	case 0x4312:
332	case 0x4325:
333		ssb_pmu1_pllinit_r0(cc, crystalfreq);
334		break;
335	case 0x4328:
336		ssb_pmu0_pllinit_r0(cc, crystalfreq);
337		break;
338	case 0x5354:
339		if (crystalfreq == 0)
340			crystalfreq = 25000;
341		ssb_pmu0_pllinit_r0(cc, crystalfreq);
342		break;
343	case 0x4322:
344		if (cc->pmu.rev == 2) {
345			chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, 0x0000000A);
346			chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, 0x380005C0);
347		}
348		break;
349	case 43222:
350		break;
351	default:
352		dev_err(cc->dev->dev, "ERROR: PLL init unknown for device %04X\n",
353			bus->chip_id);
354	}
355}
356
357struct pmu_res_updown_tab_entry {
358	u8 resource;	/* The resource number */
359	u16 updown;	/* The updown value */
360};
361
362enum pmu_res_depend_tab_task {
363	PMU_RES_DEP_SET = 1,
364	PMU_RES_DEP_ADD,
365	PMU_RES_DEP_REMOVE,
366};
367
368struct pmu_res_depend_tab_entry {
369	u8 resource;	/* The resource number */
370	u8 task;	/* SET | ADD | REMOVE */
371	u32 depend;	/* The depend mask */
372};
373
374static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4328a0[] = {
375	{ .resource = SSB_PMURES_4328_EXT_SWITCHER_PWM,		.updown = 0x0101, },
376	{ .resource = SSB_PMURES_4328_BB_SWITCHER_PWM,		.updown = 0x1F01, },
377	{ .resource = SSB_PMURES_4328_BB_SWITCHER_BURST,	.updown = 0x010F, },
378	{ .resource = SSB_PMURES_4328_BB_EXT_SWITCHER_BURST,	.updown = 0x0101, },
379	{ .resource = SSB_PMURES_4328_ILP_REQUEST,		.updown = 0x0202, },
380	{ .resource = SSB_PMURES_4328_RADIO_SWITCHER_PWM,	.updown = 0x0F01, },
381	{ .resource = SSB_PMURES_4328_RADIO_SWITCHER_BURST,	.updown = 0x0F01, },
382	{ .resource = SSB_PMURES_4328_ROM_SWITCH,		.updown = 0x0101, },
383	{ .resource = SSB_PMURES_4328_PA_REF_LDO,		.updown = 0x0F01, },
384	{ .resource = SSB_PMURES_4328_RADIO_LDO,		.updown = 0x0F01, },
385	{ .resource = SSB_PMURES_4328_AFE_LDO,			.updown = 0x0F01, },
386	{ .resource = SSB_PMURES_4328_PLL_LDO,			.updown = 0x0F01, },
387	{ .resource = SSB_PMURES_4328_BG_FILTBYP,		.updown = 0x0101, },
388	{ .resource = SSB_PMURES_4328_TX_FILTBYP,		.updown = 0x0101, },
389	{ .resource = SSB_PMURES_4328_RX_FILTBYP,		.updown = 0x0101, },
390	{ .resource = SSB_PMURES_4328_XTAL_PU,			.updown = 0x0101, },
391	{ .resource = SSB_PMURES_4328_XTAL_EN,			.updown = 0xA001, },
392	{ .resource = SSB_PMURES_4328_BB_PLL_FILTBYP,		.updown = 0x0101, },
393	{ .resource = SSB_PMURES_4328_RF_PLL_FILTBYP,		.updown = 0x0101, },
394	{ .resource = SSB_PMURES_4328_BB_PLL_PU,		.updown = 0x0701, },
395};
396
397static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4328a0[] = {
398	{
399		/* Adjust ILP Request to avoid forcing EXT/BB into burst mode. */
400		.resource = SSB_PMURES_4328_ILP_REQUEST,
401		.task = PMU_RES_DEP_SET,
402		.depend = ((1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
403			   (1 << SSB_PMURES_4328_BB_SWITCHER_PWM)),
404	},
405};
406
407static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4325a0[] = {
408	{ .resource = SSB_PMURES_4325_XTAL_PU,			.updown = 0x1501, },
409};
410
411static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4325a0[] = {
412	{
413		/* Adjust HT-Available dependencies. */
414		.resource = SSB_PMURES_4325_HT_AVAIL,
415		.task = PMU_RES_DEP_ADD,
416		.depend = ((1 << SSB_PMURES_4325_RX_PWRSW_PU) |
417			   (1 << SSB_PMURES_4325_TX_PWRSW_PU) |
418			   (1 << SSB_PMURES_4325_LOGEN_PWRSW_PU) |
419			   (1 << SSB_PMURES_4325_AFE_PWRSW_PU)),
420	},
421};
422
423static void ssb_pmu_resources_init(struct ssb_chipcommon *cc)
424{
425	struct ssb_bus *bus = cc->dev->bus;
426	u32 min_msk = 0, max_msk = 0;
427	unsigned int i;
428	const struct pmu_res_updown_tab_entry *updown_tab = NULL;
429	unsigned int updown_tab_size = 0;
430	const struct pmu_res_depend_tab_entry *depend_tab = NULL;
431	unsigned int depend_tab_size = 0;
432
433	switch (bus->chip_id) {
434	case 0x4312:
435		 min_msk = 0xCBB;
436		 break;
437	case 0x4322:
438	case 43222:
439		/* We keep the default settings:
440		 * min_msk = 0xCBB
441		 * max_msk = 0x7FFFF
442		 */
443		break;
444	case 0x4325:
445		/* Power OTP down later. */
446		min_msk = (1 << SSB_PMURES_4325_CBUCK_BURST) |
447			  (1 << SSB_PMURES_4325_LNLDO2_PU);
448		if (chipco_read32(cc, SSB_CHIPCO_CHIPSTAT) &
449		    SSB_CHIPCO_CHST_4325_PMUTOP_2B)
450			min_msk |= (1 << SSB_PMURES_4325_CLDO_CBUCK_BURST);
451		/* The PLL may turn on, if it decides so. */
452		max_msk = 0xFFFFF;
453		updown_tab = pmu_res_updown_tab_4325a0;
454		updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4325a0);
455		depend_tab = pmu_res_depend_tab_4325a0;
456		depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4325a0);
457		break;
458	case 0x4328:
459		min_msk = (1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
460			  (1 << SSB_PMURES_4328_BB_SWITCHER_PWM) |
461			  (1 << SSB_PMURES_4328_XTAL_EN);
462		/* The PLL may turn on, if it decides so. */
463		max_msk = 0xFFFFF;
464		updown_tab = pmu_res_updown_tab_4328a0;
465		updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4328a0);
466		depend_tab = pmu_res_depend_tab_4328a0;
467		depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4328a0);
468		break;
469	case 0x5354:
470		/* The PLL may turn on, if it decides so. */
471		max_msk = 0xFFFFF;
472		break;
473	default:
474		dev_err(cc->dev->dev, "ERROR: PMU resource config unknown for device %04X\n",
475			bus->chip_id);
476	}
477
478	if (updown_tab) {
479		for (i = 0; i < updown_tab_size; i++) {
480			chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
481				       updown_tab[i].resource);
482			chipco_write32(cc, SSB_CHIPCO_PMU_RES_UPDNTM,
483				       updown_tab[i].updown);
484		}
485	}
486	if (depend_tab) {
487		for (i = 0; i < depend_tab_size; i++) {
488			chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
489				       depend_tab[i].resource);
490			switch (depend_tab[i].task) {
491			case PMU_RES_DEP_SET:
492				chipco_write32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
493					       depend_tab[i].depend);
494				break;
495			case PMU_RES_DEP_ADD:
496				chipco_set32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
497					     depend_tab[i].depend);
498				break;
499			case PMU_RES_DEP_REMOVE:
500				chipco_mask32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
501					      ~(depend_tab[i].depend));
502				break;
503			default:
504				WARN_ON(1);
505			}
506		}
507	}
508
509	/* Set the resource masks. */
510	if (min_msk)
511		chipco_write32(cc, SSB_CHIPCO_PMU_MINRES_MSK, min_msk);
512	if (max_msk)
513		chipco_write32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, max_msk);
514}
515
516/* https://bcm-v4.sipsolutions.net/802.11/SSB/PmuInit */
517void ssb_pmu_init(struct ssb_chipcommon *cc)
518{
519	u32 pmucap;
520
521	if (!(cc->capabilities & SSB_CHIPCO_CAP_PMU))
522		return;
523
524	pmucap = chipco_read32(cc, SSB_CHIPCO_PMU_CAP);
525	cc->pmu.rev = (pmucap & SSB_CHIPCO_PMU_CAP_REVISION);
526
527	dev_dbg(cc->dev->dev, "Found rev %u PMU (capabilities 0x%08X)\n",
528		cc->pmu.rev, pmucap);
529
530	if (cc->pmu.rev == 1)
531		chipco_mask32(cc, SSB_CHIPCO_PMU_CTL,
532			      ~SSB_CHIPCO_PMU_CTL_NOILPONW);
533	else
534		chipco_set32(cc, SSB_CHIPCO_PMU_CTL,
535			     SSB_CHIPCO_PMU_CTL_NOILPONW);
536	ssb_pmu_pll_init(cc);
537	ssb_pmu_resources_init(cc);
538}
539
540void ssb_pmu_set_ldo_voltage(struct ssb_chipcommon *cc,
541			     enum ssb_pmu_ldo_volt_id id, u32 voltage)
542{
543	struct ssb_bus *bus = cc->dev->bus;
544	u32 addr, shift, mask;
545
546	switch (bus->chip_id) {
547	case 0x4328:
548	case 0x5354:
549		switch (id) {
550		case LDO_VOLT1:
551			addr = 2;
552			shift = 25;
553			mask = 0xF;
554			break;
555		case LDO_VOLT2:
556			addr = 3;
557			shift = 1;
558			mask = 0xF;
559			break;
560		case LDO_VOLT3:
561			addr = 3;
562			shift = 9;
563			mask = 0xF;
564			break;
565		case LDO_PAREF:
566			addr = 3;
567			shift = 17;
568			mask = 0x3F;
569			break;
570		default:
571			WARN_ON(1);
572			return;
573		}
574		break;
575	case 0x4312:
576		if (WARN_ON(id != LDO_PAREF))
577			return;
578		addr = 0;
579		shift = 21;
580		mask = 0x3F;
581		break;
582	default:
583		return;
584	}
585
586	ssb_chipco_regctl_maskset(cc, addr, ~(mask << shift),
587				  (voltage & mask) << shift);
588}
589
590void ssb_pmu_set_ldo_paref(struct ssb_chipcommon *cc, bool on)
591{
592	struct ssb_bus *bus = cc->dev->bus;
593	int ldo;
594
595	switch (bus->chip_id) {
596	case 0x4312:
597		ldo = SSB_PMURES_4312_PA_REF_LDO;
598		break;
599	case 0x4328:
600		ldo = SSB_PMURES_4328_PA_REF_LDO;
601		break;
602	case 0x5354:
603		ldo = SSB_PMURES_5354_PA_REF_LDO;
604		break;
605	default:
606		return;
607	}
608
609	if (on)
610		chipco_set32(cc, SSB_CHIPCO_PMU_MINRES_MSK, 1 << ldo);
611	else
612		chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK, ~(1 << ldo));
613	chipco_read32(cc, SSB_CHIPCO_PMU_MINRES_MSK); //SPEC FIXME found via mmiotrace - dummy read?
614}
615
616EXPORT_SYMBOL(ssb_pmu_set_ldo_voltage);
617EXPORT_SYMBOL(ssb_pmu_set_ldo_paref);
618
619static u32 ssb_pmu_get_alp_clock_clk0(struct ssb_chipcommon *cc)
620{
621	u32 crystalfreq;
622	const struct pmu0_plltab_entry *e = NULL;
623
624	crystalfreq = (chipco_read32(cc, SSB_CHIPCO_PMU_CTL) &
625		       SSB_CHIPCO_PMU_CTL_XTALFREQ)  >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT;
626	e = pmu0_plltab_find_entry(crystalfreq);
627	BUG_ON(!e);
628	return e->freq * 1000;
629}
630
631u32 ssb_pmu_get_alp_clock(struct ssb_chipcommon *cc)
632{
633	struct ssb_bus *bus = cc->dev->bus;
634
635	switch (bus->chip_id) {
636	case 0x5354:
637		return ssb_pmu_get_alp_clock_clk0(cc);
638	default:
639		dev_err(cc->dev->dev, "ERROR: PMU alp clock unknown for device %04X\n",
640			bus->chip_id);
641		return 0;
642	}
643}
644
645u32 ssb_pmu_get_cpu_clock(struct ssb_chipcommon *cc)
646{
647	struct ssb_bus *bus = cc->dev->bus;
648
649	switch (bus->chip_id) {
650	case 0x5354:
651		/* 5354 chip uses a non programmable PLL of frequency 240MHz */
652		return 240000000;
653	default:
654		dev_err(cc->dev->dev, "ERROR: PMU cpu clock unknown for device %04X\n",
655			bus->chip_id);
656		return 0;
657	}
658}
659
660u32 ssb_pmu_get_controlclock(struct ssb_chipcommon *cc)
661{
662	struct ssb_bus *bus = cc->dev->bus;
663
664	switch (bus->chip_id) {
665	case 0x5354:
666		return 120000000;
667	default:
668		dev_err(cc->dev->dev, "ERROR: PMU controlclock unknown for device %04X\n",
669			bus->chip_id);
670		return 0;
671	}
672}
673
674void ssb_pmu_spuravoid_pllupdate(struct ssb_chipcommon *cc, int spuravoid)
675{
676	u32 pmu_ctl = 0;
677
678	switch (cc->dev->bus->chip_id) {
679	case 0x4322:
680		ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, 0x11100070);
681		ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL1, 0x1014140a);
682		ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, 0x88888854);
683		if (spuravoid == 1)
684			ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x05201828);
685		else
686			ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x05001828);
687		pmu_ctl = SSB_CHIPCO_PMU_CTL_PLL_UPD;
688		break;
689	case 43222:
690		if (spuravoid == 1) {
691			ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, 0x11500008);
692			ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL1, 0x0C000C06);
693			ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x0F600a08);
694			ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, 0x00000000);
695			ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL4, 0x2001E920);
696			ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, 0x88888815);
697		} else {
698			ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, 0x11100008);
699			ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL1, 0x0c000c06);
700			ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x03000a08);
701			ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, 0x00000000);
702			ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL4, 0x200005c0);
703			ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, 0x88888855);
704		}
705		pmu_ctl = SSB_CHIPCO_PMU_CTL_PLL_UPD;
706		break;
707	default:
708		dev_err(cc->dev->dev,
709			"Unknown spuravoidance settings for chip 0x%04X, not changing PLL\n",
710			cc->dev->bus->chip_id);
711		return;
712	}
713
714	chipco_set32(cc, SSB_CHIPCO_PMU_CTL, pmu_ctl);
715}
716EXPORT_SYMBOL_GPL(ssb_pmu_spuravoid_pllupdate);
717