1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * TI K3 DSP Remote Processor(s) driver
4 *
5 * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
6 *	Suman Anna <s-anna@ti.com>
7 */
8
9#include <linux/io.h>
10#include <linux/mailbox_client.h>
11#include <linux/module.h>
12#include <linux/of.h>
13#include <linux/of_reserved_mem.h>
14#include <linux/omap-mailbox.h>
15#include <linux/platform_device.h>
16#include <linux/remoteproc.h>
17#include <linux/reset.h>
18#include <linux/slab.h>
19
20#include "omap_remoteproc.h"
21#include "remoteproc_internal.h"
22#include "ti_sci_proc.h"
23
24#define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK	(SZ_16M - 1)
25
26/**
27 * struct k3_dsp_mem - internal memory structure
28 * @cpu_addr: MPU virtual address of the memory region
29 * @bus_addr: Bus address used to access the memory region
30 * @dev_addr: Device address of the memory region from DSP view
31 * @size: Size of the memory region
32 */
33struct k3_dsp_mem {
34	void __iomem *cpu_addr;
35	phys_addr_t bus_addr;
36	u32 dev_addr;
37	size_t size;
38};
39
40/**
41 * struct k3_dsp_mem_data - memory definitions for a DSP
42 * @name: name for this memory entry
43 * @dev_addr: device address for the memory entry
44 */
45struct k3_dsp_mem_data {
46	const char *name;
47	const u32 dev_addr;
48};
49
50/**
51 * struct k3_dsp_dev_data - device data structure for a DSP
52 * @mems: pointer to memory definitions for a DSP
53 * @num_mems: number of memory regions in @mems
54 * @boot_align_addr: boot vector address alignment granularity
55 * @uses_lreset: flag to denote the need for local reset management
56 */
57struct k3_dsp_dev_data {
58	const struct k3_dsp_mem_data *mems;
59	u32 num_mems;
60	u32 boot_align_addr;
61	bool uses_lreset;
62};
63
64/**
65 * struct k3_dsp_rproc - k3 DSP remote processor driver structure
66 * @dev: cached device pointer
67 * @rproc: remoteproc device handle
68 * @mem: internal memory regions data
69 * @num_mems: number of internal memory regions
70 * @rmem: reserved memory regions data
71 * @num_rmems: number of reserved memory regions
72 * @reset: reset control handle
73 * @data: pointer to DSP-specific device data
74 * @tsp: TI-SCI processor control handle
75 * @ti_sci: TI-SCI handle
76 * @ti_sci_id: TI-SCI device identifier
77 * @mbox: mailbox channel handle
78 * @client: mailbox client to request the mailbox channel
79 */
80struct k3_dsp_rproc {
81	struct device *dev;
82	struct rproc *rproc;
83	struct k3_dsp_mem *mem;
84	int num_mems;
85	struct k3_dsp_mem *rmem;
86	int num_rmems;
87	struct reset_control *reset;
88	const struct k3_dsp_dev_data *data;
89	struct ti_sci_proc *tsp;
90	const struct ti_sci_handle *ti_sci;
91	u32 ti_sci_id;
92	struct mbox_chan *mbox;
93	struct mbox_client client;
94};
95
96/**
97 * k3_dsp_rproc_mbox_callback() - inbound mailbox message handler
98 * @client: mailbox client pointer used for requesting the mailbox channel
99 * @data: mailbox payload
100 *
101 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
102 * message is received. Usually, the mailbox payload simply contains
103 * the index of the virtqueue that is kicked by the remote processor,
104 * and we let remoteproc core handle it.
105 *
106 * In addition to virtqueue indices, we also have some out-of-band values
107 * that indicate different events. Those values are deliberately very
108 * large so they don't coincide with virtqueue indices.
109 */
110static void k3_dsp_rproc_mbox_callback(struct mbox_client *client, void *data)
111{
112	struct k3_dsp_rproc *kproc = container_of(client, struct k3_dsp_rproc,
113						  client);
114	struct device *dev = kproc->rproc->dev.parent;
115	const char *name = kproc->rproc->name;
116	u32 msg = omap_mbox_message(data);
117
118	dev_dbg(dev, "mbox msg: 0x%x\n", msg);
119
120	switch (msg) {
121	case RP_MBOX_CRASH:
122		/*
123		 * remoteproc detected an exception, but error recovery is not
124		 * supported. So, just log this for now
125		 */
126		dev_err(dev, "K3 DSP rproc %s crashed\n", name);
127		break;
128	case RP_MBOX_ECHO_REPLY:
129		dev_info(dev, "received echo reply from %s\n", name);
130		break;
131	default:
132		/* silently handle all other valid messages */
133		if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
134			return;
135		if (msg > kproc->rproc->max_notifyid) {
136			dev_dbg(dev, "dropping unknown message 0x%x", msg);
137			return;
138		}
139		/* msg contains the index of the triggered vring */
140		if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
141			dev_dbg(dev, "no message was found in vqid %d\n", msg);
142	}
143}
144
145/*
146 * Kick the remote processor to notify about pending unprocessed messages.
147 * The vqid usage is not used and is inconsequential, as the kick is performed
148 * through a simulated GPIO (a bit in an IPC interrupt-triggering register),
149 * the remote processor is expected to process both its Tx and Rx virtqueues.
150 */
151static void k3_dsp_rproc_kick(struct rproc *rproc, int vqid)
152{
153	struct k3_dsp_rproc *kproc = rproc->priv;
154	struct device *dev = rproc->dev.parent;
155	mbox_msg_t msg = (mbox_msg_t)vqid;
156	int ret;
157
158	/* send the index of the triggered virtqueue in the mailbox payload */
159	ret = mbox_send_message(kproc->mbox, (void *)msg);
160	if (ret < 0)
161		dev_err(dev, "failed to send mailbox message (%pe)\n",
162			ERR_PTR(ret));
163}
164
165/* Put the DSP processor into reset */
166static int k3_dsp_rproc_reset(struct k3_dsp_rproc *kproc)
167{
168	struct device *dev = kproc->dev;
169	int ret;
170
171	ret = reset_control_assert(kproc->reset);
172	if (ret) {
173		dev_err(dev, "local-reset assert failed (%pe)\n", ERR_PTR(ret));
174		return ret;
175	}
176
177	if (kproc->data->uses_lreset)
178		return ret;
179
180	ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
181						    kproc->ti_sci_id);
182	if (ret) {
183		dev_err(dev, "module-reset assert failed (%pe)\n", ERR_PTR(ret));
184		if (reset_control_deassert(kproc->reset))
185			dev_warn(dev, "local-reset deassert back failed\n");
186	}
187
188	return ret;
189}
190
191/* Release the DSP processor from reset */
192static int k3_dsp_rproc_release(struct k3_dsp_rproc *kproc)
193{
194	struct device *dev = kproc->dev;
195	int ret;
196
197	if (kproc->data->uses_lreset)
198		goto lreset;
199
200	ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
201						    kproc->ti_sci_id);
202	if (ret) {
203		dev_err(dev, "module-reset deassert failed (%pe)\n", ERR_PTR(ret));
204		return ret;
205	}
206
207lreset:
208	ret = reset_control_deassert(kproc->reset);
209	if (ret) {
210		dev_err(dev, "local-reset deassert failed, (%pe)\n", ERR_PTR(ret));
211		if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
212							  kproc->ti_sci_id))
213			dev_warn(dev, "module-reset assert back failed\n");
214	}
215
216	return ret;
217}
218
219static int k3_dsp_rproc_request_mbox(struct rproc *rproc)
220{
221	struct k3_dsp_rproc *kproc = rproc->priv;
222	struct mbox_client *client = &kproc->client;
223	struct device *dev = kproc->dev;
224	int ret;
225
226	client->dev = dev;
227	client->tx_done = NULL;
228	client->rx_callback = k3_dsp_rproc_mbox_callback;
229	client->tx_block = false;
230	client->knows_txdone = false;
231
232	kproc->mbox = mbox_request_channel(client, 0);
233	if (IS_ERR(kproc->mbox)) {
234		ret = -EBUSY;
235		dev_err(dev, "mbox_request_channel failed: %ld\n",
236			PTR_ERR(kproc->mbox));
237		return ret;
238	}
239
240	/*
241	 * Ping the remote processor, this is only for sanity-sake for now;
242	 * there is no functional effect whatsoever.
243	 *
244	 * Note that the reply will _not_ arrive immediately: this message
245	 * will wait in the mailbox fifo until the remote processor is booted.
246	 */
247	ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
248	if (ret < 0) {
249		dev_err(dev, "mbox_send_message failed (%pe)\n", ERR_PTR(ret));
250		mbox_free_channel(kproc->mbox);
251		return ret;
252	}
253
254	return 0;
255}
256/*
257 * The C66x DSP cores have a local reset that affects only the CPU, and a
258 * generic module reset that powers on the device and allows the DSP internal
259 * memories to be accessed while the local reset is asserted. This function is
260 * used to release the global reset on C66x DSPs to allow loading into the DSP
261 * internal RAMs. The .prepare() ops is invoked by remoteproc core before any
262 * firmware loading, and is followed by the .start() ops after loading to
263 * actually let the C66x DSP cores run. This callback is invoked only in
264 * remoteproc mode.
265 */
266static int k3_dsp_rproc_prepare(struct rproc *rproc)
267{
268	struct k3_dsp_rproc *kproc = rproc->priv;
269	struct device *dev = kproc->dev;
270	int ret;
271
272	ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
273						    kproc->ti_sci_id);
274	if (ret)
275		dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading (%pe)\n",
276			ERR_PTR(ret));
277
278	return ret;
279}
280
281/*
282 * This function implements the .unprepare() ops and performs the complimentary
283 * operations to that of the .prepare() ops. The function is used to assert the
284 * global reset on applicable C66x cores. This completes the second portion of
285 * powering down the C66x DSP cores. The cores themselves are only halted in the
286 * .stop() callback through the local reset, and the .unprepare() ops is invoked
287 * by the remoteproc core after the remoteproc is stopped to balance the global
288 * reset. This callback is invoked only in remoteproc mode.
289 */
290static int k3_dsp_rproc_unprepare(struct rproc *rproc)
291{
292	struct k3_dsp_rproc *kproc = rproc->priv;
293	struct device *dev = kproc->dev;
294	int ret;
295
296	ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
297						    kproc->ti_sci_id);
298	if (ret)
299		dev_err(dev, "module-reset assert failed (%pe)\n", ERR_PTR(ret));
300
301	return ret;
302}
303
304/*
305 * Power up the DSP remote processor.
306 *
307 * This function will be invoked only after the firmware for this rproc
308 * was loaded, parsed successfully, and all of its resource requirements
309 * were met. This callback is invoked only in remoteproc mode.
310 */
311static int k3_dsp_rproc_start(struct rproc *rproc)
312{
313	struct k3_dsp_rproc *kproc = rproc->priv;
314	struct device *dev = kproc->dev;
315	u32 boot_addr;
316	int ret;
317
318	ret = k3_dsp_rproc_request_mbox(rproc);
319	if (ret)
320		return ret;
321
322	boot_addr = rproc->bootaddr;
323	if (boot_addr & (kproc->data->boot_align_addr - 1)) {
324		dev_err(dev, "invalid boot address 0x%x, must be aligned on a 0x%x boundary\n",
325			boot_addr, kproc->data->boot_align_addr);
326		ret = -EINVAL;
327		goto put_mbox;
328	}
329
330	dev_err(dev, "booting DSP core using boot addr = 0x%x\n", boot_addr);
331	ret = ti_sci_proc_set_config(kproc->tsp, boot_addr, 0, 0);
332	if (ret)
333		goto put_mbox;
334
335	ret = k3_dsp_rproc_release(kproc);
336	if (ret)
337		goto put_mbox;
338
339	return 0;
340
341put_mbox:
342	mbox_free_channel(kproc->mbox);
343	return ret;
344}
345
346/*
347 * Stop the DSP remote processor.
348 *
349 * This function puts the DSP processor into reset, and finishes processing
350 * of any pending messages. This callback is invoked only in remoteproc mode.
351 */
352static int k3_dsp_rproc_stop(struct rproc *rproc)
353{
354	struct k3_dsp_rproc *kproc = rproc->priv;
355
356	mbox_free_channel(kproc->mbox);
357
358	k3_dsp_rproc_reset(kproc);
359
360	return 0;
361}
362
363/*
364 * Attach to a running DSP remote processor (IPC-only mode)
365 *
366 * This rproc attach callback only needs to request the mailbox, the remote
367 * processor is already booted, so there is no need to issue any TI-SCI
368 * commands to boot the DSP core. This callback is invoked only in IPC-only
369 * mode.
370 */
371static int k3_dsp_rproc_attach(struct rproc *rproc)
372{
373	struct k3_dsp_rproc *kproc = rproc->priv;
374	struct device *dev = kproc->dev;
375	int ret;
376
377	ret = k3_dsp_rproc_request_mbox(rproc);
378	if (ret)
379		return ret;
380
381	dev_info(dev, "DSP initialized in IPC-only mode\n");
382	return 0;
383}
384
385/*
386 * Detach from a running DSP remote processor (IPC-only mode)
387 *
388 * This rproc detach callback performs the opposite operation to attach callback
389 * and only needs to release the mailbox, the DSP core is not stopped and will
390 * be left to continue to run its booted firmware. This callback is invoked only
391 * in IPC-only mode.
392 */
393static int k3_dsp_rproc_detach(struct rproc *rproc)
394{
395	struct k3_dsp_rproc *kproc = rproc->priv;
396	struct device *dev = kproc->dev;
397
398	mbox_free_channel(kproc->mbox);
399	dev_info(dev, "DSP deinitialized in IPC-only mode\n");
400	return 0;
401}
402
403/*
404 * This function implements the .get_loaded_rsc_table() callback and is used
405 * to provide the resource table for a booted DSP in IPC-only mode. The K3 DSP
406 * firmwares follow a design-by-contract approach and are expected to have the
407 * resource table at the base of the DDR region reserved for firmware usage.
408 * This provides flexibility for the remote processor to be booted by different
409 * bootloaders that may or may not have the ability to publish the resource table
410 * address and size through a DT property. This callback is invoked only in
411 * IPC-only mode.
412 */
413static struct resource_table *k3_dsp_get_loaded_rsc_table(struct rproc *rproc,
414							  size_t *rsc_table_sz)
415{
416	struct k3_dsp_rproc *kproc = rproc->priv;
417	struct device *dev = kproc->dev;
418
419	if (!kproc->rmem[0].cpu_addr) {
420		dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
421		return ERR_PTR(-ENOMEM);
422	}
423
424	/*
425	 * NOTE: The resource table size is currently hard-coded to a maximum
426	 * of 256 bytes. The most common resource table usage for K3 firmwares
427	 * is to only have the vdev resource entry and an optional trace entry.
428	 * The exact size could be computed based on resource table address, but
429	 * the hard-coded value suffices to support the IPC-only mode.
430	 */
431	*rsc_table_sz = 256;
432	return (struct resource_table *)kproc->rmem[0].cpu_addr;
433}
434
435/*
436 * Custom function to translate a DSP device address (internal RAMs only) to a
437 * kernel virtual address.  The DSPs can access their RAMs at either an internal
438 * address visible only from a DSP, or at the SoC-level bus address. Both these
439 * addresses need to be looked through for translation. The translated addresses
440 * can be used either by the remoteproc core for loading (when using kernel
441 * remoteproc loader), or by any rpmsg bus drivers.
442 */
443static void *k3_dsp_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
444{
445	struct k3_dsp_rproc *kproc = rproc->priv;
446	void __iomem *va = NULL;
447	phys_addr_t bus_addr;
448	u32 dev_addr, offset;
449	size_t size;
450	int i;
451
452	if (len == 0)
453		return NULL;
454
455	for (i = 0; i < kproc->num_mems; i++) {
456		bus_addr = kproc->mem[i].bus_addr;
457		dev_addr = kproc->mem[i].dev_addr;
458		size = kproc->mem[i].size;
459
460		if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) {
461			/* handle DSP-view addresses */
462			if (da >= dev_addr &&
463			    ((da + len) <= (dev_addr + size))) {
464				offset = da - dev_addr;
465				va = kproc->mem[i].cpu_addr + offset;
466				return (__force void *)va;
467			}
468		} else {
469			/* handle SoC-view addresses */
470			if (da >= bus_addr &&
471			    (da + len) <= (bus_addr + size)) {
472				offset = da - bus_addr;
473				va = kproc->mem[i].cpu_addr + offset;
474				return (__force void *)va;
475			}
476		}
477	}
478
479	/* handle static DDR reserved memory regions */
480	for (i = 0; i < kproc->num_rmems; i++) {
481		dev_addr = kproc->rmem[i].dev_addr;
482		size = kproc->rmem[i].size;
483
484		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
485			offset = da - dev_addr;
486			va = kproc->rmem[i].cpu_addr + offset;
487			return (__force void *)va;
488		}
489	}
490
491	return NULL;
492}
493
494static const struct rproc_ops k3_dsp_rproc_ops = {
495	.start		= k3_dsp_rproc_start,
496	.stop		= k3_dsp_rproc_stop,
497	.kick		= k3_dsp_rproc_kick,
498	.da_to_va	= k3_dsp_rproc_da_to_va,
499};
500
501static int k3_dsp_rproc_of_get_memories(struct platform_device *pdev,
502					struct k3_dsp_rproc *kproc)
503{
504	const struct k3_dsp_dev_data *data = kproc->data;
505	struct device *dev = &pdev->dev;
506	struct resource *res;
507	int num_mems = 0;
508	int i;
509
510	num_mems = kproc->data->num_mems;
511	kproc->mem = devm_kcalloc(kproc->dev, num_mems,
512				  sizeof(*kproc->mem), GFP_KERNEL);
513	if (!kproc->mem)
514		return -ENOMEM;
515
516	for (i = 0; i < num_mems; i++) {
517		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
518						   data->mems[i].name);
519		if (!res) {
520			dev_err(dev, "found no memory resource for %s\n",
521				data->mems[i].name);
522			return -EINVAL;
523		}
524		if (!devm_request_mem_region(dev, res->start,
525					     resource_size(res),
526					     dev_name(dev))) {
527			dev_err(dev, "could not request %s region for resource\n",
528				data->mems[i].name);
529			return -EBUSY;
530		}
531
532		kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
533							 resource_size(res));
534		if (!kproc->mem[i].cpu_addr) {
535			dev_err(dev, "failed to map %s memory\n",
536				data->mems[i].name);
537			return -ENOMEM;
538		}
539		kproc->mem[i].bus_addr = res->start;
540		kproc->mem[i].dev_addr = data->mems[i].dev_addr;
541		kproc->mem[i].size = resource_size(res);
542
543		dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
544			data->mems[i].name, &kproc->mem[i].bus_addr,
545			kproc->mem[i].size, kproc->mem[i].cpu_addr,
546			kproc->mem[i].dev_addr);
547	}
548	kproc->num_mems = num_mems;
549
550	return 0;
551}
552
553static void k3_dsp_mem_release(void *data)
554{
555	struct device *dev = data;
556
557	of_reserved_mem_device_release(dev);
558}
559
560static int k3_dsp_reserved_mem_init(struct k3_dsp_rproc *kproc)
561{
562	struct device *dev = kproc->dev;
563	struct device_node *np = dev->of_node;
564	struct device_node *rmem_np;
565	struct reserved_mem *rmem;
566	int num_rmems;
567	int ret, i;
568
569	num_rmems = of_property_count_elems_of_size(np, "memory-region",
570						    sizeof(phandle));
571	if (num_rmems < 0) {
572		dev_err(dev, "device does not reserved memory regions (%pe)\n",
573			ERR_PTR(num_rmems));
574		return -EINVAL;
575	}
576	if (num_rmems < 2) {
577		dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
578			num_rmems);
579		return -EINVAL;
580	}
581
582	/* use reserved memory region 0 for vring DMA allocations */
583	ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
584	if (ret) {
585		dev_err(dev, "device cannot initialize DMA pool (%pe)\n",
586			ERR_PTR(ret));
587		return ret;
588	}
589	ret = devm_add_action_or_reset(dev, k3_dsp_mem_release, dev);
590	if (ret)
591		return ret;
592
593	num_rmems--;
594	kproc->rmem = devm_kcalloc(dev, num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
595	if (!kproc->rmem)
596		return -ENOMEM;
597
598	/* use remaining reserved memory regions for static carveouts */
599	for (i = 0; i < num_rmems; i++) {
600		rmem_np = of_parse_phandle(np, "memory-region", i + 1);
601		if (!rmem_np)
602			return -EINVAL;
603
604		rmem = of_reserved_mem_lookup(rmem_np);
605		if (!rmem) {
606			of_node_put(rmem_np);
607			return -EINVAL;
608		}
609		of_node_put(rmem_np);
610
611		kproc->rmem[i].bus_addr = rmem->base;
612		/* 64-bit address regions currently not supported */
613		kproc->rmem[i].dev_addr = (u32)rmem->base;
614		kproc->rmem[i].size = rmem->size;
615		kproc->rmem[i].cpu_addr = devm_ioremap_wc(dev, rmem->base, rmem->size);
616		if (!kproc->rmem[i].cpu_addr) {
617			dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
618				i + 1, &rmem->base, &rmem->size);
619			return -ENOMEM;
620		}
621
622		dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
623			i + 1, &kproc->rmem[i].bus_addr,
624			kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
625			kproc->rmem[i].dev_addr);
626	}
627	kproc->num_rmems = num_rmems;
628
629	return 0;
630}
631
632static void k3_dsp_release_tsp(void *data)
633{
634	struct ti_sci_proc *tsp = data;
635
636	ti_sci_proc_release(tsp);
637}
638
639static
640struct ti_sci_proc *k3_dsp_rproc_of_get_tsp(struct device *dev,
641					    const struct ti_sci_handle *sci)
642{
643	struct ti_sci_proc *tsp;
644	u32 temp[2];
645	int ret;
646
647	ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids",
648					 temp, 2);
649	if (ret < 0)
650		return ERR_PTR(ret);
651
652	tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL);
653	if (!tsp)
654		return ERR_PTR(-ENOMEM);
655
656	tsp->dev = dev;
657	tsp->sci = sci;
658	tsp->ops = &sci->ops.proc_ops;
659	tsp->proc_id = temp[0];
660	tsp->host_id = temp[1];
661
662	return tsp;
663}
664
665static int k3_dsp_rproc_probe(struct platform_device *pdev)
666{
667	struct device *dev = &pdev->dev;
668	struct device_node *np = dev->of_node;
669	const struct k3_dsp_dev_data *data;
670	struct k3_dsp_rproc *kproc;
671	struct rproc *rproc;
672	const char *fw_name;
673	bool p_state = false;
674	int ret = 0;
675
676	data = of_device_get_match_data(dev);
677	if (!data)
678		return -ENODEV;
679
680	ret = rproc_of_parse_firmware(dev, 0, &fw_name);
681	if (ret)
682		return dev_err_probe(dev, ret, "failed to parse firmware-name property\n");
683
684	rproc = devm_rproc_alloc(dev, dev_name(dev), &k3_dsp_rproc_ops,
685				 fw_name, sizeof(*kproc));
686	if (!rproc)
687		return -ENOMEM;
688
689	rproc->has_iommu = false;
690	rproc->recovery_disabled = true;
691	if (data->uses_lreset) {
692		rproc->ops->prepare = k3_dsp_rproc_prepare;
693		rproc->ops->unprepare = k3_dsp_rproc_unprepare;
694	}
695	kproc = rproc->priv;
696	kproc->rproc = rproc;
697	kproc->dev = dev;
698	kproc->data = data;
699
700	kproc->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
701	if (IS_ERR(kproc->ti_sci))
702		return dev_err_probe(dev, PTR_ERR(kproc->ti_sci),
703				     "failed to get ti-sci handle\n");
704
705	ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id);
706	if (ret)
707		return dev_err_probe(dev, ret, "missing 'ti,sci-dev-id' property\n");
708
709	kproc->reset = devm_reset_control_get_exclusive(dev, NULL);
710	if (IS_ERR(kproc->reset))
711		return dev_err_probe(dev, PTR_ERR(kproc->reset),
712				     "failed to get reset\n");
713
714	kproc->tsp = k3_dsp_rproc_of_get_tsp(dev, kproc->ti_sci);
715	if (IS_ERR(kproc->tsp))
716		return dev_err_probe(dev, PTR_ERR(kproc->tsp),
717				     "failed to construct ti-sci proc control\n");
718
719	ret = ti_sci_proc_request(kproc->tsp);
720	if (ret < 0) {
721		dev_err_probe(dev, ret, "ti_sci_proc_request failed\n");
722		return ret;
723	}
724	ret = devm_add_action_or_reset(dev, k3_dsp_release_tsp, kproc->tsp);
725	if (ret)
726		return ret;
727
728	ret = k3_dsp_rproc_of_get_memories(pdev, kproc);
729	if (ret)
730		return ret;
731
732	ret = k3_dsp_reserved_mem_init(kproc);
733	if (ret)
734		return dev_err_probe(dev, ret, "reserved memory init failed\n");
735
736	ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id,
737					       NULL, &p_state);
738	if (ret)
739		return dev_err_probe(dev, ret, "failed to get initial state, mode cannot be determined\n");
740
741	/* configure J721E devices for either remoteproc or IPC-only mode */
742	if (p_state) {
743		dev_info(dev, "configured DSP for IPC-only mode\n");
744		rproc->state = RPROC_DETACHED;
745		/* override rproc ops with only required IPC-only mode ops */
746		rproc->ops->prepare = NULL;
747		rproc->ops->unprepare = NULL;
748		rproc->ops->start = NULL;
749		rproc->ops->stop = NULL;
750		rproc->ops->attach = k3_dsp_rproc_attach;
751		rproc->ops->detach = k3_dsp_rproc_detach;
752		rproc->ops->get_loaded_rsc_table = k3_dsp_get_loaded_rsc_table;
753	} else {
754		dev_info(dev, "configured DSP for remoteproc mode\n");
755		/*
756		 * ensure the DSP local reset is asserted to ensure the DSP
757		 * doesn't execute bogus code in .prepare() when the module
758		 * reset is released.
759		 */
760		if (data->uses_lreset) {
761			ret = reset_control_status(kproc->reset);
762			if (ret < 0) {
763				return dev_err_probe(dev, ret, "failed to get reset status\n");
764			} else if (ret == 0) {
765				dev_warn(dev, "local reset is deasserted for device\n");
766				k3_dsp_rproc_reset(kproc);
767			}
768		}
769	}
770
771	ret = devm_rproc_add(dev, rproc);
772	if (ret)
773		return dev_err_probe(dev, ret, "failed to add register device with remoteproc core\n");
774
775	platform_set_drvdata(pdev, kproc);
776
777	return 0;
778}
779
780static void k3_dsp_rproc_remove(struct platform_device *pdev)
781{
782	struct k3_dsp_rproc *kproc = platform_get_drvdata(pdev);
783	struct rproc *rproc = kproc->rproc;
784	struct device *dev = &pdev->dev;
785	int ret;
786
787	if (rproc->state == RPROC_ATTACHED) {
788		ret = rproc_detach(rproc);
789		if (ret)
790			dev_err(dev, "failed to detach proc (%pe)\n", ERR_PTR(ret));
791	}
792}
793
794static const struct k3_dsp_mem_data c66_mems[] = {
795	{ .name = "l2sram", .dev_addr = 0x800000 },
796	{ .name = "l1pram", .dev_addr = 0xe00000 },
797	{ .name = "l1dram", .dev_addr = 0xf00000 },
798};
799
800/* C71x cores only have a L1P Cache, there are no L1P SRAMs */
801static const struct k3_dsp_mem_data c71_mems[] = {
802	{ .name = "l2sram", .dev_addr = 0x800000 },
803	{ .name = "l1dram", .dev_addr = 0xe00000 },
804};
805
806static const struct k3_dsp_mem_data c7xv_mems[] = {
807	{ .name = "l2sram", .dev_addr = 0x800000 },
808};
809
810static const struct k3_dsp_dev_data c66_data = {
811	.mems = c66_mems,
812	.num_mems = ARRAY_SIZE(c66_mems),
813	.boot_align_addr = SZ_1K,
814	.uses_lreset = true,
815};
816
817static const struct k3_dsp_dev_data c71_data = {
818	.mems = c71_mems,
819	.num_mems = ARRAY_SIZE(c71_mems),
820	.boot_align_addr = SZ_2M,
821	.uses_lreset = false,
822};
823
824static const struct k3_dsp_dev_data c7xv_data = {
825	.mems = c7xv_mems,
826	.num_mems = ARRAY_SIZE(c7xv_mems),
827	.boot_align_addr = SZ_2M,
828	.uses_lreset = false,
829};
830
831static const struct of_device_id k3_dsp_of_match[] = {
832	{ .compatible = "ti,j721e-c66-dsp", .data = &c66_data, },
833	{ .compatible = "ti,j721e-c71-dsp", .data = &c71_data, },
834	{ .compatible = "ti,j721s2-c71-dsp", .data = &c71_data, },
835	{ .compatible = "ti,am62a-c7xv-dsp", .data = &c7xv_data, },
836	{ /* sentinel */ },
837};
838MODULE_DEVICE_TABLE(of, k3_dsp_of_match);
839
840static struct platform_driver k3_dsp_rproc_driver = {
841	.probe	= k3_dsp_rproc_probe,
842	.remove_new = k3_dsp_rproc_remove,
843	.driver	= {
844		.name = "k3-dsp-rproc",
845		.of_match_table = k3_dsp_of_match,
846	},
847};
848
849module_platform_driver(k3_dsp_rproc_driver);
850
851MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
852MODULE_LICENSE("GPL v2");
853MODULE_DESCRIPTION("TI K3 DSP Remoteproc driver");
854