1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c)  2018 Intel Corporation */
3
4#include <linux/bitfield.h>
5#include "igc_phy.h"
6
7/**
8 * igc_check_reset_block - Check if PHY reset is blocked
9 * @hw: pointer to the HW structure
10 *
11 * Read the PHY management control register and check whether a PHY reset
12 * is blocked.  If a reset is not blocked return 0, otherwise
13 * return IGC_ERR_BLK_PHY_RESET (12).
14 */
15s32 igc_check_reset_block(struct igc_hw *hw)
16{
17	u32 manc;
18
19	manc = rd32(IGC_MANC);
20
21	return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
22		IGC_ERR_BLK_PHY_RESET : 0;
23}
24
25/**
26 * igc_get_phy_id - Retrieve the PHY ID and revision
27 * @hw: pointer to the HW structure
28 *
29 * Reads the PHY registers and stores the PHY ID and possibly the PHY
30 * revision in the hardware structure.
31 */
32s32 igc_get_phy_id(struct igc_hw *hw)
33{
34	struct igc_phy_info *phy = &hw->phy;
35	s32 ret_val = 0;
36	u16 phy_id;
37
38	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
39	if (ret_val)
40		goto out;
41
42	phy->id = (u32)(phy_id << 16);
43	usleep_range(200, 500);
44	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
45	if (ret_val)
46		goto out;
47
48	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
49	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
50
51out:
52	return ret_val;
53}
54
55/**
56 * igc_phy_has_link - Polls PHY for link
57 * @hw: pointer to the HW structure
58 * @iterations: number of times to poll for link
59 * @usec_interval: delay between polling attempts
60 * @success: pointer to whether polling was successful or not
61 *
62 * Polls the PHY status register for link, 'iterations' number of times.
63 */
64s32 igc_phy_has_link(struct igc_hw *hw, u32 iterations,
65		     u32 usec_interval, bool *success)
66{
67	u16 i, phy_status;
68	s32 ret_val = 0;
69
70	for (i = 0; i < iterations; i++) {
71		/* Some PHYs require the PHY_STATUS register to be read
72		 * twice due to the link bit being sticky.  No harm doing
73		 * it across the board.
74		 */
75		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
76		if (ret_val && usec_interval > 0) {
77			/* If the first read fails, another entity may have
78			 * ownership of the resources, wait and try again to
79			 * see if they have relinquished the resources yet.
80			 */
81			if (usec_interval >= 1000)
82				mdelay(usec_interval / 1000);
83			else
84				udelay(usec_interval);
85		}
86		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
87		if (ret_val)
88			break;
89		if (phy_status & MII_SR_LINK_STATUS)
90			break;
91		if (usec_interval >= 1000)
92			mdelay(usec_interval / 1000);
93		else
94			udelay(usec_interval);
95	}
96
97	*success = (i < iterations) ? true : false;
98
99	return ret_val;
100}
101
102/**
103 * igc_power_up_phy_copper - Restore copper link in case of PHY power down
104 * @hw: pointer to the HW structure
105 *
106 * In the case of a PHY power down to save power, or to turn off link during a
107 * driver unload, restore the link to previous settings.
108 */
109void igc_power_up_phy_copper(struct igc_hw *hw)
110{
111	u16 mii_reg = 0;
112
113	/* The PHY will retain its settings across a power down/up cycle */
114	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
115	mii_reg &= ~MII_CR_POWER_DOWN;
116	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
117}
118
119/**
120 * igc_power_down_phy_copper - Power down copper PHY
121 * @hw: pointer to the HW structure
122 *
123 * Power down PHY to save power when interface is down and wake on lan
124 * is not enabled.
125 */
126void igc_power_down_phy_copper(struct igc_hw *hw)
127{
128	u16 mii_reg = 0;
129
130	/* The PHY will retain its settings across a power down/up cycle */
131	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
132	mii_reg |= MII_CR_POWER_DOWN;
133	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
134	usleep_range(1000, 2000);
135}
136
137/**
138 * igc_check_downshift - Checks whether a downshift in speed occurred
139 * @hw: pointer to the HW structure
140 *
141 * A downshift is detected by querying the PHY link health.
142 */
143void igc_check_downshift(struct igc_hw *hw)
144{
145	struct igc_phy_info *phy = &hw->phy;
146
147	/* speed downshift not supported */
148	phy->speed_downgraded = false;
149}
150
151/**
152 * igc_phy_hw_reset - PHY hardware reset
153 * @hw: pointer to the HW structure
154 *
155 * Verify the reset block is not blocking us from resetting.  Acquire
156 * semaphore (if necessary) and read/set/write the device control reset
157 * bit in the PHY.  Wait the appropriate delay time for the device to
158 * reset and release the semaphore (if necessary).
159 */
160s32 igc_phy_hw_reset(struct igc_hw *hw)
161{
162	struct igc_phy_info *phy = &hw->phy;
163	u32 phpm = 0, timeout = 10000;
164	s32  ret_val;
165	u32 ctrl;
166
167	ret_val = igc_check_reset_block(hw);
168	if (ret_val) {
169		ret_val = 0;
170		goto out;
171	}
172
173	ret_val = phy->ops.acquire(hw);
174	if (ret_val)
175		goto out;
176
177	phpm = rd32(IGC_I225_PHPM);
178
179	ctrl = rd32(IGC_CTRL);
180	wr32(IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
181	wrfl();
182
183	udelay(phy->reset_delay_us);
184
185	wr32(IGC_CTRL, ctrl);
186	wrfl();
187
188	/* SW should guarantee 100us for the completion of the PHY reset */
189	usleep_range(100, 150);
190	do {
191		phpm = rd32(IGC_I225_PHPM);
192		timeout--;
193		udelay(1);
194	} while (!(phpm & IGC_PHY_RST_COMP) && timeout);
195
196	if (!timeout)
197		hw_dbg("Timeout is expired after a phy reset\n");
198
199	usleep_range(100, 150);
200
201	phy->ops.release(hw);
202
203out:
204	return ret_val;
205}
206
207/**
208 * igc_phy_setup_autoneg - Configure PHY for auto-negotiation
209 * @hw: pointer to the HW structure
210 *
211 * Reads the MII auto-neg advertisement register and/or the 1000T control
212 * register and if the PHY is already setup for auto-negotiation, then
213 * return successful.  Otherwise, setup advertisement and flow control to
214 * the appropriate values for the wanted auto-negotiation.
215 */
216static s32 igc_phy_setup_autoneg(struct igc_hw *hw)
217{
218	struct igc_phy_info *phy = &hw->phy;
219	u16 aneg_multigbt_an_ctrl = 0;
220	u16 mii_1000t_ctrl_reg = 0;
221	u16 mii_autoneg_adv_reg;
222	s32 ret_val;
223
224	phy->autoneg_advertised &= phy->autoneg_mask;
225
226	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
227	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
228	if (ret_val)
229		return ret_val;
230
231	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
232		/* Read the MII 1000Base-T Control Register (Address 9). */
233		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
234					    &mii_1000t_ctrl_reg);
235		if (ret_val)
236			return ret_val;
237	}
238
239	if (phy->autoneg_mask & ADVERTISE_2500_FULL) {
240		/* Read the MULTI GBT AN Control Register - reg 7.32 */
241		ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
242					    MMD_DEVADDR_SHIFT) |
243					    ANEG_MULTIGBT_AN_CTRL,
244					    &aneg_multigbt_an_ctrl);
245
246		if (ret_val)
247			return ret_val;
248	}
249
250	/* Need to parse both autoneg_advertised and fc and set up
251	 * the appropriate PHY registers.  First we will parse for
252	 * autoneg_advertised software override.  Since we can advertise
253	 * a plethora of combinations, we need to check each bit
254	 * individually.
255	 */
256
257	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
258	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
259	 * the  1000Base-T Control Register (Address 9).
260	 */
261	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
262				 NWAY_AR_100TX_HD_CAPS |
263				 NWAY_AR_10T_FD_CAPS   |
264				 NWAY_AR_10T_HD_CAPS);
265	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
266
267	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
268
269	/* Do we want to advertise 10 Mb Half Duplex? */
270	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
271		hw_dbg("Advertise 10mb Half duplex\n");
272		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
273	}
274
275	/* Do we want to advertise 10 Mb Full Duplex? */
276	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
277		hw_dbg("Advertise 10mb Full duplex\n");
278		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
279	}
280
281	/* Do we want to advertise 100 Mb Half Duplex? */
282	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
283		hw_dbg("Advertise 100mb Half duplex\n");
284		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
285	}
286
287	/* Do we want to advertise 100 Mb Full Duplex? */
288	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
289		hw_dbg("Advertise 100mb Full duplex\n");
290		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
291	}
292
293	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
294	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
295		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
296
297	/* Do we want to advertise 1000 Mb Full Duplex? */
298	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
299		hw_dbg("Advertise 1000mb Full duplex\n");
300		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
301	}
302
303	/* We do not allow the Phy to advertise 2500 Mb Half Duplex */
304	if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
305		hw_dbg("Advertise 2500mb Half duplex request denied!\n");
306
307	/* Do we want to advertise 2500 Mb Full Duplex? */
308	if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
309		hw_dbg("Advertise 2500mb Full duplex\n");
310		aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
311	} else {
312		aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
313	}
314
315	/* Check for a software override of the flow control settings, and
316	 * setup the PHY advertisement registers accordingly.  If
317	 * auto-negotiation is enabled, then software will have to set the
318	 * "PAUSE" bits to the correct value in the Auto-Negotiation
319	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
320	 * negotiation.
321	 *
322	 * The possible values of the "fc" parameter are:
323	 *      0:  Flow control is completely disabled
324	 *      1:  Rx flow control is enabled (we can receive pause frames
325	 *          but not send pause frames).
326	 *      2:  Tx flow control is enabled (we can send pause frames
327	 *          but we do not support receiving pause frames).
328	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
329	 *  other:  No software override.  The flow control configuration
330	 *          in the EEPROM is used.
331	 */
332	switch (hw->fc.current_mode) {
333	case igc_fc_none:
334		/* Flow control (Rx & Tx) is completely disabled by a
335		 * software over-ride.
336		 */
337		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
338		break;
339	case igc_fc_rx_pause:
340		/* Rx Flow control is enabled, and Tx Flow control is
341		 * disabled, by a software over-ride.
342		 *
343		 * Since there really isn't a way to advertise that we are
344		 * capable of Rx Pause ONLY, we will advertise that we
345		 * support both symmetric and asymmetric Rx PAUSE.  Later
346		 * (in igc_config_fc_after_link_up) we will disable the
347		 * hw's ability to send PAUSE frames.
348		 */
349		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
350		break;
351	case igc_fc_tx_pause:
352		/* Tx Flow control is enabled, and Rx Flow control is
353		 * disabled, by a software over-ride.
354		 */
355		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
356		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
357		break;
358	case igc_fc_full:
359		/* Flow control (both Rx and Tx) is enabled by a software
360		 * over-ride.
361		 */
362		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
363		break;
364	default:
365		hw_dbg("Flow control param set incorrectly\n");
366		return -IGC_ERR_CONFIG;
367	}
368
369	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
370	if (ret_val)
371		return ret_val;
372
373	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
374
375	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
376		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
377					     mii_1000t_ctrl_reg);
378
379	if (phy->autoneg_mask & ADVERTISE_2500_FULL)
380		ret_val = phy->ops.write_reg(hw,
381					     (STANDARD_AN_REG_MASK <<
382					     MMD_DEVADDR_SHIFT) |
383					     ANEG_MULTIGBT_AN_CTRL,
384					     aneg_multigbt_an_ctrl);
385
386	return ret_val;
387}
388
389/**
390 * igc_wait_autoneg - Wait for auto-neg completion
391 * @hw: pointer to the HW structure
392 *
393 * Waits for auto-negotiation to complete or for the auto-negotiation time
394 * limit to expire, which ever happens first.
395 */
396static s32 igc_wait_autoneg(struct igc_hw *hw)
397{
398	u16 i, phy_status;
399	s32 ret_val = 0;
400
401	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
402	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
403		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
404		if (ret_val)
405			break;
406		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
407		if (ret_val)
408			break;
409		if (phy_status & MII_SR_AUTONEG_COMPLETE)
410			break;
411		msleep(100);
412	}
413
414	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
415	 * has completed.
416	 */
417	return ret_val;
418}
419
420/**
421 * igc_copper_link_autoneg - Setup/Enable autoneg for copper link
422 * @hw: pointer to the HW structure
423 *
424 * Performs initial bounds checking on autoneg advertisement parameter, then
425 * configure to advertise the full capability.  Setup the PHY to autoneg
426 * and restart the negotiation process between the link partner.  If
427 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
428 */
429static s32 igc_copper_link_autoneg(struct igc_hw *hw)
430{
431	struct igc_phy_info *phy = &hw->phy;
432	u16 phy_ctrl;
433	s32 ret_val;
434
435	/* Perform some bounds checking on the autoneg advertisement
436	 * parameter.
437	 */
438	phy->autoneg_advertised &= phy->autoneg_mask;
439
440	/* If autoneg_advertised is zero, we assume it was not defaulted
441	 * by the calling code so we set to advertise full capability.
442	 */
443	if (phy->autoneg_advertised == 0)
444		phy->autoneg_advertised = phy->autoneg_mask;
445
446	hw_dbg("Reconfiguring auto-neg advertisement params\n");
447	ret_val = igc_phy_setup_autoneg(hw);
448	if (ret_val) {
449		hw_dbg("Error Setting up Auto-Negotiation\n");
450		goto out;
451	}
452	hw_dbg("Restarting Auto-Neg\n");
453
454	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
455	 * the Auto Neg Restart bit in the PHY control register.
456	 */
457	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
458	if (ret_val)
459		goto out;
460
461	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
462	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
463	if (ret_val)
464		goto out;
465
466	/* Does the user want to wait for Auto-Neg to complete here, or
467	 * check at a later time (for example, callback routine).
468	 */
469	if (phy->autoneg_wait_to_complete) {
470		ret_val = igc_wait_autoneg(hw);
471		if (ret_val) {
472			hw_dbg("Error while waiting for autoneg to complete\n");
473			goto out;
474		}
475	}
476
477	hw->mac.get_link_status = true;
478
479out:
480	return ret_val;
481}
482
483/**
484 * igc_setup_copper_link - Configure copper link settings
485 * @hw: pointer to the HW structure
486 *
487 * Calls the appropriate function to configure the link for auto-neg or forced
488 * speed and duplex.  Then we check for link, once link is established calls
489 * to configure collision distance and flow control are called.  If link is
490 * not established, we return -IGC_ERR_PHY (-2).
491 */
492s32 igc_setup_copper_link(struct igc_hw *hw)
493{
494	s32 ret_val = 0;
495	bool link;
496
497	if (hw->mac.autoneg) {
498		/* Setup autoneg and flow control advertisement and perform
499		 * autonegotiation.
500		 */
501		ret_val = igc_copper_link_autoneg(hw);
502		if (ret_val)
503			goto out;
504	} else {
505		/* PHY will be set to 10H, 10F, 100H or 100F
506		 * depending on user settings.
507		 */
508		hw_dbg("Forcing Speed and Duplex\n");
509		ret_val = hw->phy.ops.force_speed_duplex(hw);
510		if (ret_val) {
511			hw_dbg("Error Forcing Speed and Duplex\n");
512			goto out;
513		}
514	}
515
516	/* Check link status. Wait up to 100 microseconds for link to become
517	 * valid.
518	 */
519	ret_val = igc_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
520	if (ret_val)
521		goto out;
522
523	if (link) {
524		hw_dbg("Valid link established!!!\n");
525		igc_config_collision_dist(hw);
526		ret_val = igc_config_fc_after_link_up(hw);
527	} else {
528		hw_dbg("Unable to establish link!!!\n");
529	}
530
531out:
532	return ret_val;
533}
534
535/**
536 * igc_read_phy_reg_mdic - Read MDI control register
537 * @hw: pointer to the HW structure
538 * @offset: register offset to be read
539 * @data: pointer to the read data
540 *
541 * Reads the MDI control register in the PHY at offset and stores the
542 * information read to data.
543 */
544static s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data)
545{
546	struct igc_phy_info *phy = &hw->phy;
547	u32 i, mdic = 0;
548	s32 ret_val = 0;
549
550	if (offset > MAX_PHY_REG_ADDRESS) {
551		hw_dbg("PHY Address %d is out of range\n", offset);
552		ret_val = -IGC_ERR_PARAM;
553		goto out;
554	}
555
556	/* Set up Op-code, Phy Address, and register offset in the MDI
557	 * Control register.  The MAC will take care of interfacing with the
558	 * PHY to retrieve the desired data.
559	 */
560	mdic = ((offset << IGC_MDIC_REG_SHIFT) |
561		(phy->addr << IGC_MDIC_PHY_SHIFT) |
562		(IGC_MDIC_OP_READ));
563
564	wr32(IGC_MDIC, mdic);
565
566	/* Poll the ready bit to see if the MDI read completed
567	 * Increasing the time out as testing showed failures with
568	 * the lower time out
569	 */
570	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
571		udelay(50);
572		mdic = rd32(IGC_MDIC);
573		if (mdic & IGC_MDIC_READY)
574			break;
575	}
576	if (!(mdic & IGC_MDIC_READY)) {
577		hw_dbg("MDI Read did not complete\n");
578		ret_val = -IGC_ERR_PHY;
579		goto out;
580	}
581	if (mdic & IGC_MDIC_ERROR) {
582		hw_dbg("MDI Error\n");
583		ret_val = -IGC_ERR_PHY;
584		goto out;
585	}
586	*data = (u16)mdic;
587
588out:
589	return ret_val;
590}
591
592/**
593 * igc_write_phy_reg_mdic - Write MDI control register
594 * @hw: pointer to the HW structure
595 * @offset: register offset to write to
596 * @data: data to write to register at offset
597 *
598 * Writes data to MDI control register in the PHY at offset.
599 */
600static s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data)
601{
602	struct igc_phy_info *phy = &hw->phy;
603	u32 i, mdic = 0;
604	s32 ret_val = 0;
605
606	if (offset > MAX_PHY_REG_ADDRESS) {
607		hw_dbg("PHY Address %d is out of range\n", offset);
608		ret_val = -IGC_ERR_PARAM;
609		goto out;
610	}
611
612	/* Set up Op-code, Phy Address, and register offset in the MDI
613	 * Control register.  The MAC will take care of interfacing with the
614	 * PHY to write the desired data.
615	 */
616	mdic = (((u32)data) |
617		(offset << IGC_MDIC_REG_SHIFT) |
618		(phy->addr << IGC_MDIC_PHY_SHIFT) |
619		(IGC_MDIC_OP_WRITE));
620
621	wr32(IGC_MDIC, mdic);
622
623	/* Poll the ready bit to see if the MDI read completed
624	 * Increasing the time out as testing showed failures with
625	 * the lower time out
626	 */
627	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
628		udelay(50);
629		mdic = rd32(IGC_MDIC);
630		if (mdic & IGC_MDIC_READY)
631			break;
632	}
633	if (!(mdic & IGC_MDIC_READY)) {
634		hw_dbg("MDI Write did not complete\n");
635		ret_val = -IGC_ERR_PHY;
636		goto out;
637	}
638	if (mdic & IGC_MDIC_ERROR) {
639		hw_dbg("MDI Error\n");
640		ret_val = -IGC_ERR_PHY;
641		goto out;
642	}
643
644out:
645	return ret_val;
646}
647
648/**
649 * __igc_access_xmdio_reg - Read/write XMDIO register
650 * @hw: pointer to the HW structure
651 * @address: XMDIO address to program
652 * @dev_addr: device address to program
653 * @data: pointer to value to read/write from/to the XMDIO address
654 * @read: boolean flag to indicate read or write
655 */
656static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address,
657				  u8 dev_addr, u16 *data, bool read)
658{
659	s32 ret_val;
660
661	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
662	if (ret_val)
663		return ret_val;
664
665	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
666	if (ret_val)
667		return ret_val;
668
669	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
670					dev_addr);
671	if (ret_val)
672		return ret_val;
673
674	if (read)
675		ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
676	else
677		ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
678	if (ret_val)
679		return ret_val;
680
681	/* Recalibrate the device back to 0 */
682	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
683	if (ret_val)
684		return ret_val;
685
686	return ret_val;
687}
688
689/**
690 * igc_read_xmdio_reg - Read XMDIO register
691 * @hw: pointer to the HW structure
692 * @addr: XMDIO address to program
693 * @dev_addr: device address to program
694 * @data: value to be read from the EMI address
695 */
696static s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr,
697			      u8 dev_addr, u16 *data)
698{
699	return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
700}
701
702/**
703 * igc_write_xmdio_reg - Write XMDIO register
704 * @hw: pointer to the HW structure
705 * @addr: XMDIO address to program
706 * @dev_addr: device address to program
707 * @data: value to be written to the XMDIO address
708 */
709static s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr,
710			       u8 dev_addr, u16 data)
711{
712	return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false);
713}
714
715/**
716 * igc_write_phy_reg_gpy - Write GPY PHY register
717 * @hw: pointer to the HW structure
718 * @offset: register offset to write to
719 * @data: data to write at register offset
720 *
721 * Acquires semaphore, if necessary, then writes the data to PHY register
722 * at the offset. Release any acquired semaphores before exiting.
723 */
724s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data)
725{
726	u8 dev_addr = FIELD_GET(GPY_MMD_MASK, offset);
727	s32 ret_val;
728
729	offset = offset & GPY_REG_MASK;
730
731	if (!dev_addr) {
732		ret_val = hw->phy.ops.acquire(hw);
733		if (ret_val)
734			return ret_val;
735		ret_val = igc_write_phy_reg_mdic(hw, offset, data);
736		hw->phy.ops.release(hw);
737	} else {
738		ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr,
739					      data);
740	}
741
742	return ret_val;
743}
744
745/**
746 * igc_read_phy_reg_gpy - Read GPY PHY register
747 * @hw: pointer to the HW structure
748 * @offset: lower half is register offset to read to
749 * upper half is MMD to use.
750 * @data: data to read at register offset
751 *
752 * Acquires semaphore, if necessary, then reads the data in the PHY register
753 * at the offset. Release any acquired semaphores before exiting.
754 */
755s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data)
756{
757	u8 dev_addr = FIELD_GET(GPY_MMD_MASK, offset);
758	s32 ret_val;
759
760	offset = offset & GPY_REG_MASK;
761
762	if (!dev_addr) {
763		ret_val = hw->phy.ops.acquire(hw);
764		if (ret_val)
765			return ret_val;
766		ret_val = igc_read_phy_reg_mdic(hw, offset, data);
767		hw->phy.ops.release(hw);
768	} else {
769		ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr,
770					     data);
771	}
772
773	return ret_val;
774}
775
776/**
777 * igc_read_phy_fw_version - Read gPHY firmware version
778 * @hw: pointer to the HW structure
779 */
780u16 igc_read_phy_fw_version(struct igc_hw *hw)
781{
782	struct igc_phy_info *phy = &hw->phy;
783	u16 gphy_version = 0;
784	u16 ret_val;
785
786	/* NVM image version is reported as firmware version for i225 device */
787	ret_val = phy->ops.read_reg(hw, IGC_GPHY_VERSION, &gphy_version);
788	if (ret_val)
789		hw_dbg("igc_phy: read wrong gphy version\n");
790
791	return gphy_version;
792}
793