1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4 */
5#include <linux/bitops.h>
6#include <linux/clk.h>
7#include <linux/delay.h>
8#include <linux/dmaengine.h>
9#include <linux/dma-mapping.h>
10#include <linux/dma/qcom_adm.h>
11#include <linux/dma/qcom_bam_dma.h>
12#include <linux/module.h>
13#include <linux/mtd/partitions.h>
14#include <linux/mtd/rawnand.h>
15#include <linux/of.h>
16#include <linux/platform_device.h>
17#include <linux/slab.h>
18
19/* NANDc reg offsets */
20#define	NAND_FLASH_CMD			0x00
21#define	NAND_ADDR0			0x04
22#define	NAND_ADDR1			0x08
23#define	NAND_FLASH_CHIP_SELECT		0x0c
24#define	NAND_EXEC_CMD			0x10
25#define	NAND_FLASH_STATUS		0x14
26#define	NAND_BUFFER_STATUS		0x18
27#define	NAND_DEV0_CFG0			0x20
28#define	NAND_DEV0_CFG1			0x24
29#define	NAND_DEV0_ECC_CFG		0x28
30#define	NAND_AUTO_STATUS_EN		0x2c
31#define	NAND_DEV1_CFG0			0x30
32#define	NAND_DEV1_CFG1			0x34
33#define	NAND_READ_ID			0x40
34#define	NAND_READ_STATUS		0x44
35#define	NAND_DEV_CMD0			0xa0
36#define	NAND_DEV_CMD1			0xa4
37#define	NAND_DEV_CMD2			0xa8
38#define	NAND_DEV_CMD_VLD		0xac
39#define	SFLASHC_BURST_CFG		0xe0
40#define	NAND_ERASED_CW_DETECT_CFG	0xe8
41#define	NAND_ERASED_CW_DETECT_STATUS	0xec
42#define	NAND_EBI2_ECC_BUF_CFG		0xf0
43#define	FLASH_BUF_ACC			0x100
44
45#define	NAND_CTRL			0xf00
46#define	NAND_VERSION			0xf08
47#define	NAND_READ_LOCATION_0		0xf20
48#define	NAND_READ_LOCATION_1		0xf24
49#define	NAND_READ_LOCATION_2		0xf28
50#define	NAND_READ_LOCATION_3		0xf2c
51#define	NAND_READ_LOCATION_LAST_CW_0	0xf40
52#define	NAND_READ_LOCATION_LAST_CW_1	0xf44
53#define	NAND_READ_LOCATION_LAST_CW_2	0xf48
54#define	NAND_READ_LOCATION_LAST_CW_3	0xf4c
55
56/* dummy register offsets, used by write_reg_dma */
57#define	NAND_DEV_CMD1_RESTORE		0xdead
58#define	NAND_DEV_CMD_VLD_RESTORE	0xbeef
59
60/* NAND_FLASH_CMD bits */
61#define	PAGE_ACC			BIT(4)
62#define	LAST_PAGE			BIT(5)
63
64/* NAND_FLASH_CHIP_SELECT bits */
65#define	NAND_DEV_SEL			0
66#define	DM_EN				BIT(2)
67
68/* NAND_FLASH_STATUS bits */
69#define	FS_OP_ERR			BIT(4)
70#define	FS_READY_BSY_N			BIT(5)
71#define	FS_MPU_ERR			BIT(8)
72#define	FS_DEVICE_STS_ERR		BIT(16)
73#define	FS_DEVICE_WP			BIT(23)
74
75/* NAND_BUFFER_STATUS bits */
76#define	BS_UNCORRECTABLE_BIT		BIT(8)
77#define	BS_CORRECTABLE_ERR_MSK		0x1f
78
79/* NAND_DEVn_CFG0 bits */
80#define	DISABLE_STATUS_AFTER_WRITE	4
81#define	CW_PER_PAGE			6
82#define	UD_SIZE_BYTES			9
83#define	UD_SIZE_BYTES_MASK		GENMASK(18, 9)
84#define	ECC_PARITY_SIZE_BYTES_RS	19
85#define	SPARE_SIZE_BYTES		23
86#define	SPARE_SIZE_BYTES_MASK		GENMASK(26, 23)
87#define	NUM_ADDR_CYCLES			27
88#define	STATUS_BFR_READ			30
89#define	SET_RD_MODE_AFTER_STATUS	31
90
91/* NAND_DEVn_CFG0 bits */
92#define	DEV0_CFG1_ECC_DISABLE		0
93#define	WIDE_FLASH			1
94#define	NAND_RECOVERY_CYCLES		2
95#define	CS_ACTIVE_BSY			5
96#define	BAD_BLOCK_BYTE_NUM		6
97#define	BAD_BLOCK_IN_SPARE_AREA		16
98#define	WR_RD_BSY_GAP			17
99#define	ENABLE_BCH_ECC			27
100
101/* NAND_DEV0_ECC_CFG bits */
102#define	ECC_CFG_ECC_DISABLE		0
103#define	ECC_SW_RESET			1
104#define	ECC_MODE			4
105#define	ECC_PARITY_SIZE_BYTES_BCH	8
106#define	ECC_NUM_DATA_BYTES		16
107#define	ECC_NUM_DATA_BYTES_MASK		GENMASK(25, 16)
108#define	ECC_FORCE_CLK_OPEN		30
109
110/* NAND_DEV_CMD1 bits */
111#define	READ_ADDR			0
112
113/* NAND_DEV_CMD_VLD bits */
114#define	READ_START_VLD			BIT(0)
115#define	READ_STOP_VLD			BIT(1)
116#define	WRITE_START_VLD			BIT(2)
117#define	ERASE_START_VLD			BIT(3)
118#define	SEQ_READ_START_VLD		BIT(4)
119
120/* NAND_EBI2_ECC_BUF_CFG bits */
121#define	NUM_STEPS			0
122
123/* NAND_ERASED_CW_DETECT_CFG bits */
124#define	ERASED_CW_ECC_MASK		1
125#define	AUTO_DETECT_RES			0
126#define	MASK_ECC			BIT(ERASED_CW_ECC_MASK)
127#define	RESET_ERASED_DET		BIT(AUTO_DETECT_RES)
128#define	ACTIVE_ERASED_DET		(0 << AUTO_DETECT_RES)
129#define	CLR_ERASED_PAGE_DET		(RESET_ERASED_DET | MASK_ECC)
130#define	SET_ERASED_PAGE_DET		(ACTIVE_ERASED_DET | MASK_ECC)
131
132/* NAND_ERASED_CW_DETECT_STATUS bits */
133#define	PAGE_ALL_ERASED			BIT(7)
134#define	CODEWORD_ALL_ERASED		BIT(6)
135#define	PAGE_ERASED			BIT(5)
136#define	CODEWORD_ERASED			BIT(4)
137#define	ERASED_PAGE			(PAGE_ALL_ERASED | PAGE_ERASED)
138#define	ERASED_CW			(CODEWORD_ALL_ERASED | CODEWORD_ERASED)
139
140/* NAND_READ_LOCATION_n bits */
141#define READ_LOCATION_OFFSET		0
142#define READ_LOCATION_SIZE		16
143#define READ_LOCATION_LAST		31
144
145/* Version Mask */
146#define	NAND_VERSION_MAJOR_MASK		0xf0000000
147#define	NAND_VERSION_MAJOR_SHIFT	28
148#define	NAND_VERSION_MINOR_MASK		0x0fff0000
149#define	NAND_VERSION_MINOR_SHIFT	16
150
151/* NAND OP_CMDs */
152#define	OP_PAGE_READ			0x2
153#define	OP_PAGE_READ_WITH_ECC		0x3
154#define	OP_PAGE_READ_WITH_ECC_SPARE	0x4
155#define	OP_PAGE_READ_ONFI_READ		0x5
156#define	OP_PROGRAM_PAGE			0x6
157#define	OP_PAGE_PROGRAM_WITH_ECC	0x7
158#define	OP_PROGRAM_PAGE_SPARE		0x9
159#define	OP_BLOCK_ERASE			0xa
160#define	OP_CHECK_STATUS			0xc
161#define	OP_FETCH_ID			0xb
162#define	OP_RESET_DEVICE			0xd
163
164/* Default Value for NAND_DEV_CMD_VLD */
165#define NAND_DEV_CMD_VLD_VAL		(READ_START_VLD | WRITE_START_VLD | \
166					 ERASE_START_VLD | SEQ_READ_START_VLD)
167
168/* NAND_CTRL bits */
169#define	BAM_MODE_EN			BIT(0)
170
171/*
172 * the NAND controller performs reads/writes with ECC in 516 byte chunks.
173 * the driver calls the chunks 'step' or 'codeword' interchangeably
174 */
175#define	NANDC_STEP_SIZE			512
176
177/*
178 * the largest page size we support is 8K, this will have 16 steps/codewords
179 * of 512 bytes each
180 */
181#define	MAX_NUM_STEPS			(SZ_8K / NANDC_STEP_SIZE)
182
183/* we read at most 3 registers per codeword scan */
184#define	MAX_REG_RD			(3 * MAX_NUM_STEPS)
185
186/* ECC modes supported by the controller */
187#define	ECC_NONE	BIT(0)
188#define	ECC_RS_4BIT	BIT(1)
189#define	ECC_BCH_4BIT	BIT(2)
190#define	ECC_BCH_8BIT	BIT(3)
191
192#define nandc_set_read_loc_first(chip, reg, cw_offset, read_size, is_last_read_loc)	\
193nandc_set_reg(chip, reg,			\
194	      ((cw_offset) << READ_LOCATION_OFFSET) |		\
195	      ((read_size) << READ_LOCATION_SIZE) |			\
196	      ((is_last_read_loc) << READ_LOCATION_LAST))
197
198#define nandc_set_read_loc_last(chip, reg, cw_offset, read_size, is_last_read_loc)	\
199nandc_set_reg(chip, reg,			\
200	      ((cw_offset) << READ_LOCATION_OFFSET) |		\
201	      ((read_size) << READ_LOCATION_SIZE) |			\
202	      ((is_last_read_loc) << READ_LOCATION_LAST))
203/*
204 * Returns the actual register address for all NAND_DEV_ registers
205 * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
206 */
207#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
208
209/* Returns the NAND register physical address */
210#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
211
212/* Returns the dma address for reg read buffer */
213#define reg_buf_dma_addr(chip, vaddr) \
214	((chip)->reg_read_dma + \
215	((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf))
216
217#define QPIC_PER_CW_CMD_ELEMENTS	32
218#define QPIC_PER_CW_CMD_SGL		32
219#define QPIC_PER_CW_DATA_SGL		8
220
221#define QPIC_NAND_COMPLETION_TIMEOUT	msecs_to_jiffies(2000)
222
223/*
224 * Flags used in DMA descriptor preparation helper functions
225 * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
226 */
227/* Don't set the EOT in current tx BAM sgl */
228#define NAND_BAM_NO_EOT			BIT(0)
229/* Set the NWD flag in current BAM sgl */
230#define NAND_BAM_NWD			BIT(1)
231/* Finish writing in the current BAM sgl and start writing in another BAM sgl */
232#define NAND_BAM_NEXT_SGL		BIT(2)
233/*
234 * Erased codeword status is being used two times in single transfer so this
235 * flag will determine the current value of erased codeword status register
236 */
237#define NAND_ERASED_CW_SET		BIT(4)
238
239#define MAX_ADDRESS_CYCLE		5
240
241/*
242 * This data type corresponds to the BAM transaction which will be used for all
243 * NAND transfers.
244 * @bam_ce - the array of BAM command elements
245 * @cmd_sgl - sgl for NAND BAM command pipe
246 * @data_sgl - sgl for NAND BAM consumer/producer pipe
247 * @last_data_desc - last DMA desc in data channel (tx/rx).
248 * @last_cmd_desc - last DMA desc in command channel.
249 * @txn_done - completion for NAND transfer.
250 * @bam_ce_pos - the index in bam_ce which is available for next sgl
251 * @bam_ce_start - the index in bam_ce which marks the start position ce
252 *		   for current sgl. It will be used for size calculation
253 *		   for current sgl
254 * @cmd_sgl_pos - current index in command sgl.
255 * @cmd_sgl_start - start index in command sgl.
256 * @tx_sgl_pos - current index in data sgl for tx.
257 * @tx_sgl_start - start index in data sgl for tx.
258 * @rx_sgl_pos - current index in data sgl for rx.
259 * @rx_sgl_start - start index in data sgl for rx.
260 * @wait_second_completion - wait for second DMA desc completion before making
261 *			     the NAND transfer completion.
262 */
263struct bam_transaction {
264	struct bam_cmd_element *bam_ce;
265	struct scatterlist *cmd_sgl;
266	struct scatterlist *data_sgl;
267	struct dma_async_tx_descriptor *last_data_desc;
268	struct dma_async_tx_descriptor *last_cmd_desc;
269	struct completion txn_done;
270	u32 bam_ce_pos;
271	u32 bam_ce_start;
272	u32 cmd_sgl_pos;
273	u32 cmd_sgl_start;
274	u32 tx_sgl_pos;
275	u32 tx_sgl_start;
276	u32 rx_sgl_pos;
277	u32 rx_sgl_start;
278	bool wait_second_completion;
279};
280
281/*
282 * This data type corresponds to the nand dma descriptor
283 * @dma_desc - low level DMA engine descriptor
284 * @list - list for desc_info
285 *
286 * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
287 *	      ADM
288 * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
289 * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
290 * @dir - DMA transfer direction
291 */
292struct desc_info {
293	struct dma_async_tx_descriptor *dma_desc;
294	struct list_head node;
295
296	union {
297		struct scatterlist adm_sgl;
298		struct {
299			struct scatterlist *bam_sgl;
300			int sgl_cnt;
301		};
302	};
303	enum dma_data_direction dir;
304};
305
306/*
307 * holds the current register values that we want to write. acts as a contiguous
308 * chunk of memory which we use to write the controller registers through DMA.
309 */
310struct nandc_regs {
311	__le32 cmd;
312	__le32 addr0;
313	__le32 addr1;
314	__le32 chip_sel;
315	__le32 exec;
316
317	__le32 cfg0;
318	__le32 cfg1;
319	__le32 ecc_bch_cfg;
320
321	__le32 clrflashstatus;
322	__le32 clrreadstatus;
323
324	__le32 cmd1;
325	__le32 vld;
326
327	__le32 orig_cmd1;
328	__le32 orig_vld;
329
330	__le32 ecc_buf_cfg;
331	__le32 read_location0;
332	__le32 read_location1;
333	__le32 read_location2;
334	__le32 read_location3;
335	__le32 read_location_last0;
336	__le32 read_location_last1;
337	__le32 read_location_last2;
338	__le32 read_location_last3;
339
340	__le32 erased_cw_detect_cfg_clr;
341	__le32 erased_cw_detect_cfg_set;
342};
343
344/*
345 * NAND controller data struct
346 *
347 * @dev:			parent device
348 *
349 * @base:			MMIO base
350 *
351 * @core_clk:			controller clock
352 * @aon_clk:			another controller clock
353 *
354 * @regs:			a contiguous chunk of memory for DMA register
355 *				writes. contains the register values to be
356 *				written to controller
357 *
358 * @props:			properties of current NAND controller,
359 *				initialized via DT match data
360 *
361 * @controller:			base controller structure
362 * @host_list:			list containing all the chips attached to the
363 *				controller
364 *
365 * @chan:			dma channel
366 * @cmd_crci:			ADM DMA CRCI for command flow control
367 * @data_crci:			ADM DMA CRCI for data flow control
368 *
369 * @desc_list:			DMA descriptor list (list of desc_infos)
370 *
371 * @data_buffer:		our local DMA buffer for page read/writes,
372 *				used when we can't use the buffer provided
373 *				by upper layers directly
374 * @reg_read_buf:		local buffer for reading back registers via DMA
375 *
376 * @base_phys:			physical base address of controller registers
377 * @base_dma:			dma base address of controller registers
378 * @reg_read_dma:		contains dma address for register read buffer
379 *
380 * @buf_size/count/start:	markers for chip->legacy.read_buf/write_buf
381 *				functions
382 * @max_cwperpage:		maximum QPIC codewords required. calculated
383 *				from all connected NAND devices pagesize
384 *
385 * @reg_read_pos:		marker for data read in reg_read_buf
386 *
387 * @cmd1/vld:			some fixed controller register values
388 *
389 * @exec_opwrite:		flag to select correct number of code word
390 *				while reading status
391 */
392struct qcom_nand_controller {
393	struct device *dev;
394
395	void __iomem *base;
396
397	struct clk *core_clk;
398	struct clk *aon_clk;
399
400	struct nandc_regs *regs;
401	struct bam_transaction *bam_txn;
402
403	const struct qcom_nandc_props *props;
404
405	struct nand_controller controller;
406	struct list_head host_list;
407
408	union {
409		/* will be used only by QPIC for BAM DMA */
410		struct {
411			struct dma_chan *tx_chan;
412			struct dma_chan *rx_chan;
413			struct dma_chan *cmd_chan;
414		};
415
416		/* will be used only by EBI2 for ADM DMA */
417		struct {
418			struct dma_chan *chan;
419			unsigned int cmd_crci;
420			unsigned int data_crci;
421		};
422	};
423
424	struct list_head desc_list;
425
426	u8		*data_buffer;
427	__le32		*reg_read_buf;
428
429	phys_addr_t base_phys;
430	dma_addr_t base_dma;
431	dma_addr_t reg_read_dma;
432
433	int		buf_size;
434	int		buf_count;
435	int		buf_start;
436	unsigned int	max_cwperpage;
437
438	int reg_read_pos;
439
440	u32 cmd1, vld;
441	bool exec_opwrite;
442};
443
444/*
445 * NAND special boot partitions
446 *
447 * @page_offset:		offset of the partition where spare data is not protected
448 *				by ECC (value in pages)
449 * @page_offset:		size of the partition where spare data is not protected
450 *				by ECC (value in pages)
451 */
452struct qcom_nand_boot_partition {
453	u32 page_offset;
454	u32 page_size;
455};
456
457/*
458 * Qcom op for each exec_op transfer
459 *
460 * @data_instr:			data instruction pointer
461 * @data_instr_idx:		data instruction index
462 * @rdy_timeout_ms:		wait ready timeout in ms
463 * @rdy_delay_ns:		Additional delay in ns
464 * @addr1_reg:			Address1 register value
465 * @addr2_reg:			Address2 register value
466 * @cmd_reg:			CMD register value
467 * @flag:			flag for misc instruction
468 */
469struct qcom_op {
470	const struct nand_op_instr *data_instr;
471	unsigned int data_instr_idx;
472	unsigned int rdy_timeout_ms;
473	unsigned int rdy_delay_ns;
474	u32 addr1_reg;
475	u32 addr2_reg;
476	u32 cmd_reg;
477	u8 flag;
478};
479
480/*
481 * NAND chip structure
482 *
483 * @boot_partitions:		array of boot partitions where offset and size of the
484 *				boot partitions are stored
485 *
486 * @chip:			base NAND chip structure
487 * @node:			list node to add itself to host_list in
488 *				qcom_nand_controller
489 *
490 * @nr_boot_partitions:		count of the boot partitions where spare data is not
491 *				protected by ECC
492 *
493 * @cs:				chip select value for this chip
494 * @cw_size:			the number of bytes in a single step/codeword
495 *				of a page, consisting of all data, ecc, spare
496 *				and reserved bytes
497 * @cw_data:			the number of bytes within a codeword protected
498 *				by ECC
499 * @ecc_bytes_hw:		ECC bytes used by controller hardware for this
500 *				chip
501 *
502 * @last_command:		keeps track of last command on this chip. used
503 *				for reading correct status
504 *
505 * @cfg0, cfg1, cfg0_raw..:	NANDc register configurations needed for
506 *				ecc/non-ecc mode for the current nand flash
507 *				device
508 *
509 * @status:			value to be returned if NAND_CMD_STATUS command
510 *				is executed
511 * @codeword_fixup:		keep track of the current layout used by
512 *				the driver for read/write operation.
513 * @use_ecc:			request the controller to use ECC for the
514 *				upcoming read/write
515 * @bch_enabled:		flag to tell whether BCH ECC mode is used
516 */
517struct qcom_nand_host {
518	struct qcom_nand_boot_partition *boot_partitions;
519
520	struct nand_chip chip;
521	struct list_head node;
522
523	int nr_boot_partitions;
524
525	int cs;
526	int cw_size;
527	int cw_data;
528	int ecc_bytes_hw;
529	int spare_bytes;
530	int bbm_size;
531
532	int last_command;
533
534	u32 cfg0, cfg1;
535	u32 cfg0_raw, cfg1_raw;
536	u32 ecc_buf_cfg;
537	u32 ecc_bch_cfg;
538	u32 clrflashstatus;
539	u32 clrreadstatus;
540
541	u8 status;
542	bool codeword_fixup;
543	bool use_ecc;
544	bool bch_enabled;
545};
546
547/*
548 * This data type corresponds to the NAND controller properties which varies
549 * among different NAND controllers.
550 * @ecc_modes - ecc mode for NAND
551 * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
552 * @is_bam - whether NAND controller is using BAM
553 * @is_qpic - whether NAND CTRL is part of qpic IP
554 * @qpic_v2 - flag to indicate QPIC IP version 2
555 * @use_codeword_fixup - whether NAND has different layout for boot partitions
556 */
557struct qcom_nandc_props {
558	u32 ecc_modes;
559	u32 dev_cmd_reg_start;
560	bool is_bam;
561	bool is_qpic;
562	bool qpic_v2;
563	bool use_codeword_fixup;
564};
565
566/* Frees the BAM transaction memory */
567static void free_bam_transaction(struct qcom_nand_controller *nandc)
568{
569	struct bam_transaction *bam_txn = nandc->bam_txn;
570
571	devm_kfree(nandc->dev, bam_txn);
572}
573
574/* Allocates and Initializes the BAM transaction */
575static struct bam_transaction *
576alloc_bam_transaction(struct qcom_nand_controller *nandc)
577{
578	struct bam_transaction *bam_txn;
579	size_t bam_txn_size;
580	unsigned int num_cw = nandc->max_cwperpage;
581	void *bam_txn_buf;
582
583	bam_txn_size =
584		sizeof(*bam_txn) + num_cw *
585		((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
586		(sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
587		(sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
588
589	bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
590	if (!bam_txn_buf)
591		return NULL;
592
593	bam_txn = bam_txn_buf;
594	bam_txn_buf += sizeof(*bam_txn);
595
596	bam_txn->bam_ce = bam_txn_buf;
597	bam_txn_buf +=
598		sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
599
600	bam_txn->cmd_sgl = bam_txn_buf;
601	bam_txn_buf +=
602		sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
603
604	bam_txn->data_sgl = bam_txn_buf;
605
606	init_completion(&bam_txn->txn_done);
607
608	return bam_txn;
609}
610
611/* Clears the BAM transaction indexes */
612static void clear_bam_transaction(struct qcom_nand_controller *nandc)
613{
614	struct bam_transaction *bam_txn = nandc->bam_txn;
615
616	if (!nandc->props->is_bam)
617		return;
618
619	bam_txn->bam_ce_pos = 0;
620	bam_txn->bam_ce_start = 0;
621	bam_txn->cmd_sgl_pos = 0;
622	bam_txn->cmd_sgl_start = 0;
623	bam_txn->tx_sgl_pos = 0;
624	bam_txn->tx_sgl_start = 0;
625	bam_txn->rx_sgl_pos = 0;
626	bam_txn->rx_sgl_start = 0;
627	bam_txn->last_data_desc = NULL;
628	bam_txn->wait_second_completion = false;
629
630	sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
631		      QPIC_PER_CW_CMD_SGL);
632	sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
633		      QPIC_PER_CW_DATA_SGL);
634
635	reinit_completion(&bam_txn->txn_done);
636}
637
638/* Callback for DMA descriptor completion */
639static void qpic_bam_dma_done(void *data)
640{
641	struct bam_transaction *bam_txn = data;
642
643	/*
644	 * In case of data transfer with NAND, 2 callbacks will be generated.
645	 * One for command channel and another one for data channel.
646	 * If current transaction has data descriptors
647	 * (i.e. wait_second_completion is true), then set this to false
648	 * and wait for second DMA descriptor completion.
649	 */
650	if (bam_txn->wait_second_completion)
651		bam_txn->wait_second_completion = false;
652	else
653		complete(&bam_txn->txn_done);
654}
655
656static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
657{
658	return container_of(chip, struct qcom_nand_host, chip);
659}
660
661static inline struct qcom_nand_controller *
662get_qcom_nand_controller(struct nand_chip *chip)
663{
664	return container_of(chip->controller, struct qcom_nand_controller,
665			    controller);
666}
667
668static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
669{
670	return ioread32(nandc->base + offset);
671}
672
673static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
674			       u32 val)
675{
676	iowrite32(val, nandc->base + offset);
677}
678
679static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
680					  bool is_cpu)
681{
682	if (!nandc->props->is_bam)
683		return;
684
685	if (is_cpu)
686		dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
687					MAX_REG_RD *
688					sizeof(*nandc->reg_read_buf),
689					DMA_FROM_DEVICE);
690	else
691		dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
692					   MAX_REG_RD *
693					   sizeof(*nandc->reg_read_buf),
694					   DMA_FROM_DEVICE);
695}
696
697static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
698{
699	switch (offset) {
700	case NAND_FLASH_CMD:
701		return &regs->cmd;
702	case NAND_ADDR0:
703		return &regs->addr0;
704	case NAND_ADDR1:
705		return &regs->addr1;
706	case NAND_FLASH_CHIP_SELECT:
707		return &regs->chip_sel;
708	case NAND_EXEC_CMD:
709		return &regs->exec;
710	case NAND_FLASH_STATUS:
711		return &regs->clrflashstatus;
712	case NAND_DEV0_CFG0:
713		return &regs->cfg0;
714	case NAND_DEV0_CFG1:
715		return &regs->cfg1;
716	case NAND_DEV0_ECC_CFG:
717		return &regs->ecc_bch_cfg;
718	case NAND_READ_STATUS:
719		return &regs->clrreadstatus;
720	case NAND_DEV_CMD1:
721		return &regs->cmd1;
722	case NAND_DEV_CMD1_RESTORE:
723		return &regs->orig_cmd1;
724	case NAND_DEV_CMD_VLD:
725		return &regs->vld;
726	case NAND_DEV_CMD_VLD_RESTORE:
727		return &regs->orig_vld;
728	case NAND_EBI2_ECC_BUF_CFG:
729		return &regs->ecc_buf_cfg;
730	case NAND_READ_LOCATION_0:
731		return &regs->read_location0;
732	case NAND_READ_LOCATION_1:
733		return &regs->read_location1;
734	case NAND_READ_LOCATION_2:
735		return &regs->read_location2;
736	case NAND_READ_LOCATION_3:
737		return &regs->read_location3;
738	case NAND_READ_LOCATION_LAST_CW_0:
739		return &regs->read_location_last0;
740	case NAND_READ_LOCATION_LAST_CW_1:
741		return &regs->read_location_last1;
742	case NAND_READ_LOCATION_LAST_CW_2:
743		return &regs->read_location_last2;
744	case NAND_READ_LOCATION_LAST_CW_3:
745		return &regs->read_location_last3;
746	default:
747		return NULL;
748	}
749}
750
751static void nandc_set_reg(struct nand_chip *chip, int offset,
752			  u32 val)
753{
754	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
755	struct nandc_regs *regs = nandc->regs;
756	__le32 *reg;
757
758	reg = offset_to_nandc_reg(regs, offset);
759
760	if (reg)
761		*reg = cpu_to_le32(val);
762}
763
764/* Helper to check the code word, whether it is last cw or not */
765static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw)
766{
767	return cw == (ecc->steps - 1);
768}
769
770/* helper to configure location register values */
771static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg,
772			       int cw_offset, int read_size, int is_last_read_loc)
773{
774	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
775	struct nand_ecc_ctrl *ecc = &chip->ecc;
776	int reg_base = NAND_READ_LOCATION_0;
777
778	if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
779		reg_base = NAND_READ_LOCATION_LAST_CW_0;
780
781	reg_base += reg * 4;
782
783	if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
784		return nandc_set_read_loc_last(chip, reg_base, cw_offset,
785				read_size, is_last_read_loc);
786	else
787		return nandc_set_read_loc_first(chip, reg_base, cw_offset,
788				read_size, is_last_read_loc);
789}
790
791/* helper to configure address register values */
792static void set_address(struct qcom_nand_host *host, u16 column, int page)
793{
794	struct nand_chip *chip = &host->chip;
795
796	if (chip->options & NAND_BUSWIDTH_16)
797		column >>= 1;
798
799	nandc_set_reg(chip, NAND_ADDR0, page << 16 | column);
800	nandc_set_reg(chip, NAND_ADDR1, page >> 16 & 0xff);
801}
802
803/*
804 * update_rw_regs:	set up read/write register values, these will be
805 *			written to the NAND controller registers via DMA
806 *
807 * @num_cw:		number of steps for the read/write operation
808 * @read:		read or write operation
809 * @cw	:		which code word
810 */
811static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw)
812{
813	struct nand_chip *chip = &host->chip;
814	u32 cmd, cfg0, cfg1, ecc_bch_cfg;
815	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
816
817	if (read) {
818		if (host->use_ecc)
819			cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
820		else
821			cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
822	} else {
823		cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
824	}
825
826	if (host->use_ecc) {
827		cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
828				(num_cw - 1) << CW_PER_PAGE;
829
830		cfg1 = host->cfg1;
831		ecc_bch_cfg = host->ecc_bch_cfg;
832	} else {
833		cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
834				(num_cw - 1) << CW_PER_PAGE;
835
836		cfg1 = host->cfg1_raw;
837		ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
838	}
839
840	nandc_set_reg(chip, NAND_FLASH_CMD, cmd);
841	nandc_set_reg(chip, NAND_DEV0_CFG0, cfg0);
842	nandc_set_reg(chip, NAND_DEV0_CFG1, cfg1);
843	nandc_set_reg(chip, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
844	if (!nandc->props->qpic_v2)
845		nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
846	nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus);
847	nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus);
848	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
849
850	if (read)
851		nandc_set_read_loc(chip, cw, 0, 0, host->use_ecc ?
852				   host->cw_data : host->cw_size, 1);
853}
854
855/*
856 * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
857 * for BAM. This descriptor will be added in the NAND DMA descriptor queue
858 * which will be submitted to DMA engine.
859 */
860static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
861				  struct dma_chan *chan,
862				  unsigned long flags)
863{
864	struct desc_info *desc;
865	struct scatterlist *sgl;
866	unsigned int sgl_cnt;
867	int ret;
868	struct bam_transaction *bam_txn = nandc->bam_txn;
869	enum dma_transfer_direction dir_eng;
870	struct dma_async_tx_descriptor *dma_desc;
871
872	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
873	if (!desc)
874		return -ENOMEM;
875
876	if (chan == nandc->cmd_chan) {
877		sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
878		sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
879		bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
880		dir_eng = DMA_MEM_TO_DEV;
881		desc->dir = DMA_TO_DEVICE;
882	} else if (chan == nandc->tx_chan) {
883		sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
884		sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
885		bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
886		dir_eng = DMA_MEM_TO_DEV;
887		desc->dir = DMA_TO_DEVICE;
888	} else {
889		sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
890		sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
891		bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
892		dir_eng = DMA_DEV_TO_MEM;
893		desc->dir = DMA_FROM_DEVICE;
894	}
895
896	sg_mark_end(sgl + sgl_cnt - 1);
897	ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
898	if (ret == 0) {
899		dev_err(nandc->dev, "failure in mapping desc\n");
900		kfree(desc);
901		return -ENOMEM;
902	}
903
904	desc->sgl_cnt = sgl_cnt;
905	desc->bam_sgl = sgl;
906
907	dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
908					   flags);
909
910	if (!dma_desc) {
911		dev_err(nandc->dev, "failure in prep desc\n");
912		dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
913		kfree(desc);
914		return -EINVAL;
915	}
916
917	desc->dma_desc = dma_desc;
918
919	/* update last data/command descriptor */
920	if (chan == nandc->cmd_chan)
921		bam_txn->last_cmd_desc = dma_desc;
922	else
923		bam_txn->last_data_desc = dma_desc;
924
925	list_add_tail(&desc->node, &nandc->desc_list);
926
927	return 0;
928}
929
930/*
931 * Prepares the command descriptor for BAM DMA which will be used for NAND
932 * register reads and writes. The command descriptor requires the command
933 * to be formed in command element type so this function uses the command
934 * element from bam transaction ce array and fills the same with required
935 * data. A single SGL can contain multiple command elements so
936 * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
937 * after the current command element.
938 */
939static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
940				 int reg_off, const void *vaddr,
941				 int size, unsigned int flags)
942{
943	int bam_ce_size;
944	int i, ret;
945	struct bam_cmd_element *bam_ce_buffer;
946	struct bam_transaction *bam_txn = nandc->bam_txn;
947
948	bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
949
950	/* fill the command desc */
951	for (i = 0; i < size; i++) {
952		if (read)
953			bam_prep_ce(&bam_ce_buffer[i],
954				    nandc_reg_phys(nandc, reg_off + 4 * i),
955				    BAM_READ_COMMAND,
956				    reg_buf_dma_addr(nandc,
957						     (__le32 *)vaddr + i));
958		else
959			bam_prep_ce_le32(&bam_ce_buffer[i],
960					 nandc_reg_phys(nandc, reg_off + 4 * i),
961					 BAM_WRITE_COMMAND,
962					 *((__le32 *)vaddr + i));
963	}
964
965	bam_txn->bam_ce_pos += size;
966
967	/* use the separate sgl after this command */
968	if (flags & NAND_BAM_NEXT_SGL) {
969		bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
970		bam_ce_size = (bam_txn->bam_ce_pos -
971				bam_txn->bam_ce_start) *
972				sizeof(struct bam_cmd_element);
973		sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
974			   bam_ce_buffer, bam_ce_size);
975		bam_txn->cmd_sgl_pos++;
976		bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
977
978		if (flags & NAND_BAM_NWD) {
979			ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
980						     DMA_PREP_FENCE |
981						     DMA_PREP_CMD);
982			if (ret)
983				return ret;
984		}
985	}
986
987	return 0;
988}
989
990/*
991 * Prepares the data descriptor for BAM DMA which will be used for NAND
992 * data reads and writes.
993 */
994static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
995				  const void *vaddr,
996				  int size, unsigned int flags)
997{
998	int ret;
999	struct bam_transaction *bam_txn = nandc->bam_txn;
1000
1001	if (read) {
1002		sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
1003			   vaddr, size);
1004		bam_txn->rx_sgl_pos++;
1005	} else {
1006		sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
1007			   vaddr, size);
1008		bam_txn->tx_sgl_pos++;
1009
1010		/*
1011		 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
1012		 * is not set, form the DMA descriptor
1013		 */
1014		if (!(flags & NAND_BAM_NO_EOT)) {
1015			ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
1016						     DMA_PREP_INTERRUPT);
1017			if (ret)
1018				return ret;
1019		}
1020	}
1021
1022	return 0;
1023}
1024
1025static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
1026			     int reg_off, const void *vaddr, int size,
1027			     bool flow_control)
1028{
1029	struct desc_info *desc;
1030	struct dma_async_tx_descriptor *dma_desc;
1031	struct scatterlist *sgl;
1032	struct dma_slave_config slave_conf;
1033	struct qcom_adm_peripheral_config periph_conf = {};
1034	enum dma_transfer_direction dir_eng;
1035	int ret;
1036
1037	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1038	if (!desc)
1039		return -ENOMEM;
1040
1041	sgl = &desc->adm_sgl;
1042
1043	sg_init_one(sgl, vaddr, size);
1044
1045	if (read) {
1046		dir_eng = DMA_DEV_TO_MEM;
1047		desc->dir = DMA_FROM_DEVICE;
1048	} else {
1049		dir_eng = DMA_MEM_TO_DEV;
1050		desc->dir = DMA_TO_DEVICE;
1051	}
1052
1053	ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
1054	if (ret == 0) {
1055		ret = -ENOMEM;
1056		goto err;
1057	}
1058
1059	memset(&slave_conf, 0x00, sizeof(slave_conf));
1060
1061	slave_conf.device_fc = flow_control;
1062	if (read) {
1063		slave_conf.src_maxburst = 16;
1064		slave_conf.src_addr = nandc->base_dma + reg_off;
1065		if (nandc->data_crci) {
1066			periph_conf.crci = nandc->data_crci;
1067			slave_conf.peripheral_config = &periph_conf;
1068			slave_conf.peripheral_size = sizeof(periph_conf);
1069		}
1070	} else {
1071		slave_conf.dst_maxburst = 16;
1072		slave_conf.dst_addr = nandc->base_dma + reg_off;
1073		if (nandc->cmd_crci) {
1074			periph_conf.crci = nandc->cmd_crci;
1075			slave_conf.peripheral_config = &periph_conf;
1076			slave_conf.peripheral_size = sizeof(periph_conf);
1077		}
1078	}
1079
1080	ret = dmaengine_slave_config(nandc->chan, &slave_conf);
1081	if (ret) {
1082		dev_err(nandc->dev, "failed to configure dma channel\n");
1083		goto err;
1084	}
1085
1086	dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
1087	if (!dma_desc) {
1088		dev_err(nandc->dev, "failed to prepare desc\n");
1089		ret = -EINVAL;
1090		goto err;
1091	}
1092
1093	desc->dma_desc = dma_desc;
1094
1095	list_add_tail(&desc->node, &nandc->desc_list);
1096
1097	return 0;
1098err:
1099	kfree(desc);
1100
1101	return ret;
1102}
1103
1104/*
1105 * read_reg_dma:	prepares a descriptor to read a given number of
1106 *			contiguous registers to the reg_read_buf pointer
1107 *
1108 * @first:		offset of the first register in the contiguous block
1109 * @num_regs:		number of registers to read
1110 * @flags:		flags to control DMA descriptor preparation
1111 */
1112static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
1113			int num_regs, unsigned int flags)
1114{
1115	bool flow_control = false;
1116	void *vaddr;
1117
1118	vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
1119	nandc->reg_read_pos += num_regs;
1120
1121	if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
1122		first = dev_cmd_reg_addr(nandc, first);
1123
1124	if (nandc->props->is_bam)
1125		return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
1126					     num_regs, flags);
1127
1128	if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
1129		flow_control = true;
1130
1131	return prep_adm_dma_desc(nandc, true, first, vaddr,
1132				 num_regs * sizeof(u32), flow_control);
1133}
1134
1135/*
1136 * write_reg_dma:	prepares a descriptor to write a given number of
1137 *			contiguous registers
1138 *
1139 * @first:		offset of the first register in the contiguous block
1140 * @num_regs:		number of registers to write
1141 * @flags:		flags to control DMA descriptor preparation
1142 */
1143static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1144			 int num_regs, unsigned int flags)
1145{
1146	bool flow_control = false;
1147	struct nandc_regs *regs = nandc->regs;
1148	void *vaddr;
1149
1150	vaddr = offset_to_nandc_reg(regs, first);
1151
1152	if (first == NAND_ERASED_CW_DETECT_CFG) {
1153		if (flags & NAND_ERASED_CW_SET)
1154			vaddr = &regs->erased_cw_detect_cfg_set;
1155		else
1156			vaddr = &regs->erased_cw_detect_cfg_clr;
1157	}
1158
1159	if (first == NAND_EXEC_CMD)
1160		flags |= NAND_BAM_NWD;
1161
1162	if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1163		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1164
1165	if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1166		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1167
1168	if (nandc->props->is_bam)
1169		return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1170					     num_regs, flags);
1171
1172	if (first == NAND_FLASH_CMD)
1173		flow_control = true;
1174
1175	return prep_adm_dma_desc(nandc, false, first, vaddr,
1176				 num_regs * sizeof(u32), flow_control);
1177}
1178
1179/*
1180 * read_data_dma:	prepares a DMA descriptor to transfer data from the
1181 *			controller's internal buffer to the buffer 'vaddr'
1182 *
1183 * @reg_off:		offset within the controller's data buffer
1184 * @vaddr:		virtual address of the buffer we want to write to
1185 * @size:		DMA transaction size in bytes
1186 * @flags:		flags to control DMA descriptor preparation
1187 */
1188static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1189			 const u8 *vaddr, int size, unsigned int flags)
1190{
1191	if (nandc->props->is_bam)
1192		return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1193
1194	return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1195}
1196
1197/*
1198 * write_data_dma:	prepares a DMA descriptor to transfer data from
1199 *			'vaddr' to the controller's internal buffer
1200 *
1201 * @reg_off:		offset within the controller's data buffer
1202 * @vaddr:		virtual address of the buffer we want to read from
1203 * @size:		DMA transaction size in bytes
1204 * @flags:		flags to control DMA descriptor preparation
1205 */
1206static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1207			  const u8 *vaddr, int size, unsigned int flags)
1208{
1209	if (nandc->props->is_bam)
1210		return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1211
1212	return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1213}
1214
1215/*
1216 * Helper to prepare DMA descriptors for configuring registers
1217 * before reading a NAND page.
1218 */
1219static void config_nand_page_read(struct nand_chip *chip)
1220{
1221	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1222
1223	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1224	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1225	if (!nandc->props->qpic_v2)
1226		write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1227	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1228	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1229		      NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1230}
1231
1232/*
1233 * Helper to prepare DMA descriptors for configuring registers
1234 * before reading each codeword in NAND page.
1235 */
1236static void
1237config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw)
1238{
1239	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1240	struct nand_ecc_ctrl *ecc = &chip->ecc;
1241
1242	int reg = NAND_READ_LOCATION_0;
1243
1244	if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
1245		reg = NAND_READ_LOCATION_LAST_CW_0;
1246
1247	if (nandc->props->is_bam)
1248		write_reg_dma(nandc, reg, 4, NAND_BAM_NEXT_SGL);
1249
1250	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1251	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1252
1253	if (use_ecc) {
1254		read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1255		read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1256			     NAND_BAM_NEXT_SGL);
1257	} else {
1258		read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1259	}
1260}
1261
1262/*
1263 * Helper to prepare dma descriptors to configure registers needed for reading a
1264 * single codeword in page
1265 */
1266static void
1267config_nand_single_cw_page_read(struct nand_chip *chip,
1268				bool use_ecc, int cw)
1269{
1270	config_nand_page_read(chip);
1271	config_nand_cw_read(chip, use_ecc, cw);
1272}
1273
1274/*
1275 * Helper to prepare DMA descriptors used to configure registers needed for
1276 * before writing a NAND page.
1277 */
1278static void config_nand_page_write(struct nand_chip *chip)
1279{
1280	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1281
1282	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1283	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1284	if (!nandc->props->qpic_v2)
1285		write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1286			      NAND_BAM_NEXT_SGL);
1287}
1288
1289/*
1290 * Helper to prepare DMA descriptors for configuring registers
1291 * before writing each codeword in NAND page.
1292 */
1293static void config_nand_cw_write(struct nand_chip *chip)
1294{
1295	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1296
1297	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1298	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1299
1300	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1301
1302	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1303	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1304}
1305
1306/* helpers to submit/free our list of dma descriptors */
1307static int submit_descs(struct qcom_nand_controller *nandc)
1308{
1309	struct desc_info *desc, *n;
1310	dma_cookie_t cookie = 0;
1311	struct bam_transaction *bam_txn = nandc->bam_txn;
1312	int ret = 0;
1313
1314	if (nandc->props->is_bam) {
1315		if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1316			ret = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1317			if (ret)
1318				goto err_unmap_free_desc;
1319		}
1320
1321		if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1322			ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
1323						   DMA_PREP_INTERRUPT);
1324			if (ret)
1325				goto err_unmap_free_desc;
1326		}
1327
1328		if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1329			ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1330						   DMA_PREP_CMD);
1331			if (ret)
1332				goto err_unmap_free_desc;
1333		}
1334	}
1335
1336	list_for_each_entry(desc, &nandc->desc_list, node)
1337		cookie = dmaengine_submit(desc->dma_desc);
1338
1339	if (nandc->props->is_bam) {
1340		bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1341		bam_txn->last_cmd_desc->callback_param = bam_txn;
1342		if (bam_txn->last_data_desc) {
1343			bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1344			bam_txn->last_data_desc->callback_param = bam_txn;
1345			bam_txn->wait_second_completion = true;
1346		}
1347
1348		dma_async_issue_pending(nandc->tx_chan);
1349		dma_async_issue_pending(nandc->rx_chan);
1350		dma_async_issue_pending(nandc->cmd_chan);
1351
1352		if (!wait_for_completion_timeout(&bam_txn->txn_done,
1353						 QPIC_NAND_COMPLETION_TIMEOUT))
1354			ret = -ETIMEDOUT;
1355	} else {
1356		if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1357			ret = -ETIMEDOUT;
1358	}
1359
1360err_unmap_free_desc:
1361	/*
1362	 * Unmap the dma sg_list and free the desc allocated by both
1363	 * prepare_bam_async_desc() and prep_adm_dma_desc() functions.
1364	 */
1365	list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1366		list_del(&desc->node);
1367
1368		if (nandc->props->is_bam)
1369			dma_unmap_sg(nandc->dev, desc->bam_sgl,
1370				     desc->sgl_cnt, desc->dir);
1371		else
1372			dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1373				     desc->dir);
1374
1375		kfree(desc);
1376	}
1377
1378	return ret;
1379}
1380
1381/* reset the register read buffer for next NAND operation */
1382static void clear_read_regs(struct qcom_nand_controller *nandc)
1383{
1384	nandc->reg_read_pos = 0;
1385	nandc_read_buffer_sync(nandc, false);
1386}
1387
1388/*
1389 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1390 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1391 *
1392 * when using RS ECC, the HW reports the same erros when reading an erased CW,
1393 * but it notifies that it is an erased CW by placing special characters at
1394 * certain offsets in the buffer.
1395 *
1396 * verify if the page is erased or not, and fix up the page for RS ECC by
1397 * replacing the special characters with 0xff.
1398 */
1399static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1400{
1401	u8 empty1, empty2;
1402
1403	/*
1404	 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1405	 * is erased by looking for 0x54s at offsets 3 and 175 from the
1406	 * beginning of each codeword
1407	 */
1408
1409	empty1 = data_buf[3];
1410	empty2 = data_buf[175];
1411
1412	/*
1413	 * if the erased codework markers, if they exist override them with
1414	 * 0xffs
1415	 */
1416	if ((empty1 == 0x54 && empty2 == 0xff) ||
1417	    (empty1 == 0xff && empty2 == 0x54)) {
1418		data_buf[3] = 0xff;
1419		data_buf[175] = 0xff;
1420	}
1421
1422	/*
1423	 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1424	 * restore the original values at the special offsets
1425	 */
1426	if (memchr_inv(data_buf, 0xff, data_len)) {
1427		data_buf[3] = empty1;
1428		data_buf[175] = empty2;
1429
1430		return false;
1431	}
1432
1433	return true;
1434}
1435
1436struct read_stats {
1437	__le32 flash;
1438	__le32 buffer;
1439	__le32 erased_cw;
1440};
1441
1442/* reads back FLASH_STATUS register set by the controller */
1443static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1444{
1445	struct nand_chip *chip = &host->chip;
1446	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1447	int i;
1448
1449	nandc_read_buffer_sync(nandc, true);
1450
1451	for (i = 0; i < cw_cnt; i++) {
1452		u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1453
1454		if (flash & (FS_OP_ERR | FS_MPU_ERR))
1455			return -EIO;
1456	}
1457
1458	return 0;
1459}
1460
1461/* performs raw read for one codeword */
1462static int
1463qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1464		       u8 *data_buf, u8 *oob_buf, int page, int cw)
1465{
1466	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1467	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1468	struct nand_ecc_ctrl *ecc = &chip->ecc;
1469	int data_size1, data_size2, oob_size1, oob_size2;
1470	int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1471	int raw_cw = cw;
1472
1473	nand_read_page_op(chip, page, 0, NULL, 0);
1474	nandc->buf_count = 0;
1475	nandc->buf_start = 0;
1476	clear_read_regs(nandc);
1477	host->use_ecc = false;
1478
1479	if (nandc->props->qpic_v2)
1480		raw_cw = ecc->steps - 1;
1481
1482	clear_bam_transaction(nandc);
1483	set_address(host, host->cw_size * cw, page);
1484	update_rw_regs(host, 1, true, raw_cw);
1485	config_nand_page_read(chip);
1486
1487	data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1488	oob_size1 = host->bbm_size;
1489
1490	if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) {
1491		data_size2 = ecc->size - data_size1 -
1492			     ((ecc->steps - 1) * 4);
1493		oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1494			    host->spare_bytes;
1495	} else {
1496		data_size2 = host->cw_data - data_size1;
1497		oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1498	}
1499
1500	if (nandc->props->is_bam) {
1501		nandc_set_read_loc(chip, cw, 0, read_loc, data_size1, 0);
1502		read_loc += data_size1;
1503
1504		nandc_set_read_loc(chip, cw, 1, read_loc, oob_size1, 0);
1505		read_loc += oob_size1;
1506
1507		nandc_set_read_loc(chip, cw, 2, read_loc, data_size2, 0);
1508		read_loc += data_size2;
1509
1510		nandc_set_read_loc(chip, cw, 3, read_loc, oob_size2, 1);
1511	}
1512
1513	config_nand_cw_read(chip, false, raw_cw);
1514
1515	read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1516	reg_off += data_size1;
1517
1518	read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1519	reg_off += oob_size1;
1520
1521	read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1522	reg_off += data_size2;
1523
1524	read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1525
1526	ret = submit_descs(nandc);
1527	if (ret) {
1528		dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1529		return ret;
1530	}
1531
1532	return check_flash_errors(host, 1);
1533}
1534
1535/*
1536 * Bitflips can happen in erased codewords also so this function counts the
1537 * number of 0 in each CW for which ECC engine returns the uncorrectable
1538 * error. The page will be assumed as erased if this count is less than or
1539 * equal to the ecc->strength for each CW.
1540 *
1541 * 1. Both DATA and OOB need to be checked for number of 0. The
1542 *    top-level API can be called with only data buf or OOB buf so use
1543 *    chip->data_buf if data buf is null and chip->oob_poi if oob buf
1544 *    is null for copying the raw bytes.
1545 * 2. Perform raw read for all the CW which has uncorrectable errors.
1546 * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1547 *    The BBM and spare bytes bit flip won���t affect the ECC so don���t check
1548 *    the number of bitflips in this area.
1549 */
1550static int
1551check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1552		      u8 *oob_buf, unsigned long uncorrectable_cws,
1553		      int page, unsigned int max_bitflips)
1554{
1555	struct nand_chip *chip = &host->chip;
1556	struct mtd_info *mtd = nand_to_mtd(chip);
1557	struct nand_ecc_ctrl *ecc = &chip->ecc;
1558	u8 *cw_data_buf, *cw_oob_buf;
1559	int cw, data_size, oob_size, ret;
1560
1561	if (!data_buf)
1562		data_buf = nand_get_data_buf(chip);
1563
1564	if (!oob_buf) {
1565		nand_get_data_buf(chip);
1566		oob_buf = chip->oob_poi;
1567	}
1568
1569	for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1570		if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) {
1571			data_size = ecc->size - ((ecc->steps - 1) * 4);
1572			oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1573		} else {
1574			data_size = host->cw_data;
1575			oob_size = host->ecc_bytes_hw;
1576		}
1577
1578		/* determine starting buffer address for current CW */
1579		cw_data_buf = data_buf + (cw * host->cw_data);
1580		cw_oob_buf = oob_buf + (cw * ecc->bytes);
1581
1582		ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1583					     cw_oob_buf, page, cw);
1584		if (ret)
1585			return ret;
1586
1587		/*
1588		 * make sure it isn't an erased page reported
1589		 * as not-erased by HW because of a few bitflips
1590		 */
1591		ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1592						  cw_oob_buf + host->bbm_size,
1593						  oob_size, NULL,
1594						  0, ecc->strength);
1595		if (ret < 0) {
1596			mtd->ecc_stats.failed++;
1597		} else {
1598			mtd->ecc_stats.corrected += ret;
1599			max_bitflips = max_t(unsigned int, max_bitflips, ret);
1600		}
1601	}
1602
1603	return max_bitflips;
1604}
1605
1606/*
1607 * reads back status registers set by the controller to notify page read
1608 * errors. this is equivalent to what 'ecc->correct()' would do.
1609 */
1610static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1611			     u8 *oob_buf, int page)
1612{
1613	struct nand_chip *chip = &host->chip;
1614	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1615	struct mtd_info *mtd = nand_to_mtd(chip);
1616	struct nand_ecc_ctrl *ecc = &chip->ecc;
1617	unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1618	struct read_stats *buf;
1619	bool flash_op_err = false, erased;
1620	int i;
1621	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1622
1623	buf = (struct read_stats *)nandc->reg_read_buf;
1624	nandc_read_buffer_sync(nandc, true);
1625
1626	for (i = 0; i < ecc->steps; i++, buf++) {
1627		u32 flash, buffer, erased_cw;
1628		int data_len, oob_len;
1629
1630		if (qcom_nandc_is_last_cw(ecc, i)) {
1631			data_len = ecc->size - ((ecc->steps - 1) << 2);
1632			oob_len = ecc->steps << 2;
1633		} else {
1634			data_len = host->cw_data;
1635			oob_len = 0;
1636		}
1637
1638		flash = le32_to_cpu(buf->flash);
1639		buffer = le32_to_cpu(buf->buffer);
1640		erased_cw = le32_to_cpu(buf->erased_cw);
1641
1642		/*
1643		 * Check ECC failure for each codeword. ECC failure can
1644		 * happen in either of the following conditions
1645		 * 1. If number of bitflips are greater than ECC engine
1646		 *    capability.
1647		 * 2. If this codeword contains all 0xff for which erased
1648		 *    codeword detection check will be done.
1649		 */
1650		if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1651			/*
1652			 * For BCH ECC, ignore erased codeword errors, if
1653			 * ERASED_CW bits are set.
1654			 */
1655			if (host->bch_enabled) {
1656				erased = (erased_cw & ERASED_CW) == ERASED_CW;
1657			/*
1658			 * For RS ECC, HW reports the erased CW by placing
1659			 * special characters at certain offsets in the buffer.
1660			 * These special characters will be valid only if
1661			 * complete page is read i.e. data_buf is not NULL.
1662			 */
1663			} else if (data_buf) {
1664				erased = erased_chunk_check_and_fixup(data_buf,
1665								      data_len);
1666			} else {
1667				erased = false;
1668			}
1669
1670			if (!erased)
1671				uncorrectable_cws |= BIT(i);
1672		/*
1673		 * Check if MPU or any other operational error (timeout,
1674		 * device failure, etc.) happened for this codeword and
1675		 * make flash_op_err true. If flash_op_err is set, then
1676		 * EIO will be returned for page read.
1677		 */
1678		} else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1679			flash_op_err = true;
1680		/*
1681		 * No ECC or operational errors happened. Check the number of
1682		 * bits corrected and update the ecc_stats.corrected.
1683		 */
1684		} else {
1685			unsigned int stat;
1686
1687			stat = buffer & BS_CORRECTABLE_ERR_MSK;
1688			mtd->ecc_stats.corrected += stat;
1689			max_bitflips = max(max_bitflips, stat);
1690		}
1691
1692		if (data_buf)
1693			data_buf += data_len;
1694		if (oob_buf)
1695			oob_buf += oob_len + ecc->bytes;
1696	}
1697
1698	if (flash_op_err)
1699		return -EIO;
1700
1701	if (!uncorrectable_cws)
1702		return max_bitflips;
1703
1704	return check_for_erased_page(host, data_buf_start, oob_buf_start,
1705				     uncorrectable_cws, page,
1706				     max_bitflips);
1707}
1708
1709/*
1710 * helper to perform the actual page read operation, used by ecc->read_page(),
1711 * ecc->read_oob()
1712 */
1713static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1714			 u8 *oob_buf, int page)
1715{
1716	struct nand_chip *chip = &host->chip;
1717	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1718	struct nand_ecc_ctrl *ecc = &chip->ecc;
1719	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1720	int i, ret;
1721
1722	config_nand_page_read(chip);
1723
1724	/* queue cmd descs for each codeword */
1725	for (i = 0; i < ecc->steps; i++) {
1726		int data_size, oob_size;
1727
1728		if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) {
1729			data_size = ecc->size - ((ecc->steps - 1) << 2);
1730			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1731				   host->spare_bytes;
1732		} else {
1733			data_size = host->cw_data;
1734			oob_size = host->ecc_bytes_hw + host->spare_bytes;
1735		}
1736
1737		if (nandc->props->is_bam) {
1738			if (data_buf && oob_buf) {
1739				nandc_set_read_loc(chip, i, 0, 0, data_size, 0);
1740				nandc_set_read_loc(chip, i, 1, data_size,
1741						   oob_size, 1);
1742			} else if (data_buf) {
1743				nandc_set_read_loc(chip, i, 0, 0, data_size, 1);
1744			} else {
1745				nandc_set_read_loc(chip, i, 0, data_size,
1746						   oob_size, 1);
1747			}
1748		}
1749
1750		config_nand_cw_read(chip, true, i);
1751
1752		if (data_buf)
1753			read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1754				      data_size, 0);
1755
1756		/*
1757		 * when ecc is enabled, the controller doesn't read the real
1758		 * or dummy bad block markers in each chunk. To maintain a
1759		 * consistent layout across RAW and ECC reads, we just
1760		 * leave the real/dummy BBM offsets empty (i.e, filled with
1761		 * 0xffs)
1762		 */
1763		if (oob_buf) {
1764			int j;
1765
1766			for (j = 0; j < host->bbm_size; j++)
1767				*oob_buf++ = 0xff;
1768
1769			read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1770				      oob_buf, oob_size, 0);
1771		}
1772
1773		if (data_buf)
1774			data_buf += data_size;
1775		if (oob_buf)
1776			oob_buf += oob_size;
1777	}
1778
1779	ret = submit_descs(nandc);
1780	if (ret) {
1781		dev_err(nandc->dev, "failure to read page/oob\n");
1782		return ret;
1783	}
1784
1785	return parse_read_errors(host, data_buf_start, oob_buf_start, page);
1786}
1787
1788/*
1789 * a helper that copies the last step/codeword of a page (containing free oob)
1790 * into our local buffer
1791 */
1792static int copy_last_cw(struct qcom_nand_host *host, int page)
1793{
1794	struct nand_chip *chip = &host->chip;
1795	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1796	struct nand_ecc_ctrl *ecc = &chip->ecc;
1797	int size;
1798	int ret;
1799
1800	clear_read_regs(nandc);
1801
1802	size = host->use_ecc ? host->cw_data : host->cw_size;
1803
1804	/* prepare a clean read buffer */
1805	memset(nandc->data_buffer, 0xff, size);
1806
1807	set_address(host, host->cw_size * (ecc->steps - 1), page);
1808	update_rw_regs(host, 1, true, ecc->steps - 1);
1809
1810	config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1);
1811
1812	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
1813
1814	ret = submit_descs(nandc);
1815	if (ret)
1816		dev_err(nandc->dev, "failed to copy last codeword\n");
1817
1818	return ret;
1819}
1820
1821static bool qcom_nandc_is_boot_partition(struct qcom_nand_host *host, int page)
1822{
1823	struct qcom_nand_boot_partition *boot_partition;
1824	u32 start, end;
1825	int i;
1826
1827	/*
1828	 * Since the frequent access will be to the non-boot partitions like rootfs,
1829	 * optimize the page check by:
1830	 *
1831	 * 1. Checking if the page lies after the last boot partition.
1832	 * 2. Checking from the boot partition end.
1833	 */
1834
1835	/* First check the last boot partition */
1836	boot_partition = &host->boot_partitions[host->nr_boot_partitions - 1];
1837	start = boot_partition->page_offset;
1838	end = start + boot_partition->page_size;
1839
1840	/* Page is after the last boot partition end. This is NOT a boot partition */
1841	if (page > end)
1842		return false;
1843
1844	/* Actually check if it's a boot partition */
1845	if (page < end && page >= start)
1846		return true;
1847
1848	/* Check the other boot partitions starting from the second-last partition */
1849	for (i = host->nr_boot_partitions - 2; i >= 0; i--) {
1850		boot_partition = &host->boot_partitions[i];
1851		start = boot_partition->page_offset;
1852		end = start + boot_partition->page_size;
1853
1854		if (page < end && page >= start)
1855			return true;
1856	}
1857
1858	return false;
1859}
1860
1861static void qcom_nandc_codeword_fixup(struct qcom_nand_host *host, int page)
1862{
1863	bool codeword_fixup = qcom_nandc_is_boot_partition(host, page);
1864
1865	/* Skip conf write if we are already in the correct mode */
1866	if (codeword_fixup == host->codeword_fixup)
1867		return;
1868
1869	host->codeword_fixup = codeword_fixup;
1870
1871	host->cw_data = codeword_fixup ? 512 : 516;
1872	host->spare_bytes = host->cw_size - host->ecc_bytes_hw -
1873			    host->bbm_size - host->cw_data;
1874
1875	host->cfg0 &= ~(SPARE_SIZE_BYTES_MASK | UD_SIZE_BYTES_MASK);
1876	host->cfg0 |= host->spare_bytes << SPARE_SIZE_BYTES |
1877		      host->cw_data << UD_SIZE_BYTES;
1878
1879	host->ecc_bch_cfg &= ~ECC_NUM_DATA_BYTES_MASK;
1880	host->ecc_bch_cfg |= host->cw_data << ECC_NUM_DATA_BYTES;
1881	host->ecc_buf_cfg = (host->cw_data - 1) << NUM_STEPS;
1882}
1883
1884/* implements ecc->read_page() */
1885static int qcom_nandc_read_page(struct nand_chip *chip, u8 *buf,
1886				int oob_required, int page)
1887{
1888	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1889	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1890	struct nand_ecc_ctrl *ecc = &chip->ecc;
1891	u8 *data_buf, *oob_buf = NULL;
1892
1893	if (host->nr_boot_partitions)
1894		qcom_nandc_codeword_fixup(host, page);
1895
1896	nand_read_page_op(chip, page, 0, NULL, 0);
1897	nandc->buf_count = 0;
1898	nandc->buf_start = 0;
1899	host->use_ecc = true;
1900	clear_read_regs(nandc);
1901	set_address(host, 0, page);
1902	update_rw_regs(host, ecc->steps, true, 0);
1903
1904	data_buf = buf;
1905	oob_buf = oob_required ? chip->oob_poi : NULL;
1906
1907	clear_bam_transaction(nandc);
1908
1909	return read_page_ecc(host, data_buf, oob_buf, page);
1910}
1911
1912/* implements ecc->read_page_raw() */
1913static int qcom_nandc_read_page_raw(struct nand_chip *chip, u8 *buf,
1914				    int oob_required, int page)
1915{
1916	struct mtd_info *mtd = nand_to_mtd(chip);
1917	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1918	struct nand_ecc_ctrl *ecc = &chip->ecc;
1919	int cw, ret;
1920	u8 *data_buf = buf, *oob_buf = chip->oob_poi;
1921
1922	if (host->nr_boot_partitions)
1923		qcom_nandc_codeword_fixup(host, page);
1924
1925	for (cw = 0; cw < ecc->steps; cw++) {
1926		ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
1927					     page, cw);
1928		if (ret)
1929			return ret;
1930
1931		data_buf += host->cw_data;
1932		oob_buf += ecc->bytes;
1933	}
1934
1935	return 0;
1936}
1937
1938/* implements ecc->read_oob() */
1939static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
1940{
1941	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1942	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1943	struct nand_ecc_ctrl *ecc = &chip->ecc;
1944
1945	if (host->nr_boot_partitions)
1946		qcom_nandc_codeword_fixup(host, page);
1947
1948	clear_read_regs(nandc);
1949	clear_bam_transaction(nandc);
1950
1951	host->use_ecc = true;
1952	set_address(host, 0, page);
1953	update_rw_regs(host, ecc->steps, true, 0);
1954
1955	return read_page_ecc(host, NULL, chip->oob_poi, page);
1956}
1957
1958/* implements ecc->write_page() */
1959static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf,
1960				 int oob_required, int page)
1961{
1962	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1963	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1964	struct nand_ecc_ctrl *ecc = &chip->ecc;
1965	u8 *data_buf, *oob_buf;
1966	int i, ret;
1967
1968	if (host->nr_boot_partitions)
1969		qcom_nandc_codeword_fixup(host, page);
1970
1971	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1972
1973	set_address(host, 0, page);
1974	nandc->buf_count = 0;
1975	nandc->buf_start = 0;
1976	clear_read_regs(nandc);
1977	clear_bam_transaction(nandc);
1978
1979	data_buf = (u8 *)buf;
1980	oob_buf = chip->oob_poi;
1981
1982	host->use_ecc = true;
1983	update_rw_regs(host, ecc->steps, false, 0);
1984	config_nand_page_write(chip);
1985
1986	for (i = 0; i < ecc->steps; i++) {
1987		int data_size, oob_size;
1988
1989		if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) {
1990			data_size = ecc->size - ((ecc->steps - 1) << 2);
1991			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1992				   host->spare_bytes;
1993		} else {
1994			data_size = host->cw_data;
1995			oob_size = ecc->bytes;
1996		}
1997
1998		write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
1999			       i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2000
2001		/*
2002		 * when ECC is enabled, we don't really need to write anything
2003		 * to oob for the first n - 1 codewords since these oob regions
2004		 * just contain ECC bytes that's written by the controller
2005		 * itself. For the last codeword, we skip the bbm positions and
2006		 * write to the free oob area.
2007		 */
2008		if (qcom_nandc_is_last_cw(ecc, i)) {
2009			oob_buf += host->bbm_size;
2010
2011			write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2012				       oob_buf, oob_size, 0);
2013		}
2014
2015		config_nand_cw_write(chip);
2016
2017		data_buf += data_size;
2018		oob_buf += oob_size;
2019	}
2020
2021	ret = submit_descs(nandc);
2022	if (ret) {
2023		dev_err(nandc->dev, "failure to write page\n");
2024		return ret;
2025	}
2026
2027	return nand_prog_page_end_op(chip);
2028}
2029
2030/* implements ecc->write_page_raw() */
2031static int qcom_nandc_write_page_raw(struct nand_chip *chip,
2032				     const u8 *buf, int oob_required,
2033				     int page)
2034{
2035	struct mtd_info *mtd = nand_to_mtd(chip);
2036	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2037	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2038	struct nand_ecc_ctrl *ecc = &chip->ecc;
2039	u8 *data_buf, *oob_buf;
2040	int i, ret;
2041
2042	if (host->nr_boot_partitions)
2043		qcom_nandc_codeword_fixup(host, page);
2044
2045	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2046	clear_read_regs(nandc);
2047	clear_bam_transaction(nandc);
2048
2049	data_buf = (u8 *)buf;
2050	oob_buf = chip->oob_poi;
2051
2052	host->use_ecc = false;
2053	update_rw_regs(host, ecc->steps, false, 0);
2054	config_nand_page_write(chip);
2055
2056	for (i = 0; i < ecc->steps; i++) {
2057		int data_size1, data_size2, oob_size1, oob_size2;
2058		int reg_off = FLASH_BUF_ACC;
2059
2060		data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2061		oob_size1 = host->bbm_size;
2062
2063		if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) {
2064			data_size2 = ecc->size - data_size1 -
2065				     ((ecc->steps - 1) << 2);
2066			oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2067				    host->spare_bytes;
2068		} else {
2069			data_size2 = host->cw_data - data_size1;
2070			oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2071		}
2072
2073		write_data_dma(nandc, reg_off, data_buf, data_size1,
2074			       NAND_BAM_NO_EOT);
2075		reg_off += data_size1;
2076		data_buf += data_size1;
2077
2078		write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2079			       NAND_BAM_NO_EOT);
2080		reg_off += oob_size1;
2081		oob_buf += oob_size1;
2082
2083		write_data_dma(nandc, reg_off, data_buf, data_size2,
2084			       NAND_BAM_NO_EOT);
2085		reg_off += data_size2;
2086		data_buf += data_size2;
2087
2088		write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2089		oob_buf += oob_size2;
2090
2091		config_nand_cw_write(chip);
2092	}
2093
2094	ret = submit_descs(nandc);
2095	if (ret) {
2096		dev_err(nandc->dev, "failure to write raw page\n");
2097		return ret;
2098	}
2099
2100	return nand_prog_page_end_op(chip);
2101}
2102
2103/*
2104 * implements ecc->write_oob()
2105 *
2106 * the NAND controller cannot write only data or only OOB within a codeword
2107 * since ECC is calculated for the combined codeword. So update the OOB from
2108 * chip->oob_poi, and pad the data area with OxFF before writing.
2109 */
2110static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
2111{
2112	struct mtd_info *mtd = nand_to_mtd(chip);
2113	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2114	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2115	struct nand_ecc_ctrl *ecc = &chip->ecc;
2116	u8 *oob = chip->oob_poi;
2117	int data_size, oob_size;
2118	int ret;
2119
2120	if (host->nr_boot_partitions)
2121		qcom_nandc_codeword_fixup(host, page);
2122
2123	host->use_ecc = true;
2124	clear_bam_transaction(nandc);
2125
2126	/* calculate the data and oob size for the last codeword/step */
2127	data_size = ecc->size - ((ecc->steps - 1) << 2);
2128	oob_size = mtd->oobavail;
2129
2130	memset(nandc->data_buffer, 0xff, host->cw_data);
2131	/* override new oob content to last codeword */
2132	mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2133				    0, mtd->oobavail);
2134
2135	set_address(host, host->cw_size * (ecc->steps - 1), page);
2136	update_rw_regs(host, 1, false, 0);
2137
2138	config_nand_page_write(chip);
2139	write_data_dma(nandc, FLASH_BUF_ACC,
2140		       nandc->data_buffer, data_size + oob_size, 0);
2141	config_nand_cw_write(chip);
2142
2143	ret = submit_descs(nandc);
2144	if (ret) {
2145		dev_err(nandc->dev, "failure to write oob\n");
2146		return ret;
2147	}
2148
2149	return nand_prog_page_end_op(chip);
2150}
2151
2152static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
2153{
2154	struct mtd_info *mtd = nand_to_mtd(chip);
2155	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2156	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2157	struct nand_ecc_ctrl *ecc = &chip->ecc;
2158	int page, ret, bbpos, bad = 0;
2159
2160	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2161
2162	/*
2163	 * configure registers for a raw sub page read, the address is set to
2164	 * the beginning of the last codeword, we don't care about reading ecc
2165	 * portion of oob. we just want the first few bytes from this codeword
2166	 * that contains the BBM
2167	 */
2168	host->use_ecc = false;
2169
2170	clear_bam_transaction(nandc);
2171	ret = copy_last_cw(host, page);
2172	if (ret)
2173		goto err;
2174
2175	if (check_flash_errors(host, 1)) {
2176		dev_warn(nandc->dev, "error when trying to read BBM\n");
2177		goto err;
2178	}
2179
2180	bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2181
2182	bad = nandc->data_buffer[bbpos] != 0xff;
2183
2184	if (chip->options & NAND_BUSWIDTH_16)
2185		bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2186err:
2187	return bad;
2188}
2189
2190static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
2191{
2192	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2193	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2194	struct nand_ecc_ctrl *ecc = &chip->ecc;
2195	int page, ret;
2196
2197	clear_read_regs(nandc);
2198	clear_bam_transaction(nandc);
2199
2200	/*
2201	 * to mark the BBM as bad, we flash the entire last codeword with 0s.
2202	 * we don't care about the rest of the content in the codeword since
2203	 * we aren't going to use this block again
2204	 */
2205	memset(nandc->data_buffer, 0x00, host->cw_size);
2206
2207	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2208
2209	/* prepare write */
2210	host->use_ecc = false;
2211	set_address(host, host->cw_size * (ecc->steps - 1), page);
2212	update_rw_regs(host, 1, false, ecc->steps - 1);
2213
2214	config_nand_page_write(chip);
2215	write_data_dma(nandc, FLASH_BUF_ACC,
2216		       nandc->data_buffer, host->cw_size, 0);
2217	config_nand_cw_write(chip);
2218
2219	ret = submit_descs(nandc);
2220	if (ret) {
2221		dev_err(nandc->dev, "failure to update BBM\n");
2222		return ret;
2223	}
2224
2225	return nand_prog_page_end_op(chip);
2226}
2227
2228/*
2229 * NAND controller page layout info
2230 *
2231 * Layout with ECC enabled:
2232 *
2233 * |----------------------|  |---------------------------------|
2234 * |           xx.......yy|  |             *********xx.......yy|
2235 * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
2236 * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
2237 * |           xx.......yy|  |             *********xx.......yy|
2238 * |----------------------|  |---------------------------------|
2239 *     codeword 1,2..n-1                  codeword n
2240 *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
2241 *
2242 * n = Number of codewords in the page
2243 * . = ECC bytes
2244 * * = Spare/free bytes
2245 * x = Unused byte(s)
2246 * y = Reserved byte(s)
2247 *
2248 * 2K page: n = 4, spare = 16 bytes
2249 * 4K page: n = 8, spare = 32 bytes
2250 * 8K page: n = 16, spare = 64 bytes
2251 *
2252 * the qcom nand controller operates at a sub page/codeword level. each
2253 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2254 * the number of ECC bytes vary based on the ECC strength and the bus width.
2255 *
2256 * the first n - 1 codewords contains 516 bytes of user data, the remaining
2257 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2258 * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2259 *
2260 * When we access a page with ECC enabled, the reserved bytes(s) are not
2261 * accessible at all. When reading, we fill up these unreadable positions
2262 * with 0xffs. When writing, the controller skips writing the inaccessible
2263 * bytes.
2264 *
2265 * Layout with ECC disabled:
2266 *
2267 * |------------------------------|  |---------------------------------------|
2268 * |         yy          xx.......|  |         bb          *********xx.......|
2269 * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
2270 * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
2271 * |         yy          xx.......|  |         bb          *********xx.......|
2272 * |------------------------------|  |---------------------------------------|
2273 *         codeword 1,2..n-1                        codeword n
2274 *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
2275 *
2276 * n = Number of codewords in the page
2277 * . = ECC bytes
2278 * * = Spare/free bytes
2279 * x = Unused byte(s)
2280 * y = Dummy Bad Bock byte(s)
2281 * b = Real Bad Block byte(s)
2282 * size1/size2 = function of codeword size and 'n'
2283 *
2284 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2285 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2286 * Block Markers. In the last codeword, this position contains the real BBM
2287 *
2288 * In order to have a consistent layout between RAW and ECC modes, we assume
2289 * the following OOB layout arrangement:
2290 *
2291 * |-----------|  |--------------------|
2292 * |yyxx.......|  |bb*********xx.......|
2293 * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
2294 * |yyxx.......|  |bb*********xx.......|
2295 * |yyxx.......|  |bb*********xx.......|
2296 * |-----------|  |--------------------|
2297 *  first n - 1       nth OOB region
2298 *  OOB regions
2299 *
2300 * n = Number of codewords in the page
2301 * . = ECC bytes
2302 * * = FREE OOB bytes
2303 * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2304 * x = Unused byte(s)
2305 * b = Real bad block byte(s) (inaccessible when ECC enabled)
2306 *
2307 * This layout is read as is when ECC is disabled. When ECC is enabled, the
2308 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2309 * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2310 * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2311 * the sum of the three).
2312 */
2313static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2314				   struct mtd_oob_region *oobregion)
2315{
2316	struct nand_chip *chip = mtd_to_nand(mtd);
2317	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2318	struct nand_ecc_ctrl *ecc = &chip->ecc;
2319
2320	if (section > 1)
2321		return -ERANGE;
2322
2323	if (!section) {
2324		oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2325				    host->bbm_size;
2326		oobregion->offset = 0;
2327	} else {
2328		oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2329		oobregion->offset = mtd->oobsize - oobregion->length;
2330	}
2331
2332	return 0;
2333}
2334
2335static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2336				    struct mtd_oob_region *oobregion)
2337{
2338	struct nand_chip *chip = mtd_to_nand(mtd);
2339	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2340	struct nand_ecc_ctrl *ecc = &chip->ecc;
2341
2342	if (section)
2343		return -ERANGE;
2344
2345	oobregion->length = ecc->steps * 4;
2346	oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2347
2348	return 0;
2349}
2350
2351static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2352	.ecc = qcom_nand_ooblayout_ecc,
2353	.free = qcom_nand_ooblayout_free,
2354};
2355
2356static int
2357qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2358{
2359	return strength == 4 ? 12 : 16;
2360}
2361
2362NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2363		     NANDC_STEP_SIZE, 4, 8);
2364
2365static int qcom_nand_attach_chip(struct nand_chip *chip)
2366{
2367	struct mtd_info *mtd = nand_to_mtd(chip);
2368	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2369	struct nand_ecc_ctrl *ecc = &chip->ecc;
2370	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2371	int cwperpage, bad_block_byte, ret;
2372	bool wide_bus;
2373	int ecc_mode = 1;
2374
2375	/* controller only supports 512 bytes data steps */
2376	ecc->size = NANDC_STEP_SIZE;
2377	wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2378	cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2379
2380	/*
2381	 * Each CW has 4 available OOB bytes which will be protected with ECC
2382	 * so remaining bytes can be used for ECC.
2383	 */
2384	ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2385				   mtd->oobsize - (cwperpage * 4));
2386	if (ret) {
2387		dev_err(nandc->dev, "No valid ECC settings possible\n");
2388		return ret;
2389	}
2390
2391	if (ecc->strength >= 8) {
2392		/* 8 bit ECC defaults to BCH ECC on all platforms */
2393		host->bch_enabled = true;
2394		ecc_mode = 1;
2395
2396		if (wide_bus) {
2397			host->ecc_bytes_hw = 14;
2398			host->spare_bytes = 0;
2399			host->bbm_size = 2;
2400		} else {
2401			host->ecc_bytes_hw = 13;
2402			host->spare_bytes = 2;
2403			host->bbm_size = 1;
2404		}
2405	} else {
2406		/*
2407		 * if the controller supports BCH for 4 bit ECC, the controller
2408		 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2409		 * always 10 bytes
2410		 */
2411		if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2412			/* BCH */
2413			host->bch_enabled = true;
2414			ecc_mode = 0;
2415
2416			if (wide_bus) {
2417				host->ecc_bytes_hw = 8;
2418				host->spare_bytes = 2;
2419				host->bbm_size = 2;
2420			} else {
2421				host->ecc_bytes_hw = 7;
2422				host->spare_bytes = 4;
2423				host->bbm_size = 1;
2424			}
2425		} else {
2426			/* RS */
2427			host->ecc_bytes_hw = 10;
2428
2429			if (wide_bus) {
2430				host->spare_bytes = 0;
2431				host->bbm_size = 2;
2432			} else {
2433				host->spare_bytes = 1;
2434				host->bbm_size = 1;
2435			}
2436		}
2437	}
2438
2439	/*
2440	 * we consider ecc->bytes as the sum of all the non-data content in a
2441	 * step. It gives us a clean representation of the oob area (even if
2442	 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2443	 * ECC and 12 bytes for 4 bit ECC
2444	 */
2445	ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2446
2447	ecc->read_page		= qcom_nandc_read_page;
2448	ecc->read_page_raw	= qcom_nandc_read_page_raw;
2449	ecc->read_oob		= qcom_nandc_read_oob;
2450	ecc->write_page		= qcom_nandc_write_page;
2451	ecc->write_page_raw	= qcom_nandc_write_page_raw;
2452	ecc->write_oob		= qcom_nandc_write_oob;
2453
2454	ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2455
2456	mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2457	/* Free the initially allocated BAM transaction for reading the ONFI params */
2458	if (nandc->props->is_bam)
2459		free_bam_transaction(nandc);
2460
2461	nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2462				     cwperpage);
2463
2464	/* Now allocate the BAM transaction based on updated max_cwperpage */
2465	if (nandc->props->is_bam) {
2466		nandc->bam_txn = alloc_bam_transaction(nandc);
2467		if (!nandc->bam_txn) {
2468			dev_err(nandc->dev,
2469				"failed to allocate bam transaction\n");
2470			return -ENOMEM;
2471		}
2472	}
2473
2474	/*
2475	 * DATA_UD_BYTES varies based on whether the read/write command protects
2476	 * spare data with ECC too. We protect spare data by default, so we set
2477	 * it to main + spare data, which are 512 and 4 bytes respectively.
2478	 */
2479	host->cw_data = 516;
2480
2481	/*
2482	 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2483	 * for 8 bit ECC
2484	 */
2485	host->cw_size = host->cw_data + ecc->bytes;
2486	bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2487
2488	host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2489				| host->cw_data << UD_SIZE_BYTES
2490				| 0 << DISABLE_STATUS_AFTER_WRITE
2491				| 5 << NUM_ADDR_CYCLES
2492				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2493				| 0 << STATUS_BFR_READ
2494				| 1 << SET_RD_MODE_AFTER_STATUS
2495				| host->spare_bytes << SPARE_SIZE_BYTES;
2496
2497	host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2498				| 0 <<  CS_ACTIVE_BSY
2499				| bad_block_byte << BAD_BLOCK_BYTE_NUM
2500				| 0 << BAD_BLOCK_IN_SPARE_AREA
2501				| 2 << WR_RD_BSY_GAP
2502				| wide_bus << WIDE_FLASH
2503				| host->bch_enabled << ENABLE_BCH_ECC;
2504
2505	host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2506				| host->cw_size << UD_SIZE_BYTES
2507				| 5 << NUM_ADDR_CYCLES
2508				| 0 << SPARE_SIZE_BYTES;
2509
2510	host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2511				| 0 << CS_ACTIVE_BSY
2512				| 17 << BAD_BLOCK_BYTE_NUM
2513				| 1 << BAD_BLOCK_IN_SPARE_AREA
2514				| 2 << WR_RD_BSY_GAP
2515				| wide_bus << WIDE_FLASH
2516				| 1 << DEV0_CFG1_ECC_DISABLE;
2517
2518	host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2519				| 0 << ECC_SW_RESET
2520				| host->cw_data << ECC_NUM_DATA_BYTES
2521				| 1 << ECC_FORCE_CLK_OPEN
2522				| ecc_mode << ECC_MODE
2523				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2524
2525	if (!nandc->props->qpic_v2)
2526		host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2527
2528	host->clrflashstatus = FS_READY_BSY_N;
2529	host->clrreadstatus = 0xc0;
2530	nandc->regs->erased_cw_detect_cfg_clr =
2531		cpu_to_le32(CLR_ERASED_PAGE_DET);
2532	nandc->regs->erased_cw_detect_cfg_set =
2533		cpu_to_le32(SET_ERASED_PAGE_DET);
2534
2535	dev_dbg(nandc->dev,
2536		"cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2537		host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2538		host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2539		cwperpage);
2540
2541	return 0;
2542}
2543
2544static int qcom_op_cmd_mapping(struct nand_chip *chip, u8 opcode,
2545			       struct qcom_op *q_op)
2546{
2547	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2548	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2549	int cmd;
2550
2551	switch (opcode) {
2552	case NAND_CMD_RESET:
2553		cmd = OP_RESET_DEVICE;
2554		break;
2555	case NAND_CMD_READID:
2556		cmd = OP_FETCH_ID;
2557		break;
2558	case NAND_CMD_PARAM:
2559		if (nandc->props->qpic_v2)
2560			cmd = OP_PAGE_READ_ONFI_READ;
2561		else
2562			cmd = OP_PAGE_READ;
2563		break;
2564	case NAND_CMD_ERASE1:
2565	case NAND_CMD_ERASE2:
2566		cmd = OP_BLOCK_ERASE;
2567		break;
2568	case NAND_CMD_STATUS:
2569		cmd = OP_CHECK_STATUS;
2570		break;
2571	case NAND_CMD_PAGEPROG:
2572		cmd = OP_PROGRAM_PAGE;
2573		q_op->flag = OP_PROGRAM_PAGE;
2574		nandc->exec_opwrite = true;
2575		break;
2576	case NAND_CMD_READ0:
2577	case NAND_CMD_READSTART:
2578		if (host->use_ecc)
2579			cmd = OP_PAGE_READ_WITH_ECC;
2580		else
2581			cmd = OP_PAGE_READ;
2582		break;
2583	default:
2584		dev_err(nandc->dev, "Opcode not supported: %u\n", opcode);
2585		return -EOPNOTSUPP;
2586	}
2587
2588	return cmd;
2589}
2590
2591/* NAND framework ->exec_op() hooks and related helpers */
2592static int qcom_parse_instructions(struct nand_chip *chip,
2593				    const struct nand_subop *subop,
2594				    struct qcom_op *q_op)
2595{
2596	const struct nand_op_instr *instr = NULL;
2597	unsigned int op_id;
2598	int i, ret;
2599
2600	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
2601		unsigned int offset, naddrs;
2602		const u8 *addrs;
2603
2604		instr = &subop->instrs[op_id];
2605
2606		switch (instr->type) {
2607		case NAND_OP_CMD_INSTR:
2608			ret = qcom_op_cmd_mapping(chip, instr->ctx.cmd.opcode, q_op);
2609			if (ret < 0)
2610				return ret;
2611
2612			q_op->cmd_reg = ret;
2613			q_op->rdy_delay_ns = instr->delay_ns;
2614			break;
2615
2616		case NAND_OP_ADDR_INSTR:
2617			offset = nand_subop_get_addr_start_off(subop, op_id);
2618			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
2619			addrs = &instr->ctx.addr.addrs[offset];
2620
2621			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
2622				q_op->addr1_reg |= addrs[i] << (i * 8);
2623
2624			if (naddrs > 4)
2625				q_op->addr2_reg |= addrs[4];
2626
2627			q_op->rdy_delay_ns = instr->delay_ns;
2628			break;
2629
2630		case NAND_OP_DATA_IN_INSTR:
2631			q_op->data_instr = instr;
2632			q_op->data_instr_idx = op_id;
2633			q_op->rdy_delay_ns = instr->delay_ns;
2634			fallthrough;
2635		case NAND_OP_DATA_OUT_INSTR:
2636			q_op->rdy_delay_ns = instr->delay_ns;
2637			break;
2638
2639		case NAND_OP_WAITRDY_INSTR:
2640			q_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
2641			q_op->rdy_delay_ns = instr->delay_ns;
2642			break;
2643		}
2644	}
2645
2646	return 0;
2647}
2648
2649static void qcom_delay_ns(unsigned int ns)
2650{
2651	if (!ns)
2652		return;
2653
2654	if (ns < 10000)
2655		ndelay(ns);
2656	else
2657		udelay(DIV_ROUND_UP(ns, 1000));
2658}
2659
2660static int qcom_wait_rdy_poll(struct nand_chip *chip, unsigned int time_ms)
2661{
2662	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2663	unsigned long start = jiffies + msecs_to_jiffies(time_ms);
2664	u32 flash;
2665
2666	nandc_read_buffer_sync(nandc, true);
2667
2668	do {
2669		flash = le32_to_cpu(nandc->reg_read_buf[0]);
2670		if (flash & FS_READY_BSY_N)
2671			return 0;
2672		cpu_relax();
2673	} while (time_after(start, jiffies));
2674
2675	dev_err(nandc->dev, "Timeout waiting for device to be ready:0x%08x\n", flash);
2676
2677	return -ETIMEDOUT;
2678}
2679
2680static int qcom_read_status_exec(struct nand_chip *chip,
2681				 const struct nand_subop *subop)
2682{
2683	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2684	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2685	struct nand_ecc_ctrl *ecc = &chip->ecc;
2686	struct qcom_op q_op = {};
2687	const struct nand_op_instr *instr = NULL;
2688	unsigned int op_id = 0;
2689	unsigned int len = 0;
2690	int ret, num_cw, i;
2691	u32 flash_status;
2692
2693	host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2694
2695	ret = qcom_parse_instructions(chip, subop, &q_op);
2696	if (ret)
2697		return ret;
2698
2699	num_cw = nandc->exec_opwrite ? ecc->steps : 1;
2700	nandc->exec_opwrite = false;
2701
2702	nandc->buf_count = 0;
2703	nandc->buf_start = 0;
2704	host->use_ecc = false;
2705
2706	clear_read_regs(nandc);
2707	clear_bam_transaction(nandc);
2708
2709	nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg);
2710	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
2711
2712	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
2713	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
2714	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
2715
2716	ret = submit_descs(nandc);
2717	if (ret) {
2718		dev_err(nandc->dev, "failure in submitting status descriptor\n");
2719		goto err_out;
2720	}
2721
2722	nandc_read_buffer_sync(nandc, true);
2723
2724	for (i = 0; i < num_cw; i++) {
2725		flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
2726
2727		if (flash_status & FS_MPU_ERR)
2728			host->status &= ~NAND_STATUS_WP;
2729
2730		if (flash_status & FS_OP_ERR ||
2731		    (i == (num_cw - 1) && (flash_status & FS_DEVICE_STS_ERR)))
2732			host->status |= NAND_STATUS_FAIL;
2733	}
2734
2735	flash_status = host->status;
2736	instr = q_op.data_instr;
2737	op_id = q_op.data_instr_idx;
2738	len = nand_subop_get_data_len(subop, op_id);
2739	memcpy(instr->ctx.data.buf.in, &flash_status, len);
2740
2741err_out:
2742	return ret;
2743}
2744
2745static int qcom_read_id_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
2746{
2747	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2748	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2749	struct qcom_op q_op = {};
2750	const struct nand_op_instr *instr = NULL;
2751	unsigned int op_id = 0;
2752	unsigned int len = 0;
2753	int ret;
2754
2755	ret = qcom_parse_instructions(chip, subop, &q_op);
2756	if (ret)
2757		return ret;
2758
2759	nandc->buf_count = 0;
2760	nandc->buf_start = 0;
2761	host->use_ecc = false;
2762
2763	clear_read_regs(nandc);
2764	clear_bam_transaction(nandc);
2765
2766	nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg);
2767	nandc_set_reg(chip, NAND_ADDR0, q_op.addr1_reg);
2768	nandc_set_reg(chip, NAND_ADDR1, q_op.addr2_reg);
2769	nandc_set_reg(chip, NAND_FLASH_CHIP_SELECT,
2770		      nandc->props->is_bam ? 0 : DM_EN);
2771
2772	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
2773
2774	write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
2775	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
2776
2777	read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
2778
2779	ret = submit_descs(nandc);
2780	if (ret) {
2781		dev_err(nandc->dev, "failure in submitting read id descriptor\n");
2782		goto err_out;
2783	}
2784
2785	instr = q_op.data_instr;
2786	op_id = q_op.data_instr_idx;
2787	len = nand_subop_get_data_len(subop, op_id);
2788
2789	nandc_read_buffer_sync(nandc, true);
2790	memcpy(instr->ctx.data.buf.in, nandc->reg_read_buf, len);
2791
2792err_out:
2793	return ret;
2794}
2795
2796static int qcom_misc_cmd_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
2797{
2798	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2799	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2800	struct qcom_op q_op = {};
2801	int ret;
2802	int instrs = 1;
2803
2804	ret = qcom_parse_instructions(chip, subop, &q_op);
2805	if (ret)
2806		return ret;
2807
2808	if (q_op.flag == OP_PROGRAM_PAGE) {
2809		goto wait_rdy;
2810	} else if (q_op.cmd_reg == OP_BLOCK_ERASE) {
2811		q_op.cmd_reg |= PAGE_ACC | LAST_PAGE;
2812		nandc_set_reg(chip, NAND_ADDR0, q_op.addr1_reg);
2813		nandc_set_reg(chip, NAND_ADDR1, q_op.addr2_reg);
2814		nandc_set_reg(chip, NAND_DEV0_CFG0,
2815			      host->cfg0_raw & ~(7 << CW_PER_PAGE));
2816		nandc_set_reg(chip, NAND_DEV0_CFG1, host->cfg1_raw);
2817		instrs = 3;
2818	} else if (q_op.cmd_reg != OP_RESET_DEVICE) {
2819		return 0;
2820	}
2821
2822	nandc->buf_count = 0;
2823	nandc->buf_start = 0;
2824	host->use_ecc = false;
2825
2826	clear_read_regs(nandc);
2827	clear_bam_transaction(nandc);
2828
2829	nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg);
2830	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
2831
2832	write_reg_dma(nandc, NAND_FLASH_CMD, instrs, NAND_BAM_NEXT_SGL);
2833	if (q_op.cmd_reg == OP_BLOCK_ERASE)
2834		write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
2835
2836	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
2837	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
2838
2839	ret = submit_descs(nandc);
2840	if (ret) {
2841		dev_err(nandc->dev, "failure in submitting misc descriptor\n");
2842		goto err_out;
2843	}
2844
2845wait_rdy:
2846	qcom_delay_ns(q_op.rdy_delay_ns);
2847	ret = qcom_wait_rdy_poll(chip, q_op.rdy_timeout_ms);
2848
2849err_out:
2850	return ret;
2851}
2852
2853static int qcom_param_page_type_exec(struct nand_chip *chip,  const struct nand_subop *subop)
2854{
2855	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2856	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2857	struct qcom_op q_op = {};
2858	const struct nand_op_instr *instr = NULL;
2859	unsigned int op_id = 0;
2860	unsigned int len = 0;
2861	int ret;
2862
2863	ret = qcom_parse_instructions(chip, subop, &q_op);
2864	if (ret)
2865		return ret;
2866
2867	q_op.cmd_reg |= PAGE_ACC | LAST_PAGE;
2868
2869	nandc->buf_count = 0;
2870	nandc->buf_start = 0;
2871	host->use_ecc = false;
2872	clear_read_regs(nandc);
2873	clear_bam_transaction(nandc);
2874
2875	nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg);
2876
2877	nandc_set_reg(chip, NAND_ADDR0, 0);
2878	nandc_set_reg(chip, NAND_ADDR1, 0);
2879	nandc_set_reg(chip, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
2880					| 512 << UD_SIZE_BYTES
2881					| 5 << NUM_ADDR_CYCLES
2882					| 0 << SPARE_SIZE_BYTES);
2883	nandc_set_reg(chip, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
2884					| 0 << CS_ACTIVE_BSY
2885					| 17 << BAD_BLOCK_BYTE_NUM
2886					| 1 << BAD_BLOCK_IN_SPARE_AREA
2887					| 2 << WR_RD_BSY_GAP
2888					| 0 << WIDE_FLASH
2889					| 1 << DEV0_CFG1_ECC_DISABLE);
2890	if (!nandc->props->qpic_v2)
2891		nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
2892
2893	/* configure CMD1 and VLD for ONFI param probing in QPIC v1 */
2894	if (!nandc->props->qpic_v2) {
2895		nandc_set_reg(chip, NAND_DEV_CMD_VLD,
2896			      (nandc->vld & ~READ_START_VLD));
2897		nandc_set_reg(chip, NAND_DEV_CMD1,
2898			      (nandc->cmd1 & ~(0xFF << READ_ADDR))
2899			      | NAND_CMD_PARAM << READ_ADDR);
2900	}
2901
2902	nandc_set_reg(chip, NAND_EXEC_CMD, 1);
2903
2904	if (!nandc->props->qpic_v2) {
2905		nandc_set_reg(chip, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
2906		nandc_set_reg(chip, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
2907	}
2908
2909	instr = q_op.data_instr;
2910	op_id = q_op.data_instr_idx;
2911	len = nand_subop_get_data_len(subop, op_id);
2912
2913	nandc_set_read_loc(chip, 0, 0, 0, len, 1);
2914
2915	if (!nandc->props->qpic_v2) {
2916		write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
2917		write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
2918	}
2919
2920	nandc->buf_count = len;
2921	memset(nandc->data_buffer, 0xff, nandc->buf_count);
2922
2923	config_nand_single_cw_page_read(chip, false, 0);
2924
2925	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
2926		      nandc->buf_count, 0);
2927
2928	/* restore CMD1 and VLD regs */
2929	if (!nandc->props->qpic_v2) {
2930		write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
2931		write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
2932	}
2933
2934	ret = submit_descs(nandc);
2935	if (ret) {
2936		dev_err(nandc->dev, "failure in submitting param page descriptor\n");
2937		goto err_out;
2938	}
2939
2940	ret = qcom_wait_rdy_poll(chip, q_op.rdy_timeout_ms);
2941	if (ret)
2942		goto err_out;
2943
2944	memcpy(instr->ctx.data.buf.in, nandc->data_buffer, len);
2945
2946err_out:
2947	return ret;
2948}
2949
2950static const struct nand_op_parser qcom_op_parser = NAND_OP_PARSER(
2951		NAND_OP_PARSER_PATTERN(
2952			qcom_read_id_type_exec,
2953			NAND_OP_PARSER_PAT_CMD_ELEM(false),
2954			NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE),
2955			NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
2956		NAND_OP_PARSER_PATTERN(
2957			qcom_read_status_exec,
2958			NAND_OP_PARSER_PAT_CMD_ELEM(false),
2959			NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
2960		NAND_OP_PARSER_PATTERN(
2961			qcom_param_page_type_exec,
2962			NAND_OP_PARSER_PAT_CMD_ELEM(false),
2963			NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE),
2964			NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
2965			NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 512)),
2966		NAND_OP_PARSER_PATTERN(
2967			qcom_misc_cmd_type_exec,
2968			NAND_OP_PARSER_PAT_CMD_ELEM(false),
2969			NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYCLE),
2970			NAND_OP_PARSER_PAT_CMD_ELEM(true),
2971			NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2972		);
2973
2974static int qcom_check_op(struct nand_chip *chip,
2975			 const struct nand_operation *op)
2976{
2977	const struct nand_op_instr *instr;
2978	int op_id;
2979
2980	for (op_id = 0; op_id < op->ninstrs; op_id++) {
2981		instr = &op->instrs[op_id];
2982
2983		switch (instr->type) {
2984		case NAND_OP_CMD_INSTR:
2985			if (instr->ctx.cmd.opcode != NAND_CMD_RESET  &&
2986			    instr->ctx.cmd.opcode != NAND_CMD_READID &&
2987			    instr->ctx.cmd.opcode != NAND_CMD_PARAM  &&
2988			    instr->ctx.cmd.opcode != NAND_CMD_ERASE1 &&
2989			    instr->ctx.cmd.opcode != NAND_CMD_ERASE2 &&
2990			    instr->ctx.cmd.opcode != NAND_CMD_STATUS &&
2991			    instr->ctx.cmd.opcode != NAND_CMD_PAGEPROG &&
2992			    instr->ctx.cmd.opcode != NAND_CMD_READ0 &&
2993			    instr->ctx.cmd.opcode != NAND_CMD_READSTART)
2994				return -EOPNOTSUPP;
2995			break;
2996		default:
2997			break;
2998		}
2999	}
3000
3001	return 0;
3002}
3003
3004static int qcom_nand_exec_op(struct nand_chip *chip,
3005			     const struct nand_operation *op, bool check_only)
3006{
3007	if (check_only)
3008		return qcom_check_op(chip, op);
3009
3010	return nand_op_parser_exec_op(chip, &qcom_op_parser, op, check_only);
3011}
3012
3013static const struct nand_controller_ops qcom_nandc_ops = {
3014	.attach_chip = qcom_nand_attach_chip,
3015	.exec_op = qcom_nand_exec_op,
3016};
3017
3018static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
3019{
3020	if (nandc->props->is_bam) {
3021		if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
3022			dma_unmap_single(nandc->dev, nandc->reg_read_dma,
3023					 MAX_REG_RD *
3024					 sizeof(*nandc->reg_read_buf),
3025					 DMA_FROM_DEVICE);
3026
3027		if (nandc->tx_chan)
3028			dma_release_channel(nandc->tx_chan);
3029
3030		if (nandc->rx_chan)
3031			dma_release_channel(nandc->rx_chan);
3032
3033		if (nandc->cmd_chan)
3034			dma_release_channel(nandc->cmd_chan);
3035	} else {
3036		if (nandc->chan)
3037			dma_release_channel(nandc->chan);
3038	}
3039}
3040
3041static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
3042{
3043	int ret;
3044
3045	ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
3046	if (ret) {
3047		dev_err(nandc->dev, "failed to set DMA mask\n");
3048		return ret;
3049	}
3050
3051	/*
3052	 * we use the internal buffer for reading ONFI params, reading small
3053	 * data like ID and status, and preforming read-copy-write operations
3054	 * when writing to a codeword partially. 532 is the maximum possible
3055	 * size of a codeword for our nand controller
3056	 */
3057	nandc->buf_size = 532;
3058
3059	nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL);
3060	if (!nandc->data_buffer)
3061		return -ENOMEM;
3062
3063	nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL);
3064	if (!nandc->regs)
3065		return -ENOMEM;
3066
3067	nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD,
3068					   sizeof(*nandc->reg_read_buf),
3069					   GFP_KERNEL);
3070	if (!nandc->reg_read_buf)
3071		return -ENOMEM;
3072
3073	if (nandc->props->is_bam) {
3074		nandc->reg_read_dma =
3075			dma_map_single(nandc->dev, nandc->reg_read_buf,
3076				       MAX_REG_RD *
3077				       sizeof(*nandc->reg_read_buf),
3078				       DMA_FROM_DEVICE);
3079		if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
3080			dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
3081			return -EIO;
3082		}
3083
3084		nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
3085		if (IS_ERR(nandc->tx_chan)) {
3086			ret = PTR_ERR(nandc->tx_chan);
3087			nandc->tx_chan = NULL;
3088			dev_err_probe(nandc->dev, ret,
3089				      "tx DMA channel request failed\n");
3090			goto unalloc;
3091		}
3092
3093		nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
3094		if (IS_ERR(nandc->rx_chan)) {
3095			ret = PTR_ERR(nandc->rx_chan);
3096			nandc->rx_chan = NULL;
3097			dev_err_probe(nandc->dev, ret,
3098				      "rx DMA channel request failed\n");
3099			goto unalloc;
3100		}
3101
3102		nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
3103		if (IS_ERR(nandc->cmd_chan)) {
3104			ret = PTR_ERR(nandc->cmd_chan);
3105			nandc->cmd_chan = NULL;
3106			dev_err_probe(nandc->dev, ret,
3107				      "cmd DMA channel request failed\n");
3108			goto unalloc;
3109		}
3110
3111		/*
3112		 * Initially allocate BAM transaction to read ONFI param page.
3113		 * After detecting all the devices, this BAM transaction will
3114		 * be freed and the next BAM transaction will be allocated with
3115		 * maximum codeword size
3116		 */
3117		nandc->max_cwperpage = 1;
3118		nandc->bam_txn = alloc_bam_transaction(nandc);
3119		if (!nandc->bam_txn) {
3120			dev_err(nandc->dev,
3121				"failed to allocate bam transaction\n");
3122			ret = -ENOMEM;
3123			goto unalloc;
3124		}
3125	} else {
3126		nandc->chan = dma_request_chan(nandc->dev, "rxtx");
3127		if (IS_ERR(nandc->chan)) {
3128			ret = PTR_ERR(nandc->chan);
3129			nandc->chan = NULL;
3130			dev_err_probe(nandc->dev, ret,
3131				      "rxtx DMA channel request failed\n");
3132			return ret;
3133		}
3134	}
3135
3136	INIT_LIST_HEAD(&nandc->desc_list);
3137	INIT_LIST_HEAD(&nandc->host_list);
3138
3139	nand_controller_init(&nandc->controller);
3140	nandc->controller.ops = &qcom_nandc_ops;
3141
3142	return 0;
3143unalloc:
3144	qcom_nandc_unalloc(nandc);
3145	return ret;
3146}
3147
3148/* one time setup of a few nand controller registers */
3149static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
3150{
3151	u32 nand_ctrl;
3152
3153	/* kill onenand */
3154	if (!nandc->props->is_qpic)
3155		nandc_write(nandc, SFLASHC_BURST_CFG, 0);
3156
3157	if (!nandc->props->qpic_v2)
3158		nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
3159			    NAND_DEV_CMD_VLD_VAL);
3160
3161	/* enable ADM or BAM DMA */
3162	if (nandc->props->is_bam) {
3163		nand_ctrl = nandc_read(nandc, NAND_CTRL);
3164
3165		/*
3166		 *NAND_CTRL is an operational registers, and CPU
3167		 * access to operational registers are read only
3168		 * in BAM mode. So update the NAND_CTRL register
3169		 * only if it is not in BAM mode. In most cases BAM
3170		 * mode will be enabled in bootloader
3171		 */
3172		if (!(nand_ctrl & BAM_MODE_EN))
3173			nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
3174	} else {
3175		nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
3176	}
3177
3178	/* save the original values of these registers */
3179	if (!nandc->props->qpic_v2) {
3180		nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
3181		nandc->vld = NAND_DEV_CMD_VLD_VAL;
3182	}
3183
3184	return 0;
3185}
3186
3187static const char * const probes[] = { "cmdlinepart", "ofpart", "qcomsmem", NULL };
3188
3189static int qcom_nand_host_parse_boot_partitions(struct qcom_nand_controller *nandc,
3190						struct qcom_nand_host *host,
3191						struct device_node *dn)
3192{
3193	struct nand_chip *chip = &host->chip;
3194	struct mtd_info *mtd = nand_to_mtd(chip);
3195	struct qcom_nand_boot_partition *boot_partition;
3196	struct device *dev = nandc->dev;
3197	int partitions_count, i, j, ret;
3198
3199	if (!of_property_present(dn, "qcom,boot-partitions"))
3200		return 0;
3201
3202	partitions_count = of_property_count_u32_elems(dn, "qcom,boot-partitions");
3203	if (partitions_count <= 0) {
3204		dev_err(dev, "Error parsing boot partition\n");
3205		return partitions_count ? partitions_count : -EINVAL;
3206	}
3207
3208	host->nr_boot_partitions = partitions_count / 2;
3209	host->boot_partitions = devm_kcalloc(dev, host->nr_boot_partitions,
3210					     sizeof(*host->boot_partitions), GFP_KERNEL);
3211	if (!host->boot_partitions) {
3212		host->nr_boot_partitions = 0;
3213		return -ENOMEM;
3214	}
3215
3216	for (i = 0, j = 0; i < host->nr_boot_partitions; i++, j += 2) {
3217		boot_partition = &host->boot_partitions[i];
3218
3219		ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j,
3220						 &boot_partition->page_offset);
3221		if (ret) {
3222			dev_err(dev, "Error parsing boot partition offset at index %d\n", i);
3223			host->nr_boot_partitions = 0;
3224			return ret;
3225		}
3226
3227		if (boot_partition->page_offset % mtd->writesize) {
3228			dev_err(dev, "Boot partition offset not multiple of writesize at index %i\n",
3229				i);
3230			host->nr_boot_partitions = 0;
3231			return -EINVAL;
3232		}
3233		/* Convert offset to nand pages */
3234		boot_partition->page_offset /= mtd->writesize;
3235
3236		ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j + 1,
3237						 &boot_partition->page_size);
3238		if (ret) {
3239			dev_err(dev, "Error parsing boot partition size at index %d\n", i);
3240			host->nr_boot_partitions = 0;
3241			return ret;
3242		}
3243
3244		if (boot_partition->page_size % mtd->writesize) {
3245			dev_err(dev, "Boot partition size not multiple of writesize at index %i\n",
3246				i);
3247			host->nr_boot_partitions = 0;
3248			return -EINVAL;
3249		}
3250		/* Convert size to nand pages */
3251		boot_partition->page_size /= mtd->writesize;
3252	}
3253
3254	return 0;
3255}
3256
3257static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
3258					    struct qcom_nand_host *host,
3259					    struct device_node *dn)
3260{
3261	struct nand_chip *chip = &host->chip;
3262	struct mtd_info *mtd = nand_to_mtd(chip);
3263	struct device *dev = nandc->dev;
3264	int ret;
3265
3266	ret = of_property_read_u32(dn, "reg", &host->cs);
3267	if (ret) {
3268		dev_err(dev, "can't get chip-select\n");
3269		return -ENXIO;
3270	}
3271
3272	nand_set_flash_node(chip, dn);
3273	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
3274	if (!mtd->name)
3275		return -ENOMEM;
3276
3277	mtd->owner = THIS_MODULE;
3278	mtd->dev.parent = dev;
3279
3280	/*
3281	 * the bad block marker is readable only when we read the last codeword
3282	 * of a page with ECC disabled. currently, the nand_base and nand_bbt
3283	 * helpers don't allow us to read BB from a nand chip with ECC
3284	 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
3285	 * and block_markbad helpers until we permanently switch to using
3286	 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
3287	 */
3288	chip->legacy.block_bad		= qcom_nandc_block_bad;
3289	chip->legacy.block_markbad	= qcom_nandc_block_markbad;
3290
3291	chip->controller = &nandc->controller;
3292	chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA |
3293			 NAND_SKIP_BBTSCAN;
3294
3295	/* set up initial status value */
3296	host->status = NAND_STATUS_READY | NAND_STATUS_WP;
3297
3298	ret = nand_scan(chip, 1);
3299	if (ret)
3300		return ret;
3301
3302	ret = mtd_device_parse_register(mtd, probes, NULL, NULL, 0);
3303	if (ret)
3304		goto err;
3305
3306	if (nandc->props->use_codeword_fixup) {
3307		ret = qcom_nand_host_parse_boot_partitions(nandc, host, dn);
3308		if (ret)
3309			goto err;
3310	}
3311
3312	return 0;
3313
3314err:
3315	nand_cleanup(chip);
3316	return ret;
3317}
3318
3319static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
3320{
3321	struct device *dev = nandc->dev;
3322	struct device_node *dn = dev->of_node, *child;
3323	struct qcom_nand_host *host;
3324	int ret = -ENODEV;
3325
3326	for_each_available_child_of_node(dn, child) {
3327		host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3328		if (!host) {
3329			of_node_put(child);
3330			return -ENOMEM;
3331		}
3332
3333		ret = qcom_nand_host_init_and_register(nandc, host, child);
3334		if (ret) {
3335			devm_kfree(dev, host);
3336			continue;
3337		}
3338
3339		list_add_tail(&host->node, &nandc->host_list);
3340	}
3341
3342	return ret;
3343}
3344
3345/* parse custom DT properties here */
3346static int qcom_nandc_parse_dt(struct platform_device *pdev)
3347{
3348	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3349	struct device_node *np = nandc->dev->of_node;
3350	int ret;
3351
3352	if (!nandc->props->is_bam) {
3353		ret = of_property_read_u32(np, "qcom,cmd-crci",
3354					   &nandc->cmd_crci);
3355		if (ret) {
3356			dev_err(nandc->dev, "command CRCI unspecified\n");
3357			return ret;
3358		}
3359
3360		ret = of_property_read_u32(np, "qcom,data-crci",
3361					   &nandc->data_crci);
3362		if (ret) {
3363			dev_err(nandc->dev, "data CRCI unspecified\n");
3364			return ret;
3365		}
3366	}
3367
3368	return 0;
3369}
3370
3371static int qcom_nandc_probe(struct platform_device *pdev)
3372{
3373	struct qcom_nand_controller *nandc;
3374	const void *dev_data;
3375	struct device *dev = &pdev->dev;
3376	struct resource *res;
3377	int ret;
3378
3379	nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
3380	if (!nandc)
3381		return -ENOMEM;
3382
3383	platform_set_drvdata(pdev, nandc);
3384	nandc->dev = dev;
3385
3386	dev_data = of_device_get_match_data(dev);
3387	if (!dev_data) {
3388		dev_err(&pdev->dev, "failed to get device data\n");
3389		return -ENODEV;
3390	}
3391
3392	nandc->props = dev_data;
3393
3394	nandc->core_clk = devm_clk_get(dev, "core");
3395	if (IS_ERR(nandc->core_clk))
3396		return PTR_ERR(nandc->core_clk);
3397
3398	nandc->aon_clk = devm_clk_get(dev, "aon");
3399	if (IS_ERR(nandc->aon_clk))
3400		return PTR_ERR(nandc->aon_clk);
3401
3402	ret = qcom_nandc_parse_dt(pdev);
3403	if (ret)
3404		return ret;
3405
3406	nandc->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
3407	if (IS_ERR(nandc->base))
3408		return PTR_ERR(nandc->base);
3409
3410	nandc->base_phys = res->start;
3411	nandc->base_dma = dma_map_resource(dev, res->start,
3412					   resource_size(res),
3413					   DMA_BIDIRECTIONAL, 0);
3414	if (dma_mapping_error(dev, nandc->base_dma))
3415		return -ENXIO;
3416
3417	ret = clk_prepare_enable(nandc->core_clk);
3418	if (ret)
3419		goto err_core_clk;
3420
3421	ret = clk_prepare_enable(nandc->aon_clk);
3422	if (ret)
3423		goto err_aon_clk;
3424
3425	ret = qcom_nandc_alloc(nandc);
3426	if (ret)
3427		goto err_nandc_alloc;
3428
3429	ret = qcom_nandc_setup(nandc);
3430	if (ret)
3431		goto err_setup;
3432
3433	ret = qcom_probe_nand_devices(nandc);
3434	if (ret)
3435		goto err_setup;
3436
3437	return 0;
3438
3439err_setup:
3440	qcom_nandc_unalloc(nandc);
3441err_nandc_alloc:
3442	clk_disable_unprepare(nandc->aon_clk);
3443err_aon_clk:
3444	clk_disable_unprepare(nandc->core_clk);
3445err_core_clk:
3446	dma_unmap_resource(dev, nandc->base_dma, resource_size(res),
3447			   DMA_BIDIRECTIONAL, 0);
3448	return ret;
3449}
3450
3451static void qcom_nandc_remove(struct platform_device *pdev)
3452{
3453	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3454	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3455	struct qcom_nand_host *host;
3456	struct nand_chip *chip;
3457	int ret;
3458
3459	list_for_each_entry(host, &nandc->host_list, node) {
3460		chip = &host->chip;
3461		ret = mtd_device_unregister(nand_to_mtd(chip));
3462		WARN_ON(ret);
3463		nand_cleanup(chip);
3464	}
3465
3466	qcom_nandc_unalloc(nandc);
3467
3468	clk_disable_unprepare(nandc->aon_clk);
3469	clk_disable_unprepare(nandc->core_clk);
3470
3471	dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
3472			   DMA_BIDIRECTIONAL, 0);
3473}
3474
3475static const struct qcom_nandc_props ipq806x_nandc_props = {
3476	.ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3477	.is_bam = false,
3478	.use_codeword_fixup = true,
3479	.dev_cmd_reg_start = 0x0,
3480};
3481
3482static const struct qcom_nandc_props ipq4019_nandc_props = {
3483	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3484	.is_bam = true,
3485	.is_qpic = true,
3486	.dev_cmd_reg_start = 0x0,
3487};
3488
3489static const struct qcom_nandc_props ipq8074_nandc_props = {
3490	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3491	.is_bam = true,
3492	.is_qpic = true,
3493	.dev_cmd_reg_start = 0x7000,
3494};
3495
3496static const struct qcom_nandc_props sdx55_nandc_props = {
3497	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3498	.is_bam = true,
3499	.is_qpic = true,
3500	.qpic_v2 = true,
3501	.dev_cmd_reg_start = 0x7000,
3502};
3503
3504/*
3505 * data will hold a struct pointer containing more differences once we support
3506 * more controller variants
3507 */
3508static const struct of_device_id qcom_nandc_of_match[] = {
3509	{
3510		.compatible = "qcom,ipq806x-nand",
3511		.data = &ipq806x_nandc_props,
3512	},
3513	{
3514		.compatible = "qcom,ipq4019-nand",
3515		.data = &ipq4019_nandc_props,
3516	},
3517	{
3518		.compatible = "qcom,ipq6018-nand",
3519		.data = &ipq8074_nandc_props,
3520	},
3521	{
3522		.compatible = "qcom,ipq8074-nand",
3523		.data = &ipq8074_nandc_props,
3524	},
3525	{
3526		.compatible = "qcom,sdx55-nand",
3527		.data = &sdx55_nandc_props,
3528	},
3529	{}
3530};
3531MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3532
3533static struct platform_driver qcom_nandc_driver = {
3534	.driver = {
3535		.name = "qcom-nandc",
3536		.of_match_table = qcom_nandc_of_match,
3537	},
3538	.probe   = qcom_nandc_probe,
3539	.remove_new = qcom_nandc_remove,
3540};
3541module_platform_driver(qcom_nandc_driver);
3542
3543MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3544MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3545MODULE_LICENSE("GPL v2");
3546