1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Arasan NAND Flash Controller Driver
4 *
5 * Copyright (C) 2014 - 2020 Xilinx, Inc.
6 * Author:
7 *   Miquel Raynal <miquel.raynal@bootlin.com>
8 * Original work (fully rewritten):
9 *   Punnaiah Choudary Kalluri <punnaia@xilinx.com>
10 *   Naga Sureshkumar Relli <nagasure@xilinx.com>
11 */
12
13#include <linux/bch.h>
14#include <linux/bitfield.h>
15#include <linux/clk.h>
16#include <linux/delay.h>
17#include <linux/dma-mapping.h>
18#include <linux/gpio/consumer.h>
19#include <linux/interrupt.h>
20#include <linux/iopoll.h>
21#include <linux/module.h>
22#include <linux/mtd/mtd.h>
23#include <linux/mtd/partitions.h>
24#include <linux/mtd/rawnand.h>
25#include <linux/of.h>
26#include <linux/platform_device.h>
27#include <linux/slab.h>
28
29#define PKT_REG				0x00
30#define   PKT_SIZE(x)			FIELD_PREP(GENMASK(10, 0), (x))
31#define   PKT_STEPS(x)			FIELD_PREP(GENMASK(23, 12), (x))
32
33#define MEM_ADDR1_REG			0x04
34
35#define MEM_ADDR2_REG			0x08
36#define   ADDR2_STRENGTH(x)		FIELD_PREP(GENMASK(27, 25), (x))
37#define   ADDR2_CS(x)			FIELD_PREP(GENMASK(31, 30), (x))
38
39#define CMD_REG				0x0C
40#define   CMD_1(x)			FIELD_PREP(GENMASK(7, 0), (x))
41#define   CMD_2(x)			FIELD_PREP(GENMASK(15, 8), (x))
42#define   CMD_PAGE_SIZE(x)		FIELD_PREP(GENMASK(25, 23), (x))
43#define   CMD_DMA_ENABLE		BIT(27)
44#define   CMD_NADDRS(x)			FIELD_PREP(GENMASK(30, 28), (x))
45#define   CMD_ECC_ENABLE		BIT(31)
46
47#define PROG_REG			0x10
48#define   PROG_PGRD			BIT(0)
49#define   PROG_ERASE			BIT(2)
50#define   PROG_STATUS			BIT(3)
51#define   PROG_PGPROG			BIT(4)
52#define   PROG_RDID			BIT(6)
53#define   PROG_RDPARAM			BIT(7)
54#define   PROG_RST			BIT(8)
55#define   PROG_GET_FEATURE		BIT(9)
56#define   PROG_SET_FEATURE		BIT(10)
57#define   PROG_CHG_RD_COL_ENH		BIT(14)
58
59#define INTR_STS_EN_REG			0x14
60#define INTR_SIG_EN_REG			0x18
61#define INTR_STS_REG			0x1C
62#define   WRITE_READY			BIT(0)
63#define   READ_READY			BIT(1)
64#define   XFER_COMPLETE			BIT(2)
65#define   DMA_BOUNDARY			BIT(6)
66#define   EVENT_MASK			GENMASK(7, 0)
67
68#define READY_STS_REG			0x20
69
70#define DMA_ADDR0_REG			0x50
71#define DMA_ADDR1_REG			0x24
72
73#define FLASH_STS_REG			0x28
74
75#define TIMING_REG			0x2C
76#define   TCCS_TIME_500NS		0
77#define   TCCS_TIME_300NS		3
78#define   TCCS_TIME_200NS		2
79#define   TCCS_TIME_100NS		1
80#define   FAST_TCAD			BIT(2)
81#define   DQS_BUFF_SEL_IN(x)		FIELD_PREP(GENMASK(6, 3), (x))
82#define   DQS_BUFF_SEL_OUT(x)		FIELD_PREP(GENMASK(18, 15), (x))
83
84#define DATA_PORT_REG			0x30
85
86#define ECC_CONF_REG			0x34
87#define   ECC_CONF_COL(x)		FIELD_PREP(GENMASK(15, 0), (x))
88#define   ECC_CONF_LEN(x)		FIELD_PREP(GENMASK(26, 16), (x))
89#define   ECC_CONF_BCH_EN		BIT(27)
90
91#define ECC_ERR_CNT_REG			0x38
92#define   GET_PKT_ERR_CNT(x)		FIELD_GET(GENMASK(7, 0), (x))
93#define   GET_PAGE_ERR_CNT(x)		FIELD_GET(GENMASK(16, 8), (x))
94
95#define ECC_SP_REG			0x3C
96#define   ECC_SP_CMD1(x)		FIELD_PREP(GENMASK(7, 0), (x))
97#define   ECC_SP_CMD2(x)		FIELD_PREP(GENMASK(15, 8), (x))
98#define   ECC_SP_ADDRS(x)		FIELD_PREP(GENMASK(30, 28), (x))
99
100#define ECC_1ERR_CNT_REG		0x40
101#define ECC_2ERR_CNT_REG		0x44
102
103#define DATA_INTERFACE_REG		0x6C
104#define   DIFACE_SDR_MODE(x)		FIELD_PREP(GENMASK(2, 0), (x))
105#define   DIFACE_DDR_MODE(x)		FIELD_PREP(GENMASK(5, 3), (x))
106#define   DIFACE_SDR			0
107#define   DIFACE_NVDDR			BIT(9)
108
109#define ANFC_MAX_CS			2
110#define ANFC_DFLT_TIMEOUT_US		1000000
111#define ANFC_MAX_CHUNK_SIZE		SZ_1M
112#define ANFC_MAX_PARAM_SIZE		SZ_4K
113#define ANFC_MAX_STEPS			SZ_2K
114#define ANFC_MAX_PKT_SIZE		(SZ_2K - 1)
115#define ANFC_MAX_ADDR_CYC		5U
116#define ANFC_RSVD_ECC_BYTES		21
117
118#define ANFC_XLNX_SDR_DFLT_CORE_CLK	100000000
119#define ANFC_XLNX_SDR_HS_CORE_CLK	80000000
120
121static struct gpio_desc *anfc_default_cs_array[2] = {NULL, NULL};
122
123/**
124 * struct anfc_op - Defines how to execute an operation
125 * @pkt_reg: Packet register
126 * @addr1_reg: Memory address 1 register
127 * @addr2_reg: Memory address 2 register
128 * @cmd_reg: Command register
129 * @prog_reg: Program register
130 * @steps: Number of "packets" to read/write
131 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
132 * @len: Data transfer length
133 * @read: Data transfer direction from the controller point of view
134 * @buf: Data buffer
135 */
136struct anfc_op {
137	u32 pkt_reg;
138	u32 addr1_reg;
139	u32 addr2_reg;
140	u32 cmd_reg;
141	u32 prog_reg;
142	int steps;
143	unsigned int rdy_timeout_ms;
144	unsigned int len;
145	bool read;
146	u8 *buf;
147};
148
149/**
150 * struct anand - Defines the NAND chip related information
151 * @node:		Used to store NAND chips into a list
152 * @chip:		NAND chip information structure
153 * @rb:			Ready-busy line
154 * @page_sz:		Register value of the page_sz field to use
155 * @clk:		Expected clock frequency to use
156 * @data_iface:		Data interface timing mode to use
157 * @timings:		NV-DDR specific timings to use
158 * @ecc_conf:		Hardware ECC configuration value
159 * @strength:		Register value of the ECC strength
160 * @raddr_cycles:	Row address cycle information
161 * @caddr_cycles:	Column address cycle information
162 * @ecc_bits:		Exact number of ECC bits per syndrome
163 * @ecc_total:		Total number of ECC bytes
164 * @errloc:		Array of errors located with soft BCH
165 * @hw_ecc:		Buffer to store syndromes computed by hardware
166 * @bch:		BCH structure
167 * @cs_idx:		Array of chip-select for this device, values are indexes
168 *			of the controller structure @gpio_cs array
169 * @ncs_idx:		Size of the @cs_idx array
170 */
171struct anand {
172	struct list_head node;
173	struct nand_chip chip;
174	unsigned int rb;
175	unsigned int page_sz;
176	unsigned long clk;
177	u32 data_iface;
178	u32 timings;
179	u32 ecc_conf;
180	u32 strength;
181	u16 raddr_cycles;
182	u16 caddr_cycles;
183	unsigned int ecc_bits;
184	unsigned int ecc_total;
185	unsigned int *errloc;
186	u8 *hw_ecc;
187	struct bch_control *bch;
188	int *cs_idx;
189	int ncs_idx;
190};
191
192/**
193 * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance
194 * @dev:		Pointer to the device structure
195 * @base:		Remapped register area
196 * @controller_clk:		Pointer to the system clock
197 * @bus_clk:		Pointer to the flash clock
198 * @controller:		Base controller structure
199 * @chips:		List of all NAND chips attached to the controller
200 * @cur_clk:		Current clock rate
201 * @cs_array:		CS array. Native CS are left empty, the other cells are
202 *			populated with their corresponding GPIO descriptor.
203 * @ncs:		Size of @cs_array
204 * @cur_cs:		Index in @cs_array of the currently in use CS
205 * @native_cs:		Currently selected native CS
206 * @spare_cs:		Native CS that is not wired (may be selected when a GPIO
207 *			CS is in use)
208 */
209struct arasan_nfc {
210	struct device *dev;
211	void __iomem *base;
212	struct clk *controller_clk;
213	struct clk *bus_clk;
214	struct nand_controller controller;
215	struct list_head chips;
216	unsigned int cur_clk;
217	struct gpio_desc **cs_array;
218	unsigned int ncs;
219	int cur_cs;
220	unsigned int native_cs;
221	unsigned int spare_cs;
222};
223
224static struct anand *to_anand(struct nand_chip *nand)
225{
226	return container_of(nand, struct anand, chip);
227}
228
229static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
230{
231	return container_of(ctrl, struct arasan_nfc, controller);
232}
233
234static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
235{
236	u32 val;
237	int ret;
238
239	ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
240					 val & event, 0,
241					 ANFC_DFLT_TIMEOUT_US);
242	if (ret) {
243		dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
244		return -ETIMEDOUT;
245	}
246
247	writel_relaxed(event, nfc->base + INTR_STS_REG);
248
249	return 0;
250}
251
252static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
253			    unsigned int timeout_ms)
254{
255	struct anand *anand = to_anand(chip);
256	u32 val;
257	int ret;
258
259	/* There is no R/B interrupt, we must poll a register */
260	ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
261					 val & BIT(anand->rb),
262					 1, timeout_ms * 1000);
263	if (ret) {
264		dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
265			readl_relaxed(nfc->base + READY_STS_REG));
266		return -ETIMEDOUT;
267	}
268
269	return 0;
270}
271
272static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
273{
274	writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
275	writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
276	writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
277	writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
278	writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
279}
280
281static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
282			       unsigned int *pktsize)
283{
284	unsigned int nb, sz;
285
286	for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
287		sz = len / nb;
288		if (sz <= ANFC_MAX_PKT_SIZE)
289			break;
290	}
291
292	if (sz * nb != len)
293		return -ENOTSUPP;
294
295	if (steps)
296		*steps = nb;
297
298	if (pktsize)
299		*pktsize = sz;
300
301	return 0;
302}
303
304static bool anfc_is_gpio_cs(struct arasan_nfc *nfc, int nfc_cs)
305{
306	return nfc_cs >= 0 && nfc->cs_array[nfc_cs];
307}
308
309static int anfc_relative_to_absolute_cs(struct anand *anand, int num)
310{
311	return anand->cs_idx[num];
312}
313
314static void anfc_assert_cs(struct arasan_nfc *nfc, unsigned int nfc_cs_idx)
315{
316	/* CS did not change: do nothing */
317	if (nfc->cur_cs == nfc_cs_idx)
318		return;
319
320	/* Deassert the previous CS if it was a GPIO */
321	if (anfc_is_gpio_cs(nfc, nfc->cur_cs))
322		gpiod_set_value_cansleep(nfc->cs_array[nfc->cur_cs], 1);
323
324	/* Assert the new one */
325	if (anfc_is_gpio_cs(nfc, nfc_cs_idx)) {
326		nfc->native_cs = nfc->spare_cs;
327		gpiod_set_value_cansleep(nfc->cs_array[nfc_cs_idx], 0);
328	} else {
329		nfc->native_cs = nfc_cs_idx;
330	}
331
332	nfc->cur_cs = nfc_cs_idx;
333}
334
335static int anfc_select_target(struct nand_chip *chip, int target)
336{
337	struct anand *anand = to_anand(chip);
338	struct arasan_nfc *nfc = to_anfc(chip->controller);
339	unsigned int nfc_cs_idx = anfc_relative_to_absolute_cs(anand, target);
340	int ret;
341
342	anfc_assert_cs(nfc, nfc_cs_idx);
343
344	/* Update the controller timings and the potential ECC configuration */
345	writel_relaxed(anand->data_iface, nfc->base + DATA_INTERFACE_REG);
346	writel_relaxed(anand->timings, nfc->base + TIMING_REG);
347
348	/* Update clock frequency */
349	if (nfc->cur_clk != anand->clk) {
350		clk_disable_unprepare(nfc->bus_clk);
351		ret = clk_set_rate(nfc->bus_clk, anand->clk);
352		if (ret) {
353			dev_err(nfc->dev, "Failed to change clock rate\n");
354			return ret;
355		}
356
357		ret = clk_prepare_enable(nfc->bus_clk);
358		if (ret) {
359			dev_err(nfc->dev,
360				"Failed to re-enable the bus clock\n");
361			return ret;
362		}
363
364		nfc->cur_clk = anand->clk;
365	}
366
367	return 0;
368}
369
370/*
371 * When using the embedded hardware ECC engine, the controller is in charge of
372 * feeding the engine with, first, the ECC residue present in the data array.
373 * A typical read operation is:
374 * 1/ Assert the read operation by sending the relevant command/address cycles
375 *    but targeting the column of the first ECC bytes in the OOB area instead of
376 *    the main data directly.
377 * 2/ After having read the relevant number of ECC bytes, the controller uses
378 *    the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command
379 *    Register" to move the pointer back at the beginning of the main data.
380 * 3/ It will read the content of the main area for a given size (pktsize) and
381 *    will feed the ECC engine with this buffer again.
382 * 4/ The ECC engine derives the ECC bytes for the given data and compare them
383 *    with the ones already received. It eventually trigger status flags and
384 *    then set the "Buffer Read Ready" flag.
385 * 5/ The corrected data is then available for reading from the data port
386 *    register.
387 *
388 * The hardware BCH ECC engine is known to be inconstent in BCH mode and never
389 * reports uncorrectable errors. Because of this bug, we have to use the
390 * software BCH implementation in the read path.
391 */
392static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
393				 int oob_required, int page)
394{
395	struct arasan_nfc *nfc = to_anfc(chip->controller);
396	struct mtd_info *mtd = nand_to_mtd(chip);
397	struct anand *anand = to_anand(chip);
398	unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
399	unsigned int max_bitflips = 0;
400	dma_addr_t dma_addr;
401	int step, ret;
402	struct anfc_op nfc_op = {
403		.pkt_reg =
404			PKT_SIZE(chip->ecc.size) |
405			PKT_STEPS(chip->ecc.steps),
406		.addr1_reg =
407			(page & 0xFF) << (8 * (anand->caddr_cycles)) |
408			(((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
409		.addr2_reg =
410			((page >> 16) & 0xFF) |
411			ADDR2_STRENGTH(anand->strength) |
412			ADDR2_CS(nfc->native_cs),
413		.cmd_reg =
414			CMD_1(NAND_CMD_READ0) |
415			CMD_2(NAND_CMD_READSTART) |
416			CMD_PAGE_SIZE(anand->page_sz) |
417			CMD_DMA_ENABLE |
418			CMD_NADDRS(anand->caddr_cycles +
419				   anand->raddr_cycles),
420		.prog_reg = PROG_PGRD,
421	};
422
423	dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE);
424	if (dma_mapping_error(nfc->dev, dma_addr)) {
425		dev_err(nfc->dev, "Buffer mapping error");
426		return -EIO;
427	}
428
429	writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
430	writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
431
432	anfc_trigger_op(nfc, &nfc_op);
433
434	ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
435	dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE);
436	if (ret) {
437		dev_err(nfc->dev, "Error reading page %d\n", page);
438		return ret;
439	}
440
441	/* Store the raw OOB bytes as well */
442	ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi,
443					 mtd->oobsize, 0);
444	if (ret)
445		return ret;
446
447	/*
448	 * For each step, compute by softare the BCH syndrome over the raw data.
449	 * Compare the theoretical amount of errors and compare with the
450	 * hardware engine feedback.
451	 */
452	for (step = 0; step < chip->ecc.steps; step++) {
453		u8 *raw_buf = &buf[step * chip->ecc.size];
454		unsigned int bit, byte;
455		int bf, i;
456
457		/* Extract the syndrome, it is not necessarily aligned */
458		memset(anand->hw_ecc, 0, chip->ecc.bytes);
459		nand_extract_bits(anand->hw_ecc, 0,
460				  &chip->oob_poi[mtd->oobsize - anand->ecc_total],
461				  anand->ecc_bits * step, anand->ecc_bits);
462
463		bf = bch_decode(anand->bch, raw_buf, chip->ecc.size,
464				anand->hw_ecc, NULL, NULL, anand->errloc);
465		if (!bf) {
466			continue;
467		} else if (bf > 0) {
468			for (i = 0; i < bf; i++) {
469				/* Only correct the data, not the syndrome */
470				if (anand->errloc[i] < (chip->ecc.size * 8)) {
471					bit = BIT(anand->errloc[i] & 7);
472					byte = anand->errloc[i] >> 3;
473					raw_buf[byte] ^= bit;
474				}
475			}
476
477			mtd->ecc_stats.corrected += bf;
478			max_bitflips = max_t(unsigned int, max_bitflips, bf);
479
480			continue;
481		}
482
483		bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size,
484						 anand->hw_ecc, chip->ecc.bytes, NULL, 0,
485						 chip->ecc.strength);
486		if (bf > 0) {
487			mtd->ecc_stats.corrected += bf;
488			max_bitflips = max_t(unsigned int, max_bitflips, bf);
489			memset(raw_buf, 0xFF, chip->ecc.size);
490		} else if (bf < 0) {
491			mtd->ecc_stats.failed++;
492		}
493	}
494
495	return 0;
496}
497
498static int anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
499				     int oob_required, int page)
500{
501	int ret;
502
503	ret = anfc_select_target(chip, chip->cur_cs);
504	if (ret)
505		return ret;
506
507	return anfc_read_page_hw_ecc(chip, buf, oob_required, page);
508};
509
510static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
511				  int oob_required, int page)
512{
513	struct anand *anand = to_anand(chip);
514	struct arasan_nfc *nfc = to_anfc(chip->controller);
515	struct mtd_info *mtd = nand_to_mtd(chip);
516	unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
517	dma_addr_t dma_addr;
518	u8 status;
519	int ret;
520	struct anfc_op nfc_op = {
521		.pkt_reg =
522			PKT_SIZE(chip->ecc.size) |
523			PKT_STEPS(chip->ecc.steps),
524		.addr1_reg =
525			(page & 0xFF) << (8 * (anand->caddr_cycles)) |
526			(((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
527		.addr2_reg =
528			((page >> 16) & 0xFF) |
529			ADDR2_STRENGTH(anand->strength) |
530			ADDR2_CS(nfc->native_cs),
531		.cmd_reg =
532			CMD_1(NAND_CMD_SEQIN) |
533			CMD_2(NAND_CMD_PAGEPROG) |
534			CMD_PAGE_SIZE(anand->page_sz) |
535			CMD_DMA_ENABLE |
536			CMD_NADDRS(anand->caddr_cycles +
537				   anand->raddr_cycles) |
538			CMD_ECC_ENABLE,
539		.prog_reg = PROG_PGPROG,
540	};
541
542	writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG);
543	writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) |
544		       ECC_SP_ADDRS(anand->caddr_cycles),
545		       nfc->base + ECC_SP_REG);
546
547	dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE);
548	if (dma_mapping_error(nfc->dev, dma_addr)) {
549		dev_err(nfc->dev, "Buffer mapping error");
550		return -EIO;
551	}
552
553	writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
554	writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
555
556	anfc_trigger_op(nfc, &nfc_op);
557	ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
558	dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE);
559	if (ret) {
560		dev_err(nfc->dev, "Error writing page %d\n", page);
561		return ret;
562	}
563
564	/* Spare data is not protected */
565	if (oob_required) {
566		ret = nand_write_oob_std(chip, page);
567		if (ret)
568			return ret;
569	}
570
571	/* Check write status on the chip side */
572	ret = nand_status_op(chip, &status);
573	if (ret)
574		return ret;
575
576	if (status & NAND_STATUS_FAIL)
577		return -EIO;
578
579	return 0;
580}
581
582static int anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
583				      int oob_required, int page)
584{
585	int ret;
586
587	ret = anfc_select_target(chip, chip->cur_cs);
588	if (ret)
589		return ret;
590
591	return anfc_write_page_hw_ecc(chip, buf, oob_required, page);
592};
593
594/* NAND framework ->exec_op() hooks and related helpers */
595static int anfc_parse_instructions(struct nand_chip *chip,
596				   const struct nand_subop *subop,
597				   struct anfc_op *nfc_op)
598{
599	struct arasan_nfc *nfc = to_anfc(chip->controller);
600	struct anand *anand = to_anand(chip);
601	const struct nand_op_instr *instr = NULL;
602	bool first_cmd = true;
603	unsigned int op_id;
604	int ret, i;
605
606	memset(nfc_op, 0, sizeof(*nfc_op));
607	nfc_op->addr2_reg = ADDR2_CS(nfc->native_cs);
608	nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);
609
610	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
611		unsigned int offset, naddrs, pktsize;
612		const u8 *addrs;
613		u8 *buf;
614
615		instr = &subop->instrs[op_id];
616
617		switch (instr->type) {
618		case NAND_OP_CMD_INSTR:
619			if (first_cmd)
620				nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
621			else
622				nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);
623
624			first_cmd = false;
625			break;
626
627		case NAND_OP_ADDR_INSTR:
628			offset = nand_subop_get_addr_start_off(subop, op_id);
629			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
630			addrs = &instr->ctx.addr.addrs[offset];
631			nfc_op->cmd_reg |= CMD_NADDRS(naddrs);
632
633			for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
634				if (i < 4)
635					nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
636				else
637					nfc_op->addr2_reg |= addrs[i];
638			}
639
640			break;
641		case NAND_OP_DATA_IN_INSTR:
642			nfc_op->read = true;
643			fallthrough;
644		case NAND_OP_DATA_OUT_INSTR:
645			offset = nand_subop_get_data_start_off(subop, op_id);
646			buf = instr->ctx.data.buf.in;
647			nfc_op->buf = &buf[offset];
648			nfc_op->len = nand_subop_get_data_len(subop, op_id);
649			ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps,
650						  &pktsize);
651			if (ret)
652				return ret;
653
654			/*
655			 * Number of DATA cycles must be aligned on 4, this
656			 * means the controller might read/write more than
657			 * requested. This is harmless most of the time as extra
658			 * DATA are discarded in the write path and read pointer
659			 * adjusted in the read path.
660			 *
661			 * FIXME: The core should mark operations where
662			 * reading/writing more is allowed so the exec_op()
663			 * implementation can take the right decision when the
664			 * alignment constraint is not met: adjust the number of
665			 * DATA cycles when it's allowed, reject the operation
666			 * otherwise.
667			 */
668			nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
669					   PKT_STEPS(nfc_op->steps);
670			break;
671		case NAND_OP_WAITRDY_INSTR:
672			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
673			break;
674		}
675	}
676
677	return 0;
678}
679
680static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
681{
682	unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
683	unsigned int last_len = nfc_op->len % 4;
684	unsigned int offset, dir;
685	u8 *buf = nfc_op->buf;
686	int ret, i;
687
688	for (i = 0; i < nfc_op->steps; i++) {
689		dir = nfc_op->read ? READ_READY : WRITE_READY;
690		ret = anfc_wait_for_event(nfc, dir);
691		if (ret) {
692			dev_err(nfc->dev, "PIO %s ready signal not received\n",
693				nfc_op->read ? "Read" : "Write");
694			return ret;
695		}
696
697		offset = i * (dwords * 4);
698		if (nfc_op->read)
699			ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
700				     dwords);
701		else
702			iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
703				      dwords);
704	}
705
706	if (last_len) {
707		u32 remainder;
708
709		offset = nfc_op->len - last_len;
710
711		if (nfc_op->read) {
712			remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
713			memcpy(&buf[offset], &remainder, last_len);
714		} else {
715			memcpy(&remainder, &buf[offset], last_len);
716			writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
717		}
718	}
719
720	return anfc_wait_for_event(nfc, XFER_COMPLETE);
721}
722
723static int anfc_misc_data_type_exec(struct nand_chip *chip,
724				    const struct nand_subop *subop,
725				    u32 prog_reg)
726{
727	struct arasan_nfc *nfc = to_anfc(chip->controller);
728	struct anfc_op nfc_op = {};
729	int ret;
730
731	ret = anfc_parse_instructions(chip, subop, &nfc_op);
732	if (ret)
733		return ret;
734
735	nfc_op.prog_reg = prog_reg;
736	anfc_trigger_op(nfc, &nfc_op);
737
738	if (nfc_op.rdy_timeout_ms) {
739		ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
740		if (ret)
741			return ret;
742	}
743
744	return anfc_rw_pio_op(nfc, &nfc_op);
745}
746
747static int anfc_param_read_type_exec(struct nand_chip *chip,
748				     const struct nand_subop *subop)
749{
750	return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
751}
752
753static int anfc_data_read_type_exec(struct nand_chip *chip,
754				    const struct nand_subop *subop)
755{
756	u32 prog_reg = PROG_PGRD;
757
758	/*
759	 * Experience shows that while in SDR mode sending a CHANGE READ COLUMN
760	 * command through the READ PAGE "type" always works fine, when in
761	 * NV-DDR mode the same command simply fails. However, it was also
762	 * spotted that any CHANGE READ COLUMN command sent through the CHANGE
763	 * READ COLUMN ENHANCED "type" would correctly work in both cases (SDR
764	 * and NV-DDR). So, for simplicity, let's program the controller with
765	 * the CHANGE READ COLUMN ENHANCED "type" whenever we are requested to
766	 * perform a CHANGE READ COLUMN operation.
767	 */
768	if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_RNDOUT &&
769	    subop->instrs[2].ctx.cmd.opcode == NAND_CMD_RNDOUTSTART)
770		prog_reg = PROG_CHG_RD_COL_ENH;
771
772	return anfc_misc_data_type_exec(chip, subop, prog_reg);
773}
774
775static int anfc_param_write_type_exec(struct nand_chip *chip,
776				      const struct nand_subop *subop)
777{
778	return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
779}
780
781static int anfc_data_write_type_exec(struct nand_chip *chip,
782				     const struct nand_subop *subop)
783{
784	return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
785}
786
787static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
788				       const struct nand_subop *subop,
789				       u32 prog_reg)
790{
791	struct arasan_nfc *nfc = to_anfc(chip->controller);
792	struct anfc_op nfc_op = {};
793	int ret;
794
795	ret = anfc_parse_instructions(chip, subop, &nfc_op);
796	if (ret)
797		return ret;
798
799	nfc_op.prog_reg = prog_reg;
800	anfc_trigger_op(nfc, &nfc_op);
801
802	ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
803	if (ret)
804		return ret;
805
806	if (nfc_op.rdy_timeout_ms)
807		ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
808
809	return ret;
810}
811
812static int anfc_status_type_exec(struct nand_chip *chip,
813				 const struct nand_subop *subop)
814{
815	struct arasan_nfc *nfc = to_anfc(chip->controller);
816	u32 tmp;
817	int ret;
818
819	/* See anfc_check_op() for details about this constraint */
820	if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
821		return -ENOTSUPP;
822
823	ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
824	if (ret)
825		return ret;
826
827	tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
828	memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);
829
830	return 0;
831}
832
833static int anfc_reset_type_exec(struct nand_chip *chip,
834				const struct nand_subop *subop)
835{
836	return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
837}
838
839static int anfc_erase_type_exec(struct nand_chip *chip,
840				const struct nand_subop *subop)
841{
842	return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
843}
844
845static int anfc_wait_type_exec(struct nand_chip *chip,
846			       const struct nand_subop *subop)
847{
848	struct arasan_nfc *nfc = to_anfc(chip->controller);
849	struct anfc_op nfc_op = {};
850	int ret;
851
852	ret = anfc_parse_instructions(chip, subop, &nfc_op);
853	if (ret)
854		return ret;
855
856	return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
857}
858
859static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
860	NAND_OP_PARSER_PATTERN(
861		anfc_param_read_type_exec,
862		NAND_OP_PARSER_PAT_CMD_ELEM(false),
863		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
864		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
865		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
866	NAND_OP_PARSER_PATTERN(
867		anfc_param_write_type_exec,
868		NAND_OP_PARSER_PAT_CMD_ELEM(false),
869		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
870		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
871	NAND_OP_PARSER_PATTERN(
872		anfc_data_read_type_exec,
873		NAND_OP_PARSER_PAT_CMD_ELEM(false),
874		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
875		NAND_OP_PARSER_PAT_CMD_ELEM(false),
876		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
877		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
878	NAND_OP_PARSER_PATTERN(
879		anfc_data_write_type_exec,
880		NAND_OP_PARSER_PAT_CMD_ELEM(false),
881		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
882		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
883		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
884	NAND_OP_PARSER_PATTERN(
885		anfc_reset_type_exec,
886		NAND_OP_PARSER_PAT_CMD_ELEM(false),
887		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
888	NAND_OP_PARSER_PATTERN(
889		anfc_erase_type_exec,
890		NAND_OP_PARSER_PAT_CMD_ELEM(false),
891		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
892		NAND_OP_PARSER_PAT_CMD_ELEM(false),
893		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
894	NAND_OP_PARSER_PATTERN(
895		anfc_status_type_exec,
896		NAND_OP_PARSER_PAT_CMD_ELEM(false),
897		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
898	NAND_OP_PARSER_PATTERN(
899		anfc_wait_type_exec,
900		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
901	);
902
903static int anfc_check_op(struct nand_chip *chip,
904			 const struct nand_operation *op)
905{
906	const struct nand_op_instr *instr;
907	int op_id;
908
909	/*
910	 * The controller abstracts all the NAND operations and do not support
911	 * data only operations.
912	 *
913	 * TODO: The nand_op_parser framework should be extended to
914	 * support custom checks on DATA instructions.
915	 */
916	for (op_id = 0; op_id < op->ninstrs; op_id++) {
917		instr = &op->instrs[op_id];
918
919		switch (instr->type) {
920		case NAND_OP_ADDR_INSTR:
921			if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
922				return -ENOTSUPP;
923
924			break;
925		case NAND_OP_DATA_IN_INSTR:
926		case NAND_OP_DATA_OUT_INSTR:
927			if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
928				return -ENOTSUPP;
929
930			if (anfc_pkt_len_config(instr->ctx.data.len, NULL, NULL))
931				return -ENOTSUPP;
932
933			break;
934		default:
935			break;
936		}
937	}
938
939	/*
940	 * The controller does not allow to proceed with a CMD+DATA_IN cycle
941	 * manually on the bus by reading data from the data register. Instead,
942	 * the controller abstract a status read operation with its own status
943	 * register after ordering a read status operation. Hence, we cannot
944	 * support any CMD+DATA_IN operation other than a READ STATUS.
945	 *
946	 * TODO: The nand_op_parser() framework should be extended to describe
947	 * fixed patterns instead of open-coding this check here.
948	 */
949	if (op->ninstrs == 2 &&
950	    op->instrs[0].type == NAND_OP_CMD_INSTR &&
951	    op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
952	    op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
953		return -ENOTSUPP;
954
955	return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true);
956}
957
958static int anfc_exec_op(struct nand_chip *chip,
959			const struct nand_operation *op,
960			bool check_only)
961{
962	int ret;
963
964	if (check_only)
965		return anfc_check_op(chip, op);
966
967	ret = anfc_select_target(chip, op->cs);
968	if (ret)
969		return ret;
970
971	return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only);
972}
973
974static int anfc_setup_interface(struct nand_chip *chip, int target,
975				const struct nand_interface_config *conf)
976{
977	struct anand *anand = to_anand(chip);
978	struct arasan_nfc *nfc = to_anfc(chip->controller);
979	struct device_node *np = nfc->dev->of_node;
980	const struct nand_sdr_timings *sdr;
981	const struct nand_nvddr_timings *nvddr;
982	unsigned int tccs_min, dqs_mode, fast_tcad;
983
984	if (nand_interface_is_nvddr(conf)) {
985		nvddr = nand_get_nvddr_timings(conf);
986		if (IS_ERR(nvddr))
987			return PTR_ERR(nvddr);
988	} else {
989		sdr = nand_get_sdr_timings(conf);
990		if (IS_ERR(sdr))
991			return PTR_ERR(sdr);
992	}
993
994	if (target < 0)
995		return 0;
996
997	if (nand_interface_is_sdr(conf)) {
998		anand->data_iface = DIFACE_SDR |
999				    DIFACE_SDR_MODE(conf->timings.mode);
1000		anand->timings = 0;
1001	} else {
1002		anand->data_iface = DIFACE_NVDDR |
1003				    DIFACE_DDR_MODE(conf->timings.mode);
1004
1005		if (conf->timings.nvddr.tCCS_min <= 100000)
1006			tccs_min = TCCS_TIME_100NS;
1007		else if (conf->timings.nvddr.tCCS_min <= 200000)
1008			tccs_min = TCCS_TIME_200NS;
1009		else if (conf->timings.nvddr.tCCS_min <= 300000)
1010			tccs_min = TCCS_TIME_300NS;
1011		else
1012			tccs_min = TCCS_TIME_500NS;
1013
1014		fast_tcad = 0;
1015		if (conf->timings.nvddr.tCAD_min < 45000)
1016			fast_tcad = FAST_TCAD;
1017
1018		switch (conf->timings.mode) {
1019		case 5:
1020		case 4:
1021			dqs_mode = 2;
1022			break;
1023		case 3:
1024			dqs_mode = 3;
1025			break;
1026		case 2:
1027			dqs_mode = 4;
1028			break;
1029		case 1:
1030			dqs_mode = 5;
1031			break;
1032		case 0:
1033		default:
1034			dqs_mode = 6;
1035			break;
1036		}
1037
1038		anand->timings = tccs_min | fast_tcad |
1039				 DQS_BUFF_SEL_IN(dqs_mode) |
1040				 DQS_BUFF_SEL_OUT(dqs_mode);
1041	}
1042
1043	if (nand_interface_is_sdr(conf)) {
1044		anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
1045	} else {
1046		/* ONFI timings are defined in picoseconds */
1047		anand->clk = div_u64((u64)NSEC_PER_SEC * 1000,
1048				     conf->timings.nvddr.tCK_min);
1049	}
1050
1051	/*
1052	 * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work
1053	 * with f > 90MHz (default clock is 100MHz) but signals are unstable
1054	 * with higher modes. Hence we decrease a little bit the clock rate to
1055	 * 80MHz when using SDR modes 2-5 with this SoC.
1056	 */
1057	if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") &&
1058	    nand_interface_is_sdr(conf) && conf->timings.mode >= 2)
1059		anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;
1060
1061	return 0;
1062}
1063
1064static int anfc_calc_hw_ecc_bytes(int step_size, int strength)
1065{
1066	unsigned int bch_gf_mag, ecc_bits;
1067
1068	switch (step_size) {
1069	case SZ_512:
1070		bch_gf_mag = 13;
1071		break;
1072	case SZ_1K:
1073		bch_gf_mag = 14;
1074		break;
1075	default:
1076		return -EINVAL;
1077	}
1078
1079	ecc_bits = bch_gf_mag * strength;
1080
1081	return DIV_ROUND_UP(ecc_bits, 8);
1082}
1083
1084static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12};
1085
1086static const int anfc_hw_ecc_1024_strengths[] = {24};
1087
1088static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = {
1089	{
1090		.stepsize = SZ_512,
1091		.strengths = anfc_hw_ecc_512_strengths,
1092		.nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths),
1093	},
1094	{
1095		.stepsize = SZ_1K,
1096		.strengths = anfc_hw_ecc_1024_strengths,
1097		.nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths),
1098	},
1099};
1100
1101static const struct nand_ecc_caps anfc_hw_ecc_caps = {
1102	.stepinfos = anfc_hw_ecc_step_infos,
1103	.nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos),
1104	.calc_ecc_bytes = anfc_calc_hw_ecc_bytes,
1105};
1106
1107static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc,
1108				       struct nand_chip *chip)
1109{
1110	struct anand *anand = to_anand(chip);
1111	struct mtd_info *mtd = nand_to_mtd(chip);
1112	struct nand_ecc_ctrl *ecc = &chip->ecc;
1113	unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset;
1114	int ret;
1115
1116	switch (mtd->writesize) {
1117	case SZ_512:
1118	case SZ_2K:
1119	case SZ_4K:
1120	case SZ_8K:
1121	case SZ_16K:
1122		break;
1123	default:
1124		dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize);
1125		return -EINVAL;
1126	}
1127
1128	ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize);
1129	if (ret)
1130		return ret;
1131
1132	switch (ecc->strength) {
1133	case 12:
1134		anand->strength = 0x1;
1135		break;
1136	case 8:
1137		anand->strength = 0x2;
1138		break;
1139	case 4:
1140		anand->strength = 0x3;
1141		break;
1142	case 24:
1143		anand->strength = 0x4;
1144		break;
1145	default:
1146		dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength);
1147		return -EINVAL;
1148	}
1149
1150	switch (ecc->size) {
1151	case SZ_512:
1152		bch_gf_mag = 13;
1153		bch_prim_poly = 0x201b;
1154		break;
1155	case SZ_1K:
1156		bch_gf_mag = 14;
1157		bch_prim_poly = 0x4443;
1158		break;
1159	default:
1160		dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength);
1161		return -EINVAL;
1162	}
1163
1164	mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1165
1166	ecc->steps = mtd->writesize / ecc->size;
1167	ecc->algo = NAND_ECC_ALGO_BCH;
1168	anand->ecc_bits = bch_gf_mag * ecc->strength;
1169	ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8);
1170	anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8);
1171	ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total;
1172	anand->ecc_conf = ECC_CONF_COL(ecc_offset) |
1173			  ECC_CONF_LEN(anand->ecc_total) |
1174			  ECC_CONF_BCH_EN;
1175
1176	anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength,
1177					   sizeof(*anand->errloc), GFP_KERNEL);
1178	if (!anand->errloc)
1179		return -ENOMEM;
1180
1181	anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL);
1182	if (!anand->hw_ecc)
1183		return -ENOMEM;
1184
1185	/* Enforce bit swapping to fit the hardware */
1186	anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true);
1187	if (!anand->bch)
1188		return -EINVAL;
1189
1190	ecc->read_page = anfc_sel_read_page_hw_ecc;
1191	ecc->write_page = anfc_sel_write_page_hw_ecc;
1192
1193	return 0;
1194}
1195
1196static int anfc_attach_chip(struct nand_chip *chip)
1197{
1198	struct anand *anand = to_anand(chip);
1199	struct arasan_nfc *nfc = to_anfc(chip->controller);
1200	struct mtd_info *mtd = nand_to_mtd(chip);
1201	int ret = 0;
1202
1203	if (mtd->writesize <= SZ_512)
1204		anand->caddr_cycles = 1;
1205	else
1206		anand->caddr_cycles = 2;
1207
1208	if (chip->options & NAND_ROW_ADDR_3)
1209		anand->raddr_cycles = 3;
1210	else
1211		anand->raddr_cycles = 2;
1212
1213	switch (mtd->writesize) {
1214	case 512:
1215		anand->page_sz = 0;
1216		break;
1217	case 1024:
1218		anand->page_sz = 5;
1219		break;
1220	case 2048:
1221		anand->page_sz = 1;
1222		break;
1223	case 4096:
1224		anand->page_sz = 2;
1225		break;
1226	case 8192:
1227		anand->page_sz = 3;
1228		break;
1229	case 16384:
1230		anand->page_sz = 4;
1231		break;
1232	default:
1233		return -EINVAL;
1234	}
1235
1236	/* These hooks are valid for all ECC providers */
1237	chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
1238	chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
1239
1240	switch (chip->ecc.engine_type) {
1241	case NAND_ECC_ENGINE_TYPE_NONE:
1242	case NAND_ECC_ENGINE_TYPE_SOFT:
1243	case NAND_ECC_ENGINE_TYPE_ON_DIE:
1244		break;
1245	case NAND_ECC_ENGINE_TYPE_ON_HOST:
1246		ret = anfc_init_hw_ecc_controller(nfc, chip);
1247		break;
1248	default:
1249		dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
1250			chip->ecc.engine_type);
1251		return -EINVAL;
1252	}
1253
1254	return ret;
1255}
1256
1257static void anfc_detach_chip(struct nand_chip *chip)
1258{
1259	struct anand *anand = to_anand(chip);
1260
1261	if (anand->bch)
1262		bch_free(anand->bch);
1263}
1264
1265static const struct nand_controller_ops anfc_ops = {
1266	.exec_op = anfc_exec_op,
1267	.setup_interface = anfc_setup_interface,
1268	.attach_chip = anfc_attach_chip,
1269	.detach_chip = anfc_detach_chip,
1270};
1271
1272static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
1273{
1274	struct anand *anand;
1275	struct nand_chip *chip;
1276	struct mtd_info *mtd;
1277	int rb, ret, i;
1278
1279	anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL);
1280	if (!anand)
1281		return -ENOMEM;
1282
1283	/* Chip-select init */
1284	anand->ncs_idx = of_property_count_elems_of_size(np, "reg", sizeof(u32));
1285	if (anand->ncs_idx <= 0 || anand->ncs_idx > nfc->ncs) {
1286		dev_err(nfc->dev, "Invalid reg property\n");
1287		return -EINVAL;
1288	}
1289
1290	anand->cs_idx = devm_kcalloc(nfc->dev, anand->ncs_idx,
1291				     sizeof(*anand->cs_idx), GFP_KERNEL);
1292	if (!anand->cs_idx)
1293		return -ENOMEM;
1294
1295	for (i = 0; i < anand->ncs_idx; i++) {
1296		ret = of_property_read_u32_index(np, "reg", i,
1297						 &anand->cs_idx[i]);
1298		if (ret) {
1299			dev_err(nfc->dev, "invalid CS property: %d\n", ret);
1300			return ret;
1301		}
1302	}
1303
1304	/* Ready-busy init */
1305	ret = of_property_read_u32(np, "nand-rb", &rb);
1306	if (ret)
1307		return ret;
1308
1309	if (rb >= ANFC_MAX_CS) {
1310		dev_err(nfc->dev, "Wrong RB %d\n", rb);
1311		return -EINVAL;
1312	}
1313
1314	anand->rb = rb;
1315
1316	chip = &anand->chip;
1317	mtd = nand_to_mtd(chip);
1318	mtd->dev.parent = nfc->dev;
1319	chip->controller = &nfc->controller;
1320	chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1321			NAND_USES_DMA;
1322
1323	nand_set_flash_node(chip, np);
1324	if (!mtd->name) {
1325		dev_err(nfc->dev, "NAND label property is mandatory\n");
1326		return -EINVAL;
1327	}
1328
1329	ret = nand_scan(chip, anand->ncs_idx);
1330	if (ret) {
1331		dev_err(nfc->dev, "Scan operation failed\n");
1332		return ret;
1333	}
1334
1335	ret = mtd_device_register(mtd, NULL, 0);
1336	if (ret) {
1337		nand_cleanup(chip);
1338		return ret;
1339	}
1340
1341	list_add_tail(&anand->node, &nfc->chips);
1342
1343	return 0;
1344}
1345
1346static void anfc_chips_cleanup(struct arasan_nfc *nfc)
1347{
1348	struct anand *anand, *tmp;
1349	struct nand_chip *chip;
1350	int ret;
1351
1352	list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
1353		chip = &anand->chip;
1354		ret = mtd_device_unregister(nand_to_mtd(chip));
1355		WARN_ON(ret);
1356		nand_cleanup(chip);
1357		list_del(&anand->node);
1358	}
1359}
1360
1361static int anfc_chips_init(struct arasan_nfc *nfc)
1362{
1363	struct device_node *np = nfc->dev->of_node, *nand_np;
1364	int nchips = of_get_child_count(np);
1365	int ret;
1366
1367	if (!nchips) {
1368		dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
1369			nchips);
1370		return -EINVAL;
1371	}
1372
1373	for_each_child_of_node(np, nand_np) {
1374		ret = anfc_chip_init(nfc, nand_np);
1375		if (ret) {
1376			of_node_put(nand_np);
1377			anfc_chips_cleanup(nfc);
1378			break;
1379		}
1380	}
1381
1382	return ret;
1383}
1384
1385static void anfc_reset(struct arasan_nfc *nfc)
1386{
1387	/* Disable interrupt signals */
1388	writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);
1389
1390	/* Enable interrupt status */
1391	writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);
1392
1393	nfc->cur_cs = -1;
1394}
1395
1396static int anfc_parse_cs(struct arasan_nfc *nfc)
1397{
1398	int ret;
1399
1400	/* Check the gpio-cs property */
1401	ret = rawnand_dt_parse_gpio_cs(nfc->dev, &nfc->cs_array, &nfc->ncs);
1402	if (ret)
1403		return ret;
1404
1405	/*
1406	 * The controller native CS cannot be both disabled at the same time.
1407	 * Hence, only one native CS can be used if GPIO CS are needed, so that
1408	 * the other is selected when a non-native CS must be asserted (not
1409	 * wired physically or configured as GPIO instead of NAND CS). In this
1410	 * case, the "not" chosen CS is assigned to nfc->spare_cs and selected
1411	 * whenever a GPIO CS must be asserted.
1412	 */
1413	if (nfc->cs_array && nfc->ncs > 2) {
1414		if (!nfc->cs_array[0] && !nfc->cs_array[1]) {
1415			dev_err(nfc->dev,
1416				"Assign a single native CS when using GPIOs\n");
1417			return -EINVAL;
1418		}
1419
1420		if (nfc->cs_array[0])
1421			nfc->spare_cs = 0;
1422		else
1423			nfc->spare_cs = 1;
1424	}
1425
1426	if (!nfc->cs_array) {
1427		nfc->cs_array = anfc_default_cs_array;
1428		nfc->ncs = ANFC_MAX_CS;
1429		return 0;
1430	}
1431
1432	return 0;
1433}
1434
1435static int anfc_probe(struct platform_device *pdev)
1436{
1437	struct arasan_nfc *nfc;
1438	int ret;
1439
1440	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
1441	if (!nfc)
1442		return -ENOMEM;
1443
1444	nfc->dev = &pdev->dev;
1445	nand_controller_init(&nfc->controller);
1446	nfc->controller.ops = &anfc_ops;
1447	INIT_LIST_HEAD(&nfc->chips);
1448
1449	nfc->base = devm_platform_ioremap_resource(pdev, 0);
1450	if (IS_ERR(nfc->base))
1451		return PTR_ERR(nfc->base);
1452
1453	anfc_reset(nfc);
1454
1455	nfc->controller_clk = devm_clk_get_enabled(&pdev->dev, "controller");
1456	if (IS_ERR(nfc->controller_clk))
1457		return PTR_ERR(nfc->controller_clk);
1458
1459	nfc->bus_clk = devm_clk_get_enabled(&pdev->dev, "bus");
1460	if (IS_ERR(nfc->bus_clk))
1461		return PTR_ERR(nfc->bus_clk);
1462
1463	ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1464	if (ret)
1465		return ret;
1466
1467	ret = anfc_parse_cs(nfc);
1468	if (ret)
1469		return ret;
1470
1471	ret = anfc_chips_init(nfc);
1472	if (ret)
1473		return ret;
1474
1475	platform_set_drvdata(pdev, nfc);
1476
1477	return 0;
1478}
1479
1480static void anfc_remove(struct platform_device *pdev)
1481{
1482	struct arasan_nfc *nfc = platform_get_drvdata(pdev);
1483
1484	anfc_chips_cleanup(nfc);
1485}
1486
1487static const struct of_device_id anfc_ids[] = {
1488	{
1489		.compatible = "xlnx,zynqmp-nand-controller",
1490	},
1491	{
1492		.compatible = "arasan,nfc-v3p10",
1493	},
1494	{}
1495};
1496MODULE_DEVICE_TABLE(of, anfc_ids);
1497
1498static struct platform_driver anfc_driver = {
1499	.driver = {
1500		.name = "arasan-nand-controller",
1501		.of_match_table = anfc_ids,
1502	},
1503	.probe = anfc_probe,
1504	.remove_new = anfc_remove,
1505};
1506module_platform_driver(anfc_driver);
1507
1508MODULE_LICENSE("GPL v2");
1509MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
1510MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>");
1511MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1512MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");
1513