1// SPDX-License-Identifier: GPL-2.0-only OR MIT
2/* Copyright (c) 2023 Imagination Technologies Ltd. */
3
4#include "pvr_ccb.h"
5#include "pvr_device.h"
6#include "pvr_device_info.h"
7#include "pvr_fw.h"
8#include "pvr_fw_info.h"
9#include "pvr_fw_startstop.h"
10#include "pvr_fw_trace.h"
11#include "pvr_gem.h"
12#include "pvr_power.h"
13#include "pvr_rogue_fwif_dev_info.h"
14#include "pvr_rogue_heap_config.h"
15#include "pvr_vm.h"
16
17#include <drm/drm_drv.h>
18#include <drm/drm_managed.h>
19#include <drm/drm_mm.h>
20#include <linux/clk.h>
21#include <linux/firmware.h>
22#include <linux/math.h>
23#include <linux/minmax.h>
24#include <linux/sizes.h>
25
26#define FW_MAX_SUPPORTED_MAJOR_VERSION 1
27
28#define FW_BOOT_TIMEOUT_USEC 5000000
29
30/* Config heap occupies top 192k of the firmware heap. */
31#define PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY SZ_64K
32#define PVR_ROGUE_FW_CONFIG_HEAP_SIZE (3 * PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
33
34/* Main firmware allocations should come from the remainder of the heap. */
35#define PVR_ROGUE_FW_MAIN_HEAP_BASE ROGUE_FW_HEAP_BASE
36
37/* Offsets from start of configuration area of FW heap. */
38#define PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET 0
39#define PVR_ROGUE_FWIF_OSINIT_OFFSET \
40	(PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
41#define PVR_ROGUE_FWIF_SYSINIT_OFFSET \
42	(PVR_ROGUE_FWIF_OSINIT_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
43
44#define PVR_ROGUE_FAULT_PAGE_SIZE SZ_4K
45
46#define PVR_SYNC_OBJ_SIZE sizeof(u32)
47
48const struct pvr_fw_layout_entry *
49pvr_fw_find_layout_entry(struct pvr_device *pvr_dev, enum pvr_fw_section_id id)
50{
51	const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
52	u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
53	u32 entry;
54
55	for (entry = 0; entry < num_layout_entries; entry++) {
56		if (layout_entries[entry].id == id)
57			return &layout_entries[entry];
58	}
59
60	return NULL;
61}
62
63static const struct pvr_fw_layout_entry *
64pvr_fw_find_private_data(struct pvr_device *pvr_dev)
65{
66	const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
67	u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
68	u32 entry;
69
70	for (entry = 0; entry < num_layout_entries; entry++) {
71		if (layout_entries[entry].id == META_PRIVATE_DATA ||
72		    layout_entries[entry].id == MIPS_PRIVATE_DATA ||
73		    layout_entries[entry].id == RISCV_PRIVATE_DATA)
74			return &layout_entries[entry];
75	}
76
77	return NULL;
78}
79
80#define DEV_INFO_MASK_SIZE(x) DIV_ROUND_UP(x, 64)
81
82/**
83 * pvr_fw_validate() - Parse firmware header and check compatibility
84 * @pvr_dev: Device pointer.
85 *
86 * Returns:
87 *  * 0 on success, or
88 *  * -EINVAL if firmware is incompatible.
89 */
90static int
91pvr_fw_validate(struct pvr_device *pvr_dev)
92{
93	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
94	const struct firmware *firmware = pvr_dev->fw_dev.firmware;
95	const struct pvr_fw_layout_entry *layout_entries;
96	const struct pvr_fw_info_header *header;
97	const u8 *fw = firmware->data;
98	u32 fw_offset = firmware->size - SZ_4K;
99	u32 layout_table_size;
100	u32 entry;
101
102	if (firmware->size < SZ_4K || (firmware->size % FW_BLOCK_SIZE))
103		return -EINVAL;
104
105	header = (const struct pvr_fw_info_header *)&fw[fw_offset];
106
107	if (header->info_version != PVR_FW_INFO_VERSION) {
108		drm_err(drm_dev, "Unsupported fw info version %u\n",
109			header->info_version);
110		return -EINVAL;
111	}
112
113	if (header->header_len != sizeof(struct pvr_fw_info_header) ||
114	    header->layout_entry_size != sizeof(struct pvr_fw_layout_entry) ||
115	    header->layout_entry_num > PVR_FW_INFO_MAX_NUM_ENTRIES) {
116		drm_err(drm_dev, "FW info format mismatch\n");
117		return -EINVAL;
118	}
119
120	if (!(header->flags & PVR_FW_FLAGS_OPEN_SOURCE) ||
121	    header->fw_version_major > FW_MAX_SUPPORTED_MAJOR_VERSION ||
122	    header->fw_version_major == 0) {
123		drm_err(drm_dev, "Unsupported FW version %u.%u (build: %u%s)\n",
124			header->fw_version_major, header->fw_version_minor,
125			header->fw_version_build,
126			(header->flags & PVR_FW_FLAGS_OPEN_SOURCE) ? " OS" : "");
127		return -EINVAL;
128	}
129
130	if (pvr_gpu_id_to_packed_bvnc(&pvr_dev->gpu_id) != header->bvnc) {
131		struct pvr_gpu_id fw_gpu_id;
132
133		packed_bvnc_to_pvr_gpu_id(header->bvnc, &fw_gpu_id);
134		drm_err(drm_dev, "FW built for incorrect GPU ID %i.%i.%i.%i (expected %i.%i.%i.%i)\n",
135			fw_gpu_id.b, fw_gpu_id.v, fw_gpu_id.n, fw_gpu_id.c,
136			pvr_dev->gpu_id.b, pvr_dev->gpu_id.v, pvr_dev->gpu_id.n, pvr_dev->gpu_id.c);
137		return -EINVAL;
138	}
139
140	fw_offset += header->header_len;
141	layout_table_size =
142		header->layout_entry_size * header->layout_entry_num;
143	if ((fw_offset + layout_table_size) > firmware->size)
144		return -EINVAL;
145
146	layout_entries = (const struct pvr_fw_layout_entry *)&fw[fw_offset];
147	for (entry = 0; entry < header->layout_entry_num; entry++) {
148		u32 start_addr = layout_entries[entry].base_addr;
149		u32 end_addr = start_addr + layout_entries[entry].alloc_size;
150
151		if (start_addr >= end_addr)
152			return -EINVAL;
153	}
154
155	fw_offset = (firmware->size - SZ_4K) - header->device_info_size;
156
157	drm_info(drm_dev, "FW version v%u.%u (build %u OS)\n", header->fw_version_major,
158		 header->fw_version_minor, header->fw_version_build);
159
160	pvr_dev->fw_version.major = header->fw_version_major;
161	pvr_dev->fw_version.minor = header->fw_version_minor;
162
163	pvr_dev->fw_dev.header = header;
164	pvr_dev->fw_dev.layout_entries = layout_entries;
165
166	return 0;
167}
168
169static int
170pvr_fw_get_device_info(struct pvr_device *pvr_dev)
171{
172	const struct firmware *firmware = pvr_dev->fw_dev.firmware;
173	struct pvr_fw_device_info_header *header;
174	const u8 *fw = firmware->data;
175	const u64 *dev_info;
176	u32 fw_offset;
177
178	fw_offset = (firmware->size - SZ_4K) - pvr_dev->fw_dev.header->device_info_size;
179
180	header = (struct pvr_fw_device_info_header *)&fw[fw_offset];
181	dev_info = (u64 *)(header + 1);
182
183	pvr_device_info_set_quirks(pvr_dev, dev_info, header->brn_mask_size);
184	dev_info += header->brn_mask_size;
185
186	pvr_device_info_set_enhancements(pvr_dev, dev_info, header->ern_mask_size);
187	dev_info += header->ern_mask_size;
188
189	return pvr_device_info_set_features(pvr_dev, dev_info, header->feature_mask_size,
190					    header->feature_param_size);
191}
192
193static void
194layout_get_sizes(struct pvr_device *pvr_dev)
195{
196	const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
197	u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
198	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
199
200	fw_mem->code_alloc_size = 0;
201	fw_mem->data_alloc_size = 0;
202	fw_mem->core_code_alloc_size = 0;
203	fw_mem->core_data_alloc_size = 0;
204
205	/* Extract section sizes from FW layout table. */
206	for (u32 entry = 0; entry < num_layout_entries; entry++) {
207		switch (layout_entries[entry].type) {
208		case FW_CODE:
209			fw_mem->code_alloc_size += layout_entries[entry].alloc_size;
210			break;
211		case FW_DATA:
212			fw_mem->data_alloc_size += layout_entries[entry].alloc_size;
213			break;
214		case FW_COREMEM_CODE:
215			fw_mem->core_code_alloc_size +=
216				layout_entries[entry].alloc_size;
217			break;
218		case FW_COREMEM_DATA:
219			fw_mem->core_data_alloc_size +=
220				layout_entries[entry].alloc_size;
221			break;
222		case NONE:
223			break;
224		}
225	}
226}
227
228int
229pvr_fw_find_mmu_segment(struct pvr_device *pvr_dev, u32 addr, u32 size, void *fw_code_ptr,
230			void *fw_data_ptr, void *fw_core_code_ptr, void *fw_core_data_ptr,
231			void **host_addr_out)
232{
233	const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
234	u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
235	u32 end_addr = addr + size;
236	int entry = 0;
237
238	/* Ensure requested range is not zero, and size is not causing addr to overflow. */
239	if (end_addr <= addr)
240		return -EINVAL;
241
242	for (entry = 0; entry < num_layout_entries; entry++) {
243		u32 entry_start_addr = layout_entries[entry].base_addr;
244		u32 entry_end_addr = entry_start_addr + layout_entries[entry].alloc_size;
245
246		if (addr >= entry_start_addr && addr < entry_end_addr &&
247		    end_addr > entry_start_addr && end_addr <= entry_end_addr) {
248			switch (layout_entries[entry].type) {
249			case FW_CODE:
250				*host_addr_out = fw_code_ptr;
251				break;
252
253			case FW_DATA:
254				*host_addr_out = fw_data_ptr;
255				break;
256
257			case FW_COREMEM_CODE:
258				*host_addr_out = fw_core_code_ptr;
259				break;
260
261			case FW_COREMEM_DATA:
262				*host_addr_out = fw_core_data_ptr;
263				break;
264
265			default:
266				return -EINVAL;
267			}
268			/* Direct Mem write to mapped memory */
269			addr -= layout_entries[entry].base_addr;
270			addr += layout_entries[entry].alloc_offset;
271
272			/*
273			 * Add offset to pointer to FW allocation only if that
274			 * allocation is available
275			 */
276			*(u8 **)host_addr_out += addr;
277			return 0;
278		}
279	}
280
281	return -EINVAL;
282}
283
284static int
285pvr_fw_create_fwif_connection_ctl(struct pvr_device *pvr_dev)
286{
287	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
288	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
289
290	fw_dev->fwif_connection_ctl =
291		pvr_fw_object_create_and_map_offset(pvr_dev,
292						    fw_dev->fw_heap_info.config_offset +
293						    PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET,
294						    sizeof(*fw_dev->fwif_connection_ctl),
295						    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
296						    NULL, NULL,
297						    &fw_dev->mem.fwif_connection_ctl_obj);
298	if (IS_ERR(fw_dev->fwif_connection_ctl)) {
299		drm_err(drm_dev,
300			"Unable to allocate FWIF connection control memory\n");
301		return PTR_ERR(fw_dev->fwif_connection_ctl);
302	}
303
304	return 0;
305}
306
307static void
308pvr_fw_fini_fwif_connection_ctl(struct pvr_device *pvr_dev)
309{
310	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
311
312	pvr_fw_object_unmap_and_destroy(fw_dev->mem.fwif_connection_ctl_obj);
313}
314
315static void
316fw_osinit_init(void *cpu_ptr, void *priv)
317{
318	struct rogue_fwif_osinit *fwif_osinit = cpu_ptr;
319	struct pvr_device *pvr_dev = priv;
320	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
321	struct pvr_fw_mem *fw_mem = &fw_dev->mem;
322
323	fwif_osinit->kernel_ccbctl_fw_addr = pvr_dev->kccb.ccb.ctrl_fw_addr;
324	fwif_osinit->kernel_ccb_fw_addr = pvr_dev->kccb.ccb.ccb_fw_addr;
325	pvr_fw_object_get_fw_addr(pvr_dev->kccb.rtn_obj,
326				  &fwif_osinit->kernel_ccb_rtn_slots_fw_addr);
327
328	fwif_osinit->firmware_ccbctl_fw_addr = pvr_dev->fwccb.ctrl_fw_addr;
329	fwif_osinit->firmware_ccb_fw_addr = pvr_dev->fwccb.ccb_fw_addr;
330
331	fwif_osinit->work_est_firmware_ccbctl_fw_addr = 0;
332	fwif_osinit->work_est_firmware_ccb_fw_addr = 0;
333
334	pvr_fw_object_get_fw_addr(fw_mem->hwrinfobuf_obj,
335				  &fwif_osinit->rogue_fwif_hwr_info_buf_ctl_fw_addr);
336	pvr_fw_object_get_fw_addr(fw_mem->osdata_obj, &fwif_osinit->fw_os_data_fw_addr);
337
338	fwif_osinit->hwr_debug_dump_limit = 0;
339
340	rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.hw_bvnc);
341	rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.fw_bvnc);
342}
343
344static void
345fw_osdata_init(void *cpu_ptr, void *priv)
346{
347	struct rogue_fwif_osdata *fwif_osdata = cpu_ptr;
348	struct pvr_device *pvr_dev = priv;
349	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
350
351	pvr_fw_object_get_fw_addr(fw_mem->power_sync_obj, &fwif_osdata->power_sync_fw_addr);
352}
353
354static void
355fw_fault_page_init(void *cpu_ptr, void *priv)
356{
357	u32 *fault_page = cpu_ptr;
358
359	for (int i = 0; i < PVR_ROGUE_FAULT_PAGE_SIZE / sizeof(*fault_page); i++)
360		fault_page[i] = 0xdeadbee0;
361}
362
363static void
364fw_sysinit_init(void *cpu_ptr, void *priv)
365{
366	struct rogue_fwif_sysinit *fwif_sysinit = cpu_ptr;
367	struct pvr_device *pvr_dev = priv;
368	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
369	struct pvr_fw_mem *fw_mem = &fw_dev->mem;
370	dma_addr_t fault_dma_addr = 0;
371	u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk);
372
373	WARN_ON(!clock_speed_hz);
374
375	WARN_ON(pvr_fw_object_get_dma_addr(fw_mem->fault_page_obj, 0, &fault_dma_addr));
376	fwif_sysinit->fault_phys_addr = (u64)fault_dma_addr;
377
378	fwif_sysinit->pds_exec_base = ROGUE_PDSCODEDATA_HEAP_BASE;
379	fwif_sysinit->usc_exec_base = ROGUE_USCCODE_HEAP_BASE;
380
381	pvr_fw_object_get_fw_addr(fw_mem->runtime_cfg_obj, &fwif_sysinit->runtime_cfg_fw_addr);
382	pvr_fw_object_get_fw_addr(fw_dev->fw_trace.tracebuf_ctrl_obj,
383				  &fwif_sysinit->trace_buf_ctl_fw_addr);
384	pvr_fw_object_get_fw_addr(fw_mem->sysdata_obj, &fwif_sysinit->fw_sys_data_fw_addr);
385	pvr_fw_object_get_fw_addr(fw_mem->gpu_util_fwcb_obj,
386				  &fwif_sysinit->gpu_util_fw_cb_ctl_fw_addr);
387	if (fw_mem->core_data_obj) {
388		pvr_fw_object_get_fw_addr(fw_mem->core_data_obj,
389					  &fwif_sysinit->coremem_data_store.fw_addr);
390	}
391
392	/* Currently unsupported. */
393	fwif_sysinit->counter_dump_ctl.buffer_fw_addr = 0;
394	fwif_sysinit->counter_dump_ctl.size_in_dwords = 0;
395
396	/* Skip alignment checks. */
397	fwif_sysinit->align_checks = 0;
398
399	fwif_sysinit->filter_flags = 0;
400	fwif_sysinit->hw_perf_filter = 0;
401	fwif_sysinit->firmware_perf = FW_PERF_CONF_NONE;
402	fwif_sysinit->initial_core_clock_speed = clock_speed_hz;
403	fwif_sysinit->active_pm_latency_ms = 0;
404	fwif_sysinit->gpio_validation_mode = ROGUE_FWIF_GPIO_VAL_OFF;
405	fwif_sysinit->firmware_started = false;
406	fwif_sysinit->marker_val = 1;
407
408	memset(&fwif_sysinit->bvnc_km_feature_flags, 0,
409	       sizeof(fwif_sysinit->bvnc_km_feature_flags));
410}
411
412#define ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB 4
413
414static void
415fw_sysdata_init(void *cpu_ptr, void *priv)
416{
417	struct rogue_fwif_sysdata *fwif_sysdata = cpu_ptr;
418	struct pvr_device *pvr_dev = priv;
419	u32 slc_size_in_kilobytes = 0;
420	u32 config_flags = 0;
421
422	WARN_ON(PVR_FEATURE_VALUE(pvr_dev, slc_size_in_kilobytes, &slc_size_in_kilobytes));
423
424	if (slc_size_in_kilobytes < ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB)
425		config_flags |= ROGUE_FWIF_INICFG_DISABLE_DM_OVERLAP;
426
427	fwif_sysdata->config_flags = config_flags;
428}
429
430static void
431fw_runtime_cfg_init(void *cpu_ptr, void *priv)
432{
433	struct rogue_fwif_runtime_cfg *runtime_cfg = cpu_ptr;
434	struct pvr_device *pvr_dev = priv;
435	u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk);
436
437	WARN_ON(!clock_speed_hz);
438
439	runtime_cfg->core_clock_speed = clock_speed_hz;
440	runtime_cfg->active_pm_latency_ms = 0;
441	runtime_cfg->active_pm_latency_persistant = true;
442	WARN_ON(PVR_FEATURE_VALUE(pvr_dev, num_clusters,
443				  &runtime_cfg->default_dusts_num_init) != 0);
444}
445
446static void
447fw_gpu_util_fwcb_init(void *cpu_ptr, void *priv)
448{
449	struct rogue_fwif_gpu_util_fwcb *gpu_util_fwcb = cpu_ptr;
450
451	gpu_util_fwcb->last_word = PVR_FWIF_GPU_UTIL_STATE_IDLE;
452}
453
454static int
455pvr_fw_create_structures(struct pvr_device *pvr_dev)
456{
457	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
458	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
459	struct pvr_fw_mem *fw_mem = &fw_dev->mem;
460	int err;
461
462	fw_dev->power_sync = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->power_sync),
463							  PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
464							  NULL, NULL, &fw_mem->power_sync_obj);
465	if (IS_ERR(fw_dev->power_sync)) {
466		drm_err(drm_dev, "Unable to allocate FW power_sync structure\n");
467		return PTR_ERR(fw_dev->power_sync);
468	}
469
470	fw_dev->hwrinfobuf = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->hwrinfobuf),
471							  PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
472							  NULL, NULL, &fw_mem->hwrinfobuf_obj);
473	if (IS_ERR(fw_dev->hwrinfobuf)) {
474		drm_err(drm_dev,
475			"Unable to allocate FW hwrinfobuf structure\n");
476		err = PTR_ERR(fw_dev->hwrinfobuf);
477		goto err_release_power_sync;
478	}
479
480	err = pvr_fw_object_create(pvr_dev, PVR_SYNC_OBJ_SIZE,
481				   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
482				   NULL, NULL, &fw_mem->mmucache_sync_obj);
483	if (err) {
484		drm_err(drm_dev,
485			"Unable to allocate MMU cache sync object\n");
486		goto err_release_hwrinfobuf;
487	}
488
489	fw_dev->fwif_sysdata = pvr_fw_object_create_and_map(pvr_dev,
490							    sizeof(*fw_dev->fwif_sysdata),
491							    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
492							    fw_sysdata_init, pvr_dev,
493							    &fw_mem->sysdata_obj);
494	if (IS_ERR(fw_dev->fwif_sysdata)) {
495		drm_err(drm_dev, "Unable to allocate FW SYSDATA structure\n");
496		err = PTR_ERR(fw_dev->fwif_sysdata);
497		goto err_release_mmucache_sync_obj;
498	}
499
500	err = pvr_fw_object_create(pvr_dev, PVR_ROGUE_FAULT_PAGE_SIZE,
501				   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
502				   fw_fault_page_init, NULL, &fw_mem->fault_page_obj);
503	if (err) {
504		drm_err(drm_dev, "Unable to allocate FW fault page\n");
505		goto err_release_sysdata;
506	}
507
508	err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_gpu_util_fwcb),
509				   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
510				   fw_gpu_util_fwcb_init, pvr_dev, &fw_mem->gpu_util_fwcb_obj);
511	if (err) {
512		drm_err(drm_dev, "Unable to allocate GPU util FWCB\n");
513		goto err_release_fault_page;
514	}
515
516	err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_runtime_cfg),
517				   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
518				   fw_runtime_cfg_init, pvr_dev, &fw_mem->runtime_cfg_obj);
519	if (err) {
520		drm_err(drm_dev, "Unable to allocate FW runtime config\n");
521		goto err_release_gpu_util_fwcb;
522	}
523
524	err = pvr_fw_trace_init(pvr_dev);
525	if (err)
526		goto err_release_runtime_cfg;
527
528	fw_dev->fwif_osdata = pvr_fw_object_create_and_map(pvr_dev,
529							   sizeof(*fw_dev->fwif_osdata),
530							   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
531							   fw_osdata_init, pvr_dev,
532							   &fw_mem->osdata_obj);
533	if (IS_ERR(fw_dev->fwif_osdata)) {
534		drm_err(drm_dev, "Unable to allocate FW OSDATA structure\n");
535		err = PTR_ERR(fw_dev->fwif_osdata);
536		goto err_fw_trace_fini;
537	}
538
539	fw_dev->fwif_osinit =
540		pvr_fw_object_create_and_map_offset(pvr_dev,
541						    fw_dev->fw_heap_info.config_offset +
542						    PVR_ROGUE_FWIF_OSINIT_OFFSET,
543						    sizeof(*fw_dev->fwif_osinit),
544						    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
545						    fw_osinit_init, pvr_dev, &fw_mem->osinit_obj);
546	if (IS_ERR(fw_dev->fwif_osinit)) {
547		drm_err(drm_dev, "Unable to allocate FW OSINIT structure\n");
548		err = PTR_ERR(fw_dev->fwif_osinit);
549		goto err_release_osdata;
550	}
551
552	fw_dev->fwif_sysinit =
553		pvr_fw_object_create_and_map_offset(pvr_dev,
554						    fw_dev->fw_heap_info.config_offset +
555						    PVR_ROGUE_FWIF_SYSINIT_OFFSET,
556						    sizeof(*fw_dev->fwif_sysinit),
557						    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
558						    fw_sysinit_init, pvr_dev, &fw_mem->sysinit_obj);
559	if (IS_ERR(fw_dev->fwif_sysinit)) {
560		drm_err(drm_dev, "Unable to allocate FW SYSINIT structure\n");
561		err = PTR_ERR(fw_dev->fwif_sysinit);
562		goto err_release_osinit;
563	}
564
565	return 0;
566
567err_release_osinit:
568	pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj);
569
570err_release_osdata:
571	pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj);
572
573err_fw_trace_fini:
574	pvr_fw_trace_fini(pvr_dev);
575
576err_release_runtime_cfg:
577	pvr_fw_object_destroy(fw_mem->runtime_cfg_obj);
578
579err_release_gpu_util_fwcb:
580	pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj);
581
582err_release_fault_page:
583	pvr_fw_object_destroy(fw_mem->fault_page_obj);
584
585err_release_sysdata:
586	pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj);
587
588err_release_mmucache_sync_obj:
589	pvr_fw_object_destroy(fw_mem->mmucache_sync_obj);
590
591err_release_hwrinfobuf:
592	pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj);
593
594err_release_power_sync:
595	pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj);
596
597	return err;
598}
599
600static void
601pvr_fw_destroy_structures(struct pvr_device *pvr_dev)
602{
603	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
604	struct pvr_fw_mem *fw_mem = &fw_dev->mem;
605
606	pvr_fw_trace_fini(pvr_dev);
607	pvr_fw_object_destroy(fw_mem->runtime_cfg_obj);
608	pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj);
609	pvr_fw_object_destroy(fw_mem->fault_page_obj);
610	pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj);
611	pvr_fw_object_unmap_and_destroy(fw_mem->sysinit_obj);
612
613	pvr_fw_object_destroy(fw_mem->mmucache_sync_obj);
614	pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj);
615	pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj);
616	pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj);
617	pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj);
618}
619
620/**
621 * pvr_fw_process() - Process firmware image, allocate FW memory and create boot
622 *                    arguments
623 * @pvr_dev: Device pointer.
624 *
625 * Returns:
626 *  * 0 on success, or
627 *  * Any error returned by pvr_fw_object_create_and_map_offset(), or
628 *  * Any error returned by pvr_fw_object_create_and_map().
629 */
630static int
631pvr_fw_process(struct pvr_device *pvr_dev)
632{
633	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
634	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
635	const u8 *fw = pvr_dev->fw_dev.firmware->data;
636	const struct pvr_fw_layout_entry *private_data;
637	u8 *fw_code_ptr;
638	u8 *fw_data_ptr;
639	u8 *fw_core_code_ptr;
640	u8 *fw_core_data_ptr;
641	int err;
642
643	layout_get_sizes(pvr_dev);
644
645	private_data = pvr_fw_find_private_data(pvr_dev);
646	if (!private_data)
647		return -EINVAL;
648
649	/* Allocate and map memory for firmware sections. */
650
651	/*
652	 * Code allocation must be at the start of the firmware heap, otherwise
653	 * firmware processor will be unable to boot.
654	 *
655	 * This has the useful side-effect that for every other object in the
656	 * driver, a firmware address of 0 is invalid.
657	 */
658	fw_code_ptr = pvr_fw_object_create_and_map_offset(pvr_dev, 0, fw_mem->code_alloc_size,
659							  PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
660							  NULL, NULL, &fw_mem->code_obj);
661	if (IS_ERR(fw_code_ptr)) {
662		drm_err(drm_dev, "Unable to allocate FW code memory\n");
663		return PTR_ERR(fw_code_ptr);
664	}
665
666	if (pvr_dev->fw_dev.defs->has_fixed_data_addr()) {
667		u32 base_addr = private_data->base_addr & pvr_dev->fw_dev.fw_heap_info.offset_mask;
668
669		fw_data_ptr =
670			pvr_fw_object_create_and_map_offset(pvr_dev, base_addr,
671							    fw_mem->data_alloc_size,
672							    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
673							    NULL, NULL, &fw_mem->data_obj);
674	} else {
675		fw_data_ptr = pvr_fw_object_create_and_map(pvr_dev, fw_mem->data_alloc_size,
676							   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
677							   NULL, NULL, &fw_mem->data_obj);
678	}
679	if (IS_ERR(fw_data_ptr)) {
680		drm_err(drm_dev, "Unable to allocate FW data memory\n");
681		err = PTR_ERR(fw_data_ptr);
682		goto err_free_fw_code_obj;
683	}
684
685	/* Core code and data sections are optional. */
686	if (fw_mem->core_code_alloc_size) {
687		fw_core_code_ptr =
688			pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_code_alloc_size,
689						     PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
690						     NULL, NULL, &fw_mem->core_code_obj);
691		if (IS_ERR(fw_core_code_ptr)) {
692			drm_err(drm_dev,
693				"Unable to allocate FW core code memory\n");
694			err = PTR_ERR(fw_core_code_ptr);
695			goto err_free_fw_data_obj;
696		}
697	} else {
698		fw_core_code_ptr = NULL;
699	}
700
701	if (fw_mem->core_data_alloc_size) {
702		fw_core_data_ptr =
703			pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_data_alloc_size,
704						     PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
705						     NULL, NULL, &fw_mem->core_data_obj);
706		if (IS_ERR(fw_core_data_ptr)) {
707			drm_err(drm_dev,
708				"Unable to allocate FW core data memory\n");
709			err = PTR_ERR(fw_core_data_ptr);
710			goto err_free_fw_core_code_obj;
711		}
712	} else {
713		fw_core_data_ptr = NULL;
714	}
715
716	fw_mem->code = kzalloc(fw_mem->code_alloc_size, GFP_KERNEL);
717	fw_mem->data = kzalloc(fw_mem->data_alloc_size, GFP_KERNEL);
718	if (fw_mem->core_code_alloc_size)
719		fw_mem->core_code = kzalloc(fw_mem->core_code_alloc_size, GFP_KERNEL);
720	if (fw_mem->core_data_alloc_size)
721		fw_mem->core_data = kzalloc(fw_mem->core_data_alloc_size, GFP_KERNEL);
722
723	if (!fw_mem->code || !fw_mem->data ||
724	    (!fw_mem->core_code && fw_mem->core_code_alloc_size) ||
725	    (!fw_mem->core_data && fw_mem->core_data_alloc_size)) {
726		err = -ENOMEM;
727		goto err_free_kdata;
728	}
729
730	err = pvr_dev->fw_dev.defs->fw_process(pvr_dev, fw,
731					       fw_mem->code, fw_mem->data, fw_mem->core_code,
732					       fw_mem->core_data, fw_mem->core_code_alloc_size);
733
734	if (err)
735		goto err_free_fw_core_data_obj;
736
737	memcpy(fw_code_ptr, fw_mem->code, fw_mem->code_alloc_size);
738	memcpy(fw_data_ptr, fw_mem->data, fw_mem->data_alloc_size);
739	if (fw_mem->core_code)
740		memcpy(fw_core_code_ptr, fw_mem->core_code, fw_mem->core_code_alloc_size);
741	if (fw_mem->core_data)
742		memcpy(fw_core_data_ptr, fw_mem->core_data, fw_mem->core_data_alloc_size);
743
744	/* We're finished with the firmware section memory on the CPU, unmap. */
745	if (fw_core_data_ptr)
746		pvr_fw_object_vunmap(fw_mem->core_data_obj);
747	if (fw_core_code_ptr)
748		pvr_fw_object_vunmap(fw_mem->core_code_obj);
749	pvr_fw_object_vunmap(fw_mem->data_obj);
750	fw_data_ptr = NULL;
751	pvr_fw_object_vunmap(fw_mem->code_obj);
752	fw_code_ptr = NULL;
753
754	err = pvr_fw_create_fwif_connection_ctl(pvr_dev);
755	if (err)
756		goto err_free_fw_core_data_obj;
757
758	return 0;
759
760err_free_kdata:
761	kfree(fw_mem->core_data);
762	kfree(fw_mem->core_code);
763	kfree(fw_mem->data);
764	kfree(fw_mem->code);
765
766err_free_fw_core_data_obj:
767	if (fw_core_data_ptr)
768		pvr_fw_object_unmap_and_destroy(fw_mem->core_data_obj);
769
770err_free_fw_core_code_obj:
771	if (fw_core_code_ptr)
772		pvr_fw_object_unmap_and_destroy(fw_mem->core_code_obj);
773
774err_free_fw_data_obj:
775	if (fw_data_ptr)
776		pvr_fw_object_vunmap(fw_mem->data_obj);
777	pvr_fw_object_destroy(fw_mem->data_obj);
778
779err_free_fw_code_obj:
780	if (fw_code_ptr)
781		pvr_fw_object_vunmap(fw_mem->code_obj);
782	pvr_fw_object_destroy(fw_mem->code_obj);
783
784	return err;
785}
786
787static int
788pvr_copy_to_fw(struct pvr_fw_object *dest_obj, u8 *src_ptr, u32 size)
789{
790	u8 *dest_ptr = pvr_fw_object_vmap(dest_obj);
791
792	if (IS_ERR(dest_ptr))
793		return PTR_ERR(dest_ptr);
794
795	memcpy(dest_ptr, src_ptr, size);
796
797	pvr_fw_object_vunmap(dest_obj);
798
799	return 0;
800}
801
802static int
803pvr_fw_reinit_code_data(struct pvr_device *pvr_dev)
804{
805	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
806	int err;
807
808	err = pvr_copy_to_fw(fw_mem->code_obj, fw_mem->code, fw_mem->code_alloc_size);
809	if (err)
810		return err;
811
812	err = pvr_copy_to_fw(fw_mem->data_obj, fw_mem->data, fw_mem->data_alloc_size);
813	if (err)
814		return err;
815
816	if (fw_mem->core_code) {
817		err = pvr_copy_to_fw(fw_mem->core_code_obj, fw_mem->core_code,
818				     fw_mem->core_code_alloc_size);
819		if (err)
820			return err;
821	}
822
823	if (fw_mem->core_data) {
824		err = pvr_copy_to_fw(fw_mem->core_data_obj, fw_mem->core_data,
825				     fw_mem->core_data_alloc_size);
826		if (err)
827			return err;
828	}
829
830	return 0;
831}
832
833static void
834pvr_fw_cleanup(struct pvr_device *pvr_dev)
835{
836	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
837
838	pvr_fw_fini_fwif_connection_ctl(pvr_dev);
839	if (fw_mem->core_code_obj)
840		pvr_fw_object_destroy(fw_mem->core_code_obj);
841	if (fw_mem->core_data_obj)
842		pvr_fw_object_destroy(fw_mem->core_data_obj);
843	pvr_fw_object_destroy(fw_mem->code_obj);
844	pvr_fw_object_destroy(fw_mem->data_obj);
845}
846
847/**
848 * pvr_wait_for_fw_boot() - Wait for firmware to finish booting
849 * @pvr_dev: Target PowerVR device.
850 *
851 * Returns:
852 *  * 0 on success, or
853 *  * -%ETIMEDOUT if firmware fails to boot within timeout.
854 */
855int
856pvr_wait_for_fw_boot(struct pvr_device *pvr_dev)
857{
858	ktime_t deadline = ktime_add_us(ktime_get(), FW_BOOT_TIMEOUT_USEC);
859	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
860
861	while (ktime_to_ns(ktime_sub(deadline, ktime_get())) > 0) {
862		if (READ_ONCE(fw_dev->fwif_sysinit->firmware_started))
863			return 0;
864	}
865
866	return -ETIMEDOUT;
867}
868
869/*
870 * pvr_fw_heap_info_init() - Calculate size and masks for FW heap
871 * @pvr_dev: Target PowerVR device.
872 * @log2_size: Log2 of raw heap size.
873 * @reserved_size: Size of reserved area of heap, in bytes. May be zero.
874 */
875void
876pvr_fw_heap_info_init(struct pvr_device *pvr_dev, u32 log2_size, u32 reserved_size)
877{
878	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
879
880	fw_dev->fw_heap_info.gpu_addr = PVR_ROGUE_FW_MAIN_HEAP_BASE;
881	fw_dev->fw_heap_info.log2_size = log2_size;
882	fw_dev->fw_heap_info.reserved_size = reserved_size;
883	fw_dev->fw_heap_info.raw_size = 1 << fw_dev->fw_heap_info.log2_size;
884	fw_dev->fw_heap_info.offset_mask = fw_dev->fw_heap_info.raw_size - 1;
885	fw_dev->fw_heap_info.config_offset = fw_dev->fw_heap_info.raw_size -
886					     PVR_ROGUE_FW_CONFIG_HEAP_SIZE;
887	fw_dev->fw_heap_info.size = fw_dev->fw_heap_info.raw_size -
888				    (PVR_ROGUE_FW_CONFIG_HEAP_SIZE + reserved_size);
889}
890
891/**
892 * pvr_fw_validate_init_device_info() - Validate firmware and initialise device information
893 * @pvr_dev: Target PowerVR device.
894 *
895 * This function must be called before querying device information.
896 *
897 * Returns:
898 *  * 0 on success, or
899 *  * -%EINVAL if firmware validation fails.
900 */
901int
902pvr_fw_validate_init_device_info(struct pvr_device *pvr_dev)
903{
904	int err;
905
906	err = pvr_fw_validate(pvr_dev);
907	if (err)
908		return err;
909
910	return pvr_fw_get_device_info(pvr_dev);
911}
912
913/**
914 * pvr_fw_init() - Initialise and boot firmware
915 * @pvr_dev: Target PowerVR device
916 *
917 * On successful completion of the function the PowerVR device will be
918 * initialised and ready to use.
919 *
920 * Returns:
921 *  * 0 on success,
922 *  * -%EINVAL on invalid firmware image,
923 *  * -%ENOMEM on out of memory, or
924 *  * -%ETIMEDOUT if firmware processor fails to boot or on register poll timeout.
925 */
926int
927pvr_fw_init(struct pvr_device *pvr_dev)
928{
929	u32 kccb_size_log2 = ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT;
930	u32 kccb_rtn_size = (1 << kccb_size_log2) * sizeof(*pvr_dev->kccb.rtn);
931	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
932	int err;
933
934	if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_META)
935		fw_dev->defs = &pvr_fw_defs_meta;
936	else if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_MIPS)
937		fw_dev->defs = &pvr_fw_defs_mips;
938	else
939		return -EINVAL;
940
941	err = fw_dev->defs->init(pvr_dev);
942	if (err)
943		return err;
944
945	drm_mm_init(&fw_dev->fw_mm, ROGUE_FW_HEAP_BASE, fw_dev->fw_heap_info.raw_size);
946	fw_dev->fw_mm_base = ROGUE_FW_HEAP_BASE;
947	spin_lock_init(&fw_dev->fw_mm_lock);
948
949	INIT_LIST_HEAD(&fw_dev->fw_objs.list);
950	err = drmm_mutex_init(from_pvr_device(pvr_dev), &fw_dev->fw_objs.lock);
951	if (err)
952		goto err_mm_takedown;
953
954	err = pvr_fw_process(pvr_dev);
955	if (err)
956		goto err_mm_takedown;
957
958	/* Initialise KCCB and FWCCB. */
959	err = pvr_kccb_init(pvr_dev);
960	if (err)
961		goto err_fw_cleanup;
962
963	err = pvr_fwccb_init(pvr_dev);
964	if (err)
965		goto err_kccb_fini;
966
967	/* Allocate memory for KCCB return slots. */
968	pvr_dev->kccb.rtn = pvr_fw_object_create_and_map(pvr_dev, kccb_rtn_size,
969							 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
970							 NULL, NULL, &pvr_dev->kccb.rtn_obj);
971	if (IS_ERR(pvr_dev->kccb.rtn)) {
972		err = PTR_ERR(pvr_dev->kccb.rtn);
973		goto err_fwccb_fini;
974	}
975
976	err = pvr_fw_create_structures(pvr_dev);
977	if (err)
978		goto err_kccb_rtn_release;
979
980	err = pvr_fw_start(pvr_dev);
981	if (err)
982		goto err_destroy_structures;
983
984	err = pvr_wait_for_fw_boot(pvr_dev);
985	if (err) {
986		drm_err(from_pvr_device(pvr_dev), "Firmware failed to boot\n");
987		goto err_fw_stop;
988	}
989
990	fw_dev->booted = true;
991
992	return 0;
993
994err_fw_stop:
995	pvr_fw_stop(pvr_dev);
996
997err_destroy_structures:
998	pvr_fw_destroy_structures(pvr_dev);
999
1000err_kccb_rtn_release:
1001	pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj);
1002
1003err_fwccb_fini:
1004	pvr_ccb_fini(&pvr_dev->fwccb);
1005
1006err_kccb_fini:
1007	pvr_kccb_fini(pvr_dev);
1008
1009err_fw_cleanup:
1010	pvr_fw_cleanup(pvr_dev);
1011
1012err_mm_takedown:
1013	drm_mm_takedown(&fw_dev->fw_mm);
1014
1015	if (fw_dev->defs->fini)
1016		fw_dev->defs->fini(pvr_dev);
1017
1018	return err;
1019}
1020
1021/**
1022 * pvr_fw_fini() - Shutdown firmware processor and free associated memory
1023 * @pvr_dev: Target PowerVR device
1024 */
1025void
1026pvr_fw_fini(struct pvr_device *pvr_dev)
1027{
1028	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1029
1030	fw_dev->booted = false;
1031
1032	pvr_fw_destroy_structures(pvr_dev);
1033	pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj);
1034
1035	/*
1036	 * Ensure FWCCB worker has finished executing before destroying FWCCB. The IRQ handler has
1037	 * been unregistered at this point so no new work should be being submitted.
1038	 */
1039	pvr_ccb_fini(&pvr_dev->fwccb);
1040	pvr_kccb_fini(pvr_dev);
1041	pvr_fw_cleanup(pvr_dev);
1042
1043	mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1044	WARN_ON(!list_empty(&pvr_dev->fw_dev.fw_objs.list));
1045	mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1046
1047	drm_mm_takedown(&fw_dev->fw_mm);
1048
1049	if (fw_dev->defs->fini)
1050		fw_dev->defs->fini(pvr_dev);
1051}
1052
1053/**
1054 * pvr_fw_mts_schedule() - Schedule work via an MTS kick
1055 * @pvr_dev: Target PowerVR device
1056 * @val: Kick mask. Should be a combination of %ROGUE_CR_MTS_SCHEDULE_*
1057 */
1058void
1059pvr_fw_mts_schedule(struct pvr_device *pvr_dev, u32 val)
1060{
1061	/* Ensure memory is flushed before kicking MTS. */
1062	wmb();
1063
1064	pvr_cr_write32(pvr_dev, ROGUE_CR_MTS_SCHEDULE, val);
1065
1066	/* Ensure the MTS kick goes through before continuing. */
1067	mb();
1068}
1069
1070/**
1071 * pvr_fw_structure_cleanup() - Send FW cleanup request for an object
1072 * @pvr_dev: Target PowerVR device.
1073 * @type: Type of object to cleanup. Must be one of &enum rogue_fwif_cleanup_type.
1074 * @fw_obj: Pointer to FW object containing object to cleanup.
1075 * @offset: Offset within FW object of object to cleanup.
1076 *
1077 * Returns:
1078 *  * 0 on success,
1079 *  * -EBUSY if object is busy,
1080 *  * -ETIMEDOUT on timeout, or
1081 *  * -EIO if device is lost.
1082 */
1083int
1084pvr_fw_structure_cleanup(struct pvr_device *pvr_dev, u32 type, struct pvr_fw_object *fw_obj,
1085			 u32 offset)
1086{
1087	struct rogue_fwif_kccb_cmd cmd;
1088	int slot_nr;
1089	int idx;
1090	int err;
1091	u32 rtn;
1092
1093	struct rogue_fwif_cleanup_request *cleanup_req = &cmd.cmd_data.cleanup_data;
1094
1095	down_read(&pvr_dev->reset_sem);
1096
1097	if (!drm_dev_enter(from_pvr_device(pvr_dev), &idx)) {
1098		err = -EIO;
1099		goto err_up_read;
1100	}
1101
1102	cmd.cmd_type = ROGUE_FWIF_KCCB_CMD_CLEANUP;
1103	cmd.kccb_flags = 0;
1104	cleanup_req->cleanup_type = type;
1105
1106	switch (type) {
1107	case ROGUE_FWIF_CLEANUP_FWCOMMONCONTEXT:
1108		pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
1109						 &cleanup_req->cleanup_data.context_fw_addr);
1110		break;
1111	case ROGUE_FWIF_CLEANUP_HWRTDATA:
1112		pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
1113						 &cleanup_req->cleanup_data.hwrt_data_fw_addr);
1114		break;
1115	case ROGUE_FWIF_CLEANUP_FREELIST:
1116		pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
1117						 &cleanup_req->cleanup_data.freelist_fw_addr);
1118		break;
1119	default:
1120		err = -EINVAL;
1121		goto err_drm_dev_exit;
1122	}
1123
1124	err = pvr_kccb_send_cmd(pvr_dev, &cmd, &slot_nr);
1125	if (err)
1126		goto err_drm_dev_exit;
1127
1128	err = pvr_kccb_wait_for_completion(pvr_dev, slot_nr, HZ, &rtn);
1129	if (err)
1130		goto err_drm_dev_exit;
1131
1132	if (rtn & ROGUE_FWIF_KCCB_RTN_SLOT_CLEANUP_BUSY)
1133		err = -EBUSY;
1134
1135err_drm_dev_exit:
1136	drm_dev_exit(idx);
1137
1138err_up_read:
1139	up_read(&pvr_dev->reset_sem);
1140
1141	return err;
1142}
1143
1144/**
1145 * pvr_fw_object_fw_map() - Map a FW object in firmware address space
1146 * @pvr_dev: Device pointer.
1147 * @fw_obj: FW object to map.
1148 * @dev_addr: Desired address in device space, if a specific address is
1149 *            required. 0 otherwise.
1150 *
1151 * Returns:
1152 *  * 0 on success, or
1153 *  * -%EINVAL if @fw_obj is already mapped but has no references, or
1154 *  * Any error returned by DRM.
1155 */
1156static int
1157pvr_fw_object_fw_map(struct pvr_device *pvr_dev, struct pvr_fw_object *fw_obj, u64 dev_addr)
1158{
1159	struct pvr_gem_object *pvr_obj = fw_obj->gem;
1160	struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
1161	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1162
1163	int err;
1164
1165	spin_lock(&fw_dev->fw_mm_lock);
1166
1167	if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
1168		err = -EINVAL;
1169		goto err_unlock;
1170	}
1171
1172	if (!dev_addr) {
1173		/*
1174		 * Allocate from the main heap only (firmware heap minus
1175		 * config space).
1176		 */
1177		err = drm_mm_insert_node_in_range(&fw_dev->fw_mm, &fw_obj->fw_mm_node,
1178						  gem_obj->size, 0, 0,
1179						  fw_dev->fw_heap_info.gpu_addr,
1180						  fw_dev->fw_heap_info.gpu_addr +
1181						  fw_dev->fw_heap_info.size, 0);
1182		if (err)
1183			goto err_unlock;
1184	} else {
1185		fw_obj->fw_mm_node.start = dev_addr;
1186		fw_obj->fw_mm_node.size = gem_obj->size;
1187		err = drm_mm_reserve_node(&fw_dev->fw_mm, &fw_obj->fw_mm_node);
1188		if (err)
1189			goto err_unlock;
1190	}
1191
1192	spin_unlock(&fw_dev->fw_mm_lock);
1193
1194	/* Map object on GPU. */
1195	err = fw_dev->defs->vm_map(pvr_dev, fw_obj);
1196	if (err)
1197		goto err_remove_node;
1198
1199	fw_obj->fw_addr_offset = (u32)(fw_obj->fw_mm_node.start - fw_dev->fw_mm_base);
1200
1201	return 0;
1202
1203err_remove_node:
1204	spin_lock(&fw_dev->fw_mm_lock);
1205	drm_mm_remove_node(&fw_obj->fw_mm_node);
1206
1207err_unlock:
1208	spin_unlock(&fw_dev->fw_mm_lock);
1209
1210	return err;
1211}
1212
1213/**
1214 * pvr_fw_object_fw_unmap() - Unmap a previously mapped FW object
1215 * @fw_obj: FW object to unmap.
1216 *
1217 * Returns:
1218 *  * 0 on success, or
1219 *  * -%EINVAL if object is not currently mapped.
1220 */
1221static int
1222pvr_fw_object_fw_unmap(struct pvr_fw_object *fw_obj)
1223{
1224	struct pvr_gem_object *pvr_obj = fw_obj->gem;
1225	struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
1226	struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev);
1227	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1228
1229	fw_dev->defs->vm_unmap(pvr_dev, fw_obj);
1230
1231	spin_lock(&fw_dev->fw_mm_lock);
1232
1233	if (!drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
1234		spin_unlock(&fw_dev->fw_mm_lock);
1235		return -EINVAL;
1236	}
1237
1238	drm_mm_remove_node(&fw_obj->fw_mm_node);
1239
1240	spin_unlock(&fw_dev->fw_mm_lock);
1241
1242	return 0;
1243}
1244
1245static void *
1246pvr_fw_object_create_and_map_common(struct pvr_device *pvr_dev, size_t size,
1247				    u64 flags, u64 dev_addr,
1248				    void (*init)(void *cpu_ptr, void *priv),
1249				    void *init_priv, struct pvr_fw_object **fw_obj_out)
1250{
1251	struct pvr_fw_object *fw_obj;
1252	void *cpu_ptr;
1253	int err;
1254
1255	/* %DRM_PVR_BO_PM_FW_PROTECT is implicit for FW objects. */
1256	flags |= DRM_PVR_BO_PM_FW_PROTECT;
1257
1258	fw_obj = kzalloc(sizeof(*fw_obj), GFP_KERNEL);
1259	if (!fw_obj)
1260		return ERR_PTR(-ENOMEM);
1261
1262	INIT_LIST_HEAD(&fw_obj->node);
1263	fw_obj->init = init;
1264	fw_obj->init_priv = init_priv;
1265
1266	fw_obj->gem = pvr_gem_object_create(pvr_dev, size, flags);
1267	if (IS_ERR(fw_obj->gem)) {
1268		err = PTR_ERR(fw_obj->gem);
1269		fw_obj->gem = NULL;
1270		goto err_put_object;
1271	}
1272
1273	err = pvr_fw_object_fw_map(pvr_dev, fw_obj, dev_addr);
1274	if (err)
1275		goto err_put_object;
1276
1277	cpu_ptr = pvr_fw_object_vmap(fw_obj);
1278	if (IS_ERR(cpu_ptr)) {
1279		err = PTR_ERR(cpu_ptr);
1280		goto err_put_object;
1281	}
1282
1283	*fw_obj_out = fw_obj;
1284
1285	if (fw_obj->init)
1286		fw_obj->init(cpu_ptr, fw_obj->init_priv);
1287
1288	mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1289	list_add_tail(&fw_obj->node, &pvr_dev->fw_dev.fw_objs.list);
1290	mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1291
1292	return cpu_ptr;
1293
1294err_put_object:
1295	pvr_fw_object_destroy(fw_obj);
1296
1297	return ERR_PTR(err);
1298}
1299
1300/**
1301 * pvr_fw_object_create() - Create a FW object and map to firmware
1302 * @pvr_dev: PowerVR device pointer.
1303 * @size: Size of object, in bytes.
1304 * @flags: Options which affect both this operation and future mapping
1305 * operations performed on the returned object. Must be a combination of
1306 * DRM_PVR_BO_* and/or PVR_BO_* flags.
1307 * @init: Initialisation callback.
1308 * @init_priv: Private pointer to pass to initialisation callback.
1309 * @fw_obj_out: Pointer to location to store created object pointer.
1310 *
1311 * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
1312 * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
1313 * set.
1314 *
1315 * Returns:
1316 *  * 0 on success, or
1317 *  * Any error returned by pvr_fw_object_create_common().
1318 */
1319int
1320pvr_fw_object_create(struct pvr_device *pvr_dev, size_t size, u64 flags,
1321		     void (*init)(void *cpu_ptr, void *priv), void *init_priv,
1322		     struct pvr_fw_object **fw_obj_out)
1323{
1324	void *cpu_ptr;
1325
1326	cpu_ptr = pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv,
1327						      fw_obj_out);
1328	if (IS_ERR(cpu_ptr))
1329		return PTR_ERR(cpu_ptr);
1330
1331	pvr_fw_object_vunmap(*fw_obj_out);
1332
1333	return 0;
1334}
1335
1336/**
1337 * pvr_fw_object_create_and_map() - Create a FW object and map to firmware and CPU
1338 * @pvr_dev: PowerVR device pointer.
1339 * @size: Size of object, in bytes.
1340 * @flags: Options which affect both this operation and future mapping
1341 * operations performed on the returned object. Must be a combination of
1342 * DRM_PVR_BO_* and/or PVR_BO_* flags.
1343 * @init: Initialisation callback.
1344 * @init_priv: Private pointer to pass to initialisation callback.
1345 * @fw_obj_out: Pointer to location to store created object pointer.
1346 *
1347 * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
1348 * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
1349 * set.
1350 *
1351 * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU
1352 * mapping.
1353 *
1354 * Returns:
1355 *  * Pointer to CPU mapping of newly created object, or
1356 *  * Any error returned by pvr_fw_object_create(), or
1357 *  * Any error returned by pvr_fw_object_vmap().
1358 */
1359void *
1360pvr_fw_object_create_and_map(struct pvr_device *pvr_dev, size_t size, u64 flags,
1361			     void (*init)(void *cpu_ptr, void *priv),
1362			     void *init_priv, struct pvr_fw_object **fw_obj_out)
1363{
1364	return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv,
1365						   fw_obj_out);
1366}
1367
1368/**
1369 * pvr_fw_object_create_and_map_offset() - Create a FW object and map to
1370 * firmware at the provided offset and to the CPU.
1371 * @pvr_dev: PowerVR device pointer.
1372 * @dev_offset: Base address of desired FW mapping, offset from start of FW heap.
1373 * @size: Size of object, in bytes.
1374 * @flags: Options which affect both this operation and future mapping
1375 * operations performed on the returned object. Must be a combination of
1376 * DRM_PVR_BO_* and/or PVR_BO_* flags.
1377 * @init: Initialisation callback.
1378 * @init_priv: Private pointer to pass to initialisation callback.
1379 * @fw_obj_out: Pointer to location to store created object pointer.
1380 *
1381 * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
1382 * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
1383 * set.
1384 *
1385 * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU
1386 * mapping.
1387 *
1388 * Returns:
1389 *  * Pointer to CPU mapping of newly created object, or
1390 *  * Any error returned by pvr_fw_object_create(), or
1391 *  * Any error returned by pvr_fw_object_vmap().
1392 */
1393void *
1394pvr_fw_object_create_and_map_offset(struct pvr_device *pvr_dev,
1395				    u32 dev_offset, size_t size, u64 flags,
1396				    void (*init)(void *cpu_ptr, void *priv),
1397				    void *init_priv, struct pvr_fw_object **fw_obj_out)
1398{
1399	u64 dev_addr = pvr_dev->fw_dev.fw_mm_base + dev_offset;
1400
1401	return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, dev_addr, init, init_priv,
1402						   fw_obj_out);
1403}
1404
1405/**
1406 * pvr_fw_object_destroy() - Destroy a pvr_fw_object
1407 * @fw_obj: Pointer to object to destroy.
1408 */
1409void pvr_fw_object_destroy(struct pvr_fw_object *fw_obj)
1410{
1411	struct pvr_gem_object *pvr_obj = fw_obj->gem;
1412	struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
1413	struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev);
1414
1415	mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1416	list_del(&fw_obj->node);
1417	mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1418
1419	if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
1420		/* If we can't unmap, leak the memory. */
1421		if (WARN_ON(pvr_fw_object_fw_unmap(fw_obj)))
1422			return;
1423	}
1424
1425	if (fw_obj->gem)
1426		pvr_gem_object_put(fw_obj->gem);
1427
1428	kfree(fw_obj);
1429}
1430
1431/**
1432 * pvr_fw_object_get_fw_addr_offset() - Return address of object in firmware address space, with
1433 * given offset.
1434 * @fw_obj: Pointer to object.
1435 * @offset: Desired offset from start of object.
1436 * @fw_addr_out: Location to store address to.
1437 */
1438void pvr_fw_object_get_fw_addr_offset(struct pvr_fw_object *fw_obj, u32 offset, u32 *fw_addr_out)
1439{
1440	struct pvr_gem_object *pvr_obj = fw_obj->gem;
1441	struct pvr_device *pvr_dev = to_pvr_device(gem_from_pvr_gem(pvr_obj)->dev);
1442
1443	*fw_addr_out = pvr_dev->fw_dev.defs->get_fw_addr_with_offset(fw_obj, offset);
1444}
1445
1446/*
1447 * pvr_fw_hard_reset() - Re-initialise the FW code and data segments, and reset all global FW
1448 *                       structures
1449 * @pvr_dev: Device pointer
1450 *
1451 * If this function returns an error then the caller must regard the device as lost.
1452 *
1453 * Returns:
1454 *  * 0 on success, or
1455 *  * Any error returned by pvr_fw_init_dev_structures() or pvr_fw_reset_all().
1456 */
1457int
1458pvr_fw_hard_reset(struct pvr_device *pvr_dev)
1459{
1460	struct list_head *pos;
1461	int err;
1462
1463	/* Reset all FW objects */
1464	mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1465
1466	list_for_each(pos, &pvr_dev->fw_dev.fw_objs.list) {
1467		struct pvr_fw_object *fw_obj = container_of(pos, struct pvr_fw_object, node);
1468		void *cpu_ptr = pvr_fw_object_vmap(fw_obj);
1469
1470		WARN_ON(IS_ERR(cpu_ptr));
1471
1472		if (!(fw_obj->gem->flags & PVR_BO_FW_NO_CLEAR_ON_RESET)) {
1473			memset(cpu_ptr, 0, pvr_gem_object_size(fw_obj->gem));
1474
1475			if (fw_obj->init)
1476				fw_obj->init(cpu_ptr, fw_obj->init_priv);
1477		}
1478
1479		pvr_fw_object_vunmap(fw_obj);
1480	}
1481
1482	mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1483
1484	err = pvr_fw_reinit_code_data(pvr_dev);
1485	if (err)
1486		return err;
1487
1488	return 0;
1489}
1490