1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright �� 2006-2011 Intel Corporation
4 *
5 * Authors:
6 *	Eric Anholt <eric@anholt.net>
7 */
8
9#include <linux/delay.h>
10#include <linux/i2c.h>
11
12#include <drm/drm_crtc.h>
13#include <drm/drm_modeset_helper_vtables.h>
14
15#include "cdv_device.h"
16#include "framebuffer.h"
17#include "gma_display.h"
18#include "power.h"
19#include "psb_drv.h"
20#include "psb_intel_drv.h"
21#include "psb_intel_reg.h"
22
23static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
24				  struct drm_crtc *crtc, int target,
25				  int refclk, struct gma_clock_t *best_clock);
26
27
28#define CDV_LIMIT_SINGLE_LVDS_96	0
29#define CDV_LIMIT_SINGLE_LVDS_100	1
30#define CDV_LIMIT_DAC_HDMI_27		2
31#define CDV_LIMIT_DAC_HDMI_96		3
32#define CDV_LIMIT_DP_27			4
33#define CDV_LIMIT_DP_100		5
34
35static const struct gma_limit_t cdv_intel_limits[] = {
36	{			/* CDV_SINGLE_LVDS_96MHz */
37	 .dot = {.min = 20000, .max = 115500},
38	 .vco = {.min = 1800000, .max = 3600000},
39	 .n = {.min = 2, .max = 6},
40	 .m = {.min = 60, .max = 160},
41	 .m1 = {.min = 0, .max = 0},
42	 .m2 = {.min = 58, .max = 158},
43	 .p = {.min = 28, .max = 140},
44	 .p1 = {.min = 2, .max = 10},
45	 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
46	 .find_pll = gma_find_best_pll,
47	 },
48	{			/* CDV_SINGLE_LVDS_100MHz */
49	 .dot = {.min = 20000, .max = 115500},
50	 .vco = {.min = 1800000, .max = 3600000},
51	 .n = {.min = 2, .max = 6},
52	 .m = {.min = 60, .max = 160},
53	 .m1 = {.min = 0, .max = 0},
54	 .m2 = {.min = 58, .max = 158},
55	 .p = {.min = 28, .max = 140},
56	 .p1 = {.min = 2, .max = 10},
57	 /* The single-channel range is 25-112Mhz, and dual-channel
58	  * is 80-224Mhz.  Prefer single channel as much as possible.
59	  */
60	 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
61	 .find_pll = gma_find_best_pll,
62	 },
63	{			/* CDV_DAC_HDMI_27MHz */
64	 .dot = {.min = 20000, .max = 400000},
65	 .vco = {.min = 1809000, .max = 3564000},
66	 .n = {.min = 1, .max = 1},
67	 .m = {.min = 67, .max = 132},
68	 .m1 = {.min = 0, .max = 0},
69	 .m2 = {.min = 65, .max = 130},
70	 .p = {.min = 5, .max = 90},
71	 .p1 = {.min = 1, .max = 9},
72	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
73	 .find_pll = gma_find_best_pll,
74	 },
75	{			/* CDV_DAC_HDMI_96MHz */
76	 .dot = {.min = 20000, .max = 400000},
77	 .vco = {.min = 1800000, .max = 3600000},
78	 .n = {.min = 2, .max = 6},
79	 .m = {.min = 60, .max = 160},
80	 .m1 = {.min = 0, .max = 0},
81	 .m2 = {.min = 58, .max = 158},
82	 .p = {.min = 5, .max = 100},
83	 .p1 = {.min = 1, .max = 10},
84	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
85	 .find_pll = gma_find_best_pll,
86	 },
87	{			/* CDV_DP_27MHz */
88	 .dot = {.min = 160000, .max = 272000},
89	 .vco = {.min = 1809000, .max = 3564000},
90	 .n = {.min = 1, .max = 1},
91	 .m = {.min = 67, .max = 132},
92	 .m1 = {.min = 0, .max = 0},
93	 .m2 = {.min = 65, .max = 130},
94	 .p = {.min = 5, .max = 90},
95	 .p1 = {.min = 1, .max = 9},
96	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
97	 .find_pll = cdv_intel_find_dp_pll,
98	 },
99	{			/* CDV_DP_100MHz */
100	 .dot = {.min = 160000, .max = 272000},
101	 .vco = {.min = 1800000, .max = 3600000},
102	 .n = {.min = 2, .max = 6},
103	 .m = {.min = 60, .max = 164},
104	 .m1 = {.min = 0, .max = 0},
105	 .m2 = {.min = 58, .max = 162},
106	 .p = {.min = 5, .max = 100},
107	 .p1 = {.min = 1, .max = 10},
108	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
109	 .find_pll = cdv_intel_find_dp_pll,
110	}
111};
112
113#define _wait_for(COND, MS, W) ({ \
114	unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);	\
115	int ret__ = 0;							\
116	while (!(COND)) {						\
117		if (time_after(jiffies, timeout__)) {			\
118			ret__ = -ETIMEDOUT;				\
119			break;						\
120		}							\
121		if (W && !in_dbg_master())				\
122			msleep(W);					\
123	}								\
124	ret__;								\
125})
126
127#define wait_for(COND, MS) _wait_for(COND, MS, 1)
128
129
130int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val)
131{
132	int ret;
133
134	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
135	if (ret) {
136		DRM_ERROR("timeout waiting for SB to idle before read\n");
137		return ret;
138	}
139
140	REG_WRITE(SB_ADDR, reg);
141	REG_WRITE(SB_PCKT,
142		   SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
143		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
144		   SET_FIELD(0xf, SB_BYTE_ENABLE));
145
146	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
147	if (ret) {
148		DRM_ERROR("timeout waiting for SB to idle after read\n");
149		return ret;
150	}
151
152	*val = REG_READ(SB_DATA);
153
154	return 0;
155}
156
157int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val)
158{
159	int ret;
160	static bool dpio_debug = true;
161	u32 temp;
162
163	if (dpio_debug) {
164		if (cdv_sb_read(dev, reg, &temp) == 0)
165			DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
166		DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
167	}
168
169	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
170	if (ret) {
171		DRM_ERROR("timeout waiting for SB to idle before write\n");
172		return ret;
173	}
174
175	REG_WRITE(SB_ADDR, reg);
176	REG_WRITE(SB_DATA, val);
177	REG_WRITE(SB_PCKT,
178		   SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
179		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
180		   SET_FIELD(0xf, SB_BYTE_ENABLE));
181
182	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
183	if (ret) {
184		DRM_ERROR("timeout waiting for SB to idle after write\n");
185		return ret;
186	}
187
188	if (dpio_debug) {
189		if (cdv_sb_read(dev, reg, &temp) == 0)
190			DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
191	}
192
193	return 0;
194}
195
196/* Reset the DPIO configuration register.  The BIOS does this at every
197 * mode set.
198 */
199void cdv_sb_reset(struct drm_device *dev)
200{
201
202	REG_WRITE(DPIO_CFG, 0);
203	REG_READ(DPIO_CFG);
204	REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N);
205}
206
207/* Unlike most Intel display engines, on Cedarview the DPLL registers
208 * are behind this sideband bus.  They must be programmed while the
209 * DPLL reference clock is on in the DPLL control register, but before
210 * the DPLL is enabled in the DPLL control register.
211 */
212static int
213cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
214		       struct gma_clock_t *clock, bool is_lvds, u32 ddi_select)
215{
216	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
217	int pipe = gma_crtc->pipe;
218	u32 m, n_vco, p;
219	int ret = 0;
220	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
221	int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB;
222	u32 ref_value;
223	u32 lane_reg, lane_value;
224
225	cdv_sb_reset(dev);
226
227	REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS);
228
229	udelay(100);
230
231	/* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
232	ref_value = 0x68A701;
233
234	cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);
235
236	/* We don't know what the other fields of these regs are, so
237	 * leave them in place.
238	 */
239	/*
240	 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
241	 * for the pipe A/B. Display spec 1.06 has wrong definition.
242	 * Correct definition is like below:
243	 *
244	 * refclka mean use clock from same PLL
245	 *
246	 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
247	 *
248	 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
249	 *
250	 */
251	ret = cdv_sb_read(dev, ref_sfr, &ref_value);
252	if (ret)
253		return ret;
254	ref_value &= ~(REF_CLK_MASK);
255
256	/* use DPLL_A for pipeB on CRT/HDMI */
257	if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) {
258		DRM_DEBUG_KMS("use DPLLA for pipe B\n");
259		ref_value |= REF_CLK_DPLLA;
260	} else {
261		DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
262		ref_value |= REF_CLK_DPLL;
263	}
264	ret = cdv_sb_write(dev, ref_sfr, ref_value);
265	if (ret)
266		return ret;
267
268	ret = cdv_sb_read(dev, SB_M(pipe), &m);
269	if (ret)
270		return ret;
271	m &= ~SB_M_DIVIDER_MASK;
272	m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
273	ret = cdv_sb_write(dev, SB_M(pipe), m);
274	if (ret)
275		return ret;
276
277	ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
278	if (ret)
279		return ret;
280
281	/* Follow the BIOS to program the N_DIVIDER REG */
282	n_vco &= 0xFFFF;
283	n_vco |= 0x107;
284	n_vco &= ~(SB_N_VCO_SEL_MASK |
285		   SB_N_DIVIDER_MASK |
286		   SB_N_CB_TUNE_MASK);
287
288	n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);
289
290	if (clock->vco < 2250000) {
291		n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
292		n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
293	} else if (clock->vco < 2750000) {
294		n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
295		n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
296	} else if (clock->vco < 3300000) {
297		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
298		n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
299	} else {
300		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
301		n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
302	}
303
304	ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
305	if (ret)
306		return ret;
307
308	ret = cdv_sb_read(dev, SB_P(pipe), &p);
309	if (ret)
310		return ret;
311	p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK);
312	p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
313	switch (clock->p2) {
314	case 5:
315		p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
316		break;
317	case 10:
318		p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
319		break;
320	case 14:
321		p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
322		break;
323	case 7:
324		p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
325		break;
326	default:
327		DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
328		return -EINVAL;
329	}
330	ret = cdv_sb_write(dev, SB_P(pipe), p);
331	if (ret)
332		return ret;
333
334	if (ddi_select) {
335		if ((ddi_select & DDI_MASK) == DDI0_SELECT) {
336			lane_reg = PSB_LANE0;
337			cdv_sb_read(dev, lane_reg, &lane_value);
338			lane_value &= ~(LANE_PLL_MASK);
339			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
340			cdv_sb_write(dev, lane_reg, lane_value);
341
342			lane_reg = PSB_LANE1;
343			cdv_sb_read(dev, lane_reg, &lane_value);
344			lane_value &= ~(LANE_PLL_MASK);
345			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
346			cdv_sb_write(dev, lane_reg, lane_value);
347		} else {
348			lane_reg = PSB_LANE2;
349			cdv_sb_read(dev, lane_reg, &lane_value);
350			lane_value &= ~(LANE_PLL_MASK);
351			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
352			cdv_sb_write(dev, lane_reg, lane_value);
353
354			lane_reg = PSB_LANE3;
355			cdv_sb_read(dev, lane_reg, &lane_value);
356			lane_value &= ~(LANE_PLL_MASK);
357			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
358			cdv_sb_write(dev, lane_reg, lane_value);
359		}
360	}
361	return 0;
362}
363
364static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
365						 int refclk)
366{
367	const struct gma_limit_t *limit;
368	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
369		/*
370		 * Now only single-channel LVDS is supported on CDV. If it is
371		 * incorrect, please add the dual-channel LVDS.
372		 */
373		if (refclk == 96000)
374			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
375		else
376			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
377	} else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
378			gma_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
379		if (refclk == 27000)
380			limit = &cdv_intel_limits[CDV_LIMIT_DP_27];
381		else
382			limit = &cdv_intel_limits[CDV_LIMIT_DP_100];
383	} else {
384		if (refclk == 27000)
385			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
386		else
387			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
388	}
389	return limit;
390}
391
392/* m1 is reserved as 0 in CDV, n is a ring counter */
393static void cdv_intel_clock(int refclk, struct gma_clock_t *clock)
394{
395	clock->m = clock->m2 + 2;
396	clock->p = clock->p1 * clock->p2;
397	clock->vco = (refclk * clock->m) / clock->n;
398	clock->dot = clock->vco / clock->p;
399}
400
401static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
402				  struct drm_crtc *crtc, int target,
403				  int refclk,
404				  struct gma_clock_t *best_clock)
405{
406	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
407	struct gma_clock_t clock;
408
409	memset(&clock, 0, sizeof(clock));
410
411	switch (refclk) {
412	case 27000:
413		if (target < 200000) {
414			clock.p1 = 2;
415			clock.p2 = 10;
416			clock.n = 1;
417			clock.m1 = 0;
418			clock.m2 = 118;
419		} else {
420			clock.p1 = 1;
421			clock.p2 = 10;
422			clock.n = 1;
423			clock.m1 = 0;
424			clock.m2 = 98;
425		}
426		break;
427
428	case 100000:
429		if (target < 200000) {
430			clock.p1 = 2;
431			clock.p2 = 10;
432			clock.n = 5;
433			clock.m1 = 0;
434			clock.m2 = 160;
435		} else {
436			clock.p1 = 1;
437			clock.p2 = 10;
438			clock.n = 5;
439			clock.m1 = 0;
440			clock.m2 = 133;
441		}
442		break;
443
444	default:
445		return false;
446	}
447
448	gma_crtc->clock_funcs->clock(refclk, &clock);
449	memcpy(best_clock, &clock, sizeof(struct gma_clock_t));
450	return true;
451}
452
453#define		FIFO_PIPEA		(1 << 0)
454#define		FIFO_PIPEB		(1 << 1)
455
456static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe)
457{
458	struct drm_crtc *crtc;
459	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
460	struct gma_crtc *gma_crtc = NULL;
461
462	crtc = dev_priv->pipe_to_crtc_mapping[pipe];
463	gma_crtc = to_gma_crtc(crtc);
464
465	if (crtc->primary->fb == NULL || !gma_crtc->active)
466		return false;
467	return true;
468}
469
470void cdv_disable_sr(struct drm_device *dev)
471{
472	if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) {
473
474		/* Disable self-refresh before adjust WM */
475		REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN));
476		REG_READ(FW_BLC_SELF);
477
478		gma_wait_for_vblank(dev);
479
480		/* Cedarview workaround to write ovelay plane, which force to leave
481		 * MAX_FIFO state.
482		 */
483		REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/);
484		REG_READ(OV_OVADD);
485
486		gma_wait_for_vblank(dev);
487	}
488
489}
490
491void cdv_update_wm(struct drm_device *dev, struct drm_crtc *crtc)
492{
493	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
494	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
495
496	/* Is only one pipe enabled? */
497	if (cdv_intel_pipe_enabled(dev, 0) ^ cdv_intel_pipe_enabled(dev, 1)) {
498		u32 fw;
499
500		fw = REG_READ(DSPFW1);
501		fw &= ~DSP_FIFO_SR_WM_MASK;
502		fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT);
503		fw &= ~CURSOR_B_FIFO_WM_MASK;
504		fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT);
505		REG_WRITE(DSPFW1, fw);
506
507		fw = REG_READ(DSPFW2);
508		fw &= ~CURSOR_A_FIFO_WM_MASK;
509		fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT);
510		fw &= ~DSP_PLANE_C_FIFO_WM_MASK;
511		fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT);
512		REG_WRITE(DSPFW2, fw);
513
514		REG_WRITE(DSPFW3, 0x36000000);
515
516		/* ignore FW4 */
517
518		/* Is pipe b lvds ? */
519		if (gma_crtc->pipe == 1 &&
520		    gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
521			REG_WRITE(DSPFW5, 0x00040330);
522		} else {
523			fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) |
524			     (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) |
525			     (3 << CURSOR_B_FIFO_WM1_SHIFT) |
526			     (4 << CURSOR_FIFO_SR_WM1_SHIFT);
527			REG_WRITE(DSPFW5, fw);
528		}
529
530		REG_WRITE(DSPFW6, 0x10);
531
532		gma_wait_for_vblank(dev);
533
534		/* enable self-refresh for single pipe active */
535		REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
536		REG_READ(FW_BLC_SELF);
537		gma_wait_for_vblank(dev);
538
539	} else {
540
541		/* HW team suggested values... */
542		REG_WRITE(DSPFW1, 0x3f880808);
543		REG_WRITE(DSPFW2, 0x0b020202);
544		REG_WRITE(DSPFW3, 0x24000000);
545		REG_WRITE(DSPFW4, 0x08030202);
546		REG_WRITE(DSPFW5, 0x01010101);
547		REG_WRITE(DSPFW6, 0x1d0);
548
549		gma_wait_for_vblank(dev);
550
551		dev_priv->ops->disable_sr(dev);
552	}
553}
554
555/*
556 * Return the pipe currently connected to the panel fitter,
557 * or -1 if the panel fitter is not present or not in use
558 */
559static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
560{
561	u32 pfit_control;
562
563	pfit_control = REG_READ(PFIT_CONTROL);
564
565	/* See if the panel fitter is in use */
566	if ((pfit_control & PFIT_ENABLE) == 0)
567		return -1;
568	return (pfit_control >> 29) & 0x3;
569}
570
571static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
572			       struct drm_display_mode *mode,
573			       struct drm_display_mode *adjusted_mode,
574			       int x, int y,
575			       struct drm_framebuffer *old_fb)
576{
577	struct drm_device *dev = crtc->dev;
578	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
579	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
580	int pipe = gma_crtc->pipe;
581	const struct psb_offset *map = &dev_priv->regmap[pipe];
582	int refclk;
583	struct gma_clock_t clock;
584	u32 dpll = 0, dspcntr, pipeconf;
585	bool ok;
586	bool is_lvds = false;
587	bool is_dp = false;
588	struct drm_connector_list_iter conn_iter;
589	struct drm_connector *connector;
590	const struct gma_limit_t *limit;
591	u32 ddi_select = 0;
592	bool is_edp = false;
593
594	drm_connector_list_iter_begin(dev, &conn_iter);
595	drm_for_each_connector_iter(connector, &conn_iter) {
596		struct gma_encoder *gma_encoder =
597					gma_attached_encoder(connector);
598
599		if (!connector->encoder
600		    || connector->encoder->crtc != crtc)
601			continue;
602
603		ddi_select = gma_encoder->ddi_select;
604		switch (gma_encoder->type) {
605		case INTEL_OUTPUT_LVDS:
606			is_lvds = true;
607			break;
608		case INTEL_OUTPUT_ANALOG:
609		case INTEL_OUTPUT_HDMI:
610			break;
611		case INTEL_OUTPUT_DISPLAYPORT:
612			is_dp = true;
613			break;
614		case INTEL_OUTPUT_EDP:
615			is_edp = true;
616			break;
617		default:
618			drm_connector_list_iter_end(&conn_iter);
619			DRM_ERROR("invalid output type.\n");
620			return 0;
621		}
622
623		break;
624	}
625	drm_connector_list_iter_end(&conn_iter);
626
627	if (dev_priv->dplla_96mhz)
628		/* low-end sku, 96/100 mhz */
629		refclk = 96000;
630	else
631		/* high-end sku, 27/100 mhz */
632		refclk = 27000;
633	if (is_dp || is_edp) {
634		/*
635		 * Based on the spec the low-end SKU has only CRT/LVDS. So it is
636		 * unnecessary to consider it for DP/eDP.
637		 * On the high-end SKU, it will use the 27/100M reference clk
638		 * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise
639		 * it will be 27MHz. From the VBIOS code it seems that the pipe A choose
640		 * 27MHz for DP/eDP while the Pipe B chooses the 100MHz.
641		 */
642		if (pipe == 0)
643			refclk = 27000;
644		else
645			refclk = 100000;
646	}
647
648	if (is_lvds && dev_priv->lvds_use_ssc) {
649		refclk = dev_priv->lvds_ssc_freq * 1000;
650		DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq);
651	}
652
653	drm_mode_debug_printmodeline(adjusted_mode);
654
655	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
656
657	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
658				 &clock);
659	if (!ok) {
660		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
661			  adjusted_mode->clock, clock.dot);
662		return 0;
663	}
664
665	dpll = DPLL_VGA_MODE_DIS;
666
667	if (is_dp || is_edp) {
668		cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode);
669	} else {
670		REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0);
671		REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0);
672		REG_WRITE(PIPE_DP_LINK_M(pipe), 0);
673		REG_WRITE(PIPE_DP_LINK_N(pipe), 0);
674	}
675
676	dpll |= DPLL_SYNCLOCK_ENABLE;
677/*	if (is_lvds)
678		dpll |= DPLLB_MODE_LVDS;
679	else
680		dpll |= DPLLB_MODE_DAC_SERIAL; */
681	/* dpll |= (2 << 11); */
682
683	/* setup pipeconf */
684	pipeconf = REG_READ(map->conf);
685
686	pipeconf &= ~(PIPE_BPC_MASK);
687	if (is_edp) {
688		switch (dev_priv->edp.bpp) {
689		case 24:
690			pipeconf |= PIPE_8BPC;
691			break;
692		case 18:
693			pipeconf |= PIPE_6BPC;
694			break;
695		case 30:
696			pipeconf |= PIPE_10BPC;
697			break;
698		default:
699			pipeconf |= PIPE_8BPC;
700			break;
701		}
702	} else if (is_lvds) {
703		/* the BPC will be 6 if it is 18-bit LVDS panel */
704		if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
705			pipeconf |= PIPE_8BPC;
706		else
707			pipeconf |= PIPE_6BPC;
708	} else
709		pipeconf |= PIPE_8BPC;
710
711	/* Set up the display plane register */
712	dspcntr = DISPPLANE_GAMMA_ENABLE;
713
714	if (pipe == 0)
715		dspcntr |= DISPPLANE_SEL_PIPE_A;
716	else
717		dspcntr |= DISPPLANE_SEL_PIPE_B;
718
719	dspcntr |= DISPLAY_PLANE_ENABLE;
720	pipeconf |= PIPEACONF_ENABLE;
721
722	REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE);
723	REG_READ(map->dpll);
724
725	cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select);
726
727	udelay(150);
728
729
730	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
731	 * This is an exception to the general rule that mode_set doesn't turn
732	 * things on.
733	 */
734	if (is_lvds) {
735		u32 lvds = REG_READ(LVDS);
736
737		lvds |=
738		    LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
739		    LVDS_PIPEB_SELECT;
740		/* Set the B0-B3 data pairs corresponding to
741		 * whether we're going to
742		 * set the DPLLs for dual-channel mode or not.
743		 */
744		if (clock.p2 == 7)
745			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
746		else
747			lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
748
749		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
750		 * appropriately here, but we need to look more
751		 * thoroughly into how panels behave in the two modes.
752		 */
753
754		REG_WRITE(LVDS, lvds);
755		REG_READ(LVDS);
756	}
757
758	dpll |= DPLL_VCO_ENABLE;
759
760	/* Disable the panel fitter if it was on our pipe */
761	if (cdv_intel_panel_fitter_pipe(dev) == pipe)
762		REG_WRITE(PFIT_CONTROL, 0);
763
764	DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
765	drm_mode_debug_printmodeline(mode);
766
767	REG_WRITE(map->dpll,
768		(REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
769	REG_READ(map->dpll);
770	/* Wait for the clocks to stabilize. */
771	udelay(150); /* 42 usec w/o calibration, 110 with.  rounded up. */
772
773	if (!(REG_READ(map->dpll) & DPLL_LOCK)) {
774		dev_err(dev->dev, "Failed to get DPLL lock\n");
775		return -EBUSY;
776	}
777
778	{
779		int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
780		REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
781	}
782
783	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
784		  ((adjusted_mode->crtc_htotal - 1) << 16));
785	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
786		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
787	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
788		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
789	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
790		  ((adjusted_mode->crtc_vtotal - 1) << 16));
791	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
792		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
793	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
794		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
795	/* pipesrc and dspsize control the size that is scaled from,
796	 * which should always be the user's requested size.
797	 */
798	REG_WRITE(map->size,
799		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
800	REG_WRITE(map->pos, 0);
801	REG_WRITE(map->src,
802		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
803	REG_WRITE(map->conf, pipeconf);
804	REG_READ(map->conf);
805
806	gma_wait_for_vblank(dev);
807
808	REG_WRITE(map->cntr, dspcntr);
809
810	/* Flush the plane changes */
811	{
812		const struct drm_crtc_helper_funcs *crtc_funcs =
813		    crtc->helper_private;
814		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
815	}
816
817	gma_wait_for_vblank(dev);
818
819	return 0;
820}
821
822/** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
823
824/* FIXME: why are we using this, should it be cdv_ in this tree ? */
825
826static void i8xx_clock(int refclk, struct gma_clock_t *clock)
827{
828	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
829	clock->p = clock->p1 * clock->p2;
830	clock->vco = refclk * clock->m / (clock->n + 2);
831	clock->dot = clock->vco / clock->p;
832}
833
834/* Returns the clock of the currently programmed mode of the given pipe. */
835static int cdv_intel_crtc_clock_get(struct drm_device *dev,
836				struct drm_crtc *crtc)
837{
838	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
839	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
840	int pipe = gma_crtc->pipe;
841	const struct psb_offset *map = &dev_priv->regmap[pipe];
842	u32 dpll;
843	u32 fp;
844	struct gma_clock_t clock;
845	bool is_lvds;
846	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
847
848	if (gma_power_begin(dev, false)) {
849		dpll = REG_READ(map->dpll);
850		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
851			fp = REG_READ(map->fp0);
852		else
853			fp = REG_READ(map->fp1);
854		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
855		gma_power_end(dev);
856	} else {
857		dpll = p->dpll;
858		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
859			fp = p->fp0;
860		else
861			fp = p->fp1;
862
863		is_lvds = (pipe == 1) &&
864				(dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN);
865	}
866
867	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
868	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
869	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
870
871	if (is_lvds) {
872		clock.p1 =
873		    ffs((dpll &
874			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
875			DPLL_FPA01_P1_POST_DIV_SHIFT);
876		if (clock.p1 == 0) {
877			clock.p1 = 4;
878			dev_err(dev->dev, "PLL %d\n", dpll);
879		}
880		clock.p2 = 14;
881
882		if ((dpll & PLL_REF_INPUT_MASK) ==
883		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
884			/* XXX: might not be 66MHz */
885			i8xx_clock(66000, &clock);
886		} else
887			i8xx_clock(48000, &clock);
888	} else {
889		if (dpll & PLL_P1_DIVIDE_BY_TWO)
890			clock.p1 = 2;
891		else {
892			clock.p1 =
893			    ((dpll &
894			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
895			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
896		}
897		if (dpll & PLL_P2_DIVIDE_BY_4)
898			clock.p2 = 4;
899		else
900			clock.p2 = 2;
901
902		i8xx_clock(48000, &clock);
903	}
904
905	/* XXX: It would be nice to validate the clocks, but we can't reuse
906	 * i830PllIsValid() because it relies on the xf86_config connector
907	 * configuration being accurate, which it isn't necessarily.
908	 */
909
910	return clock.dot;
911}
912
913/** Returns the currently programmed mode of the given pipe. */
914struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev,
915					     struct drm_crtc *crtc)
916{
917	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
918	int pipe = gma_crtc->pipe;
919	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
920	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
921	const struct psb_offset *map = &dev_priv->regmap[pipe];
922	struct drm_display_mode *mode;
923	int htot;
924	int hsync;
925	int vtot;
926	int vsync;
927
928	if (gma_power_begin(dev, false)) {
929		htot = REG_READ(map->htotal);
930		hsync = REG_READ(map->hsync);
931		vtot = REG_READ(map->vtotal);
932		vsync = REG_READ(map->vsync);
933		gma_power_end(dev);
934	} else {
935		htot = p->htotal;
936		hsync = p->hsync;
937		vtot = p->vtotal;
938		vsync = p->vsync;
939	}
940
941	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
942	if (!mode)
943		return NULL;
944
945	mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
946	mode->hdisplay = (htot & 0xffff) + 1;
947	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
948	mode->hsync_start = (hsync & 0xffff) + 1;
949	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
950	mode->vdisplay = (vtot & 0xffff) + 1;
951	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
952	mode->vsync_start = (vsync & 0xffff) + 1;
953	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
954
955	drm_mode_set_name(mode);
956	drm_mode_set_crtcinfo(mode, 0);
957
958	return mode;
959}
960
961const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = {
962	.dpms = gma_crtc_dpms,
963	.mode_set = cdv_intel_crtc_mode_set,
964	.mode_set_base = gma_pipe_set_base,
965	.prepare = gma_crtc_prepare,
966	.commit = gma_crtc_commit,
967	.disable = gma_crtc_disable,
968};
969
970const struct gma_clock_funcs cdv_clock_funcs = {
971	.clock = cdv_intel_clock,
972	.limit = cdv_intel_limit,
973	.pll_is_valid = gma_pll_is_valid,
974};
975