1/*
2 * Copyright 2017 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23#include <linux/module.h>
24#include <linux/slab.h>
25#include "linux/delay.h"
26#include <linux/types.h>
27#include <linux/pci.h>
28
29#include "smumgr.h"
30#include "pp_debug.h"
31#include "ci_smumgr.h"
32#include "ppsmc.h"
33#include "smu7_hwmgr.h"
34#include "hardwaremanager.h"
35#include "ppatomctrl.h"
36#include "cgs_common.h"
37#include "atombios.h"
38#include "pppcielanes.h"
39#include "smu7_smumgr.h"
40
41#include "smu/smu_7_0_1_d.h"
42#include "smu/smu_7_0_1_sh_mask.h"
43
44#include "dce/dce_8_0_d.h"
45#include "dce/dce_8_0_sh_mask.h"
46
47#include "bif/bif_4_1_d.h"
48#include "bif/bif_4_1_sh_mask.h"
49
50#include "gca/gfx_7_2_d.h"
51#include "gca/gfx_7_2_sh_mask.h"
52
53#include "gmc/gmc_7_1_d.h"
54#include "gmc/gmc_7_1_sh_mask.h"
55
56#include "processpptables.h"
57
58#define MC_CG_ARB_FREQ_F0           0x0a
59#define MC_CG_ARB_FREQ_F1           0x0b
60#define MC_CG_ARB_FREQ_F2           0x0c
61#define MC_CG_ARB_FREQ_F3           0x0d
62
63#define SMC_RAM_END 0x40000
64
65#define CISLAND_MINIMUM_ENGINE_CLOCK 800
66#define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5
67
68static const struct ci_pt_defaults defaults_hawaii_xt = {
69	1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000,
70	{ 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
71	{ 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
72};
73
74static const struct ci_pt_defaults defaults_hawaii_pro = {
75	1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062,
76	{ 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
77	{ 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
78};
79
80static const struct ci_pt_defaults defaults_bonaire_xt = {
81	1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
82	{ 0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,  0x83,  0x86,  0x6F,  0xC8,  0xC9,  0xC9,  0x2F,  0x4D,  0x61  },
83	{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
84};
85
86
87static const struct ci_pt_defaults defaults_saturn_xt = {
88	1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
89	{ 0x8C,  0x247, 0x249, 0xA6,  0x80,  0x81,  0x8B,  0x89,  0x86,  0xC9,  0xCA,  0xC9,  0x4D,  0x4D,  0x4D  },
90	{ 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
91};
92
93
94static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr,
95					uint32_t smc_addr, uint32_t limit)
96{
97	if ((0 != (3 & smc_addr))
98		|| ((smc_addr + 3) >= limit)) {
99		pr_err("smc_addr invalid \n");
100		return -EINVAL;
101	}
102
103	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr);
104	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
105	return 0;
106}
107
108static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address,
109				const uint8_t *src, uint32_t byte_count, uint32_t limit)
110{
111	int result;
112	uint32_t data = 0;
113	uint32_t original_data;
114	uint32_t addr = 0;
115	uint32_t extra_shift;
116
117	if ((3 & smc_start_address)
118		|| ((smc_start_address + byte_count) >= limit)) {
119		pr_err("smc_start_address invalid \n");
120		return -EINVAL;
121	}
122
123	addr = smc_start_address;
124
125	while (byte_count >= 4) {
126	/* Bytes are written into the SMC address space with the MSB first. */
127		data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
128
129		result = ci_set_smc_sram_address(hwmgr, addr, limit);
130
131		if (0 != result)
132			return result;
133
134		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
135
136		src += 4;
137		byte_count -= 4;
138		addr += 4;
139	}
140
141	if (0 != byte_count) {
142
143		data = 0;
144
145		result = ci_set_smc_sram_address(hwmgr, addr, limit);
146
147		if (0 != result)
148			return result;
149
150
151		original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
152
153		extra_shift = 8 * (4 - byte_count);
154
155		while (byte_count > 0) {
156			/* Bytes are written into the SMC addres space with the MSB first. */
157			data = (0x100 * data) + *src++;
158			byte_count--;
159		}
160
161		data <<= extra_shift;
162
163		data |= (original_data & ~((~0UL) << extra_shift));
164
165		result = ci_set_smc_sram_address(hwmgr, addr, limit);
166
167		if (0 != result)
168			return result;
169
170		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
171	}
172
173	return 0;
174}
175
176
177static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr)
178{
179	static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 };
180
181	ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1);
182
183	return 0;
184}
185
186static bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr)
187{
188	return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
189			CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
190	&& (0x20100 <= cgs_read_ind_register(hwmgr->device,
191			CGS_IND_REG__SMC, ixSMC_PC_C)));
192}
193
194static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr,
195				uint32_t *value, uint32_t limit)
196{
197	int result;
198
199	result = ci_set_smc_sram_address(hwmgr, smc_addr, limit);
200
201	if (result)
202		return result;
203
204	*value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
205	return 0;
206}
207
208static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg)
209{
210	struct amdgpu_device *adev = hwmgr->adev;
211	int ret;
212
213	cgs_write_register(hwmgr->device, mmSMC_RESP_0, 0);
214	cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg);
215
216	PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
217
218	ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP);
219
220	if (ret != 1)
221		dev_info(adev->dev,
222			"failed to send message %x ret is %d\n", msg,ret);
223
224	return 0;
225}
226
227static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr,
228					uint16_t msg, uint32_t parameter)
229{
230	cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter);
231	return ci_send_msg_to_smc(hwmgr, msg);
232}
233
234static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
235{
236	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
237	struct amdgpu_device *adev = hwmgr->adev;
238	uint32_t dev_id;
239
240	dev_id = adev->pdev->device;
241
242	switch (dev_id) {
243	case 0x67BA:
244	case 0x67B1:
245		smu_data->power_tune_defaults = &defaults_hawaii_pro;
246		break;
247	case 0x67B8:
248	case 0x66B0:
249		smu_data->power_tune_defaults = &defaults_hawaii_xt;
250		break;
251	case 0x6640:
252	case 0x6641:
253	case 0x6646:
254	case 0x6647:
255		smu_data->power_tune_defaults = &defaults_saturn_xt;
256		break;
257	case 0x6649:
258	case 0x6650:
259	case 0x6651:
260	case 0x6658:
261	case 0x665C:
262	case 0x665D:
263	case 0x67A0:
264	case 0x67A1:
265	case 0x67A2:
266	case 0x67A8:
267	case 0x67A9:
268	case 0x67AA:
269	case 0x67B9:
270	case 0x67BE:
271	default:
272		smu_data->power_tune_defaults = &defaults_bonaire_xt;
273		break;
274	}
275}
276
277static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
278	struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
279	uint32_t clock, uint32_t *vol)
280{
281	uint32_t i = 0;
282
283	if (allowed_clock_voltage_table->count == 0)
284		return -EINVAL;
285
286	for (i = 0; i < allowed_clock_voltage_table->count; i++) {
287		if (allowed_clock_voltage_table->entries[i].clk >= clock) {
288			*vol = allowed_clock_voltage_table->entries[i].v;
289			return 0;
290		}
291	}
292
293	*vol = allowed_clock_voltage_table->entries[i - 1].v;
294	return 0;
295}
296
297static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr,
298		uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk)
299{
300	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
301	struct pp_atomctrl_clock_dividers_vi dividers;
302	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
303	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
304	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
305	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
306	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
307	uint32_t ref_clock;
308	uint32_t ref_divider;
309	uint32_t fbdiv;
310	int result;
311
312	/* get the engine clock dividers for this clock value */
313	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
314
315	PP_ASSERT_WITH_CODE(result == 0,
316			"Error retrieving Engine Clock dividers from VBIOS.",
317			return result);
318
319	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
320	ref_clock = atomctrl_get_reference_clock(hwmgr);
321	ref_divider = 1 + dividers.uc_pll_ref_div;
322
323	/* low 14 bits is fraction and high 12 bits is divider */
324	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
325
326	/* SPLL_FUNC_CNTL setup */
327	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
328			SPLL_REF_DIV, dividers.uc_pll_ref_div);
329	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
330			SPLL_PDIV_A,  dividers.uc_pll_post_div);
331
332	/* SPLL_FUNC_CNTL_3 setup*/
333	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
334			SPLL_FB_DIV, fbdiv);
335
336	/* set to use fractional accumulation*/
337	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
338			SPLL_DITHEN, 1);
339
340	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
341				PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
342		struct pp_atomctrl_internal_ss_info ss_info;
343		uint32_t vco_freq = clock * dividers.uc_pll_post_div;
344
345		if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
346				vco_freq, &ss_info)) {
347			uint32_t clk_s = ref_clock * 5 /
348					(ref_divider * ss_info.speed_spectrum_rate);
349			uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage *
350					fbdiv / (clk_s * 10000);
351
352			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
353					CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
354			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
355					CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
356			cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
357					CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
358		}
359	}
360
361	sclk->SclkFrequency        = clock;
362	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
363	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
364	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
365	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
366	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
367
368	return 0;
369}
370
371static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
372				const struct phm_phase_shedding_limits_table *pl,
373					uint32_t sclk, uint32_t *p_shed)
374{
375	unsigned int i;
376
377	/* use the minimum phase shedding */
378	*p_shed = 1;
379
380	for (i = 0; i < pl->count; i++) {
381		if (sclk < pl->entries[i].Sclk) {
382			*p_shed = i;
383			break;
384		}
385	}
386}
387
388static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock,
389			uint32_t clock_insr)
390{
391	uint8_t i;
392	uint32_t temp;
393	uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK);
394
395	if (clock < min) {
396		pr_info("Engine clock can't satisfy stutter requirement!\n");
397		return 0;
398	}
399	for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
400		temp = clock >> i;
401
402		if (temp >= min || i == 0)
403			break;
404	}
405	return i;
406}
407
408static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
409		uint32_t clock, struct SMU7_Discrete_GraphicsLevel *level)
410{
411	int result;
412	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
413
414
415	result = ci_calculate_sclk_params(hwmgr, clock, level);
416
417	/* populate graphics levels */
418	result = ci_get_dependency_volt_by_clk(hwmgr,
419			hwmgr->dyn_state.vddc_dependency_on_sclk, clock,
420			(uint32_t *)(&level->MinVddc));
421	if (result) {
422		pr_err("vdd_dep_on_sclk table is NULL\n");
423		return result;
424	}
425
426	level->SclkFrequency = clock;
427	level->MinVddcPhases = 1;
428
429	if (data->vddc_phase_shed_control)
430		ci_populate_phase_value_based_on_sclk(hwmgr,
431				hwmgr->dyn_state.vddc_phase_shed_limits_table,
432				clock,
433				&level->MinVddcPhases);
434
435	level->ActivityLevel = data->current_profile_setting.sclk_activity;
436	level->CcPwrDynRm = 0;
437	level->CcPwrDynRm1 = 0;
438	level->EnabledForActivity = 0;
439	/* this level can be used for throttling.*/
440	level->EnabledForThrottle = 1;
441	level->UpH = data->current_profile_setting.sclk_up_hyst;
442	level->DownH = data->current_profile_setting.sclk_down_hyst;
443	level->VoltageDownH = 0;
444	level->PowerThrottle = 0;
445
446
447	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
448			PHM_PlatformCaps_SclkDeepSleep))
449		level->DeepSleepDivId =
450				ci_get_sleep_divider_id_from_clock(clock,
451						CISLAND_MINIMUM_ENGINE_CLOCK);
452
453	/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
454	level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
455
456	if (0 == result) {
457		level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE);
458		CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases);
459		CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
460		CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
461		CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
462		CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
463		CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
464		CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
465		CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
466		CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
467	}
468
469	return result;
470}
471
472static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
473{
474	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
475	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
476	struct smu7_dpm_table *dpm_table = &data->dpm_table;
477	int result = 0;
478	uint32_t array = smu_data->dpm_table_start +
479			offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
480	uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) *
481			SMU7_MAX_LEVELS_GRAPHICS;
482	struct SMU7_Discrete_GraphicsLevel *levels =
483			smu_data->smc_state_table.GraphicsLevel;
484	uint32_t i;
485
486	for (i = 0; i < dpm_table->sclk_table.count; i++) {
487		result = ci_populate_single_graphic_level(hwmgr,
488				dpm_table->sclk_table.dpm_levels[i].value,
489				&levels[i]);
490		if (result)
491			return result;
492		if (i > 1)
493			smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
494		if (i == (dpm_table->sclk_table.count - 1))
495			smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark =
496				PPSMC_DISPLAY_WATERMARK_HIGH;
497	}
498
499	smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
500
501	smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count;
502	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
503		phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
504
505	result = ci_copy_bytes_to_smc(hwmgr, array,
506				   (u8 *)levels, array_size,
507				   SMC_RAM_END);
508
509	return result;
510
511}
512
513static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr)
514{
515	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
516	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
517
518	smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
519	smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
520	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
521	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
522
523	return 0;
524}
525
526static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr)
527{
528	uint16_t tdc_limit;
529	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
530	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
531
532	tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
533	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
534			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
535	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
536			defaults->tdc_vddc_throttle_release_limit_perc;
537	smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
538
539	return 0;
540}
541
542static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
543{
544	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
545	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
546	uint32_t temp;
547
548	if (ci_read_smc_sram_dword(hwmgr,
549			fuse_table_offset +
550			offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl),
551			(uint32_t *)&temp, SMC_RAM_END))
552		PP_ASSERT_WITH_CODE(false,
553				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
554				return -EINVAL);
555	else
556		smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
557
558	return 0;
559}
560
561static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
562{
563	uint16_t tmp;
564	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
565
566	if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
567		|| 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
568		tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity;
569	else
570		tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
571
572	smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp);
573
574	return 0;
575}
576
577static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
578{
579	int i;
580	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
581	uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
582	uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
583	uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2;
584
585	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
586			    "The CAC Leakage table does not exist!", return -EINVAL);
587	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
588			    "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
589	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
590			    "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
591
592	for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
593		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
594			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
595			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
596			hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3);
597		} else {
598			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc);
599			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage);
600		}
601	}
602
603	return 0;
604}
605
606static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr)
607{
608	int i;
609	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
610	uint8_t *vid = smu_data->power_tune_table.VddCVid;
611	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
612
613	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
614		"There should never be more than 8 entries for VddcVid!!!",
615		return -EINVAL);
616
617	for (i = 0; i < (int)data->vddc_voltage_table.count; i++)
618		vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
619
620	return 0;
621}
622
623static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr)
624{
625	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
626	u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
627	u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
628	int i, min, max;
629
630	min = max = hi_vid[0];
631	for (i = 0; i < 8; i++) {
632		if (0 != hi_vid[i]) {
633			if (min > hi_vid[i])
634				min = hi_vid[i];
635			if (max < hi_vid[i])
636				max = hi_vid[i];
637		}
638
639		if (0 != lo_vid[i]) {
640			if (min > lo_vid[i])
641				min = lo_vid[i];
642			if (max < lo_vid[i])
643				max = lo_vid[i];
644		}
645	}
646
647	if ((min == 0) || (max == 0))
648		return -EINVAL;
649	smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max;
650	smu_data->power_tune_table.GnbLPMLMinVid = (u8)min;
651
652	return 0;
653}
654
655static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
656{
657	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
658	uint16_t HiSidd;
659	uint16_t LoSidd;
660	struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
661
662	HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
663	LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
664
665	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
666			CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
667	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
668			CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
669
670	return 0;
671}
672
673static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr)
674{
675	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
676	uint32_t pm_fuse_table_offset;
677	int ret = 0;
678
679	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
680			PHM_PlatformCaps_PowerContainment)) {
681		if (ci_read_smc_sram_dword(hwmgr,
682				SMU7_FIRMWARE_HEADER_LOCATION +
683				offsetof(SMU7_Firmware_Header, PmFuseTable),
684				&pm_fuse_table_offset, SMC_RAM_END)) {
685			pr_err("Attempt to get pm_fuse_table_offset Failed!\n");
686			return -EINVAL;
687		}
688
689		/* DW0 - DW3 */
690		ret = ci_populate_bapm_vddc_vid_sidd(hwmgr);
691		/* DW4 - DW5 */
692		ret |= ci_populate_vddc_vid(hwmgr);
693		/* DW6 */
694		ret |= ci_populate_svi_load_line(hwmgr);
695		/* DW7 */
696		ret |= ci_populate_tdc_limit(hwmgr);
697		/* DW8 */
698		ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset);
699
700		ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset);
701
702		ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr);
703
704		ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr);
705		if (ret)
706			return ret;
707
708		ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
709				(uint8_t *)&smu_data->power_tune_table,
710				sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END);
711	}
712	return ret;
713}
714
715static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
716{
717	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
718	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
719	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
720	SMU7_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
721	struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
722	struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
723	const uint16_t *def1, *def2;
724	int i, j, k;
725
726	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
727	dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
728
729	dpm_table->DTETjOffset = 0;
730	dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
731	dpm_table->GpuTjHyst = 8;
732
733	dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
734
735	if (ppm) {
736		dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
737		dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
738	} else {
739		dpm_table->PPM_PkgPwrLimit = 0;
740		dpm_table->PPM_TemperatureLimit = 0;
741	}
742
743	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
744	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
745
746	dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
747	def1 = defaults->bapmti_r;
748	def2 = defaults->bapmti_rc;
749
750	for (i = 0; i < SMU7_DTE_ITERATIONS; i++) {
751		for (j = 0; j < SMU7_DTE_SOURCES; j++) {
752			for (k = 0; k < SMU7_DTE_SINKS; k++) {
753				dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
754				dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
755				def1++;
756				def2++;
757			}
758		}
759	}
760
761	return 0;
762}
763
764static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
765		pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
766		uint16_t *lo)
767{
768	uint16_t v_index;
769	bool vol_found = false;
770	*hi = tab->value * VOLTAGE_SCALE;
771	*lo = tab->value * VOLTAGE_SCALE;
772
773	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
774			"The SCLK/VDDC Dependency Table does not exist.\n",
775			return -EINVAL);
776
777	if (NULL == hwmgr->dyn_state.cac_leakage_table) {
778		pr_warn("CAC Leakage Table does not exist, using vddc.\n");
779		return 0;
780	}
781
782	for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
783		if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
784			vol_found = true;
785			if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
786				*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
787				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
788			} else {
789				pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
790				*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
791				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
792			}
793			break;
794		}
795	}
796
797	if (!vol_found) {
798		for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
799			if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
800				vol_found = true;
801				if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
802					*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
803					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
804				} else {
805					pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
806					*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
807					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
808				}
809				break;
810			}
811		}
812
813		if (!vol_found)
814			pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
815	}
816
817	return 0;
818}
819
820static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
821		pp_atomctrl_voltage_table_entry *tab,
822		SMU7_Discrete_VoltageLevel *smc_voltage_tab)
823{
824	int result;
825
826	result = ci_get_std_voltage_value_sidd(hwmgr, tab,
827			&smc_voltage_tab->StdVoltageHiSidd,
828			&smc_voltage_tab->StdVoltageLoSidd);
829	if (result) {
830		smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
831		smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
832	}
833
834	smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
835	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
836	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd);
837
838	return 0;
839}
840
841static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
842			SMU7_Discrete_DpmTable *table)
843{
844	unsigned int count;
845	int result;
846	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
847
848	table->VddcLevelCount = data->vddc_voltage_table.count;
849	for (count = 0; count < table->VddcLevelCount; count++) {
850		result = ci_populate_smc_voltage_table(hwmgr,
851				&(data->vddc_voltage_table.entries[count]),
852				&(table->VddcLevel[count]));
853		PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
854
855		/* GPIO voltage control */
856		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
857			table->VddcLevel[count].Smio = (uint8_t) count;
858			table->Smio[count] |= data->vddc_voltage_table.entries[count].smio_low;
859			table->SmioMaskVddcVid |= data->vddc_voltage_table.entries[count].smio_low;
860		} else {
861			table->VddcLevel[count].Smio = 0;
862		}
863	}
864
865	CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
866
867	return 0;
868}
869
870static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
871			SMU7_Discrete_DpmTable *table)
872{
873	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
874	uint32_t count;
875	int result;
876
877	table->VddciLevelCount = data->vddci_voltage_table.count;
878
879	for (count = 0; count < table->VddciLevelCount; count++) {
880		result = ci_populate_smc_voltage_table(hwmgr,
881				&(data->vddci_voltage_table.entries[count]),
882				&(table->VddciLevel[count]));
883		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
884		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
885			table->VddciLevel[count].Smio = (uint8_t) count;
886			table->Smio[count] |= data->vddci_voltage_table.entries[count].smio_low;
887			table->SmioMaskVddciVid |= data->vddci_voltage_table.entries[count].smio_low;
888		} else {
889			table->VddciLevel[count].Smio = 0;
890		}
891	}
892
893	CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
894
895	return 0;
896}
897
898static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
899			SMU7_Discrete_DpmTable *table)
900{
901	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
902	uint32_t count;
903	int result;
904
905	table->MvddLevelCount = data->mvdd_voltage_table.count;
906
907	for (count = 0; count < table->MvddLevelCount; count++) {
908		result = ci_populate_smc_voltage_table(hwmgr,
909				&(data->mvdd_voltage_table.entries[count]),
910				&table->MvddLevel[count]);
911		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
912		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
913			table->MvddLevel[count].Smio = (uint8_t) count;
914			table->Smio[count] |= data->mvdd_voltage_table.entries[count].smio_low;
915			table->SmioMaskMvddVid |= data->mvdd_voltage_table.entries[count].smio_low;
916		} else {
917			table->MvddLevel[count].Smio = 0;
918		}
919	}
920
921	CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
922
923	return 0;
924}
925
926
927static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
928	SMU7_Discrete_DpmTable *table)
929{
930	int result;
931
932	result = ci_populate_smc_vddc_table(hwmgr, table);
933	PP_ASSERT_WITH_CODE(0 == result,
934			"can not populate VDDC voltage table to SMC", return -EINVAL);
935
936	result = ci_populate_smc_vdd_ci_table(hwmgr, table);
937	PP_ASSERT_WITH_CODE(0 == result,
938			"can not populate VDDCI voltage table to SMC", return -EINVAL);
939
940	result = ci_populate_smc_mvdd_table(hwmgr, table);
941	PP_ASSERT_WITH_CODE(0 == result,
942			"can not populate MVDD voltage table to SMC", return -EINVAL);
943
944	return 0;
945}
946
947static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr,
948		struct SMU7_Discrete_Ulv *state)
949{
950	uint32_t voltage_response_time, ulv_voltage;
951	int result;
952	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
953
954	state->CcPwrDynRm = 0;
955	state->CcPwrDynRm1 = 0;
956
957	result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
958	PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
959
960	if (ulv_voltage == 0) {
961		data->ulv_supported = false;
962		return 0;
963	}
964
965	if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
966		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
967		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
968			state->VddcOffset = 0;
969		else
970			/* used in SMIO Mode. not implemented for now. this is backup only for CI. */
971			state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
972	} else {
973		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
974		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
975			state->VddcOffsetVid = 0;
976		else  /* used in SVI2 Mode */
977			state->VddcOffsetVid = (uint8_t)(
978					(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
979						* VOLTAGE_VID_OFFSET_SCALE2
980						/ VOLTAGE_VID_OFFSET_SCALE1);
981	}
982	state->VddcPhase = 1;
983
984	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
985	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
986	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
987
988	return 0;
989}
990
991static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr,
992		 SMU7_Discrete_Ulv *ulv_level)
993{
994	return ci_populate_ulv_level(hwmgr, ulv_level);
995}
996
997static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
998{
999	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1000	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1001	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1002	uint32_t i;
1003
1004/* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/
1005	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1006		table->LinkLevel[i].PcieGenSpeed  =
1007			(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1008		table->LinkLevel[i].PcieLaneCount =
1009			(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1010		table->LinkLevel[i].EnabledForActivity = 1;
1011		table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5);
1012		table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30);
1013	}
1014
1015	smu_data->smc_state_table.LinkLevelCount =
1016		(uint8_t)dpm_table->pcie_speed_table.count;
1017	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1018		phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1019
1020	return 0;
1021}
1022
1023static int ci_calculate_mclk_params(
1024		struct pp_hwmgr *hwmgr,
1025		uint32_t memory_clock,
1026		SMU7_Discrete_MemoryLevel *mclk,
1027		bool strobe_mode,
1028		bool dllStateOn
1029		)
1030{
1031	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1032	uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
1033	uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1034	uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1035	uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1036	uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1037	uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1038	uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1039	uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
1040	uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
1041
1042	pp_atomctrl_memory_clock_param mpll_param;
1043	int result;
1044
1045	result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1046				memory_clock, &mpll_param, strobe_mode);
1047	PP_ASSERT_WITH_CODE(0 == result,
1048		"Error retrieving Memory Clock Parameters from VBIOS.", return result);
1049
1050	mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1051
1052	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1053							MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1054	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1055							MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1056	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1057							MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1058
1059	mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1060							MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1061
1062	if (data->is_memory_gddr5) {
1063		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1064								MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1065		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1066								MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1067	}
1068
1069	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1070			PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1071		pp_atomctrl_internal_ss_info ss_info;
1072		uint32_t freq_nom;
1073		uint32_t tmp;
1074		uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1075
1076		/* for GDDR5 for all modes and DDR3 */
1077		if (1 == mpll_param.qdr)
1078			freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1079		else
1080			freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1081
1082		/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
1083		tmp = (freq_nom / reference_clock);
1084		tmp = tmp * tmp;
1085
1086		if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1087			uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1088			uint32_t clkv =
1089				(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1090							ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1091
1092			mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1093			mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1094		}
1095	}
1096
1097	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1098		MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1099	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1100		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1101	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1102		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1103
1104
1105	mclk->MclkFrequency   = memory_clock;
1106	mclk->MpllFuncCntl    = mpll_func_cntl;
1107	mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
1108	mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
1109	mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
1110	mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
1111	mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
1112	mclk->DllCntl         = dll_cntl;
1113	mclk->MpllSs1         = mpll_ss1;
1114	mclk->MpllSs2         = mpll_ss2;
1115
1116	return 0;
1117}
1118
1119static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock,
1120		bool strobe_mode)
1121{
1122	uint8_t mc_para_index;
1123
1124	if (strobe_mode) {
1125		if (memory_clock < 12500)
1126			mc_para_index = 0x00;
1127		else if (memory_clock > 47500)
1128			mc_para_index = 0x0f;
1129		else
1130			mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1131	} else {
1132		if (memory_clock < 65000)
1133			mc_para_index = 0x00;
1134		else if (memory_clock > 135000)
1135			mc_para_index = 0x0f;
1136		else
1137			mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1138	}
1139
1140	return mc_para_index;
1141}
1142
1143static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1144{
1145	uint8_t mc_para_index;
1146
1147	if (memory_clock < 10000)
1148		mc_para_index = 0;
1149	else if (memory_clock >= 80000)
1150		mc_para_index = 0x0f;
1151	else
1152		mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1153
1154	return mc_para_index;
1155}
1156
1157static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1158					uint32_t memory_clock, uint32_t *p_shed)
1159{
1160	unsigned int i;
1161
1162	*p_shed = 1;
1163
1164	for (i = 0; i < pl->count; i++) {
1165		if (memory_clock < pl->entries[i].Mclk) {
1166			*p_shed = i;
1167			break;
1168		}
1169	}
1170
1171	return 0;
1172}
1173
1174static int ci_populate_single_memory_level(
1175		struct pp_hwmgr *hwmgr,
1176		uint32_t memory_clock,
1177		SMU7_Discrete_MemoryLevel *memory_level
1178		)
1179{
1180	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1181	int result = 0;
1182	bool dll_state_on;
1183	uint32_t mclk_edc_wr_enable_threshold = 40000;
1184	uint32_t mclk_edc_enable_threshold = 40000;
1185	uint32_t mclk_strobe_mode_threshold = 40000;
1186
1187	if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1188		result = ci_get_dependency_volt_by_clk(hwmgr,
1189			hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1190		PP_ASSERT_WITH_CODE((0 == result),
1191			"can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1192	}
1193
1194	if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1195		result = ci_get_dependency_volt_by_clk(hwmgr,
1196				hwmgr->dyn_state.vddci_dependency_on_mclk,
1197				memory_clock,
1198				&memory_level->MinVddci);
1199		PP_ASSERT_WITH_CODE((0 == result),
1200			"can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1201	}
1202
1203	if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) {
1204		result = ci_get_dependency_volt_by_clk(hwmgr,
1205				hwmgr->dyn_state.mvdd_dependency_on_mclk,
1206				memory_clock,
1207				&memory_level->MinMvdd);
1208		PP_ASSERT_WITH_CODE((0 == result),
1209			"can not find MinVddci voltage value from memory MVDD voltage dependency table", return result);
1210	}
1211
1212	memory_level->MinVddcPhases = 1;
1213
1214	if (data->vddc_phase_shed_control) {
1215		ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1216				memory_clock, &memory_level->MinVddcPhases);
1217	}
1218
1219	memory_level->EnabledForThrottle = 1;
1220	memory_level->EnabledForActivity = 1;
1221	memory_level->UpH = data->current_profile_setting.mclk_up_hyst;
1222	memory_level->DownH = data->current_profile_setting.mclk_down_hyst;
1223	memory_level->VoltageDownH = 0;
1224
1225	/* Indicates maximum activity level for this performance level.*/
1226	memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1227	memory_level->StutterEnable = 0;
1228	memory_level->StrobeEnable = 0;
1229	memory_level->EdcReadEnable = 0;
1230	memory_level->EdcWriteEnable = 0;
1231	memory_level->RttEnable = 0;
1232
1233	/* default set to low watermark. Highest level will be set to high later.*/
1234	memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1235
1236	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1237	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1238
1239	/* stutter mode not support on ci */
1240
1241	/* decide strobe mode*/
1242	memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1243		(memory_clock <= mclk_strobe_mode_threshold);
1244
1245	/* decide EDC mode and memory clock ratio*/
1246	if (data->is_memory_gddr5) {
1247		memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock,
1248					memory_level->StrobeEnable);
1249
1250		if ((mclk_edc_enable_threshold != 0) &&
1251				(memory_clock > mclk_edc_enable_threshold)) {
1252			memory_level->EdcReadEnable = 1;
1253		}
1254
1255		if ((mclk_edc_wr_enable_threshold != 0) &&
1256				(memory_clock > mclk_edc_wr_enable_threshold)) {
1257			memory_level->EdcWriteEnable = 1;
1258		}
1259
1260		if (memory_level->StrobeEnable) {
1261			if (ci_get_mclk_frequency_ratio(memory_clock, 1) >=
1262					((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1263				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1264			else
1265				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1266		} else
1267			dll_state_on = data->dll_default_on;
1268	} else {
1269		memory_level->StrobeRatio =
1270			ci_get_ddr3_mclk_frequency_ratio(memory_clock);
1271		dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1272	}
1273
1274	result = ci_calculate_mclk_params(hwmgr,
1275		memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1276
1277	if (0 == result) {
1278		memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1279		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1280		memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1281		memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1282		/* MCLK frequency in units of 10KHz*/
1283		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1284		/* Indicates maximum activity level for this performance level.*/
1285		CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1286		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1287		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1288		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1289		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1290		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1291		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1292		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1293		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1294		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1295	}
1296
1297	return result;
1298}
1299
1300static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1301{
1302	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1303	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1304	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1305	int result;
1306	struct amdgpu_device *adev = hwmgr->adev;
1307	uint32_t dev_id;
1308
1309	uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
1310	uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY;
1311	SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1312	uint32_t i;
1313
1314	memset(levels, 0x00, level_array_size);
1315
1316	for (i = 0; i < dpm_table->mclk_table.count; i++) {
1317		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1318			"can not populate memory level as memory clock is zero", return -EINVAL);
1319		result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1320			&(smu_data->smc_state_table.MemoryLevel[i]));
1321		if (0 != result)
1322			return result;
1323	}
1324
1325	smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1326
1327	dev_id = adev->pdev->device;
1328
1329	if ((dpm_table->mclk_table.count >= 2)
1330		&& ((dev_id == 0x67B0) ||  (dev_id == 0x67B1))) {
1331		smu_data->smc_state_table.MemoryLevel[1].MinVddci =
1332				smu_data->smc_state_table.MemoryLevel[0].MinVddci;
1333		smu_data->smc_state_table.MemoryLevel[1].MinMvdd =
1334				smu_data->smc_state_table.MemoryLevel[0].MinMvdd;
1335	}
1336	smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1337	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1338
1339	smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1340	data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1341	smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1342
1343	result = ci_copy_bytes_to_smc(hwmgr,
1344		level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
1345		SMC_RAM_END);
1346
1347	return result;
1348}
1349
1350static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1351					SMU7_Discrete_VoltageLevel *voltage)
1352{
1353	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1354
1355	uint32_t i = 0;
1356
1357	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1358		/* find mvdd value which clock is more than request */
1359		for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1360			if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1361				/* Always round to higher voltage. */
1362				voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1363				break;
1364			}
1365		}
1366
1367		PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1368			"MVDD Voltage is outside the supported range.", return -EINVAL);
1369
1370	} else {
1371		return -EINVAL;
1372	}
1373
1374	return 0;
1375}
1376
1377static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1378	SMU7_Discrete_DpmTable *table)
1379{
1380	int result = 0;
1381	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1382	struct pp_atomctrl_clock_dividers_vi dividers;
1383
1384	SMU7_Discrete_VoltageLevel voltage_level;
1385	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1386	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1387	uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
1388	uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
1389
1390
1391	/* The ACPI state should not do DPM on DC (or ever).*/
1392	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1393
1394	if (data->acpi_vddc)
1395		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1396	else
1397		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1398
1399	table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1;
1400	/* assign zero for now*/
1401	table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1402
1403	/* get the engine clock dividers for this clock value*/
1404	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1405		table->ACPILevel.SclkFrequency,  &dividers);
1406
1407	PP_ASSERT_WITH_CODE(result == 0,
1408		"Error retrieving Engine Clock dividers from VBIOS.", return result);
1409
1410	/* divider ID for required SCLK*/
1411	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1412	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1413	table->ACPILevel.DeepSleepDivId = 0;
1414
1415	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1416							CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
1417	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1418							CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
1419	spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
1420							CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
1421
1422	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1423	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1424	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1425	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1426	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1427	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1428	table->ACPILevel.CcPwrDynRm = 0;
1429	table->ACPILevel.CcPwrDynRm1 = 0;
1430
1431	/* For various features to be enabled/disabled while this level is active.*/
1432	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1433	/* SCLK frequency in units of 10KHz*/
1434	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1435	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1436	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1437	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1438	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1439	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1440	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1441	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1442	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1443
1444
1445	/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1446	table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1447	table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1448
1449	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1450		table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1451	else {
1452		if (data->acpi_vddci != 0)
1453			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1454		else
1455			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1456	}
1457
1458	if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level))
1459		table->MemoryACPILevel.MinMvdd =
1460			PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1461	else
1462		table->MemoryACPILevel.MinMvdd = 0;
1463
1464	/* Force reset on DLL*/
1465	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1466		MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1467	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1468		MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1469
1470	/* Disable DLL in ACPIState*/
1471	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1472		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1473	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1474		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1475
1476	/* Enable DLL bypass signal*/
1477	dll_cntl            = PHM_SET_FIELD(dll_cntl,
1478		DLL_CNTL, MRDCK0_BYPASS, 0);
1479	dll_cntl            = PHM_SET_FIELD(dll_cntl,
1480		DLL_CNTL, MRDCK1_BYPASS, 0);
1481
1482	table->MemoryACPILevel.DllCntl            =
1483		PP_HOST_TO_SMC_UL(dll_cntl);
1484	table->MemoryACPILevel.MclkPwrmgtCntl     =
1485		PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1486	table->MemoryACPILevel.MpllAdFuncCntl     =
1487		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1488	table->MemoryACPILevel.MpllDqFuncCntl     =
1489		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1490	table->MemoryACPILevel.MpllFuncCntl       =
1491		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1492	table->MemoryACPILevel.MpllFuncCntl_1     =
1493		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1494	table->MemoryACPILevel.MpllFuncCntl_2     =
1495		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1496	table->MemoryACPILevel.MpllSs1            =
1497		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1498	table->MemoryACPILevel.MpllSs2            =
1499		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1500
1501	table->MemoryACPILevel.EnabledForThrottle = 0;
1502	table->MemoryACPILevel.EnabledForActivity = 0;
1503	table->MemoryACPILevel.UpH = 0;
1504	table->MemoryACPILevel.DownH = 100;
1505	table->MemoryACPILevel.VoltageDownH = 0;
1506	/* Indicates maximum activity level for this performance level.*/
1507	table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1508
1509	table->MemoryACPILevel.StutterEnable = 0;
1510	table->MemoryACPILevel.StrobeEnable = 0;
1511	table->MemoryACPILevel.EdcReadEnable = 0;
1512	table->MemoryACPILevel.EdcWriteEnable = 0;
1513	table->MemoryACPILevel.RttEnable = 0;
1514
1515	return result;
1516}
1517
1518static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1519					SMU7_Discrete_DpmTable *table)
1520{
1521	int result = 0;
1522	uint8_t count;
1523	struct pp_atomctrl_clock_dividers_vi dividers;
1524	struct phm_uvd_clock_voltage_dependency_table *uvd_table =
1525		hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
1526
1527	table->UvdLevelCount = (uint8_t)(uvd_table->count);
1528
1529	for (count = 0; count < table->UvdLevelCount; count++) {
1530		table->UvdLevel[count].VclkFrequency =
1531					uvd_table->entries[count].vclk;
1532		table->UvdLevel[count].DclkFrequency =
1533					uvd_table->entries[count].dclk;
1534		table->UvdLevel[count].MinVddc =
1535					uvd_table->entries[count].v * VOLTAGE_SCALE;
1536		table->UvdLevel[count].MinVddcPhases = 1;
1537
1538		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1539				table->UvdLevel[count].VclkFrequency, &dividers);
1540		PP_ASSERT_WITH_CODE((0 == result),
1541				"can not find divide id for Vclk clock", return result);
1542
1543		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1544
1545		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1546				table->UvdLevel[count].DclkFrequency, &dividers);
1547		PP_ASSERT_WITH_CODE((0 == result),
1548				"can not find divide id for Dclk clock", return result);
1549
1550		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1551		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1552		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1553		CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc);
1554	}
1555
1556	return result;
1557}
1558
1559static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1560		SMU7_Discrete_DpmTable *table)
1561{
1562	int result = -EINVAL;
1563	uint8_t count;
1564	struct pp_atomctrl_clock_dividers_vi dividers;
1565	struct phm_vce_clock_voltage_dependency_table *vce_table =
1566				hwmgr->dyn_state.vce_clock_voltage_dependency_table;
1567
1568	table->VceLevelCount = (uint8_t)(vce_table->count);
1569	table->VceBootLevel = 0;
1570
1571	for (count = 0; count < table->VceLevelCount; count++) {
1572		table->VceLevel[count].Frequency = vce_table->entries[count].evclk;
1573		table->VceLevel[count].MinVoltage =
1574				vce_table->entries[count].v * VOLTAGE_SCALE;
1575		table->VceLevel[count].MinPhases = 1;
1576
1577		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1578				table->VceLevel[count].Frequency, &dividers);
1579		PP_ASSERT_WITH_CODE((0 == result),
1580				"can not find divide id for VCE engine clock",
1581				return result);
1582
1583		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1584
1585		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1586		CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage);
1587	}
1588	return result;
1589}
1590
1591static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1592					SMU7_Discrete_DpmTable *table)
1593{
1594	int result = -EINVAL;
1595	uint8_t count;
1596	struct pp_atomctrl_clock_dividers_vi dividers;
1597	struct phm_acp_clock_voltage_dependency_table *acp_table =
1598				hwmgr->dyn_state.acp_clock_voltage_dependency_table;
1599
1600	table->AcpLevelCount = (uint8_t)(acp_table->count);
1601	table->AcpBootLevel = 0;
1602
1603	for (count = 0; count < table->AcpLevelCount; count++) {
1604		table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk;
1605		table->AcpLevel[count].MinVoltage = acp_table->entries[count].v;
1606		table->AcpLevel[count].MinPhases = 1;
1607
1608		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1609				table->AcpLevel[count].Frequency, &dividers);
1610		PP_ASSERT_WITH_CODE((0 == result),
1611				"can not find divide id for engine clock", return result);
1612
1613		table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1614
1615		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1616		CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage);
1617	}
1618	return result;
1619}
1620
1621static int ci_populate_memory_timing_parameters(
1622		struct pp_hwmgr *hwmgr,
1623		uint32_t engine_clock,
1624		uint32_t memory_clock,
1625		struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs
1626		)
1627{
1628	uint32_t dramTiming;
1629	uint32_t dramTiming2;
1630	uint32_t burstTime;
1631	int result;
1632
1633	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1634				engine_clock, memory_clock);
1635
1636	PP_ASSERT_WITH_CODE(result == 0,
1637		"Error calling VBIOS to set DRAM_TIMING.", return result);
1638
1639	dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1640	dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1641	burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1642
1643	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
1644	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1645	arb_regs->McArbBurstTime = (uint8_t)burstTime;
1646
1647	return 0;
1648}
1649
1650static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1651{
1652	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1653	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1654	int result = 0;
1655	SMU7_Discrete_MCArbDramTimingTable  arb_regs;
1656	uint32_t i, j;
1657
1658	memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable));
1659
1660	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1661		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1662			result = ci_populate_memory_timing_parameters
1663				(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1664				 data->dpm_table.mclk_table.dpm_levels[j].value,
1665				 &arb_regs.entries[i][j]);
1666
1667			if (0 != result)
1668				break;
1669		}
1670	}
1671
1672	if (0 == result) {
1673		result = ci_copy_bytes_to_smc(
1674				hwmgr,
1675				smu_data->arb_table_start,
1676				(uint8_t *)&arb_regs,
1677				sizeof(SMU7_Discrete_MCArbDramTimingTable),
1678				SMC_RAM_END
1679				);
1680	}
1681
1682	return result;
1683}
1684
1685static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1686			SMU7_Discrete_DpmTable *table)
1687{
1688	int result = 0;
1689	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1690	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1691
1692	table->GraphicsBootLevel = 0;
1693	table->MemoryBootLevel = 0;
1694
1695	/* find boot level from dpm table*/
1696	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1697			data->vbios_boot_state.sclk_bootup_value,
1698			(uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1699
1700	if (0 != result) {
1701		smu_data->smc_state_table.GraphicsBootLevel = 0;
1702		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1703		result = 0;
1704	}
1705
1706	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1707		data->vbios_boot_state.mclk_bootup_value,
1708		(uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1709
1710	if (0 != result) {
1711		smu_data->smc_state_table.MemoryBootLevel = 0;
1712		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1713		result = 0;
1714	}
1715
1716	table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1717	table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1718	table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1719
1720	return result;
1721}
1722
1723static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1724				 SMU7_Discrete_MCRegisters *mc_reg_table)
1725{
1726	const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend;
1727
1728	uint32_t i, j;
1729
1730	for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1731		if (smu_data->mc_reg_table.validflag & 1<<j) {
1732			PP_ASSERT_WITH_CODE(i < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1733				"Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1734			mc_reg_table->address[i].s0 =
1735				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1736			mc_reg_table->address[i].s1 =
1737				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1738			i++;
1739		}
1740	}
1741
1742	mc_reg_table->last = (uint8_t)i;
1743
1744	return 0;
1745}
1746
1747static void ci_convert_mc_registers(
1748	const struct ci_mc_reg_entry *entry,
1749	SMU7_Discrete_MCRegisterSet *data,
1750	uint32_t num_entries, uint32_t valid_flag)
1751{
1752	uint32_t i, j;
1753
1754	for (i = 0, j = 0; j < num_entries; j++) {
1755		if (valid_flag & 1<<j) {
1756			data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1757			i++;
1758		}
1759	}
1760}
1761
1762static int ci_convert_mc_reg_table_entry_to_smc(
1763		struct pp_hwmgr *hwmgr,
1764		const uint32_t memory_clock,
1765		SMU7_Discrete_MCRegisterSet *mc_reg_table_data
1766		)
1767{
1768	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1769	uint32_t i = 0;
1770
1771	for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1772		if (memory_clock <=
1773			smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1774			break;
1775		}
1776	}
1777
1778	if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1779		--i;
1780
1781	ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1782				mc_reg_table_data, smu_data->mc_reg_table.last,
1783				smu_data->mc_reg_table.validflag);
1784
1785	return 0;
1786}
1787
1788static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1789		SMU7_Discrete_MCRegisters *mc_regs)
1790{
1791	int result = 0;
1792	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1793	int res;
1794	uint32_t i;
1795
1796	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1797		res = ci_convert_mc_reg_table_entry_to_smc(
1798				hwmgr,
1799				data->dpm_table.mclk_table.dpm_levels[i].value,
1800				&mc_regs->data[i]
1801				);
1802
1803		if (0 != res)
1804			result = res;
1805	}
1806
1807	return result;
1808}
1809
1810static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1811{
1812	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1813	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1814	uint32_t address;
1815	int32_t result;
1816
1817	if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1818		return 0;
1819
1820
1821	memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters));
1822
1823	result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1824
1825	if (result != 0)
1826		return result;
1827
1828	address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0]);
1829
1830	return  ci_copy_bytes_to_smc(hwmgr, address,
1831				 (uint8_t *)&smu_data->mc_regs.data[0],
1832				sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1833				SMC_RAM_END);
1834}
1835
1836static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1837{
1838	int result;
1839	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1840
1841	memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters));
1842	result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1843	PP_ASSERT_WITH_CODE(0 == result,
1844		"Failed to initialize MCRegTable for the MC register addresses!", return result;);
1845
1846	result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1847	PP_ASSERT_WITH_CODE(0 == result,
1848		"Failed to initialize MCRegTable for driver state!", return result;);
1849
1850	return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start,
1851			(uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END);
1852}
1853
1854static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1855{
1856	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1857	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1858	uint8_t count, level;
1859
1860	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1861
1862	for (level = 0; level < count; level++) {
1863		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1864			 >= data->vbios_boot_state.sclk_bootup_value) {
1865			smu_data->smc_state_table.GraphicsBootLevel = level;
1866			break;
1867		}
1868	}
1869
1870	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1871
1872	for (level = 0; level < count; level++) {
1873		if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1874			>= data->vbios_boot_state.mclk_bootup_value) {
1875			smu_data->smc_state_table.MemoryBootLevel = level;
1876			break;
1877		}
1878	}
1879
1880	return 0;
1881}
1882
1883static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1884					    SMU7_Discrete_DpmTable *table)
1885{
1886	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1887
1888	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1889		table->SVI2Enable = 1;
1890	else
1891		table->SVI2Enable = 0;
1892	return 0;
1893}
1894
1895static int ci_start_smc(struct pp_hwmgr *hwmgr)
1896{
1897	/* set smc instruct start point at 0x0 */
1898	ci_program_jump_on_start(hwmgr);
1899
1900	/* enable smc clock */
1901	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
1902
1903	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0);
1904
1905	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
1906				 INTERRUPTS_ENABLED, 1);
1907
1908	return 0;
1909}
1910
1911static int ci_populate_vr_config(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
1912{
1913	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1914	uint16_t config;
1915
1916	config = VR_SVI2_PLANE_1;
1917	table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1918
1919	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1920		config = VR_SVI2_PLANE_2;
1921		table->VRConfig |= config;
1922	} else {
1923		pr_info("VDDCshould be on SVI2 controller!");
1924	}
1925
1926	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1927		config = VR_SVI2_PLANE_2;
1928		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1929	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1930		config = VR_SMIO_PATTERN_1;
1931		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1932	}
1933
1934	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1935		config = VR_SMIO_PATTERN_2;
1936		table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1937	}
1938
1939	return 0;
1940}
1941
1942static int ci_init_smc_table(struct pp_hwmgr *hwmgr)
1943{
1944	int result;
1945	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1946	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1947	SMU7_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1948	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1949	u32 i;
1950
1951	ci_initialize_power_tune_defaults(hwmgr);
1952	memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1953
1954	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1955		ci_populate_smc_voltage_tables(hwmgr, table);
1956
1957	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1958			PHM_PlatformCaps_AutomaticDCTransition))
1959		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1960
1961
1962	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1963			PHM_PlatformCaps_StepVddc))
1964		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1965
1966	if (data->is_memory_gddr5)
1967		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1968
1969	if (data->ulv_supported) {
1970		result = ci_populate_ulv_state(hwmgr, &(table->Ulv));
1971		PP_ASSERT_WITH_CODE(0 == result,
1972			"Failed to initialize ULV state!", return result);
1973
1974		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1975			ixCG_ULV_PARAMETER, 0x40035);
1976	}
1977
1978	result = ci_populate_all_graphic_levels(hwmgr);
1979	PP_ASSERT_WITH_CODE(0 == result,
1980		"Failed to initialize Graphics Level!", return result);
1981
1982	result = ci_populate_all_memory_levels(hwmgr);
1983	PP_ASSERT_WITH_CODE(0 == result,
1984		"Failed to initialize Memory Level!", return result);
1985
1986	result = ci_populate_smc_link_level(hwmgr, table);
1987	PP_ASSERT_WITH_CODE(0 == result,
1988		"Failed to initialize Link Level!", return result);
1989
1990	result = ci_populate_smc_acpi_level(hwmgr, table);
1991	PP_ASSERT_WITH_CODE(0 == result,
1992		"Failed to initialize ACPI Level!", return result);
1993
1994	result = ci_populate_smc_vce_level(hwmgr, table);
1995	PP_ASSERT_WITH_CODE(0 == result,
1996		"Failed to initialize VCE Level!", return result);
1997
1998	result = ci_populate_smc_acp_level(hwmgr, table);
1999	PP_ASSERT_WITH_CODE(0 == result,
2000		"Failed to initialize ACP Level!", return result);
2001
2002	/* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
2003	/* need to populate the  ARB settings for the initial state. */
2004	result = ci_program_memory_timing_parameters(hwmgr);
2005	PP_ASSERT_WITH_CODE(0 == result,
2006		"Failed to Write ARB settings for the initial state.", return result);
2007
2008	result = ci_populate_smc_uvd_level(hwmgr, table);
2009	PP_ASSERT_WITH_CODE(0 == result,
2010		"Failed to initialize UVD Level!", return result);
2011
2012	table->UvdBootLevel  = 0;
2013	table->VceBootLevel  = 0;
2014	table->AcpBootLevel  = 0;
2015	table->SamuBootLevel  = 0;
2016
2017	table->GraphicsBootLevel = 0;
2018	table->MemoryBootLevel = 0;
2019
2020	result = ci_populate_smc_boot_level(hwmgr, table);
2021	PP_ASSERT_WITH_CODE(0 == result,
2022		"Failed to initialize Boot Level!", return result);
2023
2024	result = ci_populate_smc_initial_state(hwmgr);
2025	PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2026
2027	result = ci_populate_bapm_parameters_in_dpm_table(hwmgr);
2028	PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2029
2030	table->UVDInterval = 1;
2031	table->VCEInterval = 1;
2032	table->ACPInterval = 1;
2033	table->SAMUInterval = 1;
2034	table->GraphicsVoltageChangeEnable  = 1;
2035	table->GraphicsThermThrottleEnable  = 1;
2036	table->GraphicsInterval = 1;
2037	table->VoltageInterval  = 1;
2038	table->ThermalInterval  = 1;
2039
2040	table->TemperatureLimitHigh =
2041		(data->thermal_temp_setting.temperature_high *
2042		 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2043	table->TemperatureLimitLow =
2044		(data->thermal_temp_setting.temperature_low *
2045		SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2046
2047	table->MemoryVoltageChangeEnable  = 1;
2048	table->MemoryInterval  = 1;
2049	table->VoltageResponseTime  = 0;
2050	table->VddcVddciDelta = 4000;
2051	table->PhaseResponseTime  = 0;
2052	table->MemoryThermThrottleEnable  = 1;
2053
2054	PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
2055			"There must be 1 or more PCIE levels defined in PPTable.",
2056			return -EINVAL);
2057
2058	table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count;
2059	table->PCIeGenInterval = 1;
2060
2061	result = ci_populate_vr_config(hwmgr, table);
2062	PP_ASSERT_WITH_CODE(0 == result,
2063			"Failed to populate VRConfig setting!", return result);
2064	data->vr_config = table->VRConfig;
2065
2066	ci_populate_smc_svi2_config(hwmgr, table);
2067
2068	for (i = 0; i < SMU7_MAX_ENTRIES_SMIO; i++)
2069		CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i]);
2070
2071	table->ThermGpio  = 17;
2072	table->SclkStepSize = 0x4000;
2073	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2074		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2075		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2076				PHM_PlatformCaps_RegulatorHot);
2077	} else {
2078		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2079		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2080				PHM_PlatformCaps_RegulatorHot);
2081	}
2082
2083	table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2084
2085	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2086	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2087	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2088	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2089	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2090	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2091	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2092	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2093	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2094	table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta);
2095	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2096	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2097
2098	table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2099	table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2100	table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2101
2102	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2103	result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start +
2104					offsetof(SMU7_Discrete_DpmTable, SystemFlags),
2105					(uint8_t *)&(table->SystemFlags),
2106					sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController),
2107					SMC_RAM_END);
2108
2109	PP_ASSERT_WITH_CODE(0 == result,
2110		"Failed to upload dpm data to SMC memory!", return result;);
2111
2112	result = ci_populate_initial_mc_reg_table(hwmgr);
2113	PP_ASSERT_WITH_CODE((0 == result),
2114		"Failed to populate initialize MC Reg table!", return result);
2115
2116	result = ci_populate_pm_fuses(hwmgr);
2117	PP_ASSERT_WITH_CODE(0 == result,
2118			"Failed to  populate PM fuses to SMC memory!", return result);
2119
2120	ci_start_smc(hwmgr);
2121
2122	return 0;
2123}
2124
2125static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2126{
2127	struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2128	SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2129	uint32_t duty100;
2130	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2131	uint16_t fdo_min, slope1, slope2;
2132	uint32_t reference_clock;
2133	int res;
2134	uint64_t tmp64;
2135
2136	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2137		return 0;
2138
2139	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2140		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2141			PHM_PlatformCaps_MicrocodeFanControl);
2142		return 0;
2143	}
2144
2145	if (0 == ci_data->fan_table_start) {
2146		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2147		return 0;
2148	}
2149
2150	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2151
2152	if (0 == duty100) {
2153		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2154		return 0;
2155	}
2156
2157	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2158	do_div(tmp64, 10000);
2159	fdo_min = (uint16_t)tmp64;
2160
2161	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2162	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2163
2164	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2165	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2166
2167	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2168	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2169
2170	fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2171	fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2172	fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2173
2174	fan_table.Slope1 = cpu_to_be16(slope1);
2175	fan_table.Slope2 = cpu_to_be16(slope2);
2176
2177	fan_table.FdoMin = cpu_to_be16(fdo_min);
2178
2179	fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2180
2181	fan_table.HystUp = cpu_to_be16(1);
2182
2183	fan_table.HystSlope = cpu_to_be16(1);
2184
2185	fan_table.TempRespLim = cpu_to_be16(5);
2186
2187	reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2188
2189	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2190
2191	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2192
2193	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2194
2195	res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2196
2197	return res;
2198}
2199
2200static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2201{
2202	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2203
2204	if (data->need_update_smu7_dpm_table &
2205			(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK))
2206		return ci_program_memory_timing_parameters(hwmgr);
2207
2208	return 0;
2209}
2210
2211static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2212{
2213	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2214	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2215
2216	int result = 0;
2217	uint32_t low_sclk_interrupt_threshold = 0;
2218
2219	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2220			PHM_PlatformCaps_SclkThrottleLowNotification)
2221		&& (data->low_sclk_interrupt_threshold != 0)) {
2222		low_sclk_interrupt_threshold =
2223				data->low_sclk_interrupt_threshold;
2224
2225		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2226
2227		result = ci_copy_bytes_to_smc(
2228				hwmgr,
2229				smu_data->dpm_table_start +
2230				offsetof(SMU7_Discrete_DpmTable,
2231					LowSclkInterruptT),
2232				(uint8_t *)&low_sclk_interrupt_threshold,
2233				sizeof(uint32_t),
2234				SMC_RAM_END);
2235	}
2236
2237	result = ci_update_and_upload_mc_reg_table(hwmgr);
2238
2239	PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2240
2241	result = ci_program_mem_timing_parameters(hwmgr);
2242	PP_ASSERT_WITH_CODE((result == 0),
2243			"Failed to program memory timing parameters!",
2244			);
2245
2246	return result;
2247}
2248
2249static uint32_t ci_get_offsetof(uint32_t type, uint32_t member)
2250{
2251	switch (type) {
2252	case SMU_SoftRegisters:
2253		switch (member) {
2254		case HandshakeDisables:
2255			return offsetof(SMU7_SoftRegisters, HandshakeDisables);
2256		case VoltageChangeTimeout:
2257			return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout);
2258		case AverageGraphicsActivity:
2259			return offsetof(SMU7_SoftRegisters, AverageGraphicsA);
2260		case AverageMemoryActivity:
2261			return offsetof(SMU7_SoftRegisters, AverageMemoryA);
2262		case PreVBlankGap:
2263			return offsetof(SMU7_SoftRegisters, PreVBlankGap);
2264		case VBlankTimeout:
2265			return offsetof(SMU7_SoftRegisters, VBlankTimeout);
2266		case DRAM_LOG_ADDR_H:
2267			return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H);
2268		case DRAM_LOG_ADDR_L:
2269			return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L);
2270		case DRAM_LOG_PHY_ADDR_H:
2271			return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2272		case DRAM_LOG_PHY_ADDR_L:
2273			return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2274		case DRAM_LOG_BUFF_SIZE:
2275			return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2276		}
2277		break;
2278	case SMU_Discrete_DpmTable:
2279		switch (member) {
2280		case LowSclkInterruptThreshold:
2281			return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT);
2282		}
2283		break;
2284	}
2285	pr_debug("can't get the offset of type %x member %x\n", type, member);
2286	return 0;
2287}
2288
2289static uint32_t ci_get_mac_definition(uint32_t value)
2290{
2291	switch (value) {
2292	case SMU_MAX_LEVELS_GRAPHICS:
2293		return SMU7_MAX_LEVELS_GRAPHICS;
2294	case SMU_MAX_LEVELS_MEMORY:
2295		return SMU7_MAX_LEVELS_MEMORY;
2296	case SMU_MAX_LEVELS_LINK:
2297		return SMU7_MAX_LEVELS_LINK;
2298	case SMU_MAX_ENTRIES_SMIO:
2299		return SMU7_MAX_ENTRIES_SMIO;
2300	case SMU_MAX_LEVELS_VDDC:
2301	case SMU_MAX_LEVELS_VDDGFX:
2302		return SMU7_MAX_LEVELS_VDDC;
2303	case SMU_MAX_LEVELS_VDDCI:
2304		return SMU7_MAX_LEVELS_VDDCI;
2305	case SMU_MAX_LEVELS_MVDD:
2306		return SMU7_MAX_LEVELS_MVDD;
2307	}
2308
2309	pr_debug("can't get the mac of %x\n", value);
2310	return 0;
2311}
2312
2313static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr)
2314{
2315	uint32_t byte_count, start_addr;
2316	uint8_t *src;
2317	uint32_t data;
2318
2319	struct cgs_firmware_info info = {0};
2320
2321	cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info);
2322
2323	hwmgr->is_kicker = info.is_kicker;
2324	hwmgr->smu_version = info.version;
2325	byte_count = info.image_size;
2326	src = (uint8_t *)info.kptr;
2327	start_addr = info.ucode_start_address;
2328
2329	if  (byte_count > SMC_RAM_END) {
2330		pr_err("SMC address is beyond the SMC RAM area.\n");
2331		return -EINVAL;
2332	}
2333
2334	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
2335	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
2336
2337	for (; byte_count >= 4; byte_count -= 4) {
2338		data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
2339		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
2340		src += 4;
2341	}
2342	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
2343
2344	if (0 != byte_count) {
2345		pr_err("SMC size must be divisible by 4\n");
2346		return -EINVAL;
2347	}
2348
2349	return 0;
2350}
2351
2352static int ci_upload_firmware(struct pp_hwmgr *hwmgr)
2353{
2354	if (ci_is_smc_ram_running(hwmgr)) {
2355		pr_info("smc is running, no need to load smc firmware\n");
2356		return 0;
2357	}
2358	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
2359			boot_seq_done, 1);
2360	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL,
2361			pre_fetcher_en, 1);
2362
2363	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1);
2364	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1);
2365	return ci_load_smc_ucode(hwmgr);
2366}
2367
2368static int ci_process_firmware_header(struct pp_hwmgr *hwmgr)
2369{
2370	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2371	struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2372
2373	uint32_t tmp = 0;
2374	int result;
2375	bool error = false;
2376
2377	if (ci_upload_firmware(hwmgr))
2378		return -EINVAL;
2379
2380	result = ci_read_smc_sram_dword(hwmgr,
2381				SMU7_FIRMWARE_HEADER_LOCATION +
2382				offsetof(SMU7_Firmware_Header, DpmTable),
2383				&tmp, SMC_RAM_END);
2384
2385	if (0 == result)
2386		ci_data->dpm_table_start = tmp;
2387
2388	error |= (0 != result);
2389
2390	result = ci_read_smc_sram_dword(hwmgr,
2391				SMU7_FIRMWARE_HEADER_LOCATION +
2392				offsetof(SMU7_Firmware_Header, SoftRegisters),
2393				&tmp, SMC_RAM_END);
2394
2395	if (0 == result) {
2396		data->soft_regs_start = tmp;
2397		ci_data->soft_regs_start = tmp;
2398	}
2399
2400	error |= (0 != result);
2401
2402	result = ci_read_smc_sram_dword(hwmgr,
2403				SMU7_FIRMWARE_HEADER_LOCATION +
2404				offsetof(SMU7_Firmware_Header, mcRegisterTable),
2405				&tmp, SMC_RAM_END);
2406
2407	if (0 == result)
2408		ci_data->mc_reg_table_start = tmp;
2409
2410	result = ci_read_smc_sram_dword(hwmgr,
2411				SMU7_FIRMWARE_HEADER_LOCATION +
2412				offsetof(SMU7_Firmware_Header, FanTable),
2413				&tmp, SMC_RAM_END);
2414
2415	if (0 == result)
2416		ci_data->fan_table_start = tmp;
2417
2418	error |= (0 != result);
2419
2420	result = ci_read_smc_sram_dword(hwmgr,
2421				SMU7_FIRMWARE_HEADER_LOCATION +
2422				offsetof(SMU7_Firmware_Header, mcArbDramTimingTable),
2423				&tmp, SMC_RAM_END);
2424
2425	if (0 == result)
2426		ci_data->arb_table_start = tmp;
2427
2428	error |= (0 != result);
2429
2430	result = ci_read_smc_sram_dword(hwmgr,
2431				SMU7_FIRMWARE_HEADER_LOCATION +
2432				offsetof(SMU7_Firmware_Header, Version),
2433				&tmp, SMC_RAM_END);
2434
2435	if (0 == result)
2436		hwmgr->microcode_version_info.SMC = tmp;
2437
2438	error |= (0 != result);
2439
2440	return error ? 1 : 0;
2441}
2442
2443static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2444{
2445	return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2446}
2447
2448static bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2449{
2450	bool result = true;
2451
2452	switch (in_reg) {
2453	case  mmMC_SEQ_RAS_TIMING:
2454		*out_reg = mmMC_SEQ_RAS_TIMING_LP;
2455		break;
2456
2457	case  mmMC_SEQ_DLL_STBY:
2458		*out_reg = mmMC_SEQ_DLL_STBY_LP;
2459		break;
2460
2461	case  mmMC_SEQ_G5PDX_CMD0:
2462		*out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2463		break;
2464
2465	case  mmMC_SEQ_G5PDX_CMD1:
2466		*out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2467		break;
2468
2469	case  mmMC_SEQ_G5PDX_CTRL:
2470		*out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2471		break;
2472
2473	case mmMC_SEQ_CAS_TIMING:
2474		*out_reg = mmMC_SEQ_CAS_TIMING_LP;
2475		break;
2476
2477	case mmMC_SEQ_MISC_TIMING:
2478		*out_reg = mmMC_SEQ_MISC_TIMING_LP;
2479		break;
2480
2481	case mmMC_SEQ_MISC_TIMING2:
2482		*out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2483		break;
2484
2485	case mmMC_SEQ_PMG_DVS_CMD:
2486		*out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2487		break;
2488
2489	case mmMC_SEQ_PMG_DVS_CTL:
2490		*out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2491		break;
2492
2493	case mmMC_SEQ_RD_CTL_D0:
2494		*out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2495		break;
2496
2497	case mmMC_SEQ_RD_CTL_D1:
2498		*out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2499		break;
2500
2501	case mmMC_SEQ_WR_CTL_D0:
2502		*out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2503		break;
2504
2505	case mmMC_SEQ_WR_CTL_D1:
2506		*out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2507		break;
2508
2509	case mmMC_PMG_CMD_EMRS:
2510		*out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2511		break;
2512
2513	case mmMC_PMG_CMD_MRS:
2514		*out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2515		break;
2516
2517	case mmMC_PMG_CMD_MRS1:
2518		*out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2519		break;
2520
2521	case mmMC_SEQ_PMG_TIMING:
2522		*out_reg = mmMC_SEQ_PMG_TIMING_LP;
2523		break;
2524
2525	case mmMC_PMG_CMD_MRS2:
2526		*out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2527		break;
2528
2529	case mmMC_SEQ_WR_CTL_2:
2530		*out_reg = mmMC_SEQ_WR_CTL_2_LP;
2531		break;
2532
2533	default:
2534		result = false;
2535		break;
2536	}
2537
2538	return result;
2539}
2540
2541static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table)
2542{
2543	uint32_t i;
2544	uint16_t address;
2545
2546	for (i = 0; i < table->last; i++) {
2547		table->mc_reg_address[i].s0 =
2548			ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2549			? address : table->mc_reg_address[i].s1;
2550	}
2551	return 0;
2552}
2553
2554static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2555					struct ci_mc_reg_table *ni_table)
2556{
2557	uint8_t i, j;
2558
2559	PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2560		"Invalid VramInfo table.", return -EINVAL);
2561	PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2562		"Invalid VramInfo table.", return -EINVAL);
2563
2564	for (i = 0; i < table->last; i++)
2565		ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2566
2567	ni_table->last = table->last;
2568
2569	for (i = 0; i < table->num_entries; i++) {
2570		ni_table->mc_reg_table_entry[i].mclk_max =
2571			table->mc_reg_table_entry[i].mclk_max;
2572		for (j = 0; j < table->last; j++) {
2573			ni_table->mc_reg_table_entry[i].mc_data[j] =
2574				table->mc_reg_table_entry[i].mc_data[j];
2575		}
2576	}
2577
2578	ni_table->num_entries = table->num_entries;
2579
2580	return 0;
2581}
2582
2583static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2584					struct ci_mc_reg_table *table)
2585{
2586	uint8_t i, j, k;
2587	uint32_t temp_reg;
2588	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2589
2590	for (i = 0, j = table->last; i < table->last; i++) {
2591		PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2592			"Invalid VramInfo table.", return -EINVAL);
2593
2594		switch (table->mc_reg_address[i].s1) {
2595
2596		case mmMC_SEQ_MISC1:
2597			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2598			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2599			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2600			for (k = 0; k < table->num_entries; k++) {
2601				table->mc_reg_table_entry[k].mc_data[j] =
2602					((temp_reg & 0xffff0000)) |
2603					((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2604			}
2605			j++;
2606
2607			PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2608				"Invalid VramInfo table.", return -EINVAL);
2609			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2610			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2611			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2612			for (k = 0; k < table->num_entries; k++) {
2613				table->mc_reg_table_entry[k].mc_data[j] =
2614					(temp_reg & 0xffff0000) |
2615					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2616
2617				if (!data->is_memory_gddr5)
2618					table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2619			}
2620			j++;
2621
2622			if (!data->is_memory_gddr5) {
2623				PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2624					"Invalid VramInfo table.", return -EINVAL);
2625				table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2626				table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2627				for (k = 0; k < table->num_entries; k++) {
2628					table->mc_reg_table_entry[k].mc_data[j] =
2629						(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2630				}
2631				j++;
2632			}
2633
2634			break;
2635
2636		case mmMC_SEQ_RESERVE_M:
2637			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2638			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2639			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2640			for (k = 0; k < table->num_entries; k++) {
2641				table->mc_reg_table_entry[k].mc_data[j] =
2642					(temp_reg & 0xffff0000) |
2643					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2644			}
2645			j++;
2646			break;
2647
2648		default:
2649			break;
2650		}
2651
2652	}
2653
2654	table->last = j;
2655
2656	return 0;
2657}
2658
2659static int ci_set_valid_flag(struct ci_mc_reg_table *table)
2660{
2661	uint8_t i, j;
2662
2663	for (i = 0; i < table->last; i++) {
2664		for (j = 1; j < table->num_entries; j++) {
2665			if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2666				table->mc_reg_table_entry[j].mc_data[i]) {
2667				table->validflag |= (1 << i);
2668				break;
2669			}
2670		}
2671	}
2672
2673	return 0;
2674}
2675
2676static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2677{
2678	int result;
2679	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2680	pp_atomctrl_mc_reg_table *table;
2681	struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2682	uint8_t module_index = ci_get_memory_modile_index(hwmgr);
2683
2684	table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2685
2686	if (NULL == table)
2687		return -ENOMEM;
2688
2689	/* Program additional LP registers that are no longer programmed by VBIOS */
2690	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2691	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2692	cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2693	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2694	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2695	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2696	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2697	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2698	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2699	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2700	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2701	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2702	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2703	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2704	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2705	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2706	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2707	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2708	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2709	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2710
2711	result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2712
2713	if (0 == result)
2714		result = ci_copy_vbios_smc_reg_table(table, ni_table);
2715
2716	if (0 == result) {
2717		ci_set_s0_mc_reg_index(ni_table);
2718		result = ci_set_mc_special_registers(hwmgr, ni_table);
2719	}
2720
2721	if (0 == result)
2722		ci_set_valid_flag(ni_table);
2723
2724	kfree(table);
2725
2726	return result;
2727}
2728
2729static bool ci_is_dpm_running(struct pp_hwmgr *hwmgr)
2730{
2731	return ci_is_smc_ram_running(hwmgr);
2732}
2733
2734static int ci_smu_init(struct pp_hwmgr *hwmgr)
2735{
2736	struct ci_smumgr *ci_priv;
2737
2738	ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL);
2739
2740	if (ci_priv == NULL)
2741		return -ENOMEM;
2742
2743	hwmgr->smu_backend = ci_priv;
2744
2745	return 0;
2746}
2747
2748static int ci_smu_fini(struct pp_hwmgr *hwmgr)
2749{
2750	kfree(hwmgr->smu_backend);
2751	hwmgr->smu_backend = NULL;
2752	return 0;
2753}
2754
2755static int ci_start_smu(struct pp_hwmgr *hwmgr)
2756{
2757	return 0;
2758}
2759
2760static int ci_update_dpm_settings(struct pp_hwmgr *hwmgr,
2761				void *profile_setting)
2762{
2763	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2764	struct ci_smumgr *smu_data = (struct ci_smumgr *)
2765			(hwmgr->smu_backend);
2766	struct profile_mode_setting *setting;
2767	struct SMU7_Discrete_GraphicsLevel *levels =
2768			smu_data->smc_state_table.GraphicsLevel;
2769	uint32_t array = smu_data->dpm_table_start +
2770			offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
2771
2772	uint32_t mclk_array = smu_data->dpm_table_start +
2773			offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
2774	struct SMU7_Discrete_MemoryLevel *mclk_levels =
2775			smu_data->smc_state_table.MemoryLevel;
2776	uint32_t i;
2777	uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2778
2779	if (profile_setting == NULL)
2780		return -EINVAL;
2781
2782	setting = (struct profile_mode_setting *)profile_setting;
2783
2784	if (setting->bupdate_sclk) {
2785		if (!data->sclk_dpm_key_disabled)
2786			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL);
2787		for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2788			if (levels[i].ActivityLevel !=
2789				cpu_to_be16(setting->sclk_activity)) {
2790				levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2791
2792				clk_activity_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2793						+ offsetof(SMU7_Discrete_GraphicsLevel, ActivityLevel);
2794				offset = clk_activity_offset & ~0x3;
2795				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2796				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2797				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2798
2799			}
2800			if (levels[i].UpH != setting->sclk_up_hyst ||
2801				levels[i].DownH != setting->sclk_down_hyst) {
2802				levels[i].UpH = setting->sclk_up_hyst;
2803				levels[i].DownH = setting->sclk_down_hyst;
2804				up_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2805						+ offsetof(SMU7_Discrete_GraphicsLevel, UpH);
2806				down_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2807						+ offsetof(SMU7_Discrete_GraphicsLevel, DownH);
2808				offset = up_hyst_offset & ~0x3;
2809				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2810				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpH, sizeof(uint8_t));
2811				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownH, sizeof(uint8_t));
2812				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2813			}
2814		}
2815		if (!data->sclk_dpm_key_disabled)
2816			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL);
2817	}
2818
2819	if (setting->bupdate_mclk) {
2820		if (!data->mclk_dpm_key_disabled)
2821			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL);
2822		for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2823			if (mclk_levels[i].ActivityLevel !=
2824				cpu_to_be16(setting->mclk_activity)) {
2825				mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2826
2827				clk_activity_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2828						+ offsetof(SMU7_Discrete_MemoryLevel, ActivityLevel);
2829				offset = clk_activity_offset & ~0x3;
2830				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2831				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2832				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2833
2834			}
2835			if (mclk_levels[i].UpH != setting->mclk_up_hyst ||
2836				mclk_levels[i].DownH != setting->mclk_down_hyst) {
2837				mclk_levels[i].UpH = setting->mclk_up_hyst;
2838				mclk_levels[i].DownH = setting->mclk_down_hyst;
2839				up_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2840						+ offsetof(SMU7_Discrete_MemoryLevel, UpH);
2841				down_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2842						+ offsetof(SMU7_Discrete_MemoryLevel, DownH);
2843				offset = up_hyst_offset & ~0x3;
2844				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2845				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpH, sizeof(uint8_t));
2846				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownH, sizeof(uint8_t));
2847				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2848			}
2849		}
2850		if (!data->mclk_dpm_key_disabled)
2851			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL);
2852	}
2853	return 0;
2854}
2855
2856static int ci_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2857{
2858	struct amdgpu_device *adev = hwmgr->adev;
2859	struct smu7_hwmgr *data = hwmgr->backend;
2860	struct ci_smumgr *smu_data = hwmgr->smu_backend;
2861	struct phm_uvd_clock_voltage_dependency_table *uvd_table =
2862			hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
2863	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2864					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2865					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2866					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2867	uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2868						hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2869	int32_t i;
2870
2871	if (PP_CAP(PHM_PlatformCaps_UVDDPM) || uvd_table->count <= 0)
2872		smu_data->smc_state_table.UvdBootLevel = 0;
2873	else
2874		smu_data->smc_state_table.UvdBootLevel = uvd_table->count - 1;
2875
2876	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2877				UvdBootLevel, smu_data->smc_state_table.UvdBootLevel);
2878
2879	data->dpm_level_enable_mask.uvd_dpm_enable_mask = 0;
2880
2881	for (i = uvd_table->count - 1; i >= 0; i--) {
2882		if (uvd_table->entries[i].v <= max_vddc)
2883			data->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i;
2884		if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_UVDDPM))
2885			break;
2886	}
2887	smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask,
2888				data->dpm_level_enable_mask.uvd_dpm_enable_mask,
2889				NULL);
2890
2891	return 0;
2892}
2893
2894static int ci_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2895{
2896	struct amdgpu_device *adev = hwmgr->adev;
2897	struct smu7_hwmgr *data = hwmgr->backend;
2898	struct phm_vce_clock_voltage_dependency_table *vce_table =
2899			hwmgr->dyn_state.vce_clock_voltage_dependency_table;
2900	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2901					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2902					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2903					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2904	uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2905						hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2906	int32_t i;
2907
2908	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2909				VceBootLevel, 0); /* temp hard code to level 0, vce can set min evclk*/
2910
2911	data->dpm_level_enable_mask.vce_dpm_enable_mask = 0;
2912
2913	for (i = vce_table->count - 1; i >= 0; i--) {
2914		if (vce_table->entries[i].v <= max_vddc)
2915			data->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i;
2916		if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_VCEDPM))
2917			break;
2918	}
2919	smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask,
2920				data->dpm_level_enable_mask.vce_dpm_enable_mask,
2921				NULL);
2922
2923	return 0;
2924}
2925
2926static int ci_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2927{
2928	switch (type) {
2929	case SMU_UVD_TABLE:
2930		ci_update_uvd_smc_table(hwmgr);
2931		break;
2932	case SMU_VCE_TABLE:
2933		ci_update_vce_smc_table(hwmgr);
2934		break;
2935	default:
2936		break;
2937	}
2938	return 0;
2939}
2940
2941static void ci_reset_smc(struct pp_hwmgr *hwmgr)
2942{
2943	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2944				  SMC_SYSCON_RESET_CNTL,
2945				  rst_reg, 1);
2946}
2947
2948
2949static void ci_stop_smc_clock(struct pp_hwmgr *hwmgr)
2950{
2951	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2952				  SMC_SYSCON_CLOCK_CNTL_0,
2953				  ck_disable, 1);
2954}
2955
2956static int ci_stop_smc(struct pp_hwmgr *hwmgr)
2957{
2958	ci_reset_smc(hwmgr);
2959	ci_stop_smc_clock(hwmgr);
2960
2961	return 0;
2962}
2963
2964const struct pp_smumgr_func ci_smu_funcs = {
2965	.name = "ci_smu",
2966	.smu_init = ci_smu_init,
2967	.smu_fini = ci_smu_fini,
2968	.start_smu = ci_start_smu,
2969	.check_fw_load_finish = NULL,
2970	.request_smu_load_fw = NULL,
2971	.request_smu_load_specific_fw = NULL,
2972	.send_msg_to_smc = ci_send_msg_to_smc,
2973	.send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter,
2974	.get_argument = smu7_get_argument,
2975	.download_pptable_settings = NULL,
2976	.upload_pptable_settings = NULL,
2977	.get_offsetof = ci_get_offsetof,
2978	.process_firmware_header = ci_process_firmware_header,
2979	.init_smc_table = ci_init_smc_table,
2980	.update_sclk_threshold = ci_update_sclk_threshold,
2981	.thermal_setup_fan_table = ci_thermal_setup_fan_table,
2982	.populate_all_graphic_levels = ci_populate_all_graphic_levels,
2983	.populate_all_memory_levels = ci_populate_all_memory_levels,
2984	.get_mac_definition = ci_get_mac_definition,
2985	.initialize_mc_reg_table = ci_initialize_mc_reg_table,
2986	.is_dpm_running = ci_is_dpm_running,
2987	.update_dpm_settings = ci_update_dpm_settings,
2988	.update_smc_table = ci_update_smc_table,
2989	.stop_smc = ci_stop_smc,
2990};
2991