1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Xilinx Zynq MPSoC Firmware layer
4 *
5 *  Copyright (C) 2014-2022 Xilinx, Inc.
6 *  Copyright (C) 2022 - 2023, Advanced Micro Devices, Inc.
7 *
8 *  Michal Simek <michal.simek@amd.com>
9 *  Davorin Mista <davorin.mista@aggios.com>
10 *  Jolly Shah <jollys@xilinx.com>
11 *  Rajan Vaja <rajanv@xilinx.com>
12 */
13
14#include <linux/arm-smccc.h>
15#include <linux/compiler.h>
16#include <linux/device.h>
17#include <linux/init.h>
18#include <linux/mfd/core.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/of_platform.h>
22#include <linux/platform_device.h>
23#include <linux/slab.h>
24#include <linux/uaccess.h>
25#include <linux/hashtable.h>
26
27#include <linux/firmware/xlnx-zynqmp.h>
28#include <linux/firmware/xlnx-event-manager.h>
29#include "zynqmp-debug.h"
30
31/* Max HashMap Order for PM API feature check (1<<7 = 128) */
32#define PM_API_FEATURE_CHECK_MAX_ORDER  7
33
34/* CRL registers and bitfields */
35#define CRL_APB_BASE			0xFF5E0000U
36/* BOOT_PIN_CTRL- Used to control the mode pins after boot */
37#define CRL_APB_BOOT_PIN_CTRL		(CRL_APB_BASE + (0x250U))
38/* BOOT_PIN_CTRL_MASK- out_val[11:8], out_en[3:0] */
39#define CRL_APB_BOOTPIN_CTRL_MASK	0xF0FU
40
41/* IOCTL/QUERY feature payload size */
42#define FEATURE_PAYLOAD_SIZE		2
43
44/* Firmware feature check version mask */
45#define FIRMWARE_VERSION_MASK		GENMASK(15, 0)
46
47static bool feature_check_enabled;
48static DEFINE_HASHTABLE(pm_api_features_map, PM_API_FEATURE_CHECK_MAX_ORDER);
49static u32 ioctl_features[FEATURE_PAYLOAD_SIZE];
50static u32 query_features[FEATURE_PAYLOAD_SIZE];
51
52static struct platform_device *em_dev;
53
54/**
55 * struct zynqmp_devinfo - Structure for Zynqmp device instance
56 * @dev:		Device Pointer
57 * @feature_conf_id:	Feature conf id
58 */
59struct zynqmp_devinfo {
60	struct device *dev;
61	u32 feature_conf_id;
62};
63
64/**
65 * struct pm_api_feature_data - PM API Feature data
66 * @pm_api_id:		PM API Id, used as key to index into hashmap
67 * @feature_status:	status of PM API feature: valid, invalid
68 * @hentry:		hlist_node that hooks this entry into hashtable
69 */
70struct pm_api_feature_data {
71	u32 pm_api_id;
72	int feature_status;
73	struct hlist_node hentry;
74};
75
76static const struct mfd_cell firmware_devs[] = {
77	{
78		.name = "zynqmp_power_controller",
79	},
80};
81
82/**
83 * zynqmp_pm_ret_code() - Convert PMU-FW error codes to Linux error codes
84 * @ret_status:		PMUFW return code
85 *
86 * Return: corresponding Linux error code
87 */
88static int zynqmp_pm_ret_code(u32 ret_status)
89{
90	switch (ret_status) {
91	case XST_PM_SUCCESS:
92	case XST_PM_DOUBLE_REQ:
93		return 0;
94	case XST_PM_NO_FEATURE:
95		return -ENOTSUPP;
96	case XST_PM_INVALID_VERSION:
97		return -EOPNOTSUPP;
98	case XST_PM_NO_ACCESS:
99		return -EACCES;
100	case XST_PM_ABORT_SUSPEND:
101		return -ECANCELED;
102	case XST_PM_MULT_USER:
103		return -EUSERS;
104	case XST_PM_INTERNAL:
105	case XST_PM_CONFLICT:
106	case XST_PM_INVALID_NODE:
107	case XST_PM_INVALID_CRC:
108	default:
109		return -EINVAL;
110	}
111}
112
113static noinline int do_fw_call_fail(u32 *ret_payload, u32 num_args, ...)
114{
115	return -ENODEV;
116}
117
118/*
119 * PM function call wrapper
120 * Invoke do_fw_call_smc or do_fw_call_hvc, depending on the configuration
121 */
122static int (*do_fw_call)(u32 *ret_payload, u32, ...) = do_fw_call_fail;
123
124/**
125 * do_fw_call_smc() - Call system-level platform management layer (SMC)
126 * @num_args:		Number of variable arguments should be <= 8
127 * @ret_payload:	Returned value array
128 *
129 * Invoke platform management function via SMC call (no hypervisor present).
130 *
131 * Return: Returns status, either success or error+reason
132 */
133static noinline int do_fw_call_smc(u32 *ret_payload, u32 num_args, ...)
134{
135	struct arm_smccc_res res;
136	u64 args[8] = {0};
137	va_list arg_list;
138	u8 i;
139
140	if (num_args > 8)
141		return -EINVAL;
142
143	va_start(arg_list, num_args);
144
145	for (i = 0; i < num_args; i++)
146		args[i] = va_arg(arg_list, u64);
147
148	va_end(arg_list);
149
150	arm_smccc_smc(args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], &res);
151
152	if (ret_payload) {
153		ret_payload[0] = lower_32_bits(res.a0);
154		ret_payload[1] = upper_32_bits(res.a0);
155		ret_payload[2] = lower_32_bits(res.a1);
156		ret_payload[3] = upper_32_bits(res.a1);
157	}
158
159	return zynqmp_pm_ret_code((enum pm_ret_status)res.a0);
160}
161
162/**
163 * do_fw_call_hvc() - Call system-level platform management layer (HVC)
164 * @num_args:		Number of variable arguments should be <= 8
165 * @ret_payload:	Returned value array
166 *
167 * Invoke platform management function via HVC
168 * HVC-based for communication through hypervisor
169 * (no direct communication with ATF).
170 *
171 * Return: Returns status, either success or error+reason
172 */
173static noinline int do_fw_call_hvc(u32 *ret_payload, u32 num_args, ...)
174{
175	struct arm_smccc_res res;
176	u64 args[8] = {0};
177	va_list arg_list;
178	u8 i;
179
180	if (num_args > 8)
181		return -EINVAL;
182
183	va_start(arg_list, num_args);
184
185	for (i = 0; i < num_args; i++)
186		args[i] = va_arg(arg_list, u64);
187
188	va_end(arg_list);
189
190	arm_smccc_hvc(args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], &res);
191
192	if (ret_payload) {
193		ret_payload[0] = lower_32_bits(res.a0);
194		ret_payload[1] = upper_32_bits(res.a0);
195		ret_payload[2] = lower_32_bits(res.a1);
196		ret_payload[3] = upper_32_bits(res.a1);
197	}
198
199	return zynqmp_pm_ret_code((enum pm_ret_status)res.a0);
200}
201
202static int __do_feature_check_call(const u32 api_id, u32 *ret_payload)
203{
204	int ret;
205	u64 smc_arg[2];
206	u32 module_id;
207	u32 feature_check_api_id;
208
209	module_id = FIELD_GET(MODULE_ID_MASK, api_id);
210
211	/*
212	 * Feature check of APIs belonging to PM, XSEM, and TF-A are handled by calling
213	 * PM_FEATURE_CHECK API. For other modules, call PM_API_FEATURES API.
214	 */
215	if (module_id == PM_MODULE_ID || module_id == XSEM_MODULE_ID || module_id == TF_A_MODULE_ID)
216		feature_check_api_id = PM_FEATURE_CHECK;
217	else
218		feature_check_api_id = PM_API_FEATURES;
219
220	/*
221	 * Feature check of TF-A APIs is done in the TF-A layer and it expects for
222	 * MODULE_ID_MASK bits of SMC's arg[0] to be the same as PM_MODULE_ID.
223	 */
224	if (module_id == TF_A_MODULE_ID)
225		module_id = PM_MODULE_ID;
226
227	smc_arg[0] = PM_SIP_SVC | FIELD_PREP(MODULE_ID_MASK, module_id) | feature_check_api_id;
228	smc_arg[1] = (api_id & API_ID_MASK);
229
230	ret = do_fw_call(ret_payload, 2, smc_arg[0], smc_arg[1]);
231	if (ret)
232		ret = -EOPNOTSUPP;
233	else
234		ret = ret_payload[1];
235
236	return ret;
237}
238
239static int do_feature_check_call(const u32 api_id)
240{
241	int ret;
242	u32 ret_payload[PAYLOAD_ARG_CNT];
243	struct pm_api_feature_data *feature_data;
244
245	/* Check for existing entry in hash table for given api */
246	hash_for_each_possible(pm_api_features_map, feature_data, hentry,
247			       api_id) {
248		if (feature_data->pm_api_id == api_id)
249			return feature_data->feature_status;
250	}
251
252	/* Add new entry if not present */
253	feature_data = kmalloc(sizeof(*feature_data), GFP_ATOMIC);
254	if (!feature_data)
255		return -ENOMEM;
256
257	feature_data->pm_api_id = api_id;
258	ret = __do_feature_check_call(api_id, ret_payload);
259
260	feature_data->feature_status = ret;
261	hash_add(pm_api_features_map, &feature_data->hentry, api_id);
262
263	if (api_id == PM_IOCTL)
264		/* Store supported IOCTL IDs mask */
265		memcpy(ioctl_features, &ret_payload[2], FEATURE_PAYLOAD_SIZE * 4);
266	else if (api_id == PM_QUERY_DATA)
267		/* Store supported QUERY IDs mask */
268		memcpy(query_features, &ret_payload[2], FEATURE_PAYLOAD_SIZE * 4);
269
270	return ret;
271}
272
273/**
274 * zynqmp_pm_feature() - Check whether given feature is supported or not and
275 *			 store supported IOCTL/QUERY ID mask
276 * @api_id:		API ID to check
277 *
278 * Return: Returns status, either success or error+reason
279 */
280int zynqmp_pm_feature(const u32 api_id)
281{
282	int ret;
283
284	if (!feature_check_enabled)
285		return 0;
286
287	ret = do_feature_check_call(api_id);
288
289	return ret;
290}
291EXPORT_SYMBOL_GPL(zynqmp_pm_feature);
292
293/**
294 * zynqmp_pm_is_function_supported() - Check whether given IOCTL/QUERY function
295 *				       is supported or not
296 * @api_id:		PM_IOCTL or PM_QUERY_DATA
297 * @id:			IOCTL or QUERY function IDs
298 *
299 * Return: Returns status, either success or error+reason
300 */
301int zynqmp_pm_is_function_supported(const u32 api_id, const u32 id)
302{
303	int ret;
304	u32 *bit_mask;
305
306	/* Input arguments validation */
307	if (id >= 64 || (api_id != PM_IOCTL && api_id != PM_QUERY_DATA))
308		return -EINVAL;
309
310	/* Check feature check API version */
311	ret = do_feature_check_call(PM_FEATURE_CHECK);
312	if (ret < 0)
313		return ret;
314
315	/* Check if feature check version 2 is supported or not */
316	if ((ret & FIRMWARE_VERSION_MASK) == PM_API_VERSION_2) {
317		/*
318		 * Call feature check for IOCTL/QUERY API to get IOCTL ID or
319		 * QUERY ID feature status.
320		 */
321		ret = do_feature_check_call(api_id);
322		if (ret < 0)
323			return ret;
324
325		bit_mask = (api_id == PM_IOCTL) ? ioctl_features : query_features;
326
327		if ((bit_mask[(id / 32)] & BIT((id % 32))) == 0U)
328			return -EOPNOTSUPP;
329	} else {
330		return -ENODATA;
331	}
332
333	return 0;
334}
335EXPORT_SYMBOL_GPL(zynqmp_pm_is_function_supported);
336
337/**
338 * zynqmp_pm_invoke_fn() - Invoke the system-level platform management layer
339 *			   caller function depending on the configuration
340 * @pm_api_id:		Requested PM-API call
341 * @ret_payload:	Returned value array
342 * @num_args:		Number of arguments to requested PM-API call
343 *
344 * Invoke platform management function for SMC or HVC call, depending on
345 * configuration.
346 * Following SMC Calling Convention (SMCCC) for SMC64:
347 * Pm Function Identifier,
348 * PM_SIP_SVC + PM_API_ID =
349 *	((SMC_TYPE_FAST << FUNCID_TYPE_SHIFT)
350 *	((SMC_64) << FUNCID_CC_SHIFT)
351 *	((SIP_START) << FUNCID_OEN_SHIFT)
352 *	((PM_API_ID) & FUNCID_NUM_MASK))
353 *
354 * PM_SIP_SVC	- Registered ZynqMP SIP Service Call.
355 * PM_API_ID	- Platform Management API ID.
356 *
357 * Return: Returns status, either success or error+reason
358 */
359int zynqmp_pm_invoke_fn(u32 pm_api_id, u32 *ret_payload, u32 num_args, ...)
360{
361	/*
362	 * Added SIP service call Function Identifier
363	 * Make sure to stay in x0 register
364	 */
365	u64 smc_arg[8];
366	int ret, i;
367	va_list arg_list;
368	u32 args[14] = {0};
369
370	if (num_args > 14)
371		return -EINVAL;
372
373	va_start(arg_list, num_args);
374
375	/* Check if feature is supported or not */
376	ret = zynqmp_pm_feature(pm_api_id);
377	if (ret < 0)
378		return ret;
379
380	for (i = 0; i < num_args; i++)
381		args[i] = va_arg(arg_list, u32);
382
383	va_end(arg_list);
384
385	smc_arg[0] = PM_SIP_SVC | pm_api_id;
386	for (i = 0; i < 7; i++)
387		smc_arg[i + 1] = ((u64)args[(i * 2) + 1] << 32) | args[i * 2];
388
389	return do_fw_call(ret_payload, 8, smc_arg[0], smc_arg[1], smc_arg[2], smc_arg[3],
390			  smc_arg[4], smc_arg[5], smc_arg[6], smc_arg[7]);
391}
392
393static u32 pm_api_version;
394static u32 pm_tz_version;
395static u32 pm_family_code;
396static u32 pm_sub_family_code;
397
398int zynqmp_pm_register_sgi(u32 sgi_num, u32 reset)
399{
400	int ret;
401
402	ret = zynqmp_pm_invoke_fn(TF_A_PM_REGISTER_SGI, NULL, 2, sgi_num, reset);
403	if (ret != -EOPNOTSUPP && !ret)
404		return ret;
405
406	/* try old implementation as fallback strategy if above fails */
407	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, IOCTL_REGISTER_SGI, sgi_num, reset);
408}
409
410/**
411 * zynqmp_pm_get_api_version() - Get version number of PMU PM firmware
412 * @version:	Returned version value
413 *
414 * Return: Returns status, either success or error+reason
415 */
416int zynqmp_pm_get_api_version(u32 *version)
417{
418	u32 ret_payload[PAYLOAD_ARG_CNT];
419	int ret;
420
421	if (!version)
422		return -EINVAL;
423
424	/* Check is PM API version already verified */
425	if (pm_api_version > 0) {
426		*version = pm_api_version;
427		return 0;
428	}
429	ret = zynqmp_pm_invoke_fn(PM_GET_API_VERSION, ret_payload, 0);
430	*version = ret_payload[1];
431
432	return ret;
433}
434EXPORT_SYMBOL_GPL(zynqmp_pm_get_api_version);
435
436/**
437 * zynqmp_pm_get_chipid - Get silicon ID registers
438 * @idcode:     IDCODE register
439 * @version:    version register
440 *
441 * Return:      Returns the status of the operation and the idcode and version
442 *              registers in @idcode and @version.
443 */
444int zynqmp_pm_get_chipid(u32 *idcode, u32 *version)
445{
446	u32 ret_payload[PAYLOAD_ARG_CNT];
447	int ret;
448
449	if (!idcode || !version)
450		return -EINVAL;
451
452	ret = zynqmp_pm_invoke_fn(PM_GET_CHIPID, ret_payload, 0);
453	*idcode = ret_payload[1];
454	*version = ret_payload[2];
455
456	return ret;
457}
458EXPORT_SYMBOL_GPL(zynqmp_pm_get_chipid);
459
460/**
461 * zynqmp_pm_get_family_info() - Get family info of platform
462 * @family:	Returned family code value
463 * @subfamily:	Returned sub-family code value
464 *
465 * Return: Returns status, either success or error+reason
466 */
467int zynqmp_pm_get_family_info(u32 *family, u32 *subfamily)
468{
469	u32 ret_payload[PAYLOAD_ARG_CNT];
470	u32 idcode;
471	int ret;
472
473	/* Check is family or sub-family code already received */
474	if (pm_family_code && pm_sub_family_code) {
475		*family = pm_family_code;
476		*subfamily = pm_sub_family_code;
477		return 0;
478	}
479
480	ret = zynqmp_pm_invoke_fn(PM_GET_CHIPID, ret_payload, 0);
481	if (ret < 0)
482		return ret;
483
484	idcode = ret_payload[1];
485	pm_family_code = FIELD_GET(FAMILY_CODE_MASK, idcode);
486	pm_sub_family_code = FIELD_GET(SUB_FAMILY_CODE_MASK, idcode);
487	*family = pm_family_code;
488	*subfamily = pm_sub_family_code;
489
490	return 0;
491}
492EXPORT_SYMBOL_GPL(zynqmp_pm_get_family_info);
493
494/**
495 * zynqmp_pm_get_trustzone_version() - Get secure trustzone firmware version
496 * @version:	Returned version value
497 *
498 * Return: Returns status, either success or error+reason
499 */
500static int zynqmp_pm_get_trustzone_version(u32 *version)
501{
502	u32 ret_payload[PAYLOAD_ARG_CNT];
503	int ret;
504
505	if (!version)
506		return -EINVAL;
507
508	/* Check is PM trustzone version already verified */
509	if (pm_tz_version > 0) {
510		*version = pm_tz_version;
511		return 0;
512	}
513	ret = zynqmp_pm_invoke_fn(PM_GET_TRUSTZONE_VERSION, ret_payload, 0);
514	*version = ret_payload[1];
515
516	return ret;
517}
518
519/**
520 * get_set_conduit_method() - Choose SMC or HVC based communication
521 * @np:		Pointer to the device_node structure
522 *
523 * Use SMC or HVC-based functions to communicate with EL2/EL3.
524 *
525 * Return: Returns 0 on success or error code
526 */
527static int get_set_conduit_method(struct device_node *np)
528{
529	const char *method;
530
531	if (of_property_read_string(np, "method", &method)) {
532		pr_warn("%s missing \"method\" property\n", __func__);
533		return -ENXIO;
534	}
535
536	if (!strcmp("hvc", method)) {
537		do_fw_call = do_fw_call_hvc;
538	} else if (!strcmp("smc", method)) {
539		do_fw_call = do_fw_call_smc;
540	} else {
541		pr_warn("%s Invalid \"method\" property: %s\n",
542			__func__, method);
543		return -EINVAL;
544	}
545
546	return 0;
547}
548
549/**
550 * zynqmp_pm_query_data() - Get query data from firmware
551 * @qdata:	Variable to the zynqmp_pm_query_data structure
552 * @out:	Returned output value
553 *
554 * Return: Returns status, either success or error+reason
555 */
556int zynqmp_pm_query_data(struct zynqmp_pm_query_data qdata, u32 *out)
557{
558	int ret;
559
560	ret = zynqmp_pm_invoke_fn(PM_QUERY_DATA, out, 4, qdata.qid, qdata.arg1, qdata.arg2,
561				  qdata.arg3);
562
563	/*
564	 * For clock name query, all bytes in SMC response are clock name
565	 * characters and return code is always success. For invalid clocks,
566	 * clock name bytes would be zeros.
567	 */
568	return qdata.qid == PM_QID_CLOCK_GET_NAME ? 0 : ret;
569}
570EXPORT_SYMBOL_GPL(zynqmp_pm_query_data);
571
572/**
573 * zynqmp_pm_clock_enable() - Enable the clock for given id
574 * @clock_id:	ID of the clock to be enabled
575 *
576 * This function is used by master to enable the clock
577 * including peripherals and PLL clocks.
578 *
579 * Return: Returns status, either success or error+reason
580 */
581int zynqmp_pm_clock_enable(u32 clock_id)
582{
583	return zynqmp_pm_invoke_fn(PM_CLOCK_ENABLE, NULL, 1, clock_id);
584}
585EXPORT_SYMBOL_GPL(zynqmp_pm_clock_enable);
586
587/**
588 * zynqmp_pm_clock_disable() - Disable the clock for given id
589 * @clock_id:	ID of the clock to be disable
590 *
591 * This function is used by master to disable the clock
592 * including peripherals and PLL clocks.
593 *
594 * Return: Returns status, either success or error+reason
595 */
596int zynqmp_pm_clock_disable(u32 clock_id)
597{
598	return zynqmp_pm_invoke_fn(PM_CLOCK_DISABLE, NULL, 1, clock_id);
599}
600EXPORT_SYMBOL_GPL(zynqmp_pm_clock_disable);
601
602/**
603 * zynqmp_pm_clock_getstate() - Get the clock state for given id
604 * @clock_id:	ID of the clock to be queried
605 * @state:	1/0 (Enabled/Disabled)
606 *
607 * This function is used by master to get the state of clock
608 * including peripherals and PLL clocks.
609 *
610 * Return: Returns status, either success or error+reason
611 */
612int zynqmp_pm_clock_getstate(u32 clock_id, u32 *state)
613{
614	u32 ret_payload[PAYLOAD_ARG_CNT];
615	int ret;
616
617	ret = zynqmp_pm_invoke_fn(PM_CLOCK_GETSTATE, ret_payload, 1, clock_id);
618	*state = ret_payload[1];
619
620	return ret;
621}
622EXPORT_SYMBOL_GPL(zynqmp_pm_clock_getstate);
623
624/**
625 * zynqmp_pm_clock_setdivider() - Set the clock divider for given id
626 * @clock_id:	ID of the clock
627 * @divider:	divider value
628 *
629 * This function is used by master to set divider for any clock
630 * to achieve desired rate.
631 *
632 * Return: Returns status, either success or error+reason
633 */
634int zynqmp_pm_clock_setdivider(u32 clock_id, u32 divider)
635{
636	return zynqmp_pm_invoke_fn(PM_CLOCK_SETDIVIDER, NULL, 2, clock_id, divider);
637}
638EXPORT_SYMBOL_GPL(zynqmp_pm_clock_setdivider);
639
640/**
641 * zynqmp_pm_clock_getdivider() - Get the clock divider for given id
642 * @clock_id:	ID of the clock
643 * @divider:	divider value
644 *
645 * This function is used by master to get divider values
646 * for any clock.
647 *
648 * Return: Returns status, either success or error+reason
649 */
650int zynqmp_pm_clock_getdivider(u32 clock_id, u32 *divider)
651{
652	u32 ret_payload[PAYLOAD_ARG_CNT];
653	int ret;
654
655	ret = zynqmp_pm_invoke_fn(PM_CLOCK_GETDIVIDER, ret_payload, 1, clock_id);
656	*divider = ret_payload[1];
657
658	return ret;
659}
660EXPORT_SYMBOL_GPL(zynqmp_pm_clock_getdivider);
661
662/**
663 * zynqmp_pm_clock_setparent() - Set the clock parent for given id
664 * @clock_id:	ID of the clock
665 * @parent_id:	parent id
666 *
667 * This function is used by master to set parent for any clock.
668 *
669 * Return: Returns status, either success or error+reason
670 */
671int zynqmp_pm_clock_setparent(u32 clock_id, u32 parent_id)
672{
673	return zynqmp_pm_invoke_fn(PM_CLOCK_SETPARENT, NULL, 2, clock_id, parent_id);
674}
675EXPORT_SYMBOL_GPL(zynqmp_pm_clock_setparent);
676
677/**
678 * zynqmp_pm_clock_getparent() - Get the clock parent for given id
679 * @clock_id:	ID of the clock
680 * @parent_id:	parent id
681 *
682 * This function is used by master to get parent index
683 * for any clock.
684 *
685 * Return: Returns status, either success or error+reason
686 */
687int zynqmp_pm_clock_getparent(u32 clock_id, u32 *parent_id)
688{
689	u32 ret_payload[PAYLOAD_ARG_CNT];
690	int ret;
691
692	ret = zynqmp_pm_invoke_fn(PM_CLOCK_GETPARENT, ret_payload, 1, clock_id);
693	*parent_id = ret_payload[1];
694
695	return ret;
696}
697EXPORT_SYMBOL_GPL(zynqmp_pm_clock_getparent);
698
699/**
700 * zynqmp_pm_set_pll_frac_mode() - PM API for set PLL mode
701 *
702 * @clk_id:	PLL clock ID
703 * @mode:	PLL mode (PLL_MODE_FRAC/PLL_MODE_INT)
704 *
705 * This function sets PLL mode
706 *
707 * Return: Returns status, either success or error+reason
708 */
709int zynqmp_pm_set_pll_frac_mode(u32 clk_id, u32 mode)
710{
711	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_PLL_FRAC_MODE, clk_id, mode);
712}
713EXPORT_SYMBOL_GPL(zynqmp_pm_set_pll_frac_mode);
714
715/**
716 * zynqmp_pm_get_pll_frac_mode() - PM API for get PLL mode
717 *
718 * @clk_id:	PLL clock ID
719 * @mode:	PLL mode
720 *
721 * This function return current PLL mode
722 *
723 * Return: Returns status, either success or error+reason
724 */
725int zynqmp_pm_get_pll_frac_mode(u32 clk_id, u32 *mode)
726{
727	return zynqmp_pm_invoke_fn(PM_IOCTL, mode, 3, 0, IOCTL_GET_PLL_FRAC_MODE, clk_id);
728}
729EXPORT_SYMBOL_GPL(zynqmp_pm_get_pll_frac_mode);
730
731/**
732 * zynqmp_pm_set_pll_frac_data() - PM API for setting pll fraction data
733 *
734 * @clk_id:	PLL clock ID
735 * @data:	fraction data
736 *
737 * This function sets fraction data.
738 * It is valid for fraction mode only.
739 *
740 * Return: Returns status, either success or error+reason
741 */
742int zynqmp_pm_set_pll_frac_data(u32 clk_id, u32 data)
743{
744	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_PLL_FRAC_DATA, clk_id, data);
745}
746EXPORT_SYMBOL_GPL(zynqmp_pm_set_pll_frac_data);
747
748/**
749 * zynqmp_pm_get_pll_frac_data() - PM API for getting pll fraction data
750 *
751 * @clk_id:	PLL clock ID
752 * @data:	fraction data
753 *
754 * This function returns fraction data value.
755 *
756 * Return: Returns status, either success or error+reason
757 */
758int zynqmp_pm_get_pll_frac_data(u32 clk_id, u32 *data)
759{
760	return zynqmp_pm_invoke_fn(PM_IOCTL, data, 3, 0, IOCTL_GET_PLL_FRAC_DATA, clk_id);
761}
762EXPORT_SYMBOL_GPL(zynqmp_pm_get_pll_frac_data);
763
764/**
765 * zynqmp_pm_set_sd_tapdelay() -  Set tap delay for the SD device
766 *
767 * @node_id:	Node ID of the device
768 * @type:	Type of tap delay to set (input/output)
769 * @value:	Value to set fot the tap delay
770 *
771 * This function sets input/output tap delay for the SD device.
772 *
773 * Return:	Returns status, either success or error+reason
774 */
775int zynqmp_pm_set_sd_tapdelay(u32 node_id, u32 type, u32 value)
776{
777	u32 reg = (type == PM_TAPDELAY_INPUT) ? SD_ITAPDLY : SD_OTAPDLYSEL;
778	u32 mask = (node_id == NODE_SD_0) ? GENMASK(15, 0) : GENMASK(31, 16);
779
780	if (value) {
781		return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, node_id, IOCTL_SET_SD_TAPDELAY, type,
782					   value);
783	}
784
785	/*
786	 * Work around completely misdesigned firmware API on Xilinx ZynqMP.
787	 * The IOCTL_SET_SD_TAPDELAY firmware call allows the caller to only
788	 * ever set IOU_SLCR SD_ITAPDLY Register SD0_ITAPDLYENA/SD1_ITAPDLYENA
789	 * bits, but there is no matching call to clear those bits. If those
790	 * bits are not cleared, SDMMC tuning may fail.
791	 *
792	 * Luckily, there are PM_MMIO_READ/PM_MMIO_WRITE calls which seem to
793	 * allow complete unrestricted access to all address space, including
794	 * IOU_SLCR SD_ITAPDLY Register and all the other registers, access
795	 * to which was supposed to be protected by the current firmware API.
796	 *
797	 * Use PM_MMIO_READ/PM_MMIO_WRITE to re-implement the missing counter
798	 * part of IOCTL_SET_SD_TAPDELAY which clears SDx_ITAPDLYENA bits.
799	 */
800	return zynqmp_pm_invoke_fn(PM_MMIO_WRITE, NULL, 2, reg, mask);
801}
802EXPORT_SYMBOL_GPL(zynqmp_pm_set_sd_tapdelay);
803
804/**
805 * zynqmp_pm_sd_dll_reset() - Reset DLL logic
806 *
807 * @node_id:	Node ID of the device
808 * @type:	Reset type
809 *
810 * This function resets DLL logic for the SD device.
811 *
812 * Return:	Returns status, either success or error+reason
813 */
814int zynqmp_pm_sd_dll_reset(u32 node_id, u32 type)
815{
816	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, node_id, IOCTL_SD_DLL_RESET, type);
817}
818EXPORT_SYMBOL_GPL(zynqmp_pm_sd_dll_reset);
819
820/**
821 * zynqmp_pm_ospi_mux_select() - OSPI Mux selection
822 *
823 * @dev_id:	Device Id of the OSPI device.
824 * @select:	OSPI Mux select value.
825 *
826 * This function select the OSPI Mux.
827 *
828 * Return:	Returns status, either success or error+reason
829 */
830int zynqmp_pm_ospi_mux_select(u32 dev_id, u32 select)
831{
832	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, dev_id, IOCTL_OSPI_MUX_SELECT, select);
833}
834EXPORT_SYMBOL_GPL(zynqmp_pm_ospi_mux_select);
835
836/**
837 * zynqmp_pm_write_ggs() - PM API for writing global general storage (ggs)
838 * @index:	GGS register index
839 * @value:	Register value to be written
840 *
841 * This function writes value to GGS register.
842 *
843 * Return:      Returns status, either success or error+reason
844 */
845int zynqmp_pm_write_ggs(u32 index, u32 value)
846{
847	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_WRITE_GGS, index, value);
848}
849EXPORT_SYMBOL_GPL(zynqmp_pm_write_ggs);
850
851/**
852 * zynqmp_pm_read_ggs() - PM API for reading global general storage (ggs)
853 * @index:	GGS register index
854 * @value:	Register value to be written
855 *
856 * This function returns GGS register value.
857 *
858 * Return:	Returns status, either success or error+reason
859 */
860int zynqmp_pm_read_ggs(u32 index, u32 *value)
861{
862	return zynqmp_pm_invoke_fn(PM_IOCTL, value, 3, 0, IOCTL_READ_GGS, index);
863}
864EXPORT_SYMBOL_GPL(zynqmp_pm_read_ggs);
865
866/**
867 * zynqmp_pm_write_pggs() - PM API for writing persistent global general
868 *			     storage (pggs)
869 * @index:	PGGS register index
870 * @value:	Register value to be written
871 *
872 * This function writes value to PGGS register.
873 *
874 * Return:	Returns status, either success or error+reason
875 */
876int zynqmp_pm_write_pggs(u32 index, u32 value)
877{
878	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_WRITE_PGGS, index, value);
879}
880EXPORT_SYMBOL_GPL(zynqmp_pm_write_pggs);
881
882/**
883 * zynqmp_pm_read_pggs() - PM API for reading persistent global general
884 *			     storage (pggs)
885 * @index:	PGGS register index
886 * @value:	Register value to be written
887 *
888 * This function returns PGGS register value.
889 *
890 * Return:	Returns status, either success or error+reason
891 */
892int zynqmp_pm_read_pggs(u32 index, u32 *value)
893{
894	return zynqmp_pm_invoke_fn(PM_IOCTL, value, 3, 0, IOCTL_READ_PGGS, index);
895}
896EXPORT_SYMBOL_GPL(zynqmp_pm_read_pggs);
897
898int zynqmp_pm_set_tapdelay_bypass(u32 index, u32 value)
899{
900	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_TAPDELAY_BYPASS, index, value);
901}
902EXPORT_SYMBOL_GPL(zynqmp_pm_set_tapdelay_bypass);
903
904/**
905 * zynqmp_pm_set_boot_health_status() - PM API for setting healthy boot status
906 * @value:	Status value to be written
907 *
908 * This function sets healthy bit value to indicate boot health status
909 * to firmware.
910 *
911 * Return:	Returns status, either success or error+reason
912 */
913int zynqmp_pm_set_boot_health_status(u32 value)
914{
915	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, 0, IOCTL_SET_BOOT_HEALTH_STATUS, value);
916}
917
918/**
919 * zynqmp_pm_reset_assert - Request setting of reset (1 - assert, 0 - release)
920 * @reset:		Reset to be configured
921 * @assert_flag:	Flag stating should reset be asserted (1) or
922 *			released (0)
923 *
924 * Return: Returns status, either success or error+reason
925 */
926int zynqmp_pm_reset_assert(const enum zynqmp_pm_reset reset,
927			   const enum zynqmp_pm_reset_action assert_flag)
928{
929	return zynqmp_pm_invoke_fn(PM_RESET_ASSERT, NULL, 2, reset, assert_flag);
930}
931EXPORT_SYMBOL_GPL(zynqmp_pm_reset_assert);
932
933/**
934 * zynqmp_pm_reset_get_status - Get status of the reset
935 * @reset:      Reset whose status should be returned
936 * @status:     Returned status
937 *
938 * Return: Returns status, either success or error+reason
939 */
940int zynqmp_pm_reset_get_status(const enum zynqmp_pm_reset reset, u32 *status)
941{
942	u32 ret_payload[PAYLOAD_ARG_CNT];
943	int ret;
944
945	if (!status)
946		return -EINVAL;
947
948	ret = zynqmp_pm_invoke_fn(PM_RESET_GET_STATUS, ret_payload, 1, reset);
949	*status = ret_payload[1];
950
951	return ret;
952}
953EXPORT_SYMBOL_GPL(zynqmp_pm_reset_get_status);
954
955/**
956 * zynqmp_pm_fpga_load - Perform the fpga load
957 * @address:	Address to write to
958 * @size:	pl bitstream size
959 * @flags:	Bitstream type
960 *	-XILINX_ZYNQMP_PM_FPGA_FULL:  FPGA full reconfiguration
961 *	-XILINX_ZYNQMP_PM_FPGA_PARTIAL: FPGA partial reconfiguration
962 *
963 * This function provides access to pmufw. To transfer
964 * the required bitstream into PL.
965 *
966 * Return: Returns status, either success or error+reason
967 */
968int zynqmp_pm_fpga_load(const u64 address, const u32 size, const u32 flags)
969{
970	u32 ret_payload[PAYLOAD_ARG_CNT];
971	int ret;
972
973	ret = zynqmp_pm_invoke_fn(PM_FPGA_LOAD, ret_payload, 4, lower_32_bits(address),
974				  upper_32_bits(address), size, flags);
975	if (ret_payload[0])
976		return -ret_payload[0];
977
978	return ret;
979}
980EXPORT_SYMBOL_GPL(zynqmp_pm_fpga_load);
981
982/**
983 * zynqmp_pm_fpga_get_status - Read value from PCAP status register
984 * @value: Value to read
985 *
986 * This function provides access to the pmufw to get the PCAP
987 * status
988 *
989 * Return: Returns status, either success or error+reason
990 */
991int zynqmp_pm_fpga_get_status(u32 *value)
992{
993	u32 ret_payload[PAYLOAD_ARG_CNT];
994	int ret;
995
996	if (!value)
997		return -EINVAL;
998
999	ret = zynqmp_pm_invoke_fn(PM_FPGA_GET_STATUS, ret_payload, 0);
1000	*value = ret_payload[1];
1001
1002	return ret;
1003}
1004EXPORT_SYMBOL_GPL(zynqmp_pm_fpga_get_status);
1005
1006/**
1007 * zynqmp_pm_fpga_get_config_status - Get the FPGA configuration status.
1008 * @value: Buffer to store FPGA configuration status.
1009 *
1010 * This function provides access to the pmufw to get the FPGA configuration
1011 * status
1012 *
1013 * Return: 0 on success, a negative value on error
1014 */
1015int zynqmp_pm_fpga_get_config_status(u32 *value)
1016{
1017	u32 ret_payload[PAYLOAD_ARG_CNT];
1018	u32 buf, lower_addr, upper_addr;
1019	int ret;
1020
1021	if (!value)
1022		return -EINVAL;
1023
1024	lower_addr = lower_32_bits((u64)&buf);
1025	upper_addr = upper_32_bits((u64)&buf);
1026
1027	ret = zynqmp_pm_invoke_fn(PM_FPGA_READ, ret_payload, 4,
1028				  XILINX_ZYNQMP_PM_FPGA_CONFIG_STAT_OFFSET, lower_addr, upper_addr,
1029				  XILINX_ZYNQMP_PM_FPGA_READ_CONFIG_REG);
1030
1031	*value = ret_payload[1];
1032
1033	return ret;
1034}
1035EXPORT_SYMBOL_GPL(zynqmp_pm_fpga_get_config_status);
1036
1037/**
1038 * zynqmp_pm_pinctrl_request - Request Pin from firmware
1039 * @pin: Pin number to request
1040 *
1041 * This function requests pin from firmware.
1042 *
1043 * Return: Returns status, either success or error+reason.
1044 */
1045int zynqmp_pm_pinctrl_request(const u32 pin)
1046{
1047	return zynqmp_pm_invoke_fn(PM_PINCTRL_REQUEST, NULL, 1, pin);
1048}
1049EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_request);
1050
1051/**
1052 * zynqmp_pm_pinctrl_release - Inform firmware that Pin control is released
1053 * @pin: Pin number to release
1054 *
1055 * This function release pin from firmware.
1056 *
1057 * Return: Returns status, either success or error+reason.
1058 */
1059int zynqmp_pm_pinctrl_release(const u32 pin)
1060{
1061	return zynqmp_pm_invoke_fn(PM_PINCTRL_RELEASE, NULL, 1, pin);
1062}
1063EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_release);
1064
1065/**
1066 * zynqmp_pm_pinctrl_set_function - Set requested function for the pin
1067 * @pin: Pin number
1068 * @id: Function ID to set
1069 *
1070 * This function sets requested function for the given pin.
1071 *
1072 * Return: Returns status, either success or error+reason.
1073 */
1074int zynqmp_pm_pinctrl_set_function(const u32 pin, const u32 id)
1075{
1076	return zynqmp_pm_invoke_fn(PM_PINCTRL_SET_FUNCTION, NULL, 2, pin, id);
1077}
1078EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_set_function);
1079
1080/**
1081 * zynqmp_pm_pinctrl_get_config - Get configuration parameter for the pin
1082 * @pin: Pin number
1083 * @param: Parameter to get
1084 * @value: Buffer to store parameter value
1085 *
1086 * This function gets requested configuration parameter for the given pin.
1087 *
1088 * Return: Returns status, either success or error+reason.
1089 */
1090int zynqmp_pm_pinctrl_get_config(const u32 pin, const u32 param,
1091				 u32 *value)
1092{
1093	u32 ret_payload[PAYLOAD_ARG_CNT];
1094	int ret;
1095
1096	if (!value)
1097		return -EINVAL;
1098
1099	ret = zynqmp_pm_invoke_fn(PM_PINCTRL_CONFIG_PARAM_GET, ret_payload, 2, pin, param);
1100	*value = ret_payload[1];
1101
1102	return ret;
1103}
1104EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_get_config);
1105
1106/**
1107 * zynqmp_pm_pinctrl_set_config - Set configuration parameter for the pin
1108 * @pin: Pin number
1109 * @param: Parameter to set
1110 * @value: Parameter value to set
1111 *
1112 * This function sets requested configuration parameter for the given pin.
1113 *
1114 * Return: Returns status, either success or error+reason.
1115 */
1116int zynqmp_pm_pinctrl_set_config(const u32 pin, const u32 param,
1117				 u32 value)
1118{
1119	int ret;
1120
1121	if (pm_family_code == ZYNQMP_FAMILY_CODE &&
1122	    param == PM_PINCTRL_CONFIG_TRI_STATE) {
1123		ret = zynqmp_pm_feature(PM_PINCTRL_CONFIG_PARAM_SET);
1124		if (ret < PM_PINCTRL_PARAM_SET_VERSION)
1125			return -EOPNOTSUPP;
1126	}
1127
1128	return zynqmp_pm_invoke_fn(PM_PINCTRL_CONFIG_PARAM_SET, NULL, 3, pin, param, value);
1129}
1130EXPORT_SYMBOL_GPL(zynqmp_pm_pinctrl_set_config);
1131
1132/**
1133 * zynqmp_pm_bootmode_read() - PM Config API for read bootpin status
1134 * @ps_mode: Returned output value of ps_mode
1135 *
1136 * This API function is to be used for notify the power management controller
1137 * to read bootpin status.
1138 *
1139 * Return: status, either success or error+reason
1140 */
1141unsigned int zynqmp_pm_bootmode_read(u32 *ps_mode)
1142{
1143	unsigned int ret;
1144	u32 ret_payload[PAYLOAD_ARG_CNT];
1145
1146	ret = zynqmp_pm_invoke_fn(PM_MMIO_READ, ret_payload, 1, CRL_APB_BOOT_PIN_CTRL);
1147
1148	*ps_mode = ret_payload[1];
1149
1150	return ret;
1151}
1152EXPORT_SYMBOL_GPL(zynqmp_pm_bootmode_read);
1153
1154/**
1155 * zynqmp_pm_bootmode_write() - PM Config API for Configure bootpin
1156 * @ps_mode: Value to be written to the bootpin ctrl register
1157 *
1158 * This API function is to be used for notify the power management controller
1159 * to configure bootpin.
1160 *
1161 * Return: Returns status, either success or error+reason
1162 */
1163int zynqmp_pm_bootmode_write(u32 ps_mode)
1164{
1165	return zynqmp_pm_invoke_fn(PM_MMIO_WRITE, NULL, 3, CRL_APB_BOOT_PIN_CTRL,
1166				   CRL_APB_BOOTPIN_CTRL_MASK, ps_mode);
1167}
1168EXPORT_SYMBOL_GPL(zynqmp_pm_bootmode_write);
1169
1170/**
1171 * zynqmp_pm_init_finalize() - PM call to inform firmware that the caller
1172 *			       master has initialized its own power management
1173 *
1174 * Return: Returns status, either success or error+reason
1175 *
1176 * This API function is to be used for notify the power management controller
1177 * about the completed power management initialization.
1178 */
1179int zynqmp_pm_init_finalize(void)
1180{
1181	return zynqmp_pm_invoke_fn(PM_PM_INIT_FINALIZE, NULL, 0);
1182}
1183EXPORT_SYMBOL_GPL(zynqmp_pm_init_finalize);
1184
1185/**
1186 * zynqmp_pm_set_suspend_mode()	- Set system suspend mode
1187 * @mode:	Mode to set for system suspend
1188 *
1189 * This API function is used to set mode of system suspend.
1190 *
1191 * Return: Returns status, either success or error+reason
1192 */
1193int zynqmp_pm_set_suspend_mode(u32 mode)
1194{
1195	return zynqmp_pm_invoke_fn(PM_SET_SUSPEND_MODE, NULL, 1, mode);
1196}
1197EXPORT_SYMBOL_GPL(zynqmp_pm_set_suspend_mode);
1198
1199/**
1200 * zynqmp_pm_request_node() - Request a node with specific capabilities
1201 * @node:		Node ID of the slave
1202 * @capabilities:	Requested capabilities of the slave
1203 * @qos:		Quality of service (not supported)
1204 * @ack:		Flag to specify whether acknowledge is requested
1205 *
1206 * This function is used by master to request particular node from firmware.
1207 * Every master must request node before using it.
1208 *
1209 * Return: Returns status, either success or error+reason
1210 */
1211int zynqmp_pm_request_node(const u32 node, const u32 capabilities,
1212			   const u32 qos, const enum zynqmp_pm_request_ack ack)
1213{
1214	return zynqmp_pm_invoke_fn(PM_REQUEST_NODE, NULL, 4, node, capabilities, qos, ack);
1215}
1216EXPORT_SYMBOL_GPL(zynqmp_pm_request_node);
1217
1218/**
1219 * zynqmp_pm_release_node() - Release a node
1220 * @node:	Node ID of the slave
1221 *
1222 * This function is used by master to inform firmware that master
1223 * has released node. Once released, master must not use that node
1224 * without re-request.
1225 *
1226 * Return: Returns status, either success or error+reason
1227 */
1228int zynqmp_pm_release_node(const u32 node)
1229{
1230	return zynqmp_pm_invoke_fn(PM_RELEASE_NODE, NULL, 1, node);
1231}
1232EXPORT_SYMBOL_GPL(zynqmp_pm_release_node);
1233
1234/**
1235 * zynqmp_pm_get_rpu_mode() - Get RPU mode
1236 * @node_id:	Node ID of the device
1237 * @rpu_mode:	return by reference value
1238 *		either split or lockstep
1239 *
1240 * Return:	return 0 on success or error+reason.
1241 *		if success, then  rpu_mode will be set
1242 *		to current rpu mode.
1243 */
1244int zynqmp_pm_get_rpu_mode(u32 node_id, enum rpu_oper_mode *rpu_mode)
1245{
1246	u32 ret_payload[PAYLOAD_ARG_CNT];
1247	int ret;
1248
1249	ret = zynqmp_pm_invoke_fn(PM_IOCTL, ret_payload, 2, node_id, IOCTL_GET_RPU_OPER_MODE);
1250
1251	/* only set rpu_mode if no error */
1252	if (ret == XST_PM_SUCCESS)
1253		*rpu_mode = ret_payload[0];
1254
1255	return ret;
1256}
1257EXPORT_SYMBOL_GPL(zynqmp_pm_get_rpu_mode);
1258
1259/**
1260 * zynqmp_pm_set_rpu_mode() - Set RPU mode
1261 * @node_id:	Node ID of the device
1262 * @rpu_mode:	Argument 1 to requested IOCTL call. either split or lockstep
1263 *
1264 *		This function is used to set RPU mode to split or
1265 *		lockstep
1266 *
1267 * Return:	Returns status, either success or error+reason
1268 */
1269int zynqmp_pm_set_rpu_mode(u32 node_id, enum rpu_oper_mode rpu_mode)
1270{
1271	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, node_id, IOCTL_SET_RPU_OPER_MODE,
1272				   (u32)rpu_mode);
1273}
1274EXPORT_SYMBOL_GPL(zynqmp_pm_set_rpu_mode);
1275
1276/**
1277 * zynqmp_pm_set_tcm_config - configure TCM
1278 * @node_id:	Firmware specific TCM subsystem ID
1279 * @tcm_mode:	Argument 1 to requested IOCTL call
1280 *              either PM_RPU_TCM_COMB or PM_RPU_TCM_SPLIT
1281 *
1282 * This function is used to set RPU mode to split or combined
1283 *
1284 * Return: status: 0 for success, else failure
1285 */
1286int zynqmp_pm_set_tcm_config(u32 node_id, enum rpu_tcm_comb tcm_mode)
1287{
1288	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 3, node_id, IOCTL_TCM_COMB_CONFIG,
1289				   (u32)tcm_mode);
1290}
1291EXPORT_SYMBOL_GPL(zynqmp_pm_set_tcm_config);
1292
1293/**
1294 * zynqmp_pm_force_pwrdwn - PM call to request for another PU or subsystem to
1295 *             be powered down forcefully
1296 * @node:  Node ID of the targeted PU or subsystem
1297 * @ack:   Flag to specify whether acknowledge is requested
1298 *
1299 * Return: status, either success or error+reason
1300 */
1301int zynqmp_pm_force_pwrdwn(const u32 node,
1302			   const enum zynqmp_pm_request_ack ack)
1303{
1304	return zynqmp_pm_invoke_fn(PM_FORCE_POWERDOWN, NULL, 2, node, ack);
1305}
1306EXPORT_SYMBOL_GPL(zynqmp_pm_force_pwrdwn);
1307
1308/**
1309 * zynqmp_pm_request_wake - PM call to wake up selected master or subsystem
1310 * @node:  Node ID of the master or subsystem
1311 * @set_addr:  Specifies whether the address argument is relevant
1312 * @address:   Address from which to resume when woken up
1313 * @ack:   Flag to specify whether acknowledge requested
1314 *
1315 * Return: status, either success or error+reason
1316 */
1317int zynqmp_pm_request_wake(const u32 node,
1318			   const bool set_addr,
1319			   const u64 address,
1320			   const enum zynqmp_pm_request_ack ack)
1321{
1322	/* set_addr flag is encoded into 1st bit of address */
1323	return zynqmp_pm_invoke_fn(PM_REQUEST_WAKEUP, NULL, 4, node, address | set_addr,
1324				   address >> 32, ack);
1325}
1326EXPORT_SYMBOL_GPL(zynqmp_pm_request_wake);
1327
1328/**
1329 * zynqmp_pm_set_requirement() - PM call to set requirement for PM slaves
1330 * @node:		Node ID of the slave
1331 * @capabilities:	Requested capabilities of the slave
1332 * @qos:		Quality of service (not supported)
1333 * @ack:		Flag to specify whether acknowledge is requested
1334 *
1335 * This API function is to be used for slaves a PU already has requested
1336 * to change its capabilities.
1337 *
1338 * Return: Returns status, either success or error+reason
1339 */
1340int zynqmp_pm_set_requirement(const u32 node, const u32 capabilities,
1341			      const u32 qos,
1342			      const enum zynqmp_pm_request_ack ack)
1343{
1344	return zynqmp_pm_invoke_fn(PM_SET_REQUIREMENT, NULL, 4, node, capabilities, qos, ack);
1345}
1346EXPORT_SYMBOL_GPL(zynqmp_pm_set_requirement);
1347
1348/**
1349 * zynqmp_pm_load_pdi - Load and process PDI
1350 * @src:	Source device where PDI is located
1351 * @address:	PDI src address
1352 *
1353 * This function provides support to load PDI from linux
1354 *
1355 * Return: Returns status, either success or error+reason
1356 */
1357int zynqmp_pm_load_pdi(const u32 src, const u64 address)
1358{
1359	return zynqmp_pm_invoke_fn(PM_LOAD_PDI, NULL, 3, src, lower_32_bits(address),
1360				   upper_32_bits(address));
1361}
1362EXPORT_SYMBOL_GPL(zynqmp_pm_load_pdi);
1363
1364/**
1365 * zynqmp_pm_aes_engine - Access AES hardware to encrypt/decrypt the data using
1366 * AES-GCM core.
1367 * @address:	Address of the AesParams structure.
1368 * @out:	Returned output value
1369 *
1370 * Return:	Returns status, either success or error code.
1371 */
1372int zynqmp_pm_aes_engine(const u64 address, u32 *out)
1373{
1374	u32 ret_payload[PAYLOAD_ARG_CNT];
1375	int ret;
1376
1377	if (!out)
1378		return -EINVAL;
1379
1380	ret = zynqmp_pm_invoke_fn(PM_SECURE_AES, ret_payload, 2, upper_32_bits(address),
1381				  lower_32_bits(address));
1382	*out = ret_payload[1];
1383
1384	return ret;
1385}
1386EXPORT_SYMBOL_GPL(zynqmp_pm_aes_engine);
1387
1388/**
1389 * zynqmp_pm_efuse_access - Provides access to efuse memory.
1390 * @address:	Address of the efuse params structure
1391 * @out:		Returned output value
1392 *
1393 * Return:	Returns status, either success or error code.
1394 */
1395int zynqmp_pm_efuse_access(const u64 address, u32 *out)
1396{
1397	u32 ret_payload[PAYLOAD_ARG_CNT];
1398	int ret;
1399
1400	if (!out)
1401		return -EINVAL;
1402
1403	ret = zynqmp_pm_invoke_fn(PM_EFUSE_ACCESS, ret_payload, 2,
1404				  upper_32_bits(address),
1405				  lower_32_bits(address));
1406	*out = ret_payload[1];
1407
1408	return ret;
1409}
1410EXPORT_SYMBOL_GPL(zynqmp_pm_efuse_access);
1411
1412/**
1413 * zynqmp_pm_sha_hash - Access the SHA engine to calculate the hash
1414 * @address:	Address of the data/ Address of output buffer where
1415 *		hash should be stored.
1416 * @size:	Size of the data.
1417 * @flags:
1418 *	BIT(0) - for initializing csudma driver and SHA3(Here address
1419 *		 and size inputs can be NULL).
1420 *	BIT(1) - to call Sha3_Update API which can be called multiple
1421 *		 times when data is not contiguous.
1422 *	BIT(2) - to get final hash of the whole updated data.
1423 *		 Hash will be overwritten at provided address with
1424 *		 48 bytes.
1425 *
1426 * Return:	Returns status, either success or error code.
1427 */
1428int zynqmp_pm_sha_hash(const u64 address, const u32 size, const u32 flags)
1429{
1430	u32 lower_addr = lower_32_bits(address);
1431	u32 upper_addr = upper_32_bits(address);
1432
1433	return zynqmp_pm_invoke_fn(PM_SECURE_SHA, NULL, 4, upper_addr, lower_addr, size, flags);
1434}
1435EXPORT_SYMBOL_GPL(zynqmp_pm_sha_hash);
1436
1437/**
1438 * zynqmp_pm_register_notifier() - PM API for register a subsystem
1439 *                                to be notified about specific
1440 *                                event/error.
1441 * @node:	Node ID to which the event is related.
1442 * @event:	Event Mask of Error events for which wants to get notified.
1443 * @wake:	Wake subsystem upon capturing the event if value 1
1444 * @enable:	Enable the registration for value 1, disable for value 0
1445 *
1446 * This function is used to register/un-register for particular node-event
1447 * combination in firmware.
1448 *
1449 * Return: Returns status, either success or error+reason
1450 */
1451
1452int zynqmp_pm_register_notifier(const u32 node, const u32 event,
1453				const u32 wake, const u32 enable)
1454{
1455	return zynqmp_pm_invoke_fn(PM_REGISTER_NOTIFIER, NULL, 4, node, event, wake, enable);
1456}
1457EXPORT_SYMBOL_GPL(zynqmp_pm_register_notifier);
1458
1459/**
1460 * zynqmp_pm_system_shutdown - PM call to request a system shutdown or restart
1461 * @type:	Shutdown or restart? 0 for shutdown, 1 for restart
1462 * @subtype:	Specifies which system should be restarted or shut down
1463 *
1464 * Return:	Returns status, either success or error+reason
1465 */
1466int zynqmp_pm_system_shutdown(const u32 type, const u32 subtype)
1467{
1468	return zynqmp_pm_invoke_fn(PM_SYSTEM_SHUTDOWN, NULL, 2, type, subtype);
1469}
1470
1471/**
1472 * zynqmp_pm_set_feature_config - PM call to request IOCTL for feature config
1473 * @id:         The config ID of the feature to be configured
1474 * @value:      The config value of the feature to be configured
1475 *
1476 * Return:      Returns 0 on success or error value on failure.
1477 */
1478int zynqmp_pm_set_feature_config(enum pm_feature_config_id id, u32 value)
1479{
1480	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, 0, IOCTL_SET_FEATURE_CONFIG, id, value);
1481}
1482
1483/**
1484 * zynqmp_pm_get_feature_config - PM call to get value of configured feature
1485 * @id:         The config id of the feature to be queried
1486 * @payload:    Returned value array
1487 *
1488 * Return:      Returns 0 on success or error value on failure.
1489 */
1490int zynqmp_pm_get_feature_config(enum pm_feature_config_id id,
1491				 u32 *payload)
1492{
1493	return zynqmp_pm_invoke_fn(PM_IOCTL, payload, 3, 0, IOCTL_GET_FEATURE_CONFIG, id);
1494}
1495
1496/**
1497 * zynqmp_pm_set_sd_config - PM call to set value of SD config registers
1498 * @node:	SD node ID
1499 * @config:	The config type of SD registers
1500 * @value:	Value to be set
1501 *
1502 * Return:	Returns 0 on success or error value on failure.
1503 */
1504int zynqmp_pm_set_sd_config(u32 node, enum pm_sd_config_type config, u32 value)
1505{
1506	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, node, IOCTL_SET_SD_CONFIG, config, value);
1507}
1508EXPORT_SYMBOL_GPL(zynqmp_pm_set_sd_config);
1509
1510/**
1511 * zynqmp_pm_set_gem_config - PM call to set value of GEM config registers
1512 * @node:	GEM node ID
1513 * @config:	The config type of GEM registers
1514 * @value:	Value to be set
1515 *
1516 * Return:	Returns 0 on success or error value on failure.
1517 */
1518int zynqmp_pm_set_gem_config(u32 node, enum pm_gem_config_type config,
1519			     u32 value)
1520{
1521	return zynqmp_pm_invoke_fn(PM_IOCTL, NULL, 4, node, IOCTL_SET_GEM_CONFIG, config, value);
1522}
1523EXPORT_SYMBOL_GPL(zynqmp_pm_set_gem_config);
1524
1525/**
1526 * struct zynqmp_pm_shutdown_scope - Struct for shutdown scope
1527 * @subtype:	Shutdown subtype
1528 * @name:	Matching string for scope argument
1529 *
1530 * This struct encapsulates mapping between shutdown scope ID and string.
1531 */
1532struct zynqmp_pm_shutdown_scope {
1533	const enum zynqmp_pm_shutdown_subtype subtype;
1534	const char *name;
1535};
1536
1537static struct zynqmp_pm_shutdown_scope shutdown_scopes[] = {
1538	[ZYNQMP_PM_SHUTDOWN_SUBTYPE_SUBSYSTEM] = {
1539		.subtype = ZYNQMP_PM_SHUTDOWN_SUBTYPE_SUBSYSTEM,
1540		.name = "subsystem",
1541	},
1542	[ZYNQMP_PM_SHUTDOWN_SUBTYPE_PS_ONLY] = {
1543		.subtype = ZYNQMP_PM_SHUTDOWN_SUBTYPE_PS_ONLY,
1544		.name = "ps_only",
1545	},
1546	[ZYNQMP_PM_SHUTDOWN_SUBTYPE_SYSTEM] = {
1547		.subtype = ZYNQMP_PM_SHUTDOWN_SUBTYPE_SYSTEM,
1548		.name = "system",
1549	},
1550};
1551
1552static struct zynqmp_pm_shutdown_scope *selected_scope =
1553		&shutdown_scopes[ZYNQMP_PM_SHUTDOWN_SUBTYPE_SYSTEM];
1554
1555/**
1556 * zynqmp_pm_is_shutdown_scope_valid - Check if shutdown scope string is valid
1557 * @scope_string:	Shutdown scope string
1558 *
1559 * Return:		Return pointer to matching shutdown scope struct from
1560 *			array of available options in system if string is valid,
1561 *			otherwise returns NULL.
1562 */
1563static struct zynqmp_pm_shutdown_scope*
1564		zynqmp_pm_is_shutdown_scope_valid(const char *scope_string)
1565{
1566	int count;
1567
1568	for (count = 0; count < ARRAY_SIZE(shutdown_scopes); count++)
1569		if (sysfs_streq(scope_string, shutdown_scopes[count].name))
1570			return &shutdown_scopes[count];
1571
1572	return NULL;
1573}
1574
1575static ssize_t shutdown_scope_show(struct device *device,
1576				   struct device_attribute *attr,
1577				   char *buf)
1578{
1579	int i;
1580
1581	for (i = 0; i < ARRAY_SIZE(shutdown_scopes); i++) {
1582		if (&shutdown_scopes[i] == selected_scope) {
1583			strcat(buf, "[");
1584			strcat(buf, shutdown_scopes[i].name);
1585			strcat(buf, "]");
1586		} else {
1587			strcat(buf, shutdown_scopes[i].name);
1588		}
1589		strcat(buf, " ");
1590	}
1591	strcat(buf, "\n");
1592
1593	return strlen(buf);
1594}
1595
1596static ssize_t shutdown_scope_store(struct device *device,
1597				    struct device_attribute *attr,
1598				    const char *buf, size_t count)
1599{
1600	int ret;
1601	struct zynqmp_pm_shutdown_scope *scope;
1602
1603	scope = zynqmp_pm_is_shutdown_scope_valid(buf);
1604	if (!scope)
1605		return -EINVAL;
1606
1607	ret = zynqmp_pm_system_shutdown(ZYNQMP_PM_SHUTDOWN_TYPE_SETSCOPE_ONLY,
1608					scope->subtype);
1609	if (ret) {
1610		pr_err("unable to set shutdown scope %s\n", buf);
1611		return ret;
1612	}
1613
1614	selected_scope = scope;
1615
1616	return count;
1617}
1618
1619static DEVICE_ATTR_RW(shutdown_scope);
1620
1621static ssize_t health_status_store(struct device *device,
1622				   struct device_attribute *attr,
1623				   const char *buf, size_t count)
1624{
1625	int ret;
1626	unsigned int value;
1627
1628	ret = kstrtouint(buf, 10, &value);
1629	if (ret)
1630		return ret;
1631
1632	ret = zynqmp_pm_set_boot_health_status(value);
1633	if (ret) {
1634		dev_err(device, "unable to set healthy bit value to %u\n",
1635			value);
1636		return ret;
1637	}
1638
1639	return count;
1640}
1641
1642static DEVICE_ATTR_WO(health_status);
1643
1644static ssize_t ggs_show(struct device *device,
1645			struct device_attribute *attr,
1646			char *buf,
1647			u32 reg)
1648{
1649	int ret;
1650	u32 ret_payload[PAYLOAD_ARG_CNT];
1651
1652	ret = zynqmp_pm_read_ggs(reg, ret_payload);
1653	if (ret)
1654		return ret;
1655
1656	return sprintf(buf, "0x%x\n", ret_payload[1]);
1657}
1658
1659static ssize_t ggs_store(struct device *device,
1660			 struct device_attribute *attr,
1661			 const char *buf, size_t count,
1662			 u32 reg)
1663{
1664	long value;
1665	int ret;
1666
1667	if (reg >= GSS_NUM_REGS)
1668		return -EINVAL;
1669
1670	ret = kstrtol(buf, 16, &value);
1671	if (ret) {
1672		count = -EFAULT;
1673		goto err;
1674	}
1675
1676	ret = zynqmp_pm_write_ggs(reg, value);
1677	if (ret)
1678		count = -EFAULT;
1679err:
1680	return count;
1681}
1682
1683/* GGS register show functions */
1684#define GGS0_SHOW(N)						\
1685	ssize_t ggs##N##_show(struct device *device,		\
1686			      struct device_attribute *attr,	\
1687			      char *buf)			\
1688	{							\
1689		return ggs_show(device, attr, buf, N);		\
1690	}
1691
1692static GGS0_SHOW(0);
1693static GGS0_SHOW(1);
1694static GGS0_SHOW(2);
1695static GGS0_SHOW(3);
1696
1697/* GGS register store function */
1698#define GGS0_STORE(N)						\
1699	ssize_t ggs##N##_store(struct device *device,		\
1700			       struct device_attribute *attr,	\
1701			       const char *buf,			\
1702			       size_t count)			\
1703	{							\
1704		return ggs_store(device, attr, buf, count, N);	\
1705	}
1706
1707static GGS0_STORE(0);
1708static GGS0_STORE(1);
1709static GGS0_STORE(2);
1710static GGS0_STORE(3);
1711
1712static ssize_t pggs_show(struct device *device,
1713			 struct device_attribute *attr,
1714			 char *buf,
1715			 u32 reg)
1716{
1717	int ret;
1718	u32 ret_payload[PAYLOAD_ARG_CNT];
1719
1720	ret = zynqmp_pm_read_pggs(reg, ret_payload);
1721	if (ret)
1722		return ret;
1723
1724	return sprintf(buf, "0x%x\n", ret_payload[1]);
1725}
1726
1727static ssize_t pggs_store(struct device *device,
1728			  struct device_attribute *attr,
1729			  const char *buf, size_t count,
1730			  u32 reg)
1731{
1732	long value;
1733	int ret;
1734
1735	if (reg >= GSS_NUM_REGS)
1736		return -EINVAL;
1737
1738	ret = kstrtol(buf, 16, &value);
1739	if (ret) {
1740		count = -EFAULT;
1741		goto err;
1742	}
1743
1744	ret = zynqmp_pm_write_pggs(reg, value);
1745	if (ret)
1746		count = -EFAULT;
1747
1748err:
1749	return count;
1750}
1751
1752#define PGGS0_SHOW(N)						\
1753	ssize_t pggs##N##_show(struct device *device,		\
1754			       struct device_attribute *attr,	\
1755			       char *buf)			\
1756	{							\
1757		return pggs_show(device, attr, buf, N);		\
1758	}
1759
1760#define PGGS0_STORE(N)						\
1761	ssize_t pggs##N##_store(struct device *device,		\
1762				struct device_attribute *attr,	\
1763				const char *buf,		\
1764				size_t count)			\
1765	{							\
1766		return pggs_store(device, attr, buf, count, N);	\
1767	}
1768
1769/* PGGS register show functions */
1770static PGGS0_SHOW(0);
1771static PGGS0_SHOW(1);
1772static PGGS0_SHOW(2);
1773static PGGS0_SHOW(3);
1774
1775/* PGGS register store functions */
1776static PGGS0_STORE(0);
1777static PGGS0_STORE(1);
1778static PGGS0_STORE(2);
1779static PGGS0_STORE(3);
1780
1781/* GGS register attributes */
1782static DEVICE_ATTR_RW(ggs0);
1783static DEVICE_ATTR_RW(ggs1);
1784static DEVICE_ATTR_RW(ggs2);
1785static DEVICE_ATTR_RW(ggs3);
1786
1787/* PGGS register attributes */
1788static DEVICE_ATTR_RW(pggs0);
1789static DEVICE_ATTR_RW(pggs1);
1790static DEVICE_ATTR_RW(pggs2);
1791static DEVICE_ATTR_RW(pggs3);
1792
1793static ssize_t feature_config_id_show(struct device *device,
1794				      struct device_attribute *attr,
1795				      char *buf)
1796{
1797	struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
1798
1799	return sysfs_emit(buf, "%d\n", devinfo->feature_conf_id);
1800}
1801
1802static ssize_t feature_config_id_store(struct device *device,
1803				       struct device_attribute *attr,
1804				       const char *buf, size_t count)
1805{
1806	u32 config_id;
1807	int ret;
1808	struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
1809
1810	if (!buf)
1811		return -EINVAL;
1812
1813	ret = kstrtou32(buf, 10, &config_id);
1814	if (ret)
1815		return ret;
1816
1817	devinfo->feature_conf_id = config_id;
1818
1819	return count;
1820}
1821
1822static DEVICE_ATTR_RW(feature_config_id);
1823
1824static ssize_t feature_config_value_show(struct device *device,
1825					 struct device_attribute *attr,
1826					 char *buf)
1827{
1828	int ret;
1829	u32 ret_payload[PAYLOAD_ARG_CNT];
1830	struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
1831
1832	ret = zynqmp_pm_get_feature_config(devinfo->feature_conf_id,
1833					   ret_payload);
1834	if (ret)
1835		return ret;
1836
1837	return sysfs_emit(buf, "%d\n", ret_payload[1]);
1838}
1839
1840static ssize_t feature_config_value_store(struct device *device,
1841					  struct device_attribute *attr,
1842					  const char *buf, size_t count)
1843{
1844	u32 value;
1845	int ret;
1846	struct zynqmp_devinfo *devinfo = dev_get_drvdata(device);
1847
1848	if (!buf)
1849		return -EINVAL;
1850
1851	ret = kstrtou32(buf, 10, &value);
1852	if (ret)
1853		return ret;
1854
1855	ret = zynqmp_pm_set_feature_config(devinfo->feature_conf_id,
1856					   value);
1857	if (ret)
1858		return ret;
1859
1860	return count;
1861}
1862
1863static DEVICE_ATTR_RW(feature_config_value);
1864
1865static struct attribute *zynqmp_firmware_attrs[] = {
1866	&dev_attr_ggs0.attr,
1867	&dev_attr_ggs1.attr,
1868	&dev_attr_ggs2.attr,
1869	&dev_attr_ggs3.attr,
1870	&dev_attr_pggs0.attr,
1871	&dev_attr_pggs1.attr,
1872	&dev_attr_pggs2.attr,
1873	&dev_attr_pggs3.attr,
1874	&dev_attr_shutdown_scope.attr,
1875	&dev_attr_health_status.attr,
1876	&dev_attr_feature_config_id.attr,
1877	&dev_attr_feature_config_value.attr,
1878	NULL,
1879};
1880
1881ATTRIBUTE_GROUPS(zynqmp_firmware);
1882
1883static int zynqmp_firmware_probe(struct platform_device *pdev)
1884{
1885	struct device *dev = &pdev->dev;
1886	struct zynqmp_devinfo *devinfo;
1887	int ret;
1888
1889	ret = get_set_conduit_method(dev->of_node);
1890	if (ret)
1891		return ret;
1892
1893	ret = do_feature_check_call(PM_FEATURE_CHECK);
1894	if (ret >= 0 && ((ret & FIRMWARE_VERSION_MASK) >= PM_API_VERSION_1))
1895		feature_check_enabled = true;
1896
1897	devinfo = devm_kzalloc(dev, sizeof(*devinfo), GFP_KERNEL);
1898	if (!devinfo)
1899		return -ENOMEM;
1900
1901	devinfo->dev = dev;
1902
1903	platform_set_drvdata(pdev, devinfo);
1904
1905	/* Check PM API version number */
1906	ret = zynqmp_pm_get_api_version(&pm_api_version);
1907	if (ret)
1908		return ret;
1909
1910	if (pm_api_version < ZYNQMP_PM_VERSION) {
1911		panic("%s Platform Management API version error. Expected: v%d.%d - Found: v%d.%d\n",
1912		      __func__,
1913		      ZYNQMP_PM_VERSION_MAJOR, ZYNQMP_PM_VERSION_MINOR,
1914		      pm_api_version >> 16, pm_api_version & 0xFFFF);
1915	}
1916
1917	pr_info("%s Platform Management API v%d.%d\n", __func__,
1918		pm_api_version >> 16, pm_api_version & 0xFFFF);
1919
1920	/* Get the Family code and sub family code of platform */
1921	ret = zynqmp_pm_get_family_info(&pm_family_code, &pm_sub_family_code);
1922	if (ret < 0)
1923		return ret;
1924
1925	/* Check trustzone version number */
1926	ret = zynqmp_pm_get_trustzone_version(&pm_tz_version);
1927	if (ret)
1928		panic("Legacy trustzone found without version support\n");
1929
1930	if (pm_tz_version < ZYNQMP_TZ_VERSION)
1931		panic("%s Trustzone version error. Expected: v%d.%d - Found: v%d.%d\n",
1932		      __func__,
1933		      ZYNQMP_TZ_VERSION_MAJOR, ZYNQMP_TZ_VERSION_MINOR,
1934		      pm_tz_version >> 16, pm_tz_version & 0xFFFF);
1935
1936	pr_info("%s Trustzone version v%d.%d\n", __func__,
1937		pm_tz_version >> 16, pm_tz_version & 0xFFFF);
1938
1939	ret = mfd_add_devices(&pdev->dev, PLATFORM_DEVID_NONE, firmware_devs,
1940			      ARRAY_SIZE(firmware_devs), NULL, 0, NULL);
1941	if (ret) {
1942		dev_err(&pdev->dev, "failed to add MFD devices %d\n", ret);
1943		return ret;
1944	}
1945
1946	zynqmp_pm_api_debugfs_init();
1947
1948	if (pm_family_code == VERSAL_FAMILY_CODE) {
1949		em_dev = platform_device_register_data(&pdev->dev, "xlnx_event_manager",
1950						       -1, NULL, 0);
1951		if (IS_ERR(em_dev))
1952			dev_err_probe(&pdev->dev, PTR_ERR(em_dev), "EM register fail with error\n");
1953	}
1954
1955	return of_platform_populate(dev->of_node, NULL, NULL, dev);
1956}
1957
1958static void zynqmp_firmware_remove(struct platform_device *pdev)
1959{
1960	struct pm_api_feature_data *feature_data;
1961	struct hlist_node *tmp;
1962	int i;
1963
1964	mfd_remove_devices(&pdev->dev);
1965	zynqmp_pm_api_debugfs_exit();
1966
1967	hash_for_each_safe(pm_api_features_map, i, tmp, feature_data, hentry) {
1968		hash_del(&feature_data->hentry);
1969		kfree(feature_data);
1970	}
1971
1972	platform_device_unregister(em_dev);
1973}
1974
1975static const struct of_device_id zynqmp_firmware_of_match[] = {
1976	{.compatible = "xlnx,zynqmp-firmware"},
1977	{.compatible = "xlnx,versal-firmware"},
1978	{},
1979};
1980MODULE_DEVICE_TABLE(of, zynqmp_firmware_of_match);
1981
1982static struct platform_driver zynqmp_firmware_driver = {
1983	.driver = {
1984		.name = "zynqmp_firmware",
1985		.of_match_table = zynqmp_firmware_of_match,
1986		.dev_groups = zynqmp_firmware_groups,
1987	},
1988	.probe = zynqmp_firmware_probe,
1989	.remove_new = zynqmp_firmware_remove,
1990};
1991module_platform_driver(zynqmp_firmware_driver);
1992