1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright 2013 Emilio L��pez
4 *
5 * Emilio L��pez <emilio@elopez.com.ar>
6 */
7
8#include <linux/clk.h>
9#include <linux/clk-provider.h>
10#include <linux/clkdev.h>
11#include <linux/io.h>
12#include <linux/of.h>
13#include <linux/of_address.h>
14#include <linux/reset-controller.h>
15#include <linux/slab.h>
16#include <linux/spinlock.h>
17#include <linux/log2.h>
18
19#include "clk-factors.h"
20
21static DEFINE_SPINLOCK(clk_lock);
22
23/* Maximum number of parents our clocks have */
24#define SUNXI_MAX_PARENTS	5
25
26/*
27 * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
28 * PLL1 rate is calculated as follows
29 * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
30 * parent_rate is always 24Mhz
31 */
32
33static void sun4i_get_pll1_factors(struct factors_request *req)
34{
35	u8 div;
36
37	/* Normalize value to a 6M multiple */
38	div = req->rate / 6000000;
39	req->rate = 6000000 * div;
40
41	/* m is always zero for pll1 */
42	req->m = 0;
43
44	/* k is 1 only on these cases */
45	if (req->rate >= 768000000 || req->rate == 42000000 ||
46			req->rate == 54000000)
47		req->k = 1;
48	else
49		req->k = 0;
50
51	/* p will be 3 for divs under 10 */
52	if (div < 10)
53		req->p = 3;
54
55	/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
56	else if (div < 20 || (div < 32 && (div & 1)))
57		req->p = 2;
58
59	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
60	 * of divs between 40-62 */
61	else if (div < 40 || (div < 64 && (div & 2)))
62		req->p = 1;
63
64	/* any other entries have p = 0 */
65	else
66		req->p = 0;
67
68	/* calculate a suitable n based on k and p */
69	div <<= req->p;
70	div /= (req->k + 1);
71	req->n = div / 4;
72}
73
74/*
75 * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
76 * PLL1 rate is calculated as follows
77 * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
78 * parent_rate should always be 24MHz
79 */
80static void sun6i_a31_get_pll1_factors(struct factors_request *req)
81{
82	/*
83	 * We can operate only on MHz, this will make our life easier
84	 * later.
85	 */
86	u32 freq_mhz = req->rate / 1000000;
87	u32 parent_freq_mhz = req->parent_rate / 1000000;
88
89	/*
90	 * Round down the frequency to the closest multiple of either
91	 * 6 or 16
92	 */
93	u32 round_freq_6 = rounddown(freq_mhz, 6);
94	u32 round_freq_16 = round_down(freq_mhz, 16);
95
96	if (round_freq_6 > round_freq_16)
97		freq_mhz = round_freq_6;
98	else
99		freq_mhz = round_freq_16;
100
101	req->rate = freq_mhz * 1000000;
102
103	/* If the frequency is a multiple of 32 MHz, k is always 3 */
104	if (!(freq_mhz % 32))
105		req->k = 3;
106	/* If the frequency is a multiple of 9 MHz, k is always 2 */
107	else if (!(freq_mhz % 9))
108		req->k = 2;
109	/* If the frequency is a multiple of 8 MHz, k is always 1 */
110	else if (!(freq_mhz % 8))
111		req->k = 1;
112	/* Otherwise, we don't use the k factor */
113	else
114		req->k = 0;
115
116	/*
117	 * If the frequency is a multiple of 2 but not a multiple of
118	 * 3, m is 3. This is the first time we use 6 here, yet we
119	 * will use it on several other places.
120	 * We use this number because it's the lowest frequency we can
121	 * generate (with n = 0, k = 0, m = 3), so every other frequency
122	 * somehow relates to this frequency.
123	 */
124	if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
125		req->m = 2;
126	/*
127	 * If the frequency is a multiple of 6MHz, but the factor is
128	 * odd, m will be 3
129	 */
130	else if ((freq_mhz / 6) & 1)
131		req->m = 3;
132	/* Otherwise, we end up with m = 1 */
133	else
134		req->m = 1;
135
136	/* Calculate n thanks to the above factors we already got */
137	req->n = freq_mhz * (req->m + 1) / ((req->k + 1) * parent_freq_mhz)
138		 - 1;
139
140	/*
141	 * If n end up being outbound, and that we can still decrease
142	 * m, do it.
143	 */
144	if ((req->n + 1) > 31 && (req->m + 1) > 1) {
145		req->n = (req->n + 1) / 2 - 1;
146		req->m = (req->m + 1) / 2 - 1;
147	}
148}
149
150/*
151 * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
152 * PLL1 rate is calculated as follows
153 * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
154 * parent_rate is always 24Mhz
155 */
156
157static void sun8i_a23_get_pll1_factors(struct factors_request *req)
158{
159	u8 div;
160
161	/* Normalize value to a 6M multiple */
162	div = req->rate / 6000000;
163	req->rate = 6000000 * div;
164
165	/* m is always zero for pll1 */
166	req->m = 0;
167
168	/* k is 1 only on these cases */
169	if (req->rate >= 768000000 || req->rate == 42000000 ||
170			req->rate == 54000000)
171		req->k = 1;
172	else
173		req->k = 0;
174
175	/* p will be 2 for divs under 20 and odd divs under 32 */
176	if (div < 20 || (div < 32 && (div & 1)))
177		req->p = 2;
178
179	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
180	 * of divs between 40-62 */
181	else if (div < 40 || (div < 64 && (div & 2)))
182		req->p = 1;
183
184	/* any other entries have p = 0 */
185	else
186		req->p = 0;
187
188	/* calculate a suitable n based on k and p */
189	div <<= req->p;
190	div /= (req->k + 1);
191	req->n = div / 4 - 1;
192}
193
194/*
195 * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
196 * PLL5 rate is calculated as follows
197 * rate = parent_rate * n * (k + 1)
198 * parent_rate is always 24Mhz
199 */
200
201static void sun4i_get_pll5_factors(struct factors_request *req)
202{
203	u8 div;
204
205	/* Normalize value to a parent_rate multiple (24M) */
206	div = req->rate / req->parent_rate;
207	req->rate = req->parent_rate * div;
208
209	if (div < 31)
210		req->k = 0;
211	else if (div / 2 < 31)
212		req->k = 1;
213	else if (div / 3 < 31)
214		req->k = 2;
215	else
216		req->k = 3;
217
218	req->n = DIV_ROUND_UP(div, (req->k + 1));
219}
220
221/*
222 * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
223 * PLL6x2 rate is calculated as follows
224 * rate = parent_rate * (n + 1) * (k + 1)
225 * parent_rate is always 24Mhz
226 */
227
228static void sun6i_a31_get_pll6_factors(struct factors_request *req)
229{
230	u8 div;
231
232	/* Normalize value to a parent_rate multiple (24M) */
233	div = req->rate / req->parent_rate;
234	req->rate = req->parent_rate * div;
235
236	req->k = div / 32;
237	if (req->k > 3)
238		req->k = 3;
239
240	req->n = DIV_ROUND_UP(div, (req->k + 1)) - 1;
241}
242
243/*
244 * sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB
245 * AHB rate is calculated as follows
246 * rate = parent_rate >> p
247 */
248
249static void sun5i_a13_get_ahb_factors(struct factors_request *req)
250{
251	u32 div;
252
253	/* divide only */
254	if (req->parent_rate < req->rate)
255		req->rate = req->parent_rate;
256
257	/*
258	 * user manual says valid speed is 8k ~ 276M, but tests show it
259	 * can work at speeds up to 300M, just after reparenting to pll6
260	 */
261	if (req->rate < 8000)
262		req->rate = 8000;
263	if (req->rate > 300000000)
264		req->rate = 300000000;
265
266	div = order_base_2(DIV_ROUND_UP(req->parent_rate, req->rate));
267
268	/* p = 0 ~ 3 */
269	if (div > 3)
270		div = 3;
271
272	req->rate = req->parent_rate >> div;
273
274	req->p = div;
275}
276
277#define SUN6I_AHB1_PARENT_PLL6	3
278
279/*
280 * sun6i_a31_get_ahb_factors() - calculates m, p factors for AHB
281 * AHB rate is calculated as follows
282 * rate = parent_rate >> p
283 *
284 * if parent is pll6, then
285 * parent_rate = pll6 rate / (m + 1)
286 */
287
288static void sun6i_get_ahb1_factors(struct factors_request *req)
289{
290	u8 div, calcp, calcm = 1;
291
292	/*
293	 * clock can only divide, so we will never be able to achieve
294	 * frequencies higher than the parent frequency
295	 */
296	if (req->parent_rate && req->rate > req->parent_rate)
297		req->rate = req->parent_rate;
298
299	div = DIV_ROUND_UP(req->parent_rate, req->rate);
300
301	/* calculate pre-divider if parent is pll6 */
302	if (req->parent_index == SUN6I_AHB1_PARENT_PLL6) {
303		if (div < 4)
304			calcp = 0;
305		else if (div / 2 < 4)
306			calcp = 1;
307		else if (div / 4 < 4)
308			calcp = 2;
309		else
310			calcp = 3;
311
312		calcm = DIV_ROUND_UP(div, 1 << calcp);
313	} else {
314		calcp = __roundup_pow_of_two(div);
315		calcp = calcp > 3 ? 3 : calcp;
316	}
317
318	req->rate = (req->parent_rate / calcm) >> calcp;
319	req->p = calcp;
320	req->m = calcm - 1;
321}
322
323/*
324 * sun6i_ahb1_recalc() - calculates AHB clock rate from m, p factors and
325 *			 parent index
326 */
327static void sun6i_ahb1_recalc(struct factors_request *req)
328{
329	req->rate = req->parent_rate;
330
331	/* apply pre-divider first if parent is pll6 */
332	if (req->parent_index == SUN6I_AHB1_PARENT_PLL6)
333		req->rate /= req->m + 1;
334
335	/* clk divider */
336	req->rate >>= req->p;
337}
338
339/*
340 * sun4i_get_apb1_factors() - calculates m, p factors for APB1
341 * APB1 rate is calculated as follows
342 * rate = (parent_rate >> p) / (m + 1);
343 */
344
345static void sun4i_get_apb1_factors(struct factors_request *req)
346{
347	u8 calcm, calcp;
348	int div;
349
350	if (req->parent_rate < req->rate)
351		req->rate = req->parent_rate;
352
353	div = DIV_ROUND_UP(req->parent_rate, req->rate);
354
355	/* Invalid rate! */
356	if (div > 32)
357		return;
358
359	if (div <= 4)
360		calcp = 0;
361	else if (div <= 8)
362		calcp = 1;
363	else if (div <= 16)
364		calcp = 2;
365	else
366		calcp = 3;
367
368	calcm = (div >> calcp) - 1;
369
370	req->rate = (req->parent_rate >> calcp) / (calcm + 1);
371	req->m = calcm;
372	req->p = calcp;
373}
374
375
376
377
378/*
379 * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
380 * CLK_OUT rate is calculated as follows
381 * rate = (parent_rate >> p) / (m + 1);
382 */
383
384static void sun7i_a20_get_out_factors(struct factors_request *req)
385{
386	u8 div, calcm, calcp;
387
388	/* These clocks can only divide, so we will never be able to achieve
389	 * frequencies higher than the parent frequency */
390	if (req->rate > req->parent_rate)
391		req->rate = req->parent_rate;
392
393	div = DIV_ROUND_UP(req->parent_rate, req->rate);
394
395	if (div < 32)
396		calcp = 0;
397	else if (div / 2 < 32)
398		calcp = 1;
399	else if (div / 4 < 32)
400		calcp = 2;
401	else
402		calcp = 3;
403
404	calcm = DIV_ROUND_UP(div, 1 << calcp);
405
406	req->rate = (req->parent_rate >> calcp) / calcm;
407	req->m = calcm - 1;
408	req->p = calcp;
409}
410
411/*
412 * sunxi_factors_clk_setup() - Setup function for factor clocks
413 */
414
415static const struct clk_factors_config sun4i_pll1_config = {
416	.nshift = 8,
417	.nwidth = 5,
418	.kshift = 4,
419	.kwidth = 2,
420	.mshift = 0,
421	.mwidth = 2,
422	.pshift = 16,
423	.pwidth = 2,
424};
425
426static const struct clk_factors_config sun6i_a31_pll1_config = {
427	.nshift	= 8,
428	.nwidth = 5,
429	.kshift = 4,
430	.kwidth = 2,
431	.mshift = 0,
432	.mwidth = 2,
433	.n_start = 1,
434};
435
436static const struct clk_factors_config sun8i_a23_pll1_config = {
437	.nshift = 8,
438	.nwidth = 5,
439	.kshift = 4,
440	.kwidth = 2,
441	.mshift = 0,
442	.mwidth = 2,
443	.pshift = 16,
444	.pwidth = 2,
445	.n_start = 1,
446};
447
448static const struct clk_factors_config sun4i_pll5_config = {
449	.nshift = 8,
450	.nwidth = 5,
451	.kshift = 4,
452	.kwidth = 2,
453};
454
455static const struct clk_factors_config sun6i_a31_pll6_config = {
456	.nshift	= 8,
457	.nwidth = 5,
458	.kshift = 4,
459	.kwidth = 2,
460	.n_start = 1,
461};
462
463static const struct clk_factors_config sun5i_a13_ahb_config = {
464	.pshift = 4,
465	.pwidth = 2,
466};
467
468static const struct clk_factors_config sun6i_ahb1_config = {
469	.mshift = 6,
470	.mwidth = 2,
471	.pshift = 4,
472	.pwidth = 2,
473};
474
475static const struct clk_factors_config sun4i_apb1_config = {
476	.mshift = 0,
477	.mwidth = 5,
478	.pshift = 16,
479	.pwidth = 2,
480};
481
482/* user manual says "n" but it's really "p" */
483static const struct clk_factors_config sun7i_a20_out_config = {
484	.mshift = 8,
485	.mwidth = 5,
486	.pshift = 20,
487	.pwidth = 2,
488};
489
490static const struct factors_data sun4i_pll1_data __initconst = {
491	.enable = 31,
492	.table = &sun4i_pll1_config,
493	.getter = sun4i_get_pll1_factors,
494};
495
496static const struct factors_data sun6i_a31_pll1_data __initconst = {
497	.enable = 31,
498	.table = &sun6i_a31_pll1_config,
499	.getter = sun6i_a31_get_pll1_factors,
500};
501
502static const struct factors_data sun8i_a23_pll1_data __initconst = {
503	.enable = 31,
504	.table = &sun8i_a23_pll1_config,
505	.getter = sun8i_a23_get_pll1_factors,
506};
507
508static const struct factors_data sun7i_a20_pll4_data __initconst = {
509	.enable = 31,
510	.table = &sun4i_pll5_config,
511	.getter = sun4i_get_pll5_factors,
512};
513
514static const struct factors_data sun4i_pll5_data __initconst = {
515	.enable = 31,
516	.table = &sun4i_pll5_config,
517	.getter = sun4i_get_pll5_factors,
518};
519
520static const struct factors_data sun6i_a31_pll6_data __initconst = {
521	.enable = 31,
522	.table = &sun6i_a31_pll6_config,
523	.getter = sun6i_a31_get_pll6_factors,
524};
525
526static const struct factors_data sun5i_a13_ahb_data __initconst = {
527	.mux = 6,
528	.muxmask = BIT(1) | BIT(0),
529	.table = &sun5i_a13_ahb_config,
530	.getter = sun5i_a13_get_ahb_factors,
531};
532
533static const struct factors_data sun6i_ahb1_data __initconst = {
534	.mux = 12,
535	.muxmask = BIT(1) | BIT(0),
536	.table = &sun6i_ahb1_config,
537	.getter = sun6i_get_ahb1_factors,
538	.recalc = sun6i_ahb1_recalc,
539};
540
541static const struct factors_data sun4i_apb1_data __initconst = {
542	.mux = 24,
543	.muxmask = BIT(1) | BIT(0),
544	.table = &sun4i_apb1_config,
545	.getter = sun4i_get_apb1_factors,
546};
547
548static const struct factors_data sun7i_a20_out_data __initconst = {
549	.enable = 31,
550	.mux = 24,
551	.muxmask = BIT(1) | BIT(0),
552	.table = &sun7i_a20_out_config,
553	.getter = sun7i_a20_get_out_factors,
554};
555
556static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
557						   const struct factors_data *data)
558{
559	void __iomem *reg;
560
561	reg = of_iomap(node, 0);
562	if (!reg) {
563		pr_err("Could not get registers for factors-clk: %pOFn\n",
564		       node);
565		return NULL;
566	}
567
568	return sunxi_factors_register(node, data, &clk_lock, reg);
569}
570
571static void __init sun4i_pll1_clk_setup(struct device_node *node)
572{
573	sunxi_factors_clk_setup(node, &sun4i_pll1_data);
574}
575CLK_OF_DECLARE(sun4i_pll1, "allwinner,sun4i-a10-pll1-clk",
576	       sun4i_pll1_clk_setup);
577
578static void __init sun6i_pll1_clk_setup(struct device_node *node)
579{
580	sunxi_factors_clk_setup(node, &sun6i_a31_pll1_data);
581}
582CLK_OF_DECLARE(sun6i_pll1, "allwinner,sun6i-a31-pll1-clk",
583	       sun6i_pll1_clk_setup);
584
585static void __init sun8i_pll1_clk_setup(struct device_node *node)
586{
587	sunxi_factors_clk_setup(node, &sun8i_a23_pll1_data);
588}
589CLK_OF_DECLARE(sun8i_pll1, "allwinner,sun8i-a23-pll1-clk",
590	       sun8i_pll1_clk_setup);
591
592static void __init sun7i_pll4_clk_setup(struct device_node *node)
593{
594	sunxi_factors_clk_setup(node, &sun7i_a20_pll4_data);
595}
596CLK_OF_DECLARE(sun7i_pll4, "allwinner,sun7i-a20-pll4-clk",
597	       sun7i_pll4_clk_setup);
598
599static void __init sun5i_ahb_clk_setup(struct device_node *node)
600{
601	sunxi_factors_clk_setup(node, &sun5i_a13_ahb_data);
602}
603CLK_OF_DECLARE(sun5i_ahb, "allwinner,sun5i-a13-ahb-clk",
604	       sun5i_ahb_clk_setup);
605
606static void __init sun6i_ahb1_clk_setup(struct device_node *node)
607{
608	sunxi_factors_clk_setup(node, &sun6i_ahb1_data);
609}
610CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk",
611	       sun6i_ahb1_clk_setup);
612
613static void __init sun4i_apb1_clk_setup(struct device_node *node)
614{
615	sunxi_factors_clk_setup(node, &sun4i_apb1_data);
616}
617CLK_OF_DECLARE(sun4i_apb1, "allwinner,sun4i-a10-apb1-clk",
618	       sun4i_apb1_clk_setup);
619
620static void __init sun7i_out_clk_setup(struct device_node *node)
621{
622	sunxi_factors_clk_setup(node, &sun7i_a20_out_data);
623}
624CLK_OF_DECLARE(sun7i_out, "allwinner,sun7i-a20-out-clk",
625	       sun7i_out_clk_setup);
626
627
628/*
629 * sunxi_mux_clk_setup() - Setup function for muxes
630 */
631
632#define SUNXI_MUX_GATE_WIDTH	2
633
634struct mux_data {
635	u8 shift;
636};
637
638static const struct mux_data sun4i_cpu_mux_data __initconst = {
639	.shift = 16,
640};
641
642static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
643	.shift = 12,
644};
645
646static const struct mux_data sun8i_h3_ahb2_mux_data __initconst = {
647	.shift = 0,
648};
649
650static struct clk * __init sunxi_mux_clk_setup(struct device_node *node,
651					       const struct mux_data *data,
652					       unsigned long flags)
653{
654	struct clk *clk;
655	const char *clk_name = node->name;
656	const char *parents[SUNXI_MAX_PARENTS];
657	void __iomem *reg;
658	int i;
659
660	reg = of_iomap(node, 0);
661	if (!reg) {
662		pr_err("Could not map registers for mux-clk: %pOF\n", node);
663		return NULL;
664	}
665
666	i = of_clk_parent_fill(node, parents, SUNXI_MAX_PARENTS);
667	if (of_property_read_string(node, "clock-output-names", &clk_name)) {
668		pr_err("%s: could not read clock-output-names from \"%pOF\"\n",
669		       __func__, node);
670		goto out_unmap;
671	}
672
673	clk = clk_register_mux(NULL, clk_name, parents, i,
674			       CLK_SET_RATE_PARENT | flags, reg,
675			       data->shift, SUNXI_MUX_GATE_WIDTH,
676			       0, &clk_lock);
677
678	if (IS_ERR(clk)) {
679		pr_err("%s: failed to register mux clock %s: %ld\n", __func__,
680		       clk_name, PTR_ERR(clk));
681		goto out_unmap;
682	}
683
684	if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
685		pr_err("%s: failed to add clock provider for %s\n",
686		       __func__, clk_name);
687		clk_unregister_divider(clk);
688		goto out_unmap;
689	}
690
691	return clk;
692out_unmap:
693	iounmap(reg);
694	return NULL;
695}
696
697static void __init sun4i_cpu_clk_setup(struct device_node *node)
698{
699	/* Protect CPU clock */
700	sunxi_mux_clk_setup(node, &sun4i_cpu_mux_data, CLK_IS_CRITICAL);
701}
702CLK_OF_DECLARE(sun4i_cpu, "allwinner,sun4i-a10-cpu-clk",
703	       sun4i_cpu_clk_setup);
704
705static void __init sun6i_ahb1_mux_clk_setup(struct device_node *node)
706{
707	sunxi_mux_clk_setup(node, &sun6i_a31_ahb1_mux_data, 0);
708}
709CLK_OF_DECLARE(sun6i_ahb1_mux, "allwinner,sun6i-a31-ahb1-mux-clk",
710	       sun6i_ahb1_mux_clk_setup);
711
712static void __init sun8i_ahb2_clk_setup(struct device_node *node)
713{
714	sunxi_mux_clk_setup(node, &sun8i_h3_ahb2_mux_data, 0);
715}
716CLK_OF_DECLARE(sun8i_ahb2, "allwinner,sun8i-h3-ahb2-clk",
717	       sun8i_ahb2_clk_setup);
718
719
720/*
721 * sunxi_divider_clk_setup() - Setup function for simple divider clocks
722 */
723
724struct div_data {
725	u8	shift;
726	u8	pow;
727	u8	width;
728	const struct clk_div_table *table;
729};
730
731static const struct div_data sun4i_axi_data __initconst = {
732	.shift	= 0,
733	.pow	= 0,
734	.width	= 2,
735};
736
737static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
738	{ .val = 0, .div = 1 },
739	{ .val = 1, .div = 2 },
740	{ .val = 2, .div = 3 },
741	{ .val = 3, .div = 4 },
742	{ .val = 4, .div = 4 },
743	{ .val = 5, .div = 4 },
744	{ .val = 6, .div = 4 },
745	{ .val = 7, .div = 4 },
746	{ } /* sentinel */
747};
748
749static const struct div_data sun8i_a23_axi_data __initconst = {
750	.width	= 3,
751	.table	= sun8i_a23_axi_table,
752};
753
754static const struct div_data sun4i_ahb_data __initconst = {
755	.shift	= 4,
756	.pow	= 1,
757	.width	= 2,
758};
759
760static const struct clk_div_table sun4i_apb0_table[] __initconst = {
761	{ .val = 0, .div = 2 },
762	{ .val = 1, .div = 2 },
763	{ .val = 2, .div = 4 },
764	{ .val = 3, .div = 8 },
765	{ } /* sentinel */
766};
767
768static const struct div_data sun4i_apb0_data __initconst = {
769	.shift	= 8,
770	.pow	= 1,
771	.width	= 2,
772	.table	= sun4i_apb0_table,
773};
774
775static void __init sunxi_divider_clk_setup(struct device_node *node,
776					   const struct div_data *data)
777{
778	struct clk *clk;
779	const char *clk_name = node->name;
780	const char *clk_parent;
781	void __iomem *reg;
782
783	reg = of_iomap(node, 0);
784	if (!reg) {
785		pr_err("Could not map registers for mux-clk: %pOF\n", node);
786		return;
787	}
788
789	clk_parent = of_clk_get_parent_name(node, 0);
790
791	if (of_property_read_string(node, "clock-output-names", &clk_name)) {
792		pr_err("%s: could not read clock-output-names from \"%pOF\"\n",
793		       __func__, node);
794		goto out_unmap;
795	}
796
797	clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
798					 reg, data->shift, data->width,
799					 data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
800					 data->table, &clk_lock);
801	if (IS_ERR(clk)) {
802		pr_err("%s: failed to register divider clock %s: %ld\n",
803		       __func__, clk_name, PTR_ERR(clk));
804		goto out_unmap;
805	}
806
807	if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
808		pr_err("%s: failed to add clock provider for %s\n",
809		       __func__, clk_name);
810		goto out_unregister;
811	}
812
813	if (clk_register_clkdev(clk, clk_name, NULL)) {
814		of_clk_del_provider(node);
815		goto out_unregister;
816	}
817
818	return;
819out_unregister:
820	clk_unregister_divider(clk);
821
822out_unmap:
823	iounmap(reg);
824}
825
826static void __init sun4i_ahb_clk_setup(struct device_node *node)
827{
828	sunxi_divider_clk_setup(node, &sun4i_ahb_data);
829}
830CLK_OF_DECLARE(sun4i_ahb, "allwinner,sun4i-a10-ahb-clk",
831	       sun4i_ahb_clk_setup);
832
833static void __init sun4i_apb0_clk_setup(struct device_node *node)
834{
835	sunxi_divider_clk_setup(node, &sun4i_apb0_data);
836}
837CLK_OF_DECLARE(sun4i_apb0, "allwinner,sun4i-a10-apb0-clk",
838	       sun4i_apb0_clk_setup);
839
840static void __init sun4i_axi_clk_setup(struct device_node *node)
841{
842	sunxi_divider_clk_setup(node, &sun4i_axi_data);
843}
844CLK_OF_DECLARE(sun4i_axi, "allwinner,sun4i-a10-axi-clk",
845	       sun4i_axi_clk_setup);
846
847static void __init sun8i_axi_clk_setup(struct device_node *node)
848{
849	sunxi_divider_clk_setup(node, &sun8i_a23_axi_data);
850}
851CLK_OF_DECLARE(sun8i_axi, "allwinner,sun8i-a23-axi-clk",
852	       sun8i_axi_clk_setup);
853
854
855
856/*
857 * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
858 */
859
860#define SUNXI_GATES_MAX_SIZE	64
861
862struct gates_data {
863	DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
864};
865
866/*
867 * sunxi_divs_clk_setup() helper data
868 */
869
870#define SUNXI_DIVS_MAX_QTY	4
871#define SUNXI_DIVISOR_WIDTH	2
872
873struct divs_data {
874	const struct factors_data *factors; /* data for the factor clock */
875	int ndivs; /* number of outputs */
876	/*
877	 * List of outputs. Refer to the diagram for sunxi_divs_clk_setup():
878	 * self or base factor clock refers to the output from the pll
879	 * itself. The remaining refer to fixed or configurable divider
880	 * outputs.
881	 */
882	struct {
883		u8 self; /* is it the base factor clock? (only one) */
884		u8 fixed; /* is it a fixed divisor? if not... */
885		struct clk_div_table *table; /* is it a table based divisor? */
886		u8 shift; /* otherwise it's a normal divisor with this shift */
887		u8 pow;   /* is it power-of-two based? */
888		u8 gate;  /* is it independently gateable? */
889		bool critical;
890	} div[SUNXI_DIVS_MAX_QTY];
891};
892
893static struct clk_div_table pll6_sata_tbl[] = {
894	{ .val = 0, .div = 6, },
895	{ .val = 1, .div = 12, },
896	{ .val = 2, .div = 18, },
897	{ .val = 3, .div = 24, },
898	{ } /* sentinel */
899};
900
901static const struct divs_data pll5_divs_data __initconst = {
902	.factors = &sun4i_pll5_data,
903	.ndivs = 2,
904	.div = {
905		/* Protect PLL5_DDR */
906		{ .shift = 0, .pow = 0, .critical = true }, /* M, DDR */
907		{ .shift = 16, .pow = 1, }, /* P, other */
908		/* No output for the base factor clock */
909	}
910};
911
912static const struct divs_data pll6_divs_data __initconst = {
913	.factors = &sun4i_pll5_data,
914	.ndivs = 4,
915	.div = {
916		{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
917		{ .fixed = 2 }, /* P, other */
918		{ .self = 1 }, /* base factor clock, 2x */
919		{ .fixed = 4 }, /* pll6 / 4, used as ahb input */
920	}
921};
922
923static const struct divs_data sun6i_a31_pll6_divs_data __initconst = {
924	.factors = &sun6i_a31_pll6_data,
925	.ndivs = 2,
926	.div = {
927		{ .fixed = 2 }, /* normal output */
928		{ .self = 1 }, /* base factor clock, 2x */
929	}
930};
931
932/*
933 * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
934 *
935 * These clocks look something like this
936 *            ________________________
937 *           |         ___divisor 1---|----> to consumer
938 * parent >--|  pll___/___divisor 2---|----> to consumer
939 *           |        \_______________|____> to consumer
940 *           |________________________|
941 */
942
943static struct clk ** __init sunxi_divs_clk_setup(struct device_node *node,
944						 const struct divs_data *data)
945{
946	struct clk_onecell_data *clk_data;
947	const char *parent;
948	const char *clk_name;
949	struct clk **clks, *pclk;
950	struct clk_hw *gate_hw, *rate_hw;
951	const struct clk_ops *rate_ops;
952	struct clk_gate *gate = NULL;
953	struct clk_fixed_factor *fix_factor;
954	struct clk_divider *divider;
955	struct factors_data factors = *data->factors;
956	char *derived_name = NULL;
957	void __iomem *reg;
958	int ndivs = SUNXI_DIVS_MAX_QTY, i = 0;
959	int flags, clkflags;
960
961	/* if number of children known, use it */
962	if (data->ndivs)
963		ndivs = data->ndivs;
964
965	/* Try to find a name for base factor clock */
966	for (i = 0; i < ndivs; i++) {
967		if (data->div[i].self) {
968			of_property_read_string_index(node, "clock-output-names",
969						      i, &factors.name);
970			break;
971		}
972	}
973	/* If we don't have a .self clk use the first output-name up to '_' */
974	if (factors.name == NULL) {
975		char *endp;
976
977		of_property_read_string_index(node, "clock-output-names",
978						      0, &clk_name);
979		endp = strchr(clk_name, '_');
980		if (endp) {
981			derived_name = kstrndup(clk_name, endp - clk_name,
982						GFP_KERNEL);
983			if (!derived_name)
984				return NULL;
985			factors.name = derived_name;
986		} else {
987			factors.name = clk_name;
988		}
989	}
990
991	/* Set up factor clock that we will be dividing */
992	pclk = sunxi_factors_clk_setup(node, &factors);
993	if (!pclk)
994		return NULL;
995
996	parent = __clk_get_name(pclk);
997	kfree(derived_name);
998
999	reg = of_iomap(node, 0);
1000	if (!reg) {
1001		pr_err("Could not map registers for divs-clk: %pOF\n", node);
1002		return NULL;
1003	}
1004
1005	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1006	if (!clk_data)
1007		goto out_unmap;
1008
1009	clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL);
1010	if (!clks)
1011		goto free_clkdata;
1012
1013	clk_data->clks = clks;
1014
1015	/* It's not a good idea to have automatic reparenting changing
1016	 * our RAM clock! */
1017	clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1018
1019	for (i = 0; i < ndivs; i++) {
1020		if (of_property_read_string_index(node, "clock-output-names",
1021						  i, &clk_name) != 0)
1022			break;
1023
1024		/* If this is the base factor clock, only update clks */
1025		if (data->div[i].self) {
1026			clk_data->clks[i] = pclk;
1027			continue;
1028		}
1029
1030		gate_hw = NULL;
1031		rate_hw = NULL;
1032		rate_ops = NULL;
1033
1034		/* If this leaf clock can be gated, create a gate */
1035		if (data->div[i].gate) {
1036			gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1037			if (!gate)
1038				goto free_clks;
1039
1040			gate->reg = reg;
1041			gate->bit_idx = data->div[i].gate;
1042			gate->lock = &clk_lock;
1043
1044			gate_hw = &gate->hw;
1045		}
1046
1047		/* Leaves can be fixed or configurable divisors */
1048		if (data->div[i].fixed) {
1049			fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1050			if (!fix_factor)
1051				goto free_gate;
1052
1053			fix_factor->mult = 1;
1054			fix_factor->div = data->div[i].fixed;
1055
1056			rate_hw = &fix_factor->hw;
1057			rate_ops = &clk_fixed_factor_ops;
1058		} else {
1059			divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1060			if (!divider)
1061				goto free_gate;
1062
1063			flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1064
1065			divider->reg = reg;
1066			divider->shift = data->div[i].shift;
1067			divider->width = SUNXI_DIVISOR_WIDTH;
1068			divider->flags = flags;
1069			divider->lock = &clk_lock;
1070			divider->table = data->div[i].table;
1071
1072			rate_hw = &divider->hw;
1073			rate_ops = &clk_divider_ops;
1074		}
1075
1076		/* Wrap the (potential) gate and the divisor on a composite
1077		 * clock to unify them */
1078		clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1079						 NULL, NULL,
1080						 rate_hw, rate_ops,
1081						 gate_hw, &clk_gate_ops,
1082						 clkflags |
1083						 (data->div[i].critical ?
1084							CLK_IS_CRITICAL : 0));
1085
1086		WARN_ON(IS_ERR(clk_data->clks[i]));
1087	}
1088
1089	/* Adjust to the real max */
1090	clk_data->clk_num = i;
1091
1092	if (of_clk_add_provider(node, of_clk_src_onecell_get, clk_data)) {
1093		pr_err("%s: failed to add clock provider for %s\n",
1094		       __func__, clk_name);
1095		goto free_gate;
1096	}
1097
1098	return clks;
1099free_gate:
1100	kfree(gate);
1101free_clks:
1102	kfree(clks);
1103free_clkdata:
1104	kfree(clk_data);
1105out_unmap:
1106	iounmap(reg);
1107	return NULL;
1108}
1109
1110static void __init sun4i_pll5_clk_setup(struct device_node *node)
1111{
1112	sunxi_divs_clk_setup(node, &pll5_divs_data);
1113}
1114CLK_OF_DECLARE(sun4i_pll5, "allwinner,sun4i-a10-pll5-clk",
1115	       sun4i_pll5_clk_setup);
1116
1117static void __init sun4i_pll6_clk_setup(struct device_node *node)
1118{
1119	sunxi_divs_clk_setup(node, &pll6_divs_data);
1120}
1121CLK_OF_DECLARE(sun4i_pll6, "allwinner,sun4i-a10-pll6-clk",
1122	       sun4i_pll6_clk_setup);
1123
1124static void __init sun6i_pll6_clk_setup(struct device_node *node)
1125{
1126	sunxi_divs_clk_setup(node, &sun6i_a31_pll6_divs_data);
1127}
1128CLK_OF_DECLARE(sun6i_pll6, "allwinner,sun6i-a31-pll6-clk",
1129	       sun6i_pll6_clk_setup);
1130
1131/*
1132 * sun6i display
1133 *
1134 * rate = parent_rate / (m + 1);
1135 */
1136static void sun6i_display_factors(struct factors_request *req)
1137{
1138	u8 m;
1139
1140	if (req->rate > req->parent_rate)
1141		req->rate = req->parent_rate;
1142
1143	m = DIV_ROUND_UP(req->parent_rate, req->rate);
1144
1145	req->rate = req->parent_rate / m;
1146	req->m = m - 1;
1147}
1148
1149static const struct clk_factors_config sun6i_display_config = {
1150	.mshift = 0,
1151	.mwidth = 4,
1152};
1153
1154static const struct factors_data sun6i_display_data __initconst = {
1155	.enable = 31,
1156	.mux = 24,
1157	.muxmask = BIT(2) | BIT(1) | BIT(0),
1158	.table = &sun6i_display_config,
1159	.getter = sun6i_display_factors,
1160};
1161
1162static void __init sun6i_display_setup(struct device_node *node)
1163{
1164	sunxi_factors_clk_setup(node, &sun6i_display_data);
1165}
1166CLK_OF_DECLARE(sun6i_display, "allwinner,sun6i-a31-display-clk",
1167	       sun6i_display_setup);
1168