1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/arch/x86_64/mm/init.c
4 *
5 *  Copyright (C) 1995  Linus Torvalds
6 *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
7 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
8 */
9
10#include <linux/signal.h>
11#include <linux/sched.h>
12#include <linux/kernel.h>
13#include <linux/errno.h>
14#include <linux/string.h>
15#include <linux/types.h>
16#include <linux/ptrace.h>
17#include <linux/mman.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/smp.h>
21#include <linux/init.h>
22#include <linux/initrd.h>
23#include <linux/pagemap.h>
24#include <linux/memblock.h>
25#include <linux/proc_fs.h>
26#include <linux/pci.h>
27#include <linux/pfn.h>
28#include <linux/poison.h>
29#include <linux/dma-mapping.h>
30#include <linux/memory.h>
31#include <linux/memory_hotplug.h>
32#include <linux/memremap.h>
33#include <linux/nmi.h>
34#include <linux/gfp.h>
35#include <linux/kcore.h>
36#include <linux/bootmem_info.h>
37
38#include <asm/processor.h>
39#include <asm/bios_ebda.h>
40#include <linux/uaccess.h>
41#include <asm/pgalloc.h>
42#include <asm/dma.h>
43#include <asm/fixmap.h>
44#include <asm/e820/api.h>
45#include <asm/apic.h>
46#include <asm/tlb.h>
47#include <asm/mmu_context.h>
48#include <asm/proto.h>
49#include <asm/smp.h>
50#include <asm/sections.h>
51#include <asm/kdebug.h>
52#include <asm/numa.h>
53#include <asm/set_memory.h>
54#include <asm/init.h>
55#include <asm/uv/uv.h>
56#include <asm/setup.h>
57#include <asm/ftrace.h>
58
59#include "mm_internal.h"
60
61#include "ident_map.c"
62
63#define DEFINE_POPULATE(fname, type1, type2, init)		\
64static inline void fname##_init(struct mm_struct *mm,		\
65		type1##_t *arg1, type2##_t *arg2, bool init)	\
66{								\
67	if (init)						\
68		fname##_safe(mm, arg1, arg2);			\
69	else							\
70		fname(mm, arg1, arg2);				\
71}
72
73DEFINE_POPULATE(p4d_populate, p4d, pud, init)
74DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
75DEFINE_POPULATE(pud_populate, pud, pmd, init)
76DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
77
78#define DEFINE_ENTRY(type1, type2, init)			\
79static inline void set_##type1##_init(type1##_t *arg1,		\
80			type2##_t arg2, bool init)		\
81{								\
82	if (init)						\
83		set_##type1##_safe(arg1, arg2);			\
84	else							\
85		set_##type1(arg1, arg2);			\
86}
87
88DEFINE_ENTRY(p4d, p4d, init)
89DEFINE_ENTRY(pud, pud, init)
90DEFINE_ENTRY(pmd, pmd, init)
91DEFINE_ENTRY(pte, pte, init)
92
93static inline pgprot_t prot_sethuge(pgprot_t prot)
94{
95	WARN_ON_ONCE(pgprot_val(prot) & _PAGE_PAT);
96
97	return __pgprot(pgprot_val(prot) | _PAGE_PSE);
98}
99
100/*
101 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
102 * physical space so we can cache the place of the first one and move
103 * around without checking the pgd every time.
104 */
105
106/* Bits supported by the hardware: */
107pteval_t __supported_pte_mask __read_mostly = ~0;
108/* Bits allowed in normal kernel mappings: */
109pteval_t __default_kernel_pte_mask __read_mostly = ~0;
110EXPORT_SYMBOL_GPL(__supported_pte_mask);
111/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
112EXPORT_SYMBOL(__default_kernel_pte_mask);
113
114int force_personality32;
115
116/*
117 * noexec32=on|off
118 * Control non executable heap for 32bit processes.
119 *
120 * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
121 * off	PROT_READ implies PROT_EXEC
122 */
123static int __init nonx32_setup(char *str)
124{
125	if (!strcmp(str, "on"))
126		force_personality32 &= ~READ_IMPLIES_EXEC;
127	else if (!strcmp(str, "off"))
128		force_personality32 |= READ_IMPLIES_EXEC;
129	return 1;
130}
131__setup("noexec32=", nonx32_setup);
132
133static void sync_global_pgds_l5(unsigned long start, unsigned long end)
134{
135	unsigned long addr;
136
137	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
138		const pgd_t *pgd_ref = pgd_offset_k(addr);
139		struct page *page;
140
141		/* Check for overflow */
142		if (addr < start)
143			break;
144
145		if (pgd_none(*pgd_ref))
146			continue;
147
148		spin_lock(&pgd_lock);
149		list_for_each_entry(page, &pgd_list, lru) {
150			pgd_t *pgd;
151			spinlock_t *pgt_lock;
152
153			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
154			/* the pgt_lock only for Xen */
155			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
156			spin_lock(pgt_lock);
157
158			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
159				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
160
161			if (pgd_none(*pgd))
162				set_pgd(pgd, *pgd_ref);
163
164			spin_unlock(pgt_lock);
165		}
166		spin_unlock(&pgd_lock);
167	}
168}
169
170static void sync_global_pgds_l4(unsigned long start, unsigned long end)
171{
172	unsigned long addr;
173
174	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
175		pgd_t *pgd_ref = pgd_offset_k(addr);
176		const p4d_t *p4d_ref;
177		struct page *page;
178
179		/*
180		 * With folded p4d, pgd_none() is always false, we need to
181		 * handle synchronization on p4d level.
182		 */
183		MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
184		p4d_ref = p4d_offset(pgd_ref, addr);
185
186		if (p4d_none(*p4d_ref))
187			continue;
188
189		spin_lock(&pgd_lock);
190		list_for_each_entry(page, &pgd_list, lru) {
191			pgd_t *pgd;
192			p4d_t *p4d;
193			spinlock_t *pgt_lock;
194
195			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
196			p4d = p4d_offset(pgd, addr);
197			/* the pgt_lock only for Xen */
198			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
199			spin_lock(pgt_lock);
200
201			if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
202				BUG_ON(p4d_pgtable(*p4d)
203				       != p4d_pgtable(*p4d_ref));
204
205			if (p4d_none(*p4d))
206				set_p4d(p4d, *p4d_ref);
207
208			spin_unlock(pgt_lock);
209		}
210		spin_unlock(&pgd_lock);
211	}
212}
213
214/*
215 * When memory was added make sure all the processes MM have
216 * suitable PGD entries in the local PGD level page.
217 */
218static void sync_global_pgds(unsigned long start, unsigned long end)
219{
220	if (pgtable_l5_enabled())
221		sync_global_pgds_l5(start, end);
222	else
223		sync_global_pgds_l4(start, end);
224}
225
226/*
227 * NOTE: This function is marked __ref because it calls __init function
228 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
229 */
230static __ref void *spp_getpage(void)
231{
232	void *ptr;
233
234	if (after_bootmem)
235		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
236	else
237		ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
238
239	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
240		panic("set_pte_phys: cannot allocate page data %s\n",
241			after_bootmem ? "after bootmem" : "");
242	}
243
244	pr_debug("spp_getpage %p\n", ptr);
245
246	return ptr;
247}
248
249static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
250{
251	if (pgd_none(*pgd)) {
252		p4d_t *p4d = (p4d_t *)spp_getpage();
253		pgd_populate(&init_mm, pgd, p4d);
254		if (p4d != p4d_offset(pgd, 0))
255			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
256			       p4d, p4d_offset(pgd, 0));
257	}
258	return p4d_offset(pgd, vaddr);
259}
260
261static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
262{
263	if (p4d_none(*p4d)) {
264		pud_t *pud = (pud_t *)spp_getpage();
265		p4d_populate(&init_mm, p4d, pud);
266		if (pud != pud_offset(p4d, 0))
267			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
268			       pud, pud_offset(p4d, 0));
269	}
270	return pud_offset(p4d, vaddr);
271}
272
273static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
274{
275	if (pud_none(*pud)) {
276		pmd_t *pmd = (pmd_t *) spp_getpage();
277		pud_populate(&init_mm, pud, pmd);
278		if (pmd != pmd_offset(pud, 0))
279			printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
280			       pmd, pmd_offset(pud, 0));
281	}
282	return pmd_offset(pud, vaddr);
283}
284
285static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
286{
287	if (pmd_none(*pmd)) {
288		pte_t *pte = (pte_t *) spp_getpage();
289		pmd_populate_kernel(&init_mm, pmd, pte);
290		if (pte != pte_offset_kernel(pmd, 0))
291			printk(KERN_ERR "PAGETABLE BUG #03!\n");
292	}
293	return pte_offset_kernel(pmd, vaddr);
294}
295
296static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
297{
298	pmd_t *pmd = fill_pmd(pud, vaddr);
299	pte_t *pte = fill_pte(pmd, vaddr);
300
301	set_pte(pte, new_pte);
302
303	/*
304	 * It's enough to flush this one mapping.
305	 * (PGE mappings get flushed as well)
306	 */
307	flush_tlb_one_kernel(vaddr);
308}
309
310void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
311{
312	p4d_t *p4d = p4d_page + p4d_index(vaddr);
313	pud_t *pud = fill_pud(p4d, vaddr);
314
315	__set_pte_vaddr(pud, vaddr, new_pte);
316}
317
318void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
319{
320	pud_t *pud = pud_page + pud_index(vaddr);
321
322	__set_pte_vaddr(pud, vaddr, new_pte);
323}
324
325void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
326{
327	pgd_t *pgd;
328	p4d_t *p4d_page;
329
330	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
331
332	pgd = pgd_offset_k(vaddr);
333	if (pgd_none(*pgd)) {
334		printk(KERN_ERR
335			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
336		return;
337	}
338
339	p4d_page = p4d_offset(pgd, 0);
340	set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
341}
342
343pmd_t * __init populate_extra_pmd(unsigned long vaddr)
344{
345	pgd_t *pgd;
346	p4d_t *p4d;
347	pud_t *pud;
348
349	pgd = pgd_offset_k(vaddr);
350	p4d = fill_p4d(pgd, vaddr);
351	pud = fill_pud(p4d, vaddr);
352	return fill_pmd(pud, vaddr);
353}
354
355pte_t * __init populate_extra_pte(unsigned long vaddr)
356{
357	pmd_t *pmd;
358
359	pmd = populate_extra_pmd(vaddr);
360	return fill_pte(pmd, vaddr);
361}
362
363/*
364 * Create large page table mappings for a range of physical addresses.
365 */
366static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
367					enum page_cache_mode cache)
368{
369	pgd_t *pgd;
370	p4d_t *p4d;
371	pud_t *pud;
372	pmd_t *pmd;
373	pgprot_t prot;
374
375	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
376		protval_4k_2_large(cachemode2protval(cache));
377	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
378	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
379		pgd = pgd_offset_k((unsigned long)__va(phys));
380		if (pgd_none(*pgd)) {
381			p4d = (p4d_t *) spp_getpage();
382			set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
383						_PAGE_USER));
384		}
385		p4d = p4d_offset(pgd, (unsigned long)__va(phys));
386		if (p4d_none(*p4d)) {
387			pud = (pud_t *) spp_getpage();
388			set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
389						_PAGE_USER));
390		}
391		pud = pud_offset(p4d, (unsigned long)__va(phys));
392		if (pud_none(*pud)) {
393			pmd = (pmd_t *) spp_getpage();
394			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
395						_PAGE_USER));
396		}
397		pmd = pmd_offset(pud, phys);
398		BUG_ON(!pmd_none(*pmd));
399		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
400	}
401}
402
403void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
404{
405	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
406}
407
408void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
409{
410	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
411}
412
413/*
414 * The head.S code sets up the kernel high mapping:
415 *
416 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
417 *
418 * phys_base holds the negative offset to the kernel, which is added
419 * to the compile time generated pmds. This results in invalid pmds up
420 * to the point where we hit the physaddr 0 mapping.
421 *
422 * We limit the mappings to the region from _text to _brk_end.  _brk_end
423 * is rounded up to the 2MB boundary. This catches the invalid pmds as
424 * well, as they are located before _text:
425 */
426void __init cleanup_highmap(void)
427{
428	unsigned long vaddr = __START_KERNEL_map;
429	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
430	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
431	pmd_t *pmd = level2_kernel_pgt;
432
433	/*
434	 * Native path, max_pfn_mapped is not set yet.
435	 * Xen has valid max_pfn_mapped set in
436	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
437	 */
438	if (max_pfn_mapped)
439		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
440
441	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
442		if (pmd_none(*pmd))
443			continue;
444		if (vaddr < (unsigned long) _text || vaddr > end)
445			set_pmd(pmd, __pmd(0));
446	}
447}
448
449/*
450 * Create PTE level page table mapping for physical addresses.
451 * It returns the last physical address mapped.
452 */
453static unsigned long __meminit
454phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
455	      pgprot_t prot, bool init)
456{
457	unsigned long pages = 0, paddr_next;
458	unsigned long paddr_last = paddr_end;
459	pte_t *pte;
460	int i;
461
462	pte = pte_page + pte_index(paddr);
463	i = pte_index(paddr);
464
465	for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
466		paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
467		if (paddr >= paddr_end) {
468			if (!after_bootmem &&
469			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
470					     E820_TYPE_RAM) &&
471			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
472					     E820_TYPE_RESERVED_KERN))
473				set_pte_init(pte, __pte(0), init);
474			continue;
475		}
476
477		/*
478		 * We will re-use the existing mapping.
479		 * Xen for example has some special requirements, like mapping
480		 * pagetable pages as RO. So assume someone who pre-setup
481		 * these mappings are more intelligent.
482		 */
483		if (!pte_none(*pte)) {
484			if (!after_bootmem)
485				pages++;
486			continue;
487		}
488
489		if (0)
490			pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
491				pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
492		pages++;
493		set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
494		paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
495	}
496
497	update_page_count(PG_LEVEL_4K, pages);
498
499	return paddr_last;
500}
501
502/*
503 * Create PMD level page table mapping for physical addresses. The virtual
504 * and physical address have to be aligned at this level.
505 * It returns the last physical address mapped.
506 */
507static unsigned long __meminit
508phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
509	      unsigned long page_size_mask, pgprot_t prot, bool init)
510{
511	unsigned long pages = 0, paddr_next;
512	unsigned long paddr_last = paddr_end;
513
514	int i = pmd_index(paddr);
515
516	for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
517		pmd_t *pmd = pmd_page + pmd_index(paddr);
518		pte_t *pte;
519		pgprot_t new_prot = prot;
520
521		paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
522		if (paddr >= paddr_end) {
523			if (!after_bootmem &&
524			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
525					     E820_TYPE_RAM) &&
526			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
527					     E820_TYPE_RESERVED_KERN))
528				set_pmd_init(pmd, __pmd(0), init);
529			continue;
530		}
531
532		if (!pmd_none(*pmd)) {
533			if (!pmd_leaf(*pmd)) {
534				spin_lock(&init_mm.page_table_lock);
535				pte = (pte_t *)pmd_page_vaddr(*pmd);
536				paddr_last = phys_pte_init(pte, paddr,
537							   paddr_end, prot,
538							   init);
539				spin_unlock(&init_mm.page_table_lock);
540				continue;
541			}
542			/*
543			 * If we are ok with PG_LEVEL_2M mapping, then we will
544			 * use the existing mapping,
545			 *
546			 * Otherwise, we will split the large page mapping but
547			 * use the same existing protection bits except for
548			 * large page, so that we don't violate Intel's TLB
549			 * Application note (317080) which says, while changing
550			 * the page sizes, new and old translations should
551			 * not differ with respect to page frame and
552			 * attributes.
553			 */
554			if (page_size_mask & (1 << PG_LEVEL_2M)) {
555				if (!after_bootmem)
556					pages++;
557				paddr_last = paddr_next;
558				continue;
559			}
560			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
561		}
562
563		if (page_size_mask & (1<<PG_LEVEL_2M)) {
564			pages++;
565			spin_lock(&init_mm.page_table_lock);
566			set_pmd_init(pmd,
567				     pfn_pmd(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
568				     init);
569			spin_unlock(&init_mm.page_table_lock);
570			paddr_last = paddr_next;
571			continue;
572		}
573
574		pte = alloc_low_page();
575		paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
576
577		spin_lock(&init_mm.page_table_lock);
578		pmd_populate_kernel_init(&init_mm, pmd, pte, init);
579		spin_unlock(&init_mm.page_table_lock);
580	}
581	update_page_count(PG_LEVEL_2M, pages);
582	return paddr_last;
583}
584
585/*
586 * Create PUD level page table mapping for physical addresses. The virtual
587 * and physical address do not have to be aligned at this level. KASLR can
588 * randomize virtual addresses up to this level.
589 * It returns the last physical address mapped.
590 */
591static unsigned long __meminit
592phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
593	      unsigned long page_size_mask, pgprot_t _prot, bool init)
594{
595	unsigned long pages = 0, paddr_next;
596	unsigned long paddr_last = paddr_end;
597	unsigned long vaddr = (unsigned long)__va(paddr);
598	int i = pud_index(vaddr);
599
600	for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
601		pud_t *pud;
602		pmd_t *pmd;
603		pgprot_t prot = _prot;
604
605		vaddr = (unsigned long)__va(paddr);
606		pud = pud_page + pud_index(vaddr);
607		paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
608
609		if (paddr >= paddr_end) {
610			if (!after_bootmem &&
611			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
612					     E820_TYPE_RAM) &&
613			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
614					     E820_TYPE_RESERVED_KERN))
615				set_pud_init(pud, __pud(0), init);
616			continue;
617		}
618
619		if (!pud_none(*pud)) {
620			if (!pud_leaf(*pud)) {
621				pmd = pmd_offset(pud, 0);
622				paddr_last = phys_pmd_init(pmd, paddr,
623							   paddr_end,
624							   page_size_mask,
625							   prot, init);
626				continue;
627			}
628			/*
629			 * If we are ok with PG_LEVEL_1G mapping, then we will
630			 * use the existing mapping.
631			 *
632			 * Otherwise, we will split the gbpage mapping but use
633			 * the same existing protection  bits except for large
634			 * page, so that we don't violate Intel's TLB
635			 * Application note (317080) which says, while changing
636			 * the page sizes, new and old translations should
637			 * not differ with respect to page frame and
638			 * attributes.
639			 */
640			if (page_size_mask & (1 << PG_LEVEL_1G)) {
641				if (!after_bootmem)
642					pages++;
643				paddr_last = paddr_next;
644				continue;
645			}
646			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
647		}
648
649		if (page_size_mask & (1<<PG_LEVEL_1G)) {
650			pages++;
651			spin_lock(&init_mm.page_table_lock);
652			set_pud_init(pud,
653				     pfn_pud(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
654				     init);
655			spin_unlock(&init_mm.page_table_lock);
656			paddr_last = paddr_next;
657			continue;
658		}
659
660		pmd = alloc_low_page();
661		paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
662					   page_size_mask, prot, init);
663
664		spin_lock(&init_mm.page_table_lock);
665		pud_populate_init(&init_mm, pud, pmd, init);
666		spin_unlock(&init_mm.page_table_lock);
667	}
668
669	update_page_count(PG_LEVEL_1G, pages);
670
671	return paddr_last;
672}
673
674static unsigned long __meminit
675phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
676	      unsigned long page_size_mask, pgprot_t prot, bool init)
677{
678	unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
679
680	paddr_last = paddr_end;
681	vaddr = (unsigned long)__va(paddr);
682	vaddr_end = (unsigned long)__va(paddr_end);
683
684	if (!pgtable_l5_enabled())
685		return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
686				     page_size_mask, prot, init);
687
688	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
689		p4d_t *p4d = p4d_page + p4d_index(vaddr);
690		pud_t *pud;
691
692		vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
693		paddr = __pa(vaddr);
694
695		if (paddr >= paddr_end) {
696			paddr_next = __pa(vaddr_next);
697			if (!after_bootmem &&
698			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
699					     E820_TYPE_RAM) &&
700			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
701					     E820_TYPE_RESERVED_KERN))
702				set_p4d_init(p4d, __p4d(0), init);
703			continue;
704		}
705
706		if (!p4d_none(*p4d)) {
707			pud = pud_offset(p4d, 0);
708			paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
709					page_size_mask, prot, init);
710			continue;
711		}
712
713		pud = alloc_low_page();
714		paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
715					   page_size_mask, prot, init);
716
717		spin_lock(&init_mm.page_table_lock);
718		p4d_populate_init(&init_mm, p4d, pud, init);
719		spin_unlock(&init_mm.page_table_lock);
720	}
721
722	return paddr_last;
723}
724
725static unsigned long __meminit
726__kernel_physical_mapping_init(unsigned long paddr_start,
727			       unsigned long paddr_end,
728			       unsigned long page_size_mask,
729			       pgprot_t prot, bool init)
730{
731	bool pgd_changed = false;
732	unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
733
734	paddr_last = paddr_end;
735	vaddr = (unsigned long)__va(paddr_start);
736	vaddr_end = (unsigned long)__va(paddr_end);
737	vaddr_start = vaddr;
738
739	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
740		pgd_t *pgd = pgd_offset_k(vaddr);
741		p4d_t *p4d;
742
743		vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
744
745		if (pgd_val(*pgd)) {
746			p4d = (p4d_t *)pgd_page_vaddr(*pgd);
747			paddr_last = phys_p4d_init(p4d, __pa(vaddr),
748						   __pa(vaddr_end),
749						   page_size_mask,
750						   prot, init);
751			continue;
752		}
753
754		p4d = alloc_low_page();
755		paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
756					   page_size_mask, prot, init);
757
758		spin_lock(&init_mm.page_table_lock);
759		if (pgtable_l5_enabled())
760			pgd_populate_init(&init_mm, pgd, p4d, init);
761		else
762			p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
763					  (pud_t *) p4d, init);
764
765		spin_unlock(&init_mm.page_table_lock);
766		pgd_changed = true;
767	}
768
769	if (pgd_changed)
770		sync_global_pgds(vaddr_start, vaddr_end - 1);
771
772	return paddr_last;
773}
774
775
776/*
777 * Create page table mapping for the physical memory for specific physical
778 * addresses. Note that it can only be used to populate non-present entries.
779 * The virtual and physical addresses have to be aligned on PMD level
780 * down. It returns the last physical address mapped.
781 */
782unsigned long __meminit
783kernel_physical_mapping_init(unsigned long paddr_start,
784			     unsigned long paddr_end,
785			     unsigned long page_size_mask, pgprot_t prot)
786{
787	return __kernel_physical_mapping_init(paddr_start, paddr_end,
788					      page_size_mask, prot, true);
789}
790
791/*
792 * This function is similar to kernel_physical_mapping_init() above with the
793 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
794 * when updating the mapping. The caller is responsible to flush the TLBs after
795 * the function returns.
796 */
797unsigned long __meminit
798kernel_physical_mapping_change(unsigned long paddr_start,
799			       unsigned long paddr_end,
800			       unsigned long page_size_mask)
801{
802	return __kernel_physical_mapping_init(paddr_start, paddr_end,
803					      page_size_mask, PAGE_KERNEL,
804					      false);
805}
806
807#ifndef CONFIG_NUMA
808void __init initmem_init(void)
809{
810	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
811}
812#endif
813
814void __init paging_init(void)
815{
816	sparse_init();
817
818	/*
819	 * clear the default setting with node 0
820	 * note: don't use nodes_clear here, that is really clearing when
821	 *	 numa support is not compiled in, and later node_set_state
822	 *	 will not set it back.
823	 */
824	node_clear_state(0, N_MEMORY);
825	node_clear_state(0, N_NORMAL_MEMORY);
826
827	zone_sizes_init();
828}
829
830#ifdef CONFIG_SPARSEMEM_VMEMMAP
831#define PAGE_UNUSED 0xFD
832
833/*
834 * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
835 * from unused_pmd_start to next PMD_SIZE boundary.
836 */
837static unsigned long unused_pmd_start __meminitdata;
838
839static void __meminit vmemmap_flush_unused_pmd(void)
840{
841	if (!unused_pmd_start)
842		return;
843	/*
844	 * Clears (unused_pmd_start, PMD_END]
845	 */
846	memset((void *)unused_pmd_start, PAGE_UNUSED,
847	       ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
848	unused_pmd_start = 0;
849}
850
851#ifdef CONFIG_MEMORY_HOTPLUG
852/* Returns true if the PMD is completely unused and thus it can be freed */
853static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
854{
855	unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
856
857	/*
858	 * Flush the unused range cache to ensure that memchr_inv() will work
859	 * for the whole range.
860	 */
861	vmemmap_flush_unused_pmd();
862	memset((void *)addr, PAGE_UNUSED, end - addr);
863
864	return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
865}
866#endif
867
868static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
869{
870	/*
871	 * As we expect to add in the same granularity as we remove, it's
872	 * sufficient to mark only some piece used to block the memmap page from
873	 * getting removed when removing some other adjacent memmap (just in
874	 * case the first memmap never gets initialized e.g., because the memory
875	 * block never gets onlined).
876	 */
877	memset((void *)start, 0, sizeof(struct page));
878}
879
880static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
881{
882	/*
883	 * We only optimize if the new used range directly follows the
884	 * previously unused range (esp., when populating consecutive sections).
885	 */
886	if (unused_pmd_start == start) {
887		if (likely(IS_ALIGNED(end, PMD_SIZE)))
888			unused_pmd_start = 0;
889		else
890			unused_pmd_start = end;
891		return;
892	}
893
894	/*
895	 * If the range does not contiguously follows previous one, make sure
896	 * to mark the unused range of the previous one so it can be removed.
897	 */
898	vmemmap_flush_unused_pmd();
899	__vmemmap_use_sub_pmd(start);
900}
901
902
903static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
904{
905	const unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
906
907	vmemmap_flush_unused_pmd();
908
909	/*
910	 * Could be our memmap page is filled with PAGE_UNUSED already from a
911	 * previous remove. Make sure to reset it.
912	 */
913	__vmemmap_use_sub_pmd(start);
914
915	/*
916	 * Mark with PAGE_UNUSED the unused parts of the new memmap range
917	 */
918	if (!IS_ALIGNED(start, PMD_SIZE))
919		memset((void *)page, PAGE_UNUSED, start - page);
920
921	/*
922	 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
923	 * consecutive sections. Remember for the last added PMD where the
924	 * unused range begins.
925	 */
926	if (!IS_ALIGNED(end, PMD_SIZE))
927		unused_pmd_start = end;
928}
929#endif
930
931/*
932 * Memory hotplug specific functions
933 */
934#ifdef CONFIG_MEMORY_HOTPLUG
935/*
936 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
937 * updating.
938 */
939static void update_end_of_memory_vars(u64 start, u64 size)
940{
941	unsigned long end_pfn = PFN_UP(start + size);
942
943	if (end_pfn > max_pfn) {
944		max_pfn = end_pfn;
945		max_low_pfn = end_pfn;
946		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
947	}
948}
949
950int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
951	      struct mhp_params *params)
952{
953	int ret;
954
955	ret = __add_pages(nid, start_pfn, nr_pages, params);
956	WARN_ON_ONCE(ret);
957
958	/* update max_pfn, max_low_pfn and high_memory */
959	update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
960				  nr_pages << PAGE_SHIFT);
961
962	return ret;
963}
964
965int arch_add_memory(int nid, u64 start, u64 size,
966		    struct mhp_params *params)
967{
968	unsigned long start_pfn = start >> PAGE_SHIFT;
969	unsigned long nr_pages = size >> PAGE_SHIFT;
970
971	init_memory_mapping(start, start + size, params->pgprot);
972
973	return add_pages(nid, start_pfn, nr_pages, params);
974}
975
976static void __meminit free_pagetable(struct page *page, int order)
977{
978	unsigned long magic;
979	unsigned int nr_pages = 1 << order;
980
981	/* bootmem page has reserved flag */
982	if (PageReserved(page)) {
983		__ClearPageReserved(page);
984
985		magic = page->index;
986		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
987			while (nr_pages--)
988				put_page_bootmem(page++);
989		} else
990			while (nr_pages--)
991				free_reserved_page(page++);
992	} else
993		free_pages((unsigned long)page_address(page), order);
994}
995
996static void __meminit free_hugepage_table(struct page *page,
997		struct vmem_altmap *altmap)
998{
999	if (altmap)
1000		vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
1001	else
1002		free_pagetable(page, get_order(PMD_SIZE));
1003}
1004
1005static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1006{
1007	pte_t *pte;
1008	int i;
1009
1010	for (i = 0; i < PTRS_PER_PTE; i++) {
1011		pte = pte_start + i;
1012		if (!pte_none(*pte))
1013			return;
1014	}
1015
1016	/* free a pte table */
1017	free_pagetable(pmd_page(*pmd), 0);
1018	spin_lock(&init_mm.page_table_lock);
1019	pmd_clear(pmd);
1020	spin_unlock(&init_mm.page_table_lock);
1021}
1022
1023static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
1024{
1025	pmd_t *pmd;
1026	int i;
1027
1028	for (i = 0; i < PTRS_PER_PMD; i++) {
1029		pmd = pmd_start + i;
1030		if (!pmd_none(*pmd))
1031			return;
1032	}
1033
1034	/* free a pmd table */
1035	free_pagetable(pud_page(*pud), 0);
1036	spin_lock(&init_mm.page_table_lock);
1037	pud_clear(pud);
1038	spin_unlock(&init_mm.page_table_lock);
1039}
1040
1041static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1042{
1043	pud_t *pud;
1044	int i;
1045
1046	for (i = 0; i < PTRS_PER_PUD; i++) {
1047		pud = pud_start + i;
1048		if (!pud_none(*pud))
1049			return;
1050	}
1051
1052	/* free a pud table */
1053	free_pagetable(p4d_page(*p4d), 0);
1054	spin_lock(&init_mm.page_table_lock);
1055	p4d_clear(p4d);
1056	spin_unlock(&init_mm.page_table_lock);
1057}
1058
1059static void __meminit
1060remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
1061		 bool direct)
1062{
1063	unsigned long next, pages = 0;
1064	pte_t *pte;
1065	phys_addr_t phys_addr;
1066
1067	pte = pte_start + pte_index(addr);
1068	for (; addr < end; addr = next, pte++) {
1069		next = (addr + PAGE_SIZE) & PAGE_MASK;
1070		if (next > end)
1071			next = end;
1072
1073		if (!pte_present(*pte))
1074			continue;
1075
1076		/*
1077		 * We mapped [0,1G) memory as identity mapping when
1078		 * initializing, in arch/x86/kernel/head_64.S. These
1079		 * pagetables cannot be removed.
1080		 */
1081		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
1082		if (phys_addr < (phys_addr_t)0x40000000)
1083			return;
1084
1085		if (!direct)
1086			free_pagetable(pte_page(*pte), 0);
1087
1088		spin_lock(&init_mm.page_table_lock);
1089		pte_clear(&init_mm, addr, pte);
1090		spin_unlock(&init_mm.page_table_lock);
1091
1092		/* For non-direct mapping, pages means nothing. */
1093		pages++;
1094	}
1095
1096	/* Call free_pte_table() in remove_pmd_table(). */
1097	flush_tlb_all();
1098	if (direct)
1099		update_page_count(PG_LEVEL_4K, -pages);
1100}
1101
1102static void __meminit
1103remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1104		 bool direct, struct vmem_altmap *altmap)
1105{
1106	unsigned long next, pages = 0;
1107	pte_t *pte_base;
1108	pmd_t *pmd;
1109
1110	pmd = pmd_start + pmd_index(addr);
1111	for (; addr < end; addr = next, pmd++) {
1112		next = pmd_addr_end(addr, end);
1113
1114		if (!pmd_present(*pmd))
1115			continue;
1116
1117		if (pmd_leaf(*pmd)) {
1118			if (IS_ALIGNED(addr, PMD_SIZE) &&
1119			    IS_ALIGNED(next, PMD_SIZE)) {
1120				if (!direct)
1121					free_hugepage_table(pmd_page(*pmd),
1122							    altmap);
1123
1124				spin_lock(&init_mm.page_table_lock);
1125				pmd_clear(pmd);
1126				spin_unlock(&init_mm.page_table_lock);
1127				pages++;
1128			}
1129#ifdef CONFIG_SPARSEMEM_VMEMMAP
1130			else if (vmemmap_pmd_is_unused(addr, next)) {
1131					free_hugepage_table(pmd_page(*pmd),
1132							    altmap);
1133					spin_lock(&init_mm.page_table_lock);
1134					pmd_clear(pmd);
1135					spin_unlock(&init_mm.page_table_lock);
1136			}
1137#endif
1138			continue;
1139		}
1140
1141		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1142		remove_pte_table(pte_base, addr, next, direct);
1143		free_pte_table(pte_base, pmd);
1144	}
1145
1146	/* Call free_pmd_table() in remove_pud_table(). */
1147	if (direct)
1148		update_page_count(PG_LEVEL_2M, -pages);
1149}
1150
1151static void __meminit
1152remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1153		 struct vmem_altmap *altmap, bool direct)
1154{
1155	unsigned long next, pages = 0;
1156	pmd_t *pmd_base;
1157	pud_t *pud;
1158
1159	pud = pud_start + pud_index(addr);
1160	for (; addr < end; addr = next, pud++) {
1161		next = pud_addr_end(addr, end);
1162
1163		if (!pud_present(*pud))
1164			continue;
1165
1166		if (pud_leaf(*pud) &&
1167		    IS_ALIGNED(addr, PUD_SIZE) &&
1168		    IS_ALIGNED(next, PUD_SIZE)) {
1169			spin_lock(&init_mm.page_table_lock);
1170			pud_clear(pud);
1171			spin_unlock(&init_mm.page_table_lock);
1172			pages++;
1173			continue;
1174		}
1175
1176		pmd_base = pmd_offset(pud, 0);
1177		remove_pmd_table(pmd_base, addr, next, direct, altmap);
1178		free_pmd_table(pmd_base, pud);
1179	}
1180
1181	if (direct)
1182		update_page_count(PG_LEVEL_1G, -pages);
1183}
1184
1185static void __meminit
1186remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1187		 struct vmem_altmap *altmap, bool direct)
1188{
1189	unsigned long next, pages = 0;
1190	pud_t *pud_base;
1191	p4d_t *p4d;
1192
1193	p4d = p4d_start + p4d_index(addr);
1194	for (; addr < end; addr = next, p4d++) {
1195		next = p4d_addr_end(addr, end);
1196
1197		if (!p4d_present(*p4d))
1198			continue;
1199
1200		BUILD_BUG_ON(p4d_leaf(*p4d));
1201
1202		pud_base = pud_offset(p4d, 0);
1203		remove_pud_table(pud_base, addr, next, altmap, direct);
1204		/*
1205		 * For 4-level page tables we do not want to free PUDs, but in the
1206		 * 5-level case we should free them. This code will have to change
1207		 * to adapt for boot-time switching between 4 and 5 level page tables.
1208		 */
1209		if (pgtable_l5_enabled())
1210			free_pud_table(pud_base, p4d);
1211	}
1212
1213	if (direct)
1214		update_page_count(PG_LEVEL_512G, -pages);
1215}
1216
1217/* start and end are both virtual address. */
1218static void __meminit
1219remove_pagetable(unsigned long start, unsigned long end, bool direct,
1220		struct vmem_altmap *altmap)
1221{
1222	unsigned long next;
1223	unsigned long addr;
1224	pgd_t *pgd;
1225	p4d_t *p4d;
1226
1227	for (addr = start; addr < end; addr = next) {
1228		next = pgd_addr_end(addr, end);
1229
1230		pgd = pgd_offset_k(addr);
1231		if (!pgd_present(*pgd))
1232			continue;
1233
1234		p4d = p4d_offset(pgd, 0);
1235		remove_p4d_table(p4d, addr, next, altmap, direct);
1236	}
1237
1238	flush_tlb_all();
1239}
1240
1241void __ref vmemmap_free(unsigned long start, unsigned long end,
1242		struct vmem_altmap *altmap)
1243{
1244	VM_BUG_ON(!PAGE_ALIGNED(start));
1245	VM_BUG_ON(!PAGE_ALIGNED(end));
1246
1247	remove_pagetable(start, end, false, altmap);
1248}
1249
1250static void __meminit
1251kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1252{
1253	start = (unsigned long)__va(start);
1254	end = (unsigned long)__va(end);
1255
1256	remove_pagetable(start, end, true, NULL);
1257}
1258
1259void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1260{
1261	unsigned long start_pfn = start >> PAGE_SHIFT;
1262	unsigned long nr_pages = size >> PAGE_SHIFT;
1263
1264	__remove_pages(start_pfn, nr_pages, altmap);
1265	kernel_physical_mapping_remove(start, start + size);
1266}
1267#endif /* CONFIG_MEMORY_HOTPLUG */
1268
1269static struct kcore_list kcore_vsyscall;
1270
1271static void __init register_page_bootmem_info(void)
1272{
1273#if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP)
1274	int i;
1275
1276	for_each_online_node(i)
1277		register_page_bootmem_info_node(NODE_DATA(i));
1278#endif
1279}
1280
1281/*
1282 * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1283 * Only the level which needs to be synchronized between all page-tables is
1284 * allocated because the synchronization can be expensive.
1285 */
1286static void __init preallocate_vmalloc_pages(void)
1287{
1288	unsigned long addr;
1289	const char *lvl;
1290
1291	for (addr = VMALLOC_START; addr <= VMEMORY_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1292		pgd_t *pgd = pgd_offset_k(addr);
1293		p4d_t *p4d;
1294		pud_t *pud;
1295
1296		lvl = "p4d";
1297		p4d = p4d_alloc(&init_mm, pgd, addr);
1298		if (!p4d)
1299			goto failed;
1300
1301		if (pgtable_l5_enabled())
1302			continue;
1303
1304		/*
1305		 * The goal here is to allocate all possibly required
1306		 * hardware page tables pointed to by the top hardware
1307		 * level.
1308		 *
1309		 * On 4-level systems, the P4D layer is folded away and
1310		 * the above code does no preallocation.  Below, go down
1311		 * to the pud _software_ level to ensure the second
1312		 * hardware level is allocated on 4-level systems too.
1313		 */
1314		lvl = "pud";
1315		pud = pud_alloc(&init_mm, p4d, addr);
1316		if (!pud)
1317			goto failed;
1318	}
1319
1320	return;
1321
1322failed:
1323
1324	/*
1325	 * The pages have to be there now or they will be missing in
1326	 * process page-tables later.
1327	 */
1328	panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1329}
1330
1331void __init mem_init(void)
1332{
1333	pci_iommu_alloc();
1334
1335	/* clear_bss() already clear the empty_zero_page */
1336
1337	/* this will put all memory onto the freelists */
1338	memblock_free_all();
1339	after_bootmem = 1;
1340	x86_init.hyper.init_after_bootmem();
1341
1342	/*
1343	 * Must be done after boot memory is put on freelist, because here we
1344	 * might set fields in deferred struct pages that have not yet been
1345	 * initialized, and memblock_free_all() initializes all the reserved
1346	 * deferred pages for us.
1347	 */
1348	register_page_bootmem_info();
1349
1350	/* Register memory areas for /proc/kcore */
1351	if (get_gate_vma(&init_mm))
1352		kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1353
1354	preallocate_vmalloc_pages();
1355}
1356
1357#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1358int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1359{
1360	/*
1361	 * More CPUs always led to greater speedups on tested systems, up to
1362	 * all the nodes' CPUs.  Use all since the system is otherwise idle
1363	 * now.
1364	 */
1365	return max_t(int, cpumask_weight(node_cpumask), 1);
1366}
1367#endif
1368
1369int kernel_set_to_readonly;
1370
1371void mark_rodata_ro(void)
1372{
1373	unsigned long start = PFN_ALIGN(_text);
1374	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1375	unsigned long end = (unsigned long)__end_rodata_hpage_align;
1376	unsigned long text_end = PFN_ALIGN(_etext);
1377	unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1378	unsigned long all_end;
1379
1380	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1381	       (end - start) >> 10);
1382	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1383
1384	kernel_set_to_readonly = 1;
1385
1386	/*
1387	 * The rodata/data/bss/brk section (but not the kernel text!)
1388	 * should also be not-executable.
1389	 *
1390	 * We align all_end to PMD_SIZE because the existing mapping
1391	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1392	 * split the PMD and the reminder between _brk_end and the end
1393	 * of the PMD will remain mapped executable.
1394	 *
1395	 * Any PMD which was setup after the one which covers _brk_end
1396	 * has been zapped already via cleanup_highmem().
1397	 */
1398	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1399	set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1400
1401	set_ftrace_ops_ro();
1402
1403#ifdef CONFIG_CPA_DEBUG
1404	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1405	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1406
1407	printk(KERN_INFO "Testing CPA: again\n");
1408	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1409#endif
1410
1411	free_kernel_image_pages("unused kernel image (text/rodata gap)",
1412				(void *)text_end, (void *)rodata_start);
1413	free_kernel_image_pages("unused kernel image (rodata/data gap)",
1414				(void *)rodata_end, (void *)_sdata);
1415}
1416
1417/*
1418 * Block size is the minimum amount of memory which can be hotplugged or
1419 * hotremoved. It must be power of two and must be equal or larger than
1420 * MIN_MEMORY_BLOCK_SIZE.
1421 */
1422#define MAX_BLOCK_SIZE (2UL << 30)
1423
1424/* Amount of ram needed to start using large blocks */
1425#define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1426
1427/* Adjustable memory block size */
1428static unsigned long set_memory_block_size;
1429int __init set_memory_block_size_order(unsigned int order)
1430{
1431	unsigned long size = 1UL << order;
1432
1433	if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1434		return -EINVAL;
1435
1436	set_memory_block_size = size;
1437	return 0;
1438}
1439
1440static unsigned long probe_memory_block_size(void)
1441{
1442	unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1443	unsigned long bz;
1444
1445	/* If memory block size has been set, then use it */
1446	bz = set_memory_block_size;
1447	if (bz)
1448		goto done;
1449
1450	/* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1451	if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1452		bz = MIN_MEMORY_BLOCK_SIZE;
1453		goto done;
1454	}
1455
1456	/*
1457	 * Use max block size to minimize overhead on bare metal, where
1458	 * alignment for memory hotplug isn't a concern.
1459	 */
1460	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1461		bz = MAX_BLOCK_SIZE;
1462		goto done;
1463	}
1464
1465	/* Find the largest allowed block size that aligns to memory end */
1466	for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1467		if (IS_ALIGNED(boot_mem_end, bz))
1468			break;
1469	}
1470done:
1471	pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1472
1473	return bz;
1474}
1475
1476static unsigned long memory_block_size_probed;
1477unsigned long memory_block_size_bytes(void)
1478{
1479	if (!memory_block_size_probed)
1480		memory_block_size_probed = probe_memory_block_size();
1481
1482	return memory_block_size_probed;
1483}
1484
1485#ifdef CONFIG_SPARSEMEM_VMEMMAP
1486/*
1487 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1488 */
1489static long __meminitdata addr_start, addr_end;
1490static void __meminitdata *p_start, *p_end;
1491static int __meminitdata node_start;
1492
1493void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1494			       unsigned long addr, unsigned long next)
1495{
1496	pte_t entry;
1497
1498	entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1499			PAGE_KERNEL_LARGE);
1500	set_pmd(pmd, __pmd(pte_val(entry)));
1501
1502	/* check to see if we have contiguous blocks */
1503	if (p_end != p || node_start != node) {
1504		if (p_start)
1505			pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1506				addr_start, addr_end-1, p_start, p_end-1, node_start);
1507		addr_start = addr;
1508		node_start = node;
1509		p_start = p;
1510	}
1511
1512	addr_end = addr + PMD_SIZE;
1513	p_end = p + PMD_SIZE;
1514
1515	if (!IS_ALIGNED(addr, PMD_SIZE) ||
1516		!IS_ALIGNED(next, PMD_SIZE))
1517		vmemmap_use_new_sub_pmd(addr, next);
1518}
1519
1520int __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
1521				unsigned long addr, unsigned long next)
1522{
1523	int large = pmd_leaf(*pmd);
1524
1525	if (pmd_leaf(*pmd)) {
1526		vmemmap_verify((pte_t *)pmd, node, addr, next);
1527		vmemmap_use_sub_pmd(addr, next);
1528	}
1529
1530	return large;
1531}
1532
1533int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1534		struct vmem_altmap *altmap)
1535{
1536	int err;
1537
1538	VM_BUG_ON(!PAGE_ALIGNED(start));
1539	VM_BUG_ON(!PAGE_ALIGNED(end));
1540
1541	if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1542		err = vmemmap_populate_basepages(start, end, node, NULL);
1543	else if (boot_cpu_has(X86_FEATURE_PSE))
1544		err = vmemmap_populate_hugepages(start, end, node, altmap);
1545	else if (altmap) {
1546		pr_err_once("%s: no cpu support for altmap allocations\n",
1547				__func__);
1548		err = -ENOMEM;
1549	} else
1550		err = vmemmap_populate_basepages(start, end, node, NULL);
1551	if (!err)
1552		sync_global_pgds(start, end - 1);
1553	return err;
1554}
1555
1556#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
1557void register_page_bootmem_memmap(unsigned long section_nr,
1558				  struct page *start_page, unsigned long nr_pages)
1559{
1560	unsigned long addr = (unsigned long)start_page;
1561	unsigned long end = (unsigned long)(start_page + nr_pages);
1562	unsigned long next;
1563	pgd_t *pgd;
1564	p4d_t *p4d;
1565	pud_t *pud;
1566	pmd_t *pmd;
1567	unsigned int nr_pmd_pages;
1568	struct page *page;
1569
1570	for (; addr < end; addr = next) {
1571		pte_t *pte = NULL;
1572
1573		pgd = pgd_offset_k(addr);
1574		if (pgd_none(*pgd)) {
1575			next = (addr + PAGE_SIZE) & PAGE_MASK;
1576			continue;
1577		}
1578		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1579
1580		p4d = p4d_offset(pgd, addr);
1581		if (p4d_none(*p4d)) {
1582			next = (addr + PAGE_SIZE) & PAGE_MASK;
1583			continue;
1584		}
1585		get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1586
1587		pud = pud_offset(p4d, addr);
1588		if (pud_none(*pud)) {
1589			next = (addr + PAGE_SIZE) & PAGE_MASK;
1590			continue;
1591		}
1592		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1593
1594		if (!boot_cpu_has(X86_FEATURE_PSE)) {
1595			next = (addr + PAGE_SIZE) & PAGE_MASK;
1596			pmd = pmd_offset(pud, addr);
1597			if (pmd_none(*pmd))
1598				continue;
1599			get_page_bootmem(section_nr, pmd_page(*pmd),
1600					 MIX_SECTION_INFO);
1601
1602			pte = pte_offset_kernel(pmd, addr);
1603			if (pte_none(*pte))
1604				continue;
1605			get_page_bootmem(section_nr, pte_page(*pte),
1606					 SECTION_INFO);
1607		} else {
1608			next = pmd_addr_end(addr, end);
1609
1610			pmd = pmd_offset(pud, addr);
1611			if (pmd_none(*pmd))
1612				continue;
1613
1614			nr_pmd_pages = 1 << get_order(PMD_SIZE);
1615			page = pmd_page(*pmd);
1616			while (nr_pmd_pages--)
1617				get_page_bootmem(section_nr, page++,
1618						 SECTION_INFO);
1619		}
1620	}
1621}
1622#endif
1623
1624void __meminit vmemmap_populate_print_last(void)
1625{
1626	if (p_start) {
1627		pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1628			addr_start, addr_end-1, p_start, p_end-1, node_start);
1629		p_start = NULL;
1630		p_end = NULL;
1631		node_start = 0;
1632	}
1633}
1634#endif
1635