1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * User interface for Resource Allocation in Resource Director Technology(RDT)
4 *
5 * Copyright (C) 2016 Intel Corporation
6 *
7 * Author: Fenghua Yu <fenghua.yu@intel.com>
8 *
9 * More information about RDT be found in the Intel (R) x86 Architecture
10 * Software Developer Manual.
11 */
12
13#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14
15#include <linux/cacheinfo.h>
16#include <linux/cpu.h>
17#include <linux/debugfs.h>
18#include <linux/fs.h>
19#include <linux/fs_parser.h>
20#include <linux/sysfs.h>
21#include <linux/kernfs.h>
22#include <linux/seq_buf.h>
23#include <linux/seq_file.h>
24#include <linux/sched/signal.h>
25#include <linux/sched/task.h>
26#include <linux/slab.h>
27#include <linux/task_work.h>
28#include <linux/user_namespace.h>
29
30#include <uapi/linux/magic.h>
31
32#include <asm/resctrl.h>
33#include "internal.h"
34
35DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38
39/* Mutex to protect rdtgroup access. */
40DEFINE_MUTEX(rdtgroup_mutex);
41
42static struct kernfs_root *rdt_root;
43struct rdtgroup rdtgroup_default;
44LIST_HEAD(rdt_all_groups);
45
46/* list of entries for the schemata file */
47LIST_HEAD(resctrl_schema_all);
48
49/* The filesystem can only be mounted once. */
50bool resctrl_mounted;
51
52/* Kernel fs node for "info" directory under root */
53static struct kernfs_node *kn_info;
54
55/* Kernel fs node for "mon_groups" directory under root */
56static struct kernfs_node *kn_mongrp;
57
58/* Kernel fs node for "mon_data" directory under root */
59static struct kernfs_node *kn_mondata;
60
61static struct seq_buf last_cmd_status;
62static char last_cmd_status_buf[512];
63
64static int rdtgroup_setup_root(struct rdt_fs_context *ctx);
65static void rdtgroup_destroy_root(void);
66
67struct dentry *debugfs_resctrl;
68
69static bool resctrl_debug;
70
71void rdt_last_cmd_clear(void)
72{
73	lockdep_assert_held(&rdtgroup_mutex);
74	seq_buf_clear(&last_cmd_status);
75}
76
77void rdt_last_cmd_puts(const char *s)
78{
79	lockdep_assert_held(&rdtgroup_mutex);
80	seq_buf_puts(&last_cmd_status, s);
81}
82
83void rdt_last_cmd_printf(const char *fmt, ...)
84{
85	va_list ap;
86
87	va_start(ap, fmt);
88	lockdep_assert_held(&rdtgroup_mutex);
89	seq_buf_vprintf(&last_cmd_status, fmt, ap);
90	va_end(ap);
91}
92
93void rdt_staged_configs_clear(void)
94{
95	struct rdt_resource *r;
96	struct rdt_domain *dom;
97
98	lockdep_assert_held(&rdtgroup_mutex);
99
100	for_each_alloc_capable_rdt_resource(r) {
101		list_for_each_entry(dom, &r->domains, list)
102			memset(dom->staged_config, 0, sizeof(dom->staged_config));
103	}
104}
105
106/*
107 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
108 * we can keep a bitmap of free CLOSIDs in a single integer.
109 *
110 * Using a global CLOSID across all resources has some advantages and
111 * some drawbacks:
112 * + We can simply set current's closid to assign a task to a resource
113 *   group.
114 * + Context switch code can avoid extra memory references deciding which
115 *   CLOSID to load into the PQR_ASSOC MSR
116 * - We give up some options in configuring resource groups across multi-socket
117 *   systems.
118 * - Our choices on how to configure each resource become progressively more
119 *   limited as the number of resources grows.
120 */
121static unsigned long closid_free_map;
122static int closid_free_map_len;
123
124int closids_supported(void)
125{
126	return closid_free_map_len;
127}
128
129static void closid_init(void)
130{
131	struct resctrl_schema *s;
132	u32 rdt_min_closid = 32;
133
134	/* Compute rdt_min_closid across all resources */
135	list_for_each_entry(s, &resctrl_schema_all, list)
136		rdt_min_closid = min(rdt_min_closid, s->num_closid);
137
138	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
139
140	/* RESCTRL_RESERVED_CLOSID is always reserved for the default group */
141	__clear_bit(RESCTRL_RESERVED_CLOSID, &closid_free_map);
142	closid_free_map_len = rdt_min_closid;
143}
144
145static int closid_alloc(void)
146{
147	int cleanest_closid;
148	u32 closid;
149
150	lockdep_assert_held(&rdtgroup_mutex);
151
152	if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
153		cleanest_closid = resctrl_find_cleanest_closid();
154		if (cleanest_closid < 0)
155			return cleanest_closid;
156		closid = cleanest_closid;
157	} else {
158		closid = ffs(closid_free_map);
159		if (closid == 0)
160			return -ENOSPC;
161		closid--;
162	}
163	__clear_bit(closid, &closid_free_map);
164
165	return closid;
166}
167
168void closid_free(int closid)
169{
170	lockdep_assert_held(&rdtgroup_mutex);
171
172	__set_bit(closid, &closid_free_map);
173}
174
175/**
176 * closid_allocated - test if provided closid is in use
177 * @closid: closid to be tested
178 *
179 * Return: true if @closid is currently associated with a resource group,
180 * false if @closid is free
181 */
182bool closid_allocated(unsigned int closid)
183{
184	lockdep_assert_held(&rdtgroup_mutex);
185
186	return !test_bit(closid, &closid_free_map);
187}
188
189/**
190 * rdtgroup_mode_by_closid - Return mode of resource group with closid
191 * @closid: closid if the resource group
192 *
193 * Each resource group is associated with a @closid. Here the mode
194 * of a resource group can be queried by searching for it using its closid.
195 *
196 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
197 */
198enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
199{
200	struct rdtgroup *rdtgrp;
201
202	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
203		if (rdtgrp->closid == closid)
204			return rdtgrp->mode;
205	}
206
207	return RDT_NUM_MODES;
208}
209
210static const char * const rdt_mode_str[] = {
211	[RDT_MODE_SHAREABLE]		= "shareable",
212	[RDT_MODE_EXCLUSIVE]		= "exclusive",
213	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
214	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
215};
216
217/**
218 * rdtgroup_mode_str - Return the string representation of mode
219 * @mode: the resource group mode as &enum rdtgroup_mode
220 *
221 * Return: string representation of valid mode, "unknown" otherwise
222 */
223static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
224{
225	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
226		return "unknown";
227
228	return rdt_mode_str[mode];
229}
230
231/* set uid and gid of rdtgroup dirs and files to that of the creator */
232static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
233{
234	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
235				.ia_uid = current_fsuid(),
236				.ia_gid = current_fsgid(), };
237
238	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
239	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
240		return 0;
241
242	return kernfs_setattr(kn, &iattr);
243}
244
245static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
246{
247	struct kernfs_node *kn;
248	int ret;
249
250	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
251				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
252				  0, rft->kf_ops, rft, NULL, NULL);
253	if (IS_ERR(kn))
254		return PTR_ERR(kn);
255
256	ret = rdtgroup_kn_set_ugid(kn);
257	if (ret) {
258		kernfs_remove(kn);
259		return ret;
260	}
261
262	return 0;
263}
264
265static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
266{
267	struct kernfs_open_file *of = m->private;
268	struct rftype *rft = of->kn->priv;
269
270	if (rft->seq_show)
271		return rft->seq_show(of, m, arg);
272	return 0;
273}
274
275static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
276				   size_t nbytes, loff_t off)
277{
278	struct rftype *rft = of->kn->priv;
279
280	if (rft->write)
281		return rft->write(of, buf, nbytes, off);
282
283	return -EINVAL;
284}
285
286static const struct kernfs_ops rdtgroup_kf_single_ops = {
287	.atomic_write_len	= PAGE_SIZE,
288	.write			= rdtgroup_file_write,
289	.seq_show		= rdtgroup_seqfile_show,
290};
291
292static const struct kernfs_ops kf_mondata_ops = {
293	.atomic_write_len	= PAGE_SIZE,
294	.seq_show		= rdtgroup_mondata_show,
295};
296
297static bool is_cpu_list(struct kernfs_open_file *of)
298{
299	struct rftype *rft = of->kn->priv;
300
301	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
302}
303
304static int rdtgroup_cpus_show(struct kernfs_open_file *of,
305			      struct seq_file *s, void *v)
306{
307	struct rdtgroup *rdtgrp;
308	struct cpumask *mask;
309	int ret = 0;
310
311	rdtgrp = rdtgroup_kn_lock_live(of->kn);
312
313	if (rdtgrp) {
314		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
315			if (!rdtgrp->plr->d) {
316				rdt_last_cmd_clear();
317				rdt_last_cmd_puts("Cache domain offline\n");
318				ret = -ENODEV;
319			} else {
320				mask = &rdtgrp->plr->d->cpu_mask;
321				seq_printf(s, is_cpu_list(of) ?
322					   "%*pbl\n" : "%*pb\n",
323					   cpumask_pr_args(mask));
324			}
325		} else {
326			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
327				   cpumask_pr_args(&rdtgrp->cpu_mask));
328		}
329	} else {
330		ret = -ENOENT;
331	}
332	rdtgroup_kn_unlock(of->kn);
333
334	return ret;
335}
336
337/*
338 * This is safe against resctrl_sched_in() called from __switch_to()
339 * because __switch_to() is executed with interrupts disabled. A local call
340 * from update_closid_rmid() is protected against __switch_to() because
341 * preemption is disabled.
342 */
343static void update_cpu_closid_rmid(void *info)
344{
345	struct rdtgroup *r = info;
346
347	if (r) {
348		this_cpu_write(pqr_state.default_closid, r->closid);
349		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
350	}
351
352	/*
353	 * We cannot unconditionally write the MSR because the current
354	 * executing task might have its own closid selected. Just reuse
355	 * the context switch code.
356	 */
357	resctrl_sched_in(current);
358}
359
360/*
361 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
362 *
363 * Per task closids/rmids must have been set up before calling this function.
364 */
365static void
366update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
367{
368	on_each_cpu_mask(cpu_mask, update_cpu_closid_rmid, r, 1);
369}
370
371static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
372			  cpumask_var_t tmpmask)
373{
374	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
375	struct list_head *head;
376
377	/* Check whether cpus belong to parent ctrl group */
378	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
379	if (!cpumask_empty(tmpmask)) {
380		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
381		return -EINVAL;
382	}
383
384	/* Check whether cpus are dropped from this group */
385	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
386	if (!cpumask_empty(tmpmask)) {
387		/* Give any dropped cpus to parent rdtgroup */
388		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
389		update_closid_rmid(tmpmask, prgrp);
390	}
391
392	/*
393	 * If we added cpus, remove them from previous group that owned them
394	 * and update per-cpu rmid
395	 */
396	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
397	if (!cpumask_empty(tmpmask)) {
398		head = &prgrp->mon.crdtgrp_list;
399		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
400			if (crgrp == rdtgrp)
401				continue;
402			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
403				       tmpmask);
404		}
405		update_closid_rmid(tmpmask, rdtgrp);
406	}
407
408	/* Done pushing/pulling - update this group with new mask */
409	cpumask_copy(&rdtgrp->cpu_mask, newmask);
410
411	return 0;
412}
413
414static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
415{
416	struct rdtgroup *crgrp;
417
418	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
419	/* update the child mon group masks as well*/
420	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
421		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
422}
423
424static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
425			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
426{
427	struct rdtgroup *r, *crgrp;
428	struct list_head *head;
429
430	/* Check whether cpus are dropped from this group */
431	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
432	if (!cpumask_empty(tmpmask)) {
433		/* Can't drop from default group */
434		if (rdtgrp == &rdtgroup_default) {
435			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
436			return -EINVAL;
437		}
438
439		/* Give any dropped cpus to rdtgroup_default */
440		cpumask_or(&rdtgroup_default.cpu_mask,
441			   &rdtgroup_default.cpu_mask, tmpmask);
442		update_closid_rmid(tmpmask, &rdtgroup_default);
443	}
444
445	/*
446	 * If we added cpus, remove them from previous group and
447	 * the prev group's child groups that owned them
448	 * and update per-cpu closid/rmid.
449	 */
450	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
451	if (!cpumask_empty(tmpmask)) {
452		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
453			if (r == rdtgrp)
454				continue;
455			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
456			if (!cpumask_empty(tmpmask1))
457				cpumask_rdtgrp_clear(r, tmpmask1);
458		}
459		update_closid_rmid(tmpmask, rdtgrp);
460	}
461
462	/* Done pushing/pulling - update this group with new mask */
463	cpumask_copy(&rdtgrp->cpu_mask, newmask);
464
465	/*
466	 * Clear child mon group masks since there is a new parent mask
467	 * now and update the rmid for the cpus the child lost.
468	 */
469	head = &rdtgrp->mon.crdtgrp_list;
470	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
471		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
472		update_closid_rmid(tmpmask, rdtgrp);
473		cpumask_clear(&crgrp->cpu_mask);
474	}
475
476	return 0;
477}
478
479static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
480				   char *buf, size_t nbytes, loff_t off)
481{
482	cpumask_var_t tmpmask, newmask, tmpmask1;
483	struct rdtgroup *rdtgrp;
484	int ret;
485
486	if (!buf)
487		return -EINVAL;
488
489	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
490		return -ENOMEM;
491	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
492		free_cpumask_var(tmpmask);
493		return -ENOMEM;
494	}
495	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
496		free_cpumask_var(tmpmask);
497		free_cpumask_var(newmask);
498		return -ENOMEM;
499	}
500
501	rdtgrp = rdtgroup_kn_lock_live(of->kn);
502	if (!rdtgrp) {
503		ret = -ENOENT;
504		goto unlock;
505	}
506
507	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
508	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
509		ret = -EINVAL;
510		rdt_last_cmd_puts("Pseudo-locking in progress\n");
511		goto unlock;
512	}
513
514	if (is_cpu_list(of))
515		ret = cpulist_parse(buf, newmask);
516	else
517		ret = cpumask_parse(buf, newmask);
518
519	if (ret) {
520		rdt_last_cmd_puts("Bad CPU list/mask\n");
521		goto unlock;
522	}
523
524	/* check that user didn't specify any offline cpus */
525	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
526	if (!cpumask_empty(tmpmask)) {
527		ret = -EINVAL;
528		rdt_last_cmd_puts("Can only assign online CPUs\n");
529		goto unlock;
530	}
531
532	if (rdtgrp->type == RDTCTRL_GROUP)
533		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
534	else if (rdtgrp->type == RDTMON_GROUP)
535		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
536	else
537		ret = -EINVAL;
538
539unlock:
540	rdtgroup_kn_unlock(of->kn);
541	free_cpumask_var(tmpmask);
542	free_cpumask_var(newmask);
543	free_cpumask_var(tmpmask1);
544
545	return ret ?: nbytes;
546}
547
548/**
549 * rdtgroup_remove - the helper to remove resource group safely
550 * @rdtgrp: resource group to remove
551 *
552 * On resource group creation via a mkdir, an extra kernfs_node reference is
553 * taken to ensure that the rdtgroup structure remains accessible for the
554 * rdtgroup_kn_unlock() calls where it is removed.
555 *
556 * Drop the extra reference here, then free the rdtgroup structure.
557 *
558 * Return: void
559 */
560static void rdtgroup_remove(struct rdtgroup *rdtgrp)
561{
562	kernfs_put(rdtgrp->kn);
563	kfree(rdtgrp);
564}
565
566static void _update_task_closid_rmid(void *task)
567{
568	/*
569	 * If the task is still current on this CPU, update PQR_ASSOC MSR.
570	 * Otherwise, the MSR is updated when the task is scheduled in.
571	 */
572	if (task == current)
573		resctrl_sched_in(task);
574}
575
576static void update_task_closid_rmid(struct task_struct *t)
577{
578	if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
579		smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
580	else
581		_update_task_closid_rmid(t);
582}
583
584static bool task_in_rdtgroup(struct task_struct *tsk, struct rdtgroup *rdtgrp)
585{
586	u32 closid, rmid = rdtgrp->mon.rmid;
587
588	if (rdtgrp->type == RDTCTRL_GROUP)
589		closid = rdtgrp->closid;
590	else if (rdtgrp->type == RDTMON_GROUP)
591		closid = rdtgrp->mon.parent->closid;
592	else
593		return false;
594
595	return resctrl_arch_match_closid(tsk, closid) &&
596	       resctrl_arch_match_rmid(tsk, closid, rmid);
597}
598
599static int __rdtgroup_move_task(struct task_struct *tsk,
600				struct rdtgroup *rdtgrp)
601{
602	/* If the task is already in rdtgrp, no need to move the task. */
603	if (task_in_rdtgroup(tsk, rdtgrp))
604		return 0;
605
606	/*
607	 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
608	 * updated by them.
609	 *
610	 * For ctrl_mon groups, move both closid and rmid.
611	 * For monitor groups, can move the tasks only from
612	 * their parent CTRL group.
613	 */
614	if (rdtgrp->type == RDTMON_GROUP &&
615	    !resctrl_arch_match_closid(tsk, rdtgrp->mon.parent->closid)) {
616		rdt_last_cmd_puts("Can't move task to different control group\n");
617		return -EINVAL;
618	}
619
620	if (rdtgrp->type == RDTMON_GROUP)
621		resctrl_arch_set_closid_rmid(tsk, rdtgrp->mon.parent->closid,
622					     rdtgrp->mon.rmid);
623	else
624		resctrl_arch_set_closid_rmid(tsk, rdtgrp->closid,
625					     rdtgrp->mon.rmid);
626
627	/*
628	 * Ensure the task's closid and rmid are written before determining if
629	 * the task is current that will decide if it will be interrupted.
630	 * This pairs with the full barrier between the rq->curr update and
631	 * resctrl_sched_in() during context switch.
632	 */
633	smp_mb();
634
635	/*
636	 * By now, the task's closid and rmid are set. If the task is current
637	 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
638	 * group go into effect. If the task is not current, the MSR will be
639	 * updated when the task is scheduled in.
640	 */
641	update_task_closid_rmid(tsk);
642
643	return 0;
644}
645
646static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
647{
648	return (resctrl_arch_alloc_capable() && (r->type == RDTCTRL_GROUP) &&
649		resctrl_arch_match_closid(t, r->closid));
650}
651
652static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
653{
654	return (resctrl_arch_mon_capable() && (r->type == RDTMON_GROUP) &&
655		resctrl_arch_match_rmid(t, r->mon.parent->closid,
656					r->mon.rmid));
657}
658
659/**
660 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
661 * @r: Resource group
662 *
663 * Return: 1 if tasks have been assigned to @r, 0 otherwise
664 */
665int rdtgroup_tasks_assigned(struct rdtgroup *r)
666{
667	struct task_struct *p, *t;
668	int ret = 0;
669
670	lockdep_assert_held(&rdtgroup_mutex);
671
672	rcu_read_lock();
673	for_each_process_thread(p, t) {
674		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
675			ret = 1;
676			break;
677		}
678	}
679	rcu_read_unlock();
680
681	return ret;
682}
683
684static int rdtgroup_task_write_permission(struct task_struct *task,
685					  struct kernfs_open_file *of)
686{
687	const struct cred *tcred = get_task_cred(task);
688	const struct cred *cred = current_cred();
689	int ret = 0;
690
691	/*
692	 * Even if we're attaching all tasks in the thread group, we only
693	 * need to check permissions on one of them.
694	 */
695	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
696	    !uid_eq(cred->euid, tcred->uid) &&
697	    !uid_eq(cred->euid, tcred->suid)) {
698		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
699		ret = -EPERM;
700	}
701
702	put_cred(tcred);
703	return ret;
704}
705
706static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
707			      struct kernfs_open_file *of)
708{
709	struct task_struct *tsk;
710	int ret;
711
712	rcu_read_lock();
713	if (pid) {
714		tsk = find_task_by_vpid(pid);
715		if (!tsk) {
716			rcu_read_unlock();
717			rdt_last_cmd_printf("No task %d\n", pid);
718			return -ESRCH;
719		}
720	} else {
721		tsk = current;
722	}
723
724	get_task_struct(tsk);
725	rcu_read_unlock();
726
727	ret = rdtgroup_task_write_permission(tsk, of);
728	if (!ret)
729		ret = __rdtgroup_move_task(tsk, rdtgrp);
730
731	put_task_struct(tsk);
732	return ret;
733}
734
735static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
736				    char *buf, size_t nbytes, loff_t off)
737{
738	struct rdtgroup *rdtgrp;
739	char *pid_str;
740	int ret = 0;
741	pid_t pid;
742
743	rdtgrp = rdtgroup_kn_lock_live(of->kn);
744	if (!rdtgrp) {
745		rdtgroup_kn_unlock(of->kn);
746		return -ENOENT;
747	}
748	rdt_last_cmd_clear();
749
750	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
751	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
752		ret = -EINVAL;
753		rdt_last_cmd_puts("Pseudo-locking in progress\n");
754		goto unlock;
755	}
756
757	while (buf && buf[0] != '\0' && buf[0] != '\n') {
758		pid_str = strim(strsep(&buf, ","));
759
760		if (kstrtoint(pid_str, 0, &pid)) {
761			rdt_last_cmd_printf("Task list parsing error pid %s\n", pid_str);
762			ret = -EINVAL;
763			break;
764		}
765
766		if (pid < 0) {
767			rdt_last_cmd_printf("Invalid pid %d\n", pid);
768			ret = -EINVAL;
769			break;
770		}
771
772		ret = rdtgroup_move_task(pid, rdtgrp, of);
773		if (ret) {
774			rdt_last_cmd_printf("Error while processing task %d\n", pid);
775			break;
776		}
777	}
778
779unlock:
780	rdtgroup_kn_unlock(of->kn);
781
782	return ret ?: nbytes;
783}
784
785static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
786{
787	struct task_struct *p, *t;
788	pid_t pid;
789
790	rcu_read_lock();
791	for_each_process_thread(p, t) {
792		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
793			pid = task_pid_vnr(t);
794			if (pid)
795				seq_printf(s, "%d\n", pid);
796		}
797	}
798	rcu_read_unlock();
799}
800
801static int rdtgroup_tasks_show(struct kernfs_open_file *of,
802			       struct seq_file *s, void *v)
803{
804	struct rdtgroup *rdtgrp;
805	int ret = 0;
806
807	rdtgrp = rdtgroup_kn_lock_live(of->kn);
808	if (rdtgrp)
809		show_rdt_tasks(rdtgrp, s);
810	else
811		ret = -ENOENT;
812	rdtgroup_kn_unlock(of->kn);
813
814	return ret;
815}
816
817static int rdtgroup_closid_show(struct kernfs_open_file *of,
818				struct seq_file *s, void *v)
819{
820	struct rdtgroup *rdtgrp;
821	int ret = 0;
822
823	rdtgrp = rdtgroup_kn_lock_live(of->kn);
824	if (rdtgrp)
825		seq_printf(s, "%u\n", rdtgrp->closid);
826	else
827		ret = -ENOENT;
828	rdtgroup_kn_unlock(of->kn);
829
830	return ret;
831}
832
833static int rdtgroup_rmid_show(struct kernfs_open_file *of,
834			      struct seq_file *s, void *v)
835{
836	struct rdtgroup *rdtgrp;
837	int ret = 0;
838
839	rdtgrp = rdtgroup_kn_lock_live(of->kn);
840	if (rdtgrp)
841		seq_printf(s, "%u\n", rdtgrp->mon.rmid);
842	else
843		ret = -ENOENT;
844	rdtgroup_kn_unlock(of->kn);
845
846	return ret;
847}
848
849#ifdef CONFIG_PROC_CPU_RESCTRL
850
851/*
852 * A task can only be part of one resctrl control group and of one monitor
853 * group which is associated to that control group.
854 *
855 * 1)   res:
856 *      mon:
857 *
858 *    resctrl is not available.
859 *
860 * 2)   res:/
861 *      mon:
862 *
863 *    Task is part of the root resctrl control group, and it is not associated
864 *    to any monitor group.
865 *
866 * 3)  res:/
867 *     mon:mon0
868 *
869 *    Task is part of the root resctrl control group and monitor group mon0.
870 *
871 * 4)  res:group0
872 *     mon:
873 *
874 *    Task is part of resctrl control group group0, and it is not associated
875 *    to any monitor group.
876 *
877 * 5) res:group0
878 *    mon:mon1
879 *
880 *    Task is part of resctrl control group group0 and monitor group mon1.
881 */
882int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
883		      struct pid *pid, struct task_struct *tsk)
884{
885	struct rdtgroup *rdtg;
886	int ret = 0;
887
888	mutex_lock(&rdtgroup_mutex);
889
890	/* Return empty if resctrl has not been mounted. */
891	if (!resctrl_mounted) {
892		seq_puts(s, "res:\nmon:\n");
893		goto unlock;
894	}
895
896	list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
897		struct rdtgroup *crg;
898
899		/*
900		 * Task information is only relevant for shareable
901		 * and exclusive groups.
902		 */
903		if (rdtg->mode != RDT_MODE_SHAREABLE &&
904		    rdtg->mode != RDT_MODE_EXCLUSIVE)
905			continue;
906
907		if (!resctrl_arch_match_closid(tsk, rdtg->closid))
908			continue;
909
910		seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
911			   rdtg->kn->name);
912		seq_puts(s, "mon:");
913		list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
914				    mon.crdtgrp_list) {
915			if (!resctrl_arch_match_rmid(tsk, crg->mon.parent->closid,
916						     crg->mon.rmid))
917				continue;
918			seq_printf(s, "%s", crg->kn->name);
919			break;
920		}
921		seq_putc(s, '\n');
922		goto unlock;
923	}
924	/*
925	 * The above search should succeed. Otherwise return
926	 * with an error.
927	 */
928	ret = -ENOENT;
929unlock:
930	mutex_unlock(&rdtgroup_mutex);
931
932	return ret;
933}
934#endif
935
936static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
937				    struct seq_file *seq, void *v)
938{
939	int len;
940
941	mutex_lock(&rdtgroup_mutex);
942	len = seq_buf_used(&last_cmd_status);
943	if (len)
944		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
945	else
946		seq_puts(seq, "ok\n");
947	mutex_unlock(&rdtgroup_mutex);
948	return 0;
949}
950
951static int rdt_num_closids_show(struct kernfs_open_file *of,
952				struct seq_file *seq, void *v)
953{
954	struct resctrl_schema *s = of->kn->parent->priv;
955
956	seq_printf(seq, "%u\n", s->num_closid);
957	return 0;
958}
959
960static int rdt_default_ctrl_show(struct kernfs_open_file *of,
961			     struct seq_file *seq, void *v)
962{
963	struct resctrl_schema *s = of->kn->parent->priv;
964	struct rdt_resource *r = s->res;
965
966	seq_printf(seq, "%x\n", r->default_ctrl);
967	return 0;
968}
969
970static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
971			     struct seq_file *seq, void *v)
972{
973	struct resctrl_schema *s = of->kn->parent->priv;
974	struct rdt_resource *r = s->res;
975
976	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
977	return 0;
978}
979
980static int rdt_shareable_bits_show(struct kernfs_open_file *of,
981				   struct seq_file *seq, void *v)
982{
983	struct resctrl_schema *s = of->kn->parent->priv;
984	struct rdt_resource *r = s->res;
985
986	seq_printf(seq, "%x\n", r->cache.shareable_bits);
987	return 0;
988}
989
990/*
991 * rdt_bit_usage_show - Display current usage of resources
992 *
993 * A domain is a shared resource that can now be allocated differently. Here
994 * we display the current regions of the domain as an annotated bitmask.
995 * For each domain of this resource its allocation bitmask
996 * is annotated as below to indicate the current usage of the corresponding bit:
997 *   0 - currently unused
998 *   X - currently available for sharing and used by software and hardware
999 *   H - currently used by hardware only but available for software use
1000 *   S - currently used and shareable by software only
1001 *   E - currently used exclusively by one resource group
1002 *   P - currently pseudo-locked by one resource group
1003 */
1004static int rdt_bit_usage_show(struct kernfs_open_file *of,
1005			      struct seq_file *seq, void *v)
1006{
1007	struct resctrl_schema *s = of->kn->parent->priv;
1008	/*
1009	 * Use unsigned long even though only 32 bits are used to ensure
1010	 * test_bit() is used safely.
1011	 */
1012	unsigned long sw_shareable = 0, hw_shareable = 0;
1013	unsigned long exclusive = 0, pseudo_locked = 0;
1014	struct rdt_resource *r = s->res;
1015	struct rdt_domain *dom;
1016	int i, hwb, swb, excl, psl;
1017	enum rdtgrp_mode mode;
1018	bool sep = false;
1019	u32 ctrl_val;
1020
1021	cpus_read_lock();
1022	mutex_lock(&rdtgroup_mutex);
1023	hw_shareable = r->cache.shareable_bits;
1024	list_for_each_entry(dom, &r->domains, list) {
1025		if (sep)
1026			seq_putc(seq, ';');
1027		sw_shareable = 0;
1028		exclusive = 0;
1029		seq_printf(seq, "%d=", dom->id);
1030		for (i = 0; i < closids_supported(); i++) {
1031			if (!closid_allocated(i))
1032				continue;
1033			ctrl_val = resctrl_arch_get_config(r, dom, i,
1034							   s->conf_type);
1035			mode = rdtgroup_mode_by_closid(i);
1036			switch (mode) {
1037			case RDT_MODE_SHAREABLE:
1038				sw_shareable |= ctrl_val;
1039				break;
1040			case RDT_MODE_EXCLUSIVE:
1041				exclusive |= ctrl_val;
1042				break;
1043			case RDT_MODE_PSEUDO_LOCKSETUP:
1044			/*
1045			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
1046			 * here but not included since the CBM
1047			 * associated with this CLOSID in this mode
1048			 * is not initialized and no task or cpu can be
1049			 * assigned this CLOSID.
1050			 */
1051				break;
1052			case RDT_MODE_PSEUDO_LOCKED:
1053			case RDT_NUM_MODES:
1054				WARN(1,
1055				     "invalid mode for closid %d\n", i);
1056				break;
1057			}
1058		}
1059		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
1060			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
1061			hwb = test_bit(i, &hw_shareable);
1062			swb = test_bit(i, &sw_shareable);
1063			excl = test_bit(i, &exclusive);
1064			psl = test_bit(i, &pseudo_locked);
1065			if (hwb && swb)
1066				seq_putc(seq, 'X');
1067			else if (hwb && !swb)
1068				seq_putc(seq, 'H');
1069			else if (!hwb && swb)
1070				seq_putc(seq, 'S');
1071			else if (excl)
1072				seq_putc(seq, 'E');
1073			else if (psl)
1074				seq_putc(seq, 'P');
1075			else /* Unused bits remain */
1076				seq_putc(seq, '0');
1077		}
1078		sep = true;
1079	}
1080	seq_putc(seq, '\n');
1081	mutex_unlock(&rdtgroup_mutex);
1082	cpus_read_unlock();
1083	return 0;
1084}
1085
1086static int rdt_min_bw_show(struct kernfs_open_file *of,
1087			     struct seq_file *seq, void *v)
1088{
1089	struct resctrl_schema *s = of->kn->parent->priv;
1090	struct rdt_resource *r = s->res;
1091
1092	seq_printf(seq, "%u\n", r->membw.min_bw);
1093	return 0;
1094}
1095
1096static int rdt_num_rmids_show(struct kernfs_open_file *of,
1097			      struct seq_file *seq, void *v)
1098{
1099	struct rdt_resource *r = of->kn->parent->priv;
1100
1101	seq_printf(seq, "%d\n", r->num_rmid);
1102
1103	return 0;
1104}
1105
1106static int rdt_mon_features_show(struct kernfs_open_file *of,
1107				 struct seq_file *seq, void *v)
1108{
1109	struct rdt_resource *r = of->kn->parent->priv;
1110	struct mon_evt *mevt;
1111
1112	list_for_each_entry(mevt, &r->evt_list, list) {
1113		seq_printf(seq, "%s\n", mevt->name);
1114		if (mevt->configurable)
1115			seq_printf(seq, "%s_config\n", mevt->name);
1116	}
1117
1118	return 0;
1119}
1120
1121static int rdt_bw_gran_show(struct kernfs_open_file *of,
1122			     struct seq_file *seq, void *v)
1123{
1124	struct resctrl_schema *s = of->kn->parent->priv;
1125	struct rdt_resource *r = s->res;
1126
1127	seq_printf(seq, "%u\n", r->membw.bw_gran);
1128	return 0;
1129}
1130
1131static int rdt_delay_linear_show(struct kernfs_open_file *of,
1132			     struct seq_file *seq, void *v)
1133{
1134	struct resctrl_schema *s = of->kn->parent->priv;
1135	struct rdt_resource *r = s->res;
1136
1137	seq_printf(seq, "%u\n", r->membw.delay_linear);
1138	return 0;
1139}
1140
1141static int max_threshold_occ_show(struct kernfs_open_file *of,
1142				  struct seq_file *seq, void *v)
1143{
1144	seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold);
1145
1146	return 0;
1147}
1148
1149static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1150					 struct seq_file *seq, void *v)
1151{
1152	struct resctrl_schema *s = of->kn->parent->priv;
1153	struct rdt_resource *r = s->res;
1154
1155	if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1156		seq_puts(seq, "per-thread\n");
1157	else
1158		seq_puts(seq, "max\n");
1159
1160	return 0;
1161}
1162
1163static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1164				       char *buf, size_t nbytes, loff_t off)
1165{
1166	unsigned int bytes;
1167	int ret;
1168
1169	ret = kstrtouint(buf, 0, &bytes);
1170	if (ret)
1171		return ret;
1172
1173	if (bytes > resctrl_rmid_realloc_limit)
1174		return -EINVAL;
1175
1176	resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes);
1177
1178	return nbytes;
1179}
1180
1181/*
1182 * rdtgroup_mode_show - Display mode of this resource group
1183 */
1184static int rdtgroup_mode_show(struct kernfs_open_file *of,
1185			      struct seq_file *s, void *v)
1186{
1187	struct rdtgroup *rdtgrp;
1188
1189	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1190	if (!rdtgrp) {
1191		rdtgroup_kn_unlock(of->kn);
1192		return -ENOENT;
1193	}
1194
1195	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1196
1197	rdtgroup_kn_unlock(of->kn);
1198	return 0;
1199}
1200
1201static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1202{
1203	switch (my_type) {
1204	case CDP_CODE:
1205		return CDP_DATA;
1206	case CDP_DATA:
1207		return CDP_CODE;
1208	default:
1209	case CDP_NONE:
1210		return CDP_NONE;
1211	}
1212}
1213
1214static int rdt_has_sparse_bitmasks_show(struct kernfs_open_file *of,
1215					struct seq_file *seq, void *v)
1216{
1217	struct resctrl_schema *s = of->kn->parent->priv;
1218	struct rdt_resource *r = s->res;
1219
1220	seq_printf(seq, "%u\n", r->cache.arch_has_sparse_bitmasks);
1221
1222	return 0;
1223}
1224
1225/**
1226 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1227 * @r: Resource to which domain instance @d belongs.
1228 * @d: The domain instance for which @closid is being tested.
1229 * @cbm: Capacity bitmask being tested.
1230 * @closid: Intended closid for @cbm.
1231 * @type: CDP type of @r.
1232 * @exclusive: Only check if overlaps with exclusive resource groups
1233 *
1234 * Checks if provided @cbm intended to be used for @closid on domain
1235 * @d overlaps with any other closids or other hardware usage associated
1236 * with this domain. If @exclusive is true then only overlaps with
1237 * resource groups in exclusive mode will be considered. If @exclusive
1238 * is false then overlaps with any resource group or hardware entities
1239 * will be considered.
1240 *
1241 * @cbm is unsigned long, even if only 32 bits are used, to make the
1242 * bitmap functions work correctly.
1243 *
1244 * Return: false if CBM does not overlap, true if it does.
1245 */
1246static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1247				    unsigned long cbm, int closid,
1248				    enum resctrl_conf_type type, bool exclusive)
1249{
1250	enum rdtgrp_mode mode;
1251	unsigned long ctrl_b;
1252	int i;
1253
1254	/* Check for any overlap with regions used by hardware directly */
1255	if (!exclusive) {
1256		ctrl_b = r->cache.shareable_bits;
1257		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1258			return true;
1259	}
1260
1261	/* Check for overlap with other resource groups */
1262	for (i = 0; i < closids_supported(); i++) {
1263		ctrl_b = resctrl_arch_get_config(r, d, i, type);
1264		mode = rdtgroup_mode_by_closid(i);
1265		if (closid_allocated(i) && i != closid &&
1266		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1267			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1268				if (exclusive) {
1269					if (mode == RDT_MODE_EXCLUSIVE)
1270						return true;
1271					continue;
1272				}
1273				return true;
1274			}
1275		}
1276	}
1277
1278	return false;
1279}
1280
1281/**
1282 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1283 * @s: Schema for the resource to which domain instance @d belongs.
1284 * @d: The domain instance for which @closid is being tested.
1285 * @cbm: Capacity bitmask being tested.
1286 * @closid: Intended closid for @cbm.
1287 * @exclusive: Only check if overlaps with exclusive resource groups
1288 *
1289 * Resources that can be allocated using a CBM can use the CBM to control
1290 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1291 * for overlap. Overlap test is not limited to the specific resource for
1292 * which the CBM is intended though - when dealing with CDP resources that
1293 * share the underlying hardware the overlap check should be performed on
1294 * the CDP resource sharing the hardware also.
1295 *
1296 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1297 * overlap test.
1298 *
1299 * Return: true if CBM overlap detected, false if there is no overlap
1300 */
1301bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d,
1302			   unsigned long cbm, int closid, bool exclusive)
1303{
1304	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1305	struct rdt_resource *r = s->res;
1306
1307	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1308				    exclusive))
1309		return true;
1310
1311	if (!resctrl_arch_get_cdp_enabled(r->rid))
1312		return false;
1313	return  __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1314}
1315
1316/**
1317 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1318 * @rdtgrp: Resource group identified through its closid.
1319 *
1320 * An exclusive resource group implies that there should be no sharing of
1321 * its allocated resources. At the time this group is considered to be
1322 * exclusive this test can determine if its current schemata supports this
1323 * setting by testing for overlap with all other resource groups.
1324 *
1325 * Return: true if resource group can be exclusive, false if there is overlap
1326 * with allocations of other resource groups and thus this resource group
1327 * cannot be exclusive.
1328 */
1329static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1330{
1331	int closid = rdtgrp->closid;
1332	struct resctrl_schema *s;
1333	struct rdt_resource *r;
1334	bool has_cache = false;
1335	struct rdt_domain *d;
1336	u32 ctrl;
1337
1338	/* Walking r->domains, ensure it can't race with cpuhp */
1339	lockdep_assert_cpus_held();
1340
1341	list_for_each_entry(s, &resctrl_schema_all, list) {
1342		r = s->res;
1343		if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA)
1344			continue;
1345		has_cache = true;
1346		list_for_each_entry(d, &r->domains, list) {
1347			ctrl = resctrl_arch_get_config(r, d, closid,
1348						       s->conf_type);
1349			if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1350				rdt_last_cmd_puts("Schemata overlaps\n");
1351				return false;
1352			}
1353		}
1354	}
1355
1356	if (!has_cache) {
1357		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1358		return false;
1359	}
1360
1361	return true;
1362}
1363
1364/*
1365 * rdtgroup_mode_write - Modify the resource group's mode
1366 */
1367static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1368				   char *buf, size_t nbytes, loff_t off)
1369{
1370	struct rdtgroup *rdtgrp;
1371	enum rdtgrp_mode mode;
1372	int ret = 0;
1373
1374	/* Valid input requires a trailing newline */
1375	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1376		return -EINVAL;
1377	buf[nbytes - 1] = '\0';
1378
1379	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1380	if (!rdtgrp) {
1381		rdtgroup_kn_unlock(of->kn);
1382		return -ENOENT;
1383	}
1384
1385	rdt_last_cmd_clear();
1386
1387	mode = rdtgrp->mode;
1388
1389	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1390	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1391	    (!strcmp(buf, "pseudo-locksetup") &&
1392	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1393	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1394		goto out;
1395
1396	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1397		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1398		ret = -EINVAL;
1399		goto out;
1400	}
1401
1402	if (!strcmp(buf, "shareable")) {
1403		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1404			ret = rdtgroup_locksetup_exit(rdtgrp);
1405			if (ret)
1406				goto out;
1407		}
1408		rdtgrp->mode = RDT_MODE_SHAREABLE;
1409	} else if (!strcmp(buf, "exclusive")) {
1410		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1411			ret = -EINVAL;
1412			goto out;
1413		}
1414		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1415			ret = rdtgroup_locksetup_exit(rdtgrp);
1416			if (ret)
1417				goto out;
1418		}
1419		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1420	} else if (!strcmp(buf, "pseudo-locksetup")) {
1421		ret = rdtgroup_locksetup_enter(rdtgrp);
1422		if (ret)
1423			goto out;
1424		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1425	} else {
1426		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1427		ret = -EINVAL;
1428	}
1429
1430out:
1431	rdtgroup_kn_unlock(of->kn);
1432	return ret ?: nbytes;
1433}
1434
1435/**
1436 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1437 * @r: RDT resource to which @d belongs.
1438 * @d: RDT domain instance.
1439 * @cbm: bitmask for which the size should be computed.
1440 *
1441 * The bitmask provided associated with the RDT domain instance @d will be
1442 * translated into how many bytes it represents. The size in bytes is
1443 * computed by first dividing the total cache size by the CBM length to
1444 * determine how many bytes each bit in the bitmask represents. The result
1445 * is multiplied with the number of bits set in the bitmask.
1446 *
1447 * @cbm is unsigned long, even if only 32 bits are used to make the
1448 * bitmap functions work correctly.
1449 */
1450unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1451				  struct rdt_domain *d, unsigned long cbm)
1452{
1453	struct cpu_cacheinfo *ci;
1454	unsigned int size = 0;
1455	int num_b, i;
1456
1457	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1458	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1459	for (i = 0; i < ci->num_leaves; i++) {
1460		if (ci->info_list[i].level == r->cache_level) {
1461			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1462			break;
1463		}
1464	}
1465
1466	return size;
1467}
1468
1469/*
1470 * rdtgroup_size_show - Display size in bytes of allocated regions
1471 *
1472 * The "size" file mirrors the layout of the "schemata" file, printing the
1473 * size in bytes of each region instead of the capacity bitmask.
1474 */
1475static int rdtgroup_size_show(struct kernfs_open_file *of,
1476			      struct seq_file *s, void *v)
1477{
1478	struct resctrl_schema *schema;
1479	enum resctrl_conf_type type;
1480	struct rdtgroup *rdtgrp;
1481	struct rdt_resource *r;
1482	struct rdt_domain *d;
1483	unsigned int size;
1484	int ret = 0;
1485	u32 closid;
1486	bool sep;
1487	u32 ctrl;
1488
1489	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1490	if (!rdtgrp) {
1491		rdtgroup_kn_unlock(of->kn);
1492		return -ENOENT;
1493	}
1494
1495	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1496		if (!rdtgrp->plr->d) {
1497			rdt_last_cmd_clear();
1498			rdt_last_cmd_puts("Cache domain offline\n");
1499			ret = -ENODEV;
1500		} else {
1501			seq_printf(s, "%*s:", max_name_width,
1502				   rdtgrp->plr->s->name);
1503			size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1504						    rdtgrp->plr->d,
1505						    rdtgrp->plr->cbm);
1506			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1507		}
1508		goto out;
1509	}
1510
1511	closid = rdtgrp->closid;
1512
1513	list_for_each_entry(schema, &resctrl_schema_all, list) {
1514		r = schema->res;
1515		type = schema->conf_type;
1516		sep = false;
1517		seq_printf(s, "%*s:", max_name_width, schema->name);
1518		list_for_each_entry(d, &r->domains, list) {
1519			if (sep)
1520				seq_putc(s, ';');
1521			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1522				size = 0;
1523			} else {
1524				if (is_mba_sc(r))
1525					ctrl = d->mbps_val[closid];
1526				else
1527					ctrl = resctrl_arch_get_config(r, d,
1528								       closid,
1529								       type);
1530				if (r->rid == RDT_RESOURCE_MBA ||
1531				    r->rid == RDT_RESOURCE_SMBA)
1532					size = ctrl;
1533				else
1534					size = rdtgroup_cbm_to_size(r, d, ctrl);
1535			}
1536			seq_printf(s, "%d=%u", d->id, size);
1537			sep = true;
1538		}
1539		seq_putc(s, '\n');
1540	}
1541
1542out:
1543	rdtgroup_kn_unlock(of->kn);
1544
1545	return ret;
1546}
1547
1548struct mon_config_info {
1549	u32 evtid;
1550	u32 mon_config;
1551};
1552
1553#define INVALID_CONFIG_INDEX   UINT_MAX
1554
1555/**
1556 * mon_event_config_index_get - get the hardware index for the
1557 *                              configurable event
1558 * @evtid: event id.
1559 *
1560 * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID
1561 *         1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID
1562 *         INVALID_CONFIG_INDEX for invalid evtid
1563 */
1564static inline unsigned int mon_event_config_index_get(u32 evtid)
1565{
1566	switch (evtid) {
1567	case QOS_L3_MBM_TOTAL_EVENT_ID:
1568		return 0;
1569	case QOS_L3_MBM_LOCAL_EVENT_ID:
1570		return 1;
1571	default:
1572		/* Should never reach here */
1573		return INVALID_CONFIG_INDEX;
1574	}
1575}
1576
1577static void mon_event_config_read(void *info)
1578{
1579	struct mon_config_info *mon_info = info;
1580	unsigned int index;
1581	u64 msrval;
1582
1583	index = mon_event_config_index_get(mon_info->evtid);
1584	if (index == INVALID_CONFIG_INDEX) {
1585		pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1586		return;
1587	}
1588	rdmsrl(MSR_IA32_EVT_CFG_BASE + index, msrval);
1589
1590	/* Report only the valid event configuration bits */
1591	mon_info->mon_config = msrval & MAX_EVT_CONFIG_BITS;
1592}
1593
1594static void mondata_config_read(struct rdt_domain *d, struct mon_config_info *mon_info)
1595{
1596	smp_call_function_any(&d->cpu_mask, mon_event_config_read, mon_info, 1);
1597}
1598
1599static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid)
1600{
1601	struct mon_config_info mon_info = {0};
1602	struct rdt_domain *dom;
1603	bool sep = false;
1604
1605	cpus_read_lock();
1606	mutex_lock(&rdtgroup_mutex);
1607
1608	list_for_each_entry(dom, &r->domains, list) {
1609		if (sep)
1610			seq_puts(s, ";");
1611
1612		memset(&mon_info, 0, sizeof(struct mon_config_info));
1613		mon_info.evtid = evtid;
1614		mondata_config_read(dom, &mon_info);
1615
1616		seq_printf(s, "%d=0x%02x", dom->id, mon_info.mon_config);
1617		sep = true;
1618	}
1619	seq_puts(s, "\n");
1620
1621	mutex_unlock(&rdtgroup_mutex);
1622	cpus_read_unlock();
1623
1624	return 0;
1625}
1626
1627static int mbm_total_bytes_config_show(struct kernfs_open_file *of,
1628				       struct seq_file *seq, void *v)
1629{
1630	struct rdt_resource *r = of->kn->parent->priv;
1631
1632	mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID);
1633
1634	return 0;
1635}
1636
1637static int mbm_local_bytes_config_show(struct kernfs_open_file *of,
1638				       struct seq_file *seq, void *v)
1639{
1640	struct rdt_resource *r = of->kn->parent->priv;
1641
1642	mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID);
1643
1644	return 0;
1645}
1646
1647static void mon_event_config_write(void *info)
1648{
1649	struct mon_config_info *mon_info = info;
1650	unsigned int index;
1651
1652	index = mon_event_config_index_get(mon_info->evtid);
1653	if (index == INVALID_CONFIG_INDEX) {
1654		pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1655		return;
1656	}
1657	wrmsr(MSR_IA32_EVT_CFG_BASE + index, mon_info->mon_config, 0);
1658}
1659
1660static void mbm_config_write_domain(struct rdt_resource *r,
1661				    struct rdt_domain *d, u32 evtid, u32 val)
1662{
1663	struct mon_config_info mon_info = {0};
1664
1665	/*
1666	 * Read the current config value first. If both are the same then
1667	 * no need to write it again.
1668	 */
1669	mon_info.evtid = evtid;
1670	mondata_config_read(d, &mon_info);
1671	if (mon_info.mon_config == val)
1672		return;
1673
1674	mon_info.mon_config = val;
1675
1676	/*
1677	 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the
1678	 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE
1679	 * are scoped at the domain level. Writing any of these MSRs
1680	 * on one CPU is observed by all the CPUs in the domain.
1681	 */
1682	smp_call_function_any(&d->cpu_mask, mon_event_config_write,
1683			      &mon_info, 1);
1684
1685	/*
1686	 * When an Event Configuration is changed, the bandwidth counters
1687	 * for all RMIDs and Events will be cleared by the hardware. The
1688	 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for
1689	 * every RMID on the next read to any event for every RMID.
1690	 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62)
1691	 * cleared while it is tracked by the hardware. Clear the
1692	 * mbm_local and mbm_total counts for all the RMIDs.
1693	 */
1694	resctrl_arch_reset_rmid_all(r, d);
1695}
1696
1697static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid)
1698{
1699	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
1700	char *dom_str = NULL, *id_str;
1701	unsigned long dom_id, val;
1702	struct rdt_domain *d;
1703
1704	/* Walking r->domains, ensure it can't race with cpuhp */
1705	lockdep_assert_cpus_held();
1706
1707next:
1708	if (!tok || tok[0] == '\0')
1709		return 0;
1710
1711	/* Start processing the strings for each domain */
1712	dom_str = strim(strsep(&tok, ";"));
1713	id_str = strsep(&dom_str, "=");
1714
1715	if (!id_str || kstrtoul(id_str, 10, &dom_id)) {
1716		rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n");
1717		return -EINVAL;
1718	}
1719
1720	if (!dom_str || kstrtoul(dom_str, 16, &val)) {
1721		rdt_last_cmd_puts("Non-numeric event configuration value\n");
1722		return -EINVAL;
1723	}
1724
1725	/* Value from user cannot be more than the supported set of events */
1726	if ((val & hw_res->mbm_cfg_mask) != val) {
1727		rdt_last_cmd_printf("Invalid event configuration: max valid mask is 0x%02x\n",
1728				    hw_res->mbm_cfg_mask);
1729		return -EINVAL;
1730	}
1731
1732	list_for_each_entry(d, &r->domains, list) {
1733		if (d->id == dom_id) {
1734			mbm_config_write_domain(r, d, evtid, val);
1735			goto next;
1736		}
1737	}
1738
1739	return -EINVAL;
1740}
1741
1742static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of,
1743					    char *buf, size_t nbytes,
1744					    loff_t off)
1745{
1746	struct rdt_resource *r = of->kn->parent->priv;
1747	int ret;
1748
1749	/* Valid input requires a trailing newline */
1750	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1751		return -EINVAL;
1752
1753	cpus_read_lock();
1754	mutex_lock(&rdtgroup_mutex);
1755
1756	rdt_last_cmd_clear();
1757
1758	buf[nbytes - 1] = '\0';
1759
1760	ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID);
1761
1762	mutex_unlock(&rdtgroup_mutex);
1763	cpus_read_unlock();
1764
1765	return ret ?: nbytes;
1766}
1767
1768static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of,
1769					    char *buf, size_t nbytes,
1770					    loff_t off)
1771{
1772	struct rdt_resource *r = of->kn->parent->priv;
1773	int ret;
1774
1775	/* Valid input requires a trailing newline */
1776	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1777		return -EINVAL;
1778
1779	cpus_read_lock();
1780	mutex_lock(&rdtgroup_mutex);
1781
1782	rdt_last_cmd_clear();
1783
1784	buf[nbytes - 1] = '\0';
1785
1786	ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID);
1787
1788	mutex_unlock(&rdtgroup_mutex);
1789	cpus_read_unlock();
1790
1791	return ret ?: nbytes;
1792}
1793
1794/* rdtgroup information files for one cache resource. */
1795static struct rftype res_common_files[] = {
1796	{
1797		.name		= "last_cmd_status",
1798		.mode		= 0444,
1799		.kf_ops		= &rdtgroup_kf_single_ops,
1800		.seq_show	= rdt_last_cmd_status_show,
1801		.fflags		= RFTYPE_TOP_INFO,
1802	},
1803	{
1804		.name		= "num_closids",
1805		.mode		= 0444,
1806		.kf_ops		= &rdtgroup_kf_single_ops,
1807		.seq_show	= rdt_num_closids_show,
1808		.fflags		= RFTYPE_CTRL_INFO,
1809	},
1810	{
1811		.name		= "mon_features",
1812		.mode		= 0444,
1813		.kf_ops		= &rdtgroup_kf_single_ops,
1814		.seq_show	= rdt_mon_features_show,
1815		.fflags		= RFTYPE_MON_INFO,
1816	},
1817	{
1818		.name		= "num_rmids",
1819		.mode		= 0444,
1820		.kf_ops		= &rdtgroup_kf_single_ops,
1821		.seq_show	= rdt_num_rmids_show,
1822		.fflags		= RFTYPE_MON_INFO,
1823	},
1824	{
1825		.name		= "cbm_mask",
1826		.mode		= 0444,
1827		.kf_ops		= &rdtgroup_kf_single_ops,
1828		.seq_show	= rdt_default_ctrl_show,
1829		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1830	},
1831	{
1832		.name		= "min_cbm_bits",
1833		.mode		= 0444,
1834		.kf_ops		= &rdtgroup_kf_single_ops,
1835		.seq_show	= rdt_min_cbm_bits_show,
1836		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1837	},
1838	{
1839		.name		= "shareable_bits",
1840		.mode		= 0444,
1841		.kf_ops		= &rdtgroup_kf_single_ops,
1842		.seq_show	= rdt_shareable_bits_show,
1843		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1844	},
1845	{
1846		.name		= "bit_usage",
1847		.mode		= 0444,
1848		.kf_ops		= &rdtgroup_kf_single_ops,
1849		.seq_show	= rdt_bit_usage_show,
1850		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1851	},
1852	{
1853		.name		= "min_bandwidth",
1854		.mode		= 0444,
1855		.kf_ops		= &rdtgroup_kf_single_ops,
1856		.seq_show	= rdt_min_bw_show,
1857		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1858	},
1859	{
1860		.name		= "bandwidth_gran",
1861		.mode		= 0444,
1862		.kf_ops		= &rdtgroup_kf_single_ops,
1863		.seq_show	= rdt_bw_gran_show,
1864		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1865	},
1866	{
1867		.name		= "delay_linear",
1868		.mode		= 0444,
1869		.kf_ops		= &rdtgroup_kf_single_ops,
1870		.seq_show	= rdt_delay_linear_show,
1871		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1872	},
1873	/*
1874	 * Platform specific which (if any) capabilities are provided by
1875	 * thread_throttle_mode. Defer "fflags" initialization to platform
1876	 * discovery.
1877	 */
1878	{
1879		.name		= "thread_throttle_mode",
1880		.mode		= 0444,
1881		.kf_ops		= &rdtgroup_kf_single_ops,
1882		.seq_show	= rdt_thread_throttle_mode_show,
1883	},
1884	{
1885		.name		= "max_threshold_occupancy",
1886		.mode		= 0644,
1887		.kf_ops		= &rdtgroup_kf_single_ops,
1888		.write		= max_threshold_occ_write,
1889		.seq_show	= max_threshold_occ_show,
1890		.fflags		= RFTYPE_MON_INFO | RFTYPE_RES_CACHE,
1891	},
1892	{
1893		.name		= "mbm_total_bytes_config",
1894		.mode		= 0644,
1895		.kf_ops		= &rdtgroup_kf_single_ops,
1896		.seq_show	= mbm_total_bytes_config_show,
1897		.write		= mbm_total_bytes_config_write,
1898	},
1899	{
1900		.name		= "mbm_local_bytes_config",
1901		.mode		= 0644,
1902		.kf_ops		= &rdtgroup_kf_single_ops,
1903		.seq_show	= mbm_local_bytes_config_show,
1904		.write		= mbm_local_bytes_config_write,
1905	},
1906	{
1907		.name		= "cpus",
1908		.mode		= 0644,
1909		.kf_ops		= &rdtgroup_kf_single_ops,
1910		.write		= rdtgroup_cpus_write,
1911		.seq_show	= rdtgroup_cpus_show,
1912		.fflags		= RFTYPE_BASE,
1913	},
1914	{
1915		.name		= "cpus_list",
1916		.mode		= 0644,
1917		.kf_ops		= &rdtgroup_kf_single_ops,
1918		.write		= rdtgroup_cpus_write,
1919		.seq_show	= rdtgroup_cpus_show,
1920		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1921		.fflags		= RFTYPE_BASE,
1922	},
1923	{
1924		.name		= "tasks",
1925		.mode		= 0644,
1926		.kf_ops		= &rdtgroup_kf_single_ops,
1927		.write		= rdtgroup_tasks_write,
1928		.seq_show	= rdtgroup_tasks_show,
1929		.fflags		= RFTYPE_BASE,
1930	},
1931	{
1932		.name		= "mon_hw_id",
1933		.mode		= 0444,
1934		.kf_ops		= &rdtgroup_kf_single_ops,
1935		.seq_show	= rdtgroup_rmid_show,
1936		.fflags		= RFTYPE_MON_BASE | RFTYPE_DEBUG,
1937	},
1938	{
1939		.name		= "schemata",
1940		.mode		= 0644,
1941		.kf_ops		= &rdtgroup_kf_single_ops,
1942		.write		= rdtgroup_schemata_write,
1943		.seq_show	= rdtgroup_schemata_show,
1944		.fflags		= RFTYPE_CTRL_BASE,
1945	},
1946	{
1947		.name		= "mode",
1948		.mode		= 0644,
1949		.kf_ops		= &rdtgroup_kf_single_ops,
1950		.write		= rdtgroup_mode_write,
1951		.seq_show	= rdtgroup_mode_show,
1952		.fflags		= RFTYPE_CTRL_BASE,
1953	},
1954	{
1955		.name		= "size",
1956		.mode		= 0444,
1957		.kf_ops		= &rdtgroup_kf_single_ops,
1958		.seq_show	= rdtgroup_size_show,
1959		.fflags		= RFTYPE_CTRL_BASE,
1960	},
1961	{
1962		.name		= "sparse_masks",
1963		.mode		= 0444,
1964		.kf_ops		= &rdtgroup_kf_single_ops,
1965		.seq_show	= rdt_has_sparse_bitmasks_show,
1966		.fflags		= RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1967	},
1968	{
1969		.name		= "ctrl_hw_id",
1970		.mode		= 0444,
1971		.kf_ops		= &rdtgroup_kf_single_ops,
1972		.seq_show	= rdtgroup_closid_show,
1973		.fflags		= RFTYPE_CTRL_BASE | RFTYPE_DEBUG,
1974	},
1975
1976};
1977
1978static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1979{
1980	struct rftype *rfts, *rft;
1981	int ret, len;
1982
1983	rfts = res_common_files;
1984	len = ARRAY_SIZE(res_common_files);
1985
1986	lockdep_assert_held(&rdtgroup_mutex);
1987
1988	if (resctrl_debug)
1989		fflags |= RFTYPE_DEBUG;
1990
1991	for (rft = rfts; rft < rfts + len; rft++) {
1992		if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1993			ret = rdtgroup_add_file(kn, rft);
1994			if (ret)
1995				goto error;
1996		}
1997	}
1998
1999	return 0;
2000error:
2001	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
2002	while (--rft >= rfts) {
2003		if ((fflags & rft->fflags) == rft->fflags)
2004			kernfs_remove_by_name(kn, rft->name);
2005	}
2006	return ret;
2007}
2008
2009static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
2010{
2011	struct rftype *rfts, *rft;
2012	int len;
2013
2014	rfts = res_common_files;
2015	len = ARRAY_SIZE(res_common_files);
2016
2017	for (rft = rfts; rft < rfts + len; rft++) {
2018		if (!strcmp(rft->name, name))
2019			return rft;
2020	}
2021
2022	return NULL;
2023}
2024
2025void __init thread_throttle_mode_init(void)
2026{
2027	struct rftype *rft;
2028
2029	rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
2030	if (!rft)
2031		return;
2032
2033	rft->fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB;
2034}
2035
2036void __init mbm_config_rftype_init(const char *config)
2037{
2038	struct rftype *rft;
2039
2040	rft = rdtgroup_get_rftype_by_name(config);
2041	if (rft)
2042		rft->fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE;
2043}
2044
2045/**
2046 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
2047 * @r: The resource group with which the file is associated.
2048 * @name: Name of the file
2049 *
2050 * The permissions of named resctrl file, directory, or link are modified
2051 * to not allow read, write, or execute by any user.
2052 *
2053 * WARNING: This function is intended to communicate to the user that the
2054 * resctrl file has been locked down - that it is not relevant to the
2055 * particular state the system finds itself in. It should not be relied
2056 * on to protect from user access because after the file's permissions
2057 * are restricted the user can still change the permissions using chmod
2058 * from the command line.
2059 *
2060 * Return: 0 on success, <0 on failure.
2061 */
2062int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
2063{
2064	struct iattr iattr = {.ia_valid = ATTR_MODE,};
2065	struct kernfs_node *kn;
2066	int ret = 0;
2067
2068	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2069	if (!kn)
2070		return -ENOENT;
2071
2072	switch (kernfs_type(kn)) {
2073	case KERNFS_DIR:
2074		iattr.ia_mode = S_IFDIR;
2075		break;
2076	case KERNFS_FILE:
2077		iattr.ia_mode = S_IFREG;
2078		break;
2079	case KERNFS_LINK:
2080		iattr.ia_mode = S_IFLNK;
2081		break;
2082	}
2083
2084	ret = kernfs_setattr(kn, &iattr);
2085	kernfs_put(kn);
2086	return ret;
2087}
2088
2089/**
2090 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
2091 * @r: The resource group with which the file is associated.
2092 * @name: Name of the file
2093 * @mask: Mask of permissions that should be restored
2094 *
2095 * Restore the permissions of the named file. If @name is a directory the
2096 * permissions of its parent will be used.
2097 *
2098 * Return: 0 on success, <0 on failure.
2099 */
2100int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
2101			     umode_t mask)
2102{
2103	struct iattr iattr = {.ia_valid = ATTR_MODE,};
2104	struct kernfs_node *kn, *parent;
2105	struct rftype *rfts, *rft;
2106	int ret, len;
2107
2108	rfts = res_common_files;
2109	len = ARRAY_SIZE(res_common_files);
2110
2111	for (rft = rfts; rft < rfts + len; rft++) {
2112		if (!strcmp(rft->name, name))
2113			iattr.ia_mode = rft->mode & mask;
2114	}
2115
2116	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2117	if (!kn)
2118		return -ENOENT;
2119
2120	switch (kernfs_type(kn)) {
2121	case KERNFS_DIR:
2122		parent = kernfs_get_parent(kn);
2123		if (parent) {
2124			iattr.ia_mode |= parent->mode;
2125			kernfs_put(parent);
2126		}
2127		iattr.ia_mode |= S_IFDIR;
2128		break;
2129	case KERNFS_FILE:
2130		iattr.ia_mode |= S_IFREG;
2131		break;
2132	case KERNFS_LINK:
2133		iattr.ia_mode |= S_IFLNK;
2134		break;
2135	}
2136
2137	ret = kernfs_setattr(kn, &iattr);
2138	kernfs_put(kn);
2139	return ret;
2140}
2141
2142static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
2143				      unsigned long fflags)
2144{
2145	struct kernfs_node *kn_subdir;
2146	int ret;
2147
2148	kn_subdir = kernfs_create_dir(kn_info, name,
2149				      kn_info->mode, priv);
2150	if (IS_ERR(kn_subdir))
2151		return PTR_ERR(kn_subdir);
2152
2153	ret = rdtgroup_kn_set_ugid(kn_subdir);
2154	if (ret)
2155		return ret;
2156
2157	ret = rdtgroup_add_files(kn_subdir, fflags);
2158	if (!ret)
2159		kernfs_activate(kn_subdir);
2160
2161	return ret;
2162}
2163
2164static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
2165{
2166	struct resctrl_schema *s;
2167	struct rdt_resource *r;
2168	unsigned long fflags;
2169	char name[32];
2170	int ret;
2171
2172	/* create the directory */
2173	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
2174	if (IS_ERR(kn_info))
2175		return PTR_ERR(kn_info);
2176
2177	ret = rdtgroup_add_files(kn_info, RFTYPE_TOP_INFO);
2178	if (ret)
2179		goto out_destroy;
2180
2181	/* loop over enabled controls, these are all alloc_capable */
2182	list_for_each_entry(s, &resctrl_schema_all, list) {
2183		r = s->res;
2184		fflags = r->fflags | RFTYPE_CTRL_INFO;
2185		ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
2186		if (ret)
2187			goto out_destroy;
2188	}
2189
2190	for_each_mon_capable_rdt_resource(r) {
2191		fflags = r->fflags | RFTYPE_MON_INFO;
2192		sprintf(name, "%s_MON", r->name);
2193		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
2194		if (ret)
2195			goto out_destroy;
2196	}
2197
2198	ret = rdtgroup_kn_set_ugid(kn_info);
2199	if (ret)
2200		goto out_destroy;
2201
2202	kernfs_activate(kn_info);
2203
2204	return 0;
2205
2206out_destroy:
2207	kernfs_remove(kn_info);
2208	return ret;
2209}
2210
2211static int
2212mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
2213		    char *name, struct kernfs_node **dest_kn)
2214{
2215	struct kernfs_node *kn;
2216	int ret;
2217
2218	/* create the directory */
2219	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2220	if (IS_ERR(kn))
2221		return PTR_ERR(kn);
2222
2223	if (dest_kn)
2224		*dest_kn = kn;
2225
2226	ret = rdtgroup_kn_set_ugid(kn);
2227	if (ret)
2228		goto out_destroy;
2229
2230	kernfs_activate(kn);
2231
2232	return 0;
2233
2234out_destroy:
2235	kernfs_remove(kn);
2236	return ret;
2237}
2238
2239static void l3_qos_cfg_update(void *arg)
2240{
2241	bool *enable = arg;
2242
2243	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
2244}
2245
2246static void l2_qos_cfg_update(void *arg)
2247{
2248	bool *enable = arg;
2249
2250	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
2251}
2252
2253static inline bool is_mba_linear(void)
2254{
2255	return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear;
2256}
2257
2258static int set_cache_qos_cfg(int level, bool enable)
2259{
2260	void (*update)(void *arg);
2261	struct rdt_resource *r_l;
2262	cpumask_var_t cpu_mask;
2263	struct rdt_domain *d;
2264	int cpu;
2265
2266	/* Walking r->domains, ensure it can't race with cpuhp */
2267	lockdep_assert_cpus_held();
2268
2269	if (level == RDT_RESOURCE_L3)
2270		update = l3_qos_cfg_update;
2271	else if (level == RDT_RESOURCE_L2)
2272		update = l2_qos_cfg_update;
2273	else
2274		return -EINVAL;
2275
2276	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2277		return -ENOMEM;
2278
2279	r_l = &rdt_resources_all[level].r_resctrl;
2280	list_for_each_entry(d, &r_l->domains, list) {
2281		if (r_l->cache.arch_has_per_cpu_cfg)
2282			/* Pick all the CPUs in the domain instance */
2283			for_each_cpu(cpu, &d->cpu_mask)
2284				cpumask_set_cpu(cpu, cpu_mask);
2285		else
2286			/* Pick one CPU from each domain instance to update MSR */
2287			cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2288	}
2289
2290	/* Update QOS_CFG MSR on all the CPUs in cpu_mask */
2291	on_each_cpu_mask(cpu_mask, update, &enable, 1);
2292
2293	free_cpumask_var(cpu_mask);
2294
2295	return 0;
2296}
2297
2298/* Restore the qos cfg state when a domain comes online */
2299void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
2300{
2301	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2302
2303	if (!r->cdp_capable)
2304		return;
2305
2306	if (r->rid == RDT_RESOURCE_L2)
2307		l2_qos_cfg_update(&hw_res->cdp_enabled);
2308
2309	if (r->rid == RDT_RESOURCE_L3)
2310		l3_qos_cfg_update(&hw_res->cdp_enabled);
2311}
2312
2313static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_domain *d)
2314{
2315	u32 num_closid = resctrl_arch_get_num_closid(r);
2316	int cpu = cpumask_any(&d->cpu_mask);
2317	int i;
2318
2319	d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
2320				   GFP_KERNEL, cpu_to_node(cpu));
2321	if (!d->mbps_val)
2322		return -ENOMEM;
2323
2324	for (i = 0; i < num_closid; i++)
2325		d->mbps_val[i] = MBA_MAX_MBPS;
2326
2327	return 0;
2328}
2329
2330static void mba_sc_domain_destroy(struct rdt_resource *r,
2331				  struct rdt_domain *d)
2332{
2333	kfree(d->mbps_val);
2334	d->mbps_val = NULL;
2335}
2336
2337/*
2338 * MBA software controller is supported only if
2339 * MBM is supported and MBA is in linear scale.
2340 */
2341static bool supports_mba_mbps(void)
2342{
2343	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2344
2345	return (is_mbm_local_enabled() &&
2346		r->alloc_capable && is_mba_linear());
2347}
2348
2349/*
2350 * Enable or disable the MBA software controller
2351 * which helps user specify bandwidth in MBps.
2352 */
2353static int set_mba_sc(bool mba_sc)
2354{
2355	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2356	u32 num_closid = resctrl_arch_get_num_closid(r);
2357	struct rdt_domain *d;
2358	int i;
2359
2360	if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
2361		return -EINVAL;
2362
2363	r->membw.mba_sc = mba_sc;
2364
2365	list_for_each_entry(d, &r->domains, list) {
2366		for (i = 0; i < num_closid; i++)
2367			d->mbps_val[i] = MBA_MAX_MBPS;
2368	}
2369
2370	return 0;
2371}
2372
2373static int cdp_enable(int level)
2374{
2375	struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl;
2376	int ret;
2377
2378	if (!r_l->alloc_capable)
2379		return -EINVAL;
2380
2381	ret = set_cache_qos_cfg(level, true);
2382	if (!ret)
2383		rdt_resources_all[level].cdp_enabled = true;
2384
2385	return ret;
2386}
2387
2388static void cdp_disable(int level)
2389{
2390	struct rdt_hw_resource *r_hw = &rdt_resources_all[level];
2391
2392	if (r_hw->cdp_enabled) {
2393		set_cache_qos_cfg(level, false);
2394		r_hw->cdp_enabled = false;
2395	}
2396}
2397
2398int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable)
2399{
2400	struct rdt_hw_resource *hw_res = &rdt_resources_all[l];
2401
2402	if (!hw_res->r_resctrl.cdp_capable)
2403		return -EINVAL;
2404
2405	if (enable)
2406		return cdp_enable(l);
2407
2408	cdp_disable(l);
2409
2410	return 0;
2411}
2412
2413/*
2414 * We don't allow rdtgroup directories to be created anywhere
2415 * except the root directory. Thus when looking for the rdtgroup
2416 * structure for a kernfs node we are either looking at a directory,
2417 * in which case the rdtgroup structure is pointed at by the "priv"
2418 * field, otherwise we have a file, and need only look to the parent
2419 * to find the rdtgroup.
2420 */
2421static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2422{
2423	if (kernfs_type(kn) == KERNFS_DIR) {
2424		/*
2425		 * All the resource directories use "kn->priv"
2426		 * to point to the "struct rdtgroup" for the
2427		 * resource. "info" and its subdirectories don't
2428		 * have rdtgroup structures, so return NULL here.
2429		 */
2430		if (kn == kn_info || kn->parent == kn_info)
2431			return NULL;
2432		else
2433			return kn->priv;
2434	} else {
2435		return kn->parent->priv;
2436	}
2437}
2438
2439static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2440{
2441	atomic_inc(&rdtgrp->waitcount);
2442	kernfs_break_active_protection(kn);
2443}
2444
2445static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2446{
2447	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2448	    (rdtgrp->flags & RDT_DELETED)) {
2449		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2450		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2451			rdtgroup_pseudo_lock_remove(rdtgrp);
2452		kernfs_unbreak_active_protection(kn);
2453		rdtgroup_remove(rdtgrp);
2454	} else {
2455		kernfs_unbreak_active_protection(kn);
2456	}
2457}
2458
2459struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2460{
2461	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2462
2463	if (!rdtgrp)
2464		return NULL;
2465
2466	rdtgroup_kn_get(rdtgrp, kn);
2467
2468	cpus_read_lock();
2469	mutex_lock(&rdtgroup_mutex);
2470
2471	/* Was this group deleted while we waited? */
2472	if (rdtgrp->flags & RDT_DELETED)
2473		return NULL;
2474
2475	return rdtgrp;
2476}
2477
2478void rdtgroup_kn_unlock(struct kernfs_node *kn)
2479{
2480	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2481
2482	if (!rdtgrp)
2483		return;
2484
2485	mutex_unlock(&rdtgroup_mutex);
2486	cpus_read_unlock();
2487
2488	rdtgroup_kn_put(rdtgrp, kn);
2489}
2490
2491static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2492			     struct rdtgroup *prgrp,
2493			     struct kernfs_node **mon_data_kn);
2494
2495static void rdt_disable_ctx(void)
2496{
2497	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2498	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2499	set_mba_sc(false);
2500
2501	resctrl_debug = false;
2502}
2503
2504static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2505{
2506	int ret = 0;
2507
2508	if (ctx->enable_cdpl2) {
2509		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2510		if (ret)
2511			goto out_done;
2512	}
2513
2514	if (ctx->enable_cdpl3) {
2515		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2516		if (ret)
2517			goto out_cdpl2;
2518	}
2519
2520	if (ctx->enable_mba_mbps) {
2521		ret = set_mba_sc(true);
2522		if (ret)
2523			goto out_cdpl3;
2524	}
2525
2526	if (ctx->enable_debug)
2527		resctrl_debug = true;
2528
2529	return 0;
2530
2531out_cdpl3:
2532	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2533out_cdpl2:
2534	resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2535out_done:
2536	return ret;
2537}
2538
2539static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2540{
2541	struct resctrl_schema *s;
2542	const char *suffix = "";
2543	int ret, cl;
2544
2545	s = kzalloc(sizeof(*s), GFP_KERNEL);
2546	if (!s)
2547		return -ENOMEM;
2548
2549	s->res = r;
2550	s->num_closid = resctrl_arch_get_num_closid(r);
2551	if (resctrl_arch_get_cdp_enabled(r->rid))
2552		s->num_closid /= 2;
2553
2554	s->conf_type = type;
2555	switch (type) {
2556	case CDP_CODE:
2557		suffix = "CODE";
2558		break;
2559	case CDP_DATA:
2560		suffix = "DATA";
2561		break;
2562	case CDP_NONE:
2563		suffix = "";
2564		break;
2565	}
2566
2567	ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2568	if (ret >= sizeof(s->name)) {
2569		kfree(s);
2570		return -EINVAL;
2571	}
2572
2573	cl = strlen(s->name);
2574
2575	/*
2576	 * If CDP is supported by this resource, but not enabled,
2577	 * include the suffix. This ensures the tabular format of the
2578	 * schemata file does not change between mounts of the filesystem.
2579	 */
2580	if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2581		cl += 4;
2582
2583	if (cl > max_name_width)
2584		max_name_width = cl;
2585
2586	INIT_LIST_HEAD(&s->list);
2587	list_add(&s->list, &resctrl_schema_all);
2588
2589	return 0;
2590}
2591
2592static int schemata_list_create(void)
2593{
2594	struct rdt_resource *r;
2595	int ret = 0;
2596
2597	for_each_alloc_capable_rdt_resource(r) {
2598		if (resctrl_arch_get_cdp_enabled(r->rid)) {
2599			ret = schemata_list_add(r, CDP_CODE);
2600			if (ret)
2601				break;
2602
2603			ret = schemata_list_add(r, CDP_DATA);
2604		} else {
2605			ret = schemata_list_add(r, CDP_NONE);
2606		}
2607
2608		if (ret)
2609			break;
2610	}
2611
2612	return ret;
2613}
2614
2615static void schemata_list_destroy(void)
2616{
2617	struct resctrl_schema *s, *tmp;
2618
2619	list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2620		list_del(&s->list);
2621		kfree(s);
2622	}
2623}
2624
2625static int rdt_get_tree(struct fs_context *fc)
2626{
2627	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2628	unsigned long flags = RFTYPE_CTRL_BASE;
2629	struct rdt_domain *dom;
2630	struct rdt_resource *r;
2631	int ret;
2632
2633	cpus_read_lock();
2634	mutex_lock(&rdtgroup_mutex);
2635	/*
2636	 * resctrl file system can only be mounted once.
2637	 */
2638	if (resctrl_mounted) {
2639		ret = -EBUSY;
2640		goto out;
2641	}
2642
2643	ret = rdtgroup_setup_root(ctx);
2644	if (ret)
2645		goto out;
2646
2647	ret = rdt_enable_ctx(ctx);
2648	if (ret)
2649		goto out_root;
2650
2651	ret = schemata_list_create();
2652	if (ret) {
2653		schemata_list_destroy();
2654		goto out_ctx;
2655	}
2656
2657	closid_init();
2658
2659	if (resctrl_arch_mon_capable())
2660		flags |= RFTYPE_MON;
2661
2662	ret = rdtgroup_add_files(rdtgroup_default.kn, flags);
2663	if (ret)
2664		goto out_schemata_free;
2665
2666	kernfs_activate(rdtgroup_default.kn);
2667
2668	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2669	if (ret < 0)
2670		goto out_schemata_free;
2671
2672	if (resctrl_arch_mon_capable()) {
2673		ret = mongroup_create_dir(rdtgroup_default.kn,
2674					  &rdtgroup_default, "mon_groups",
2675					  &kn_mongrp);
2676		if (ret < 0)
2677			goto out_info;
2678
2679		ret = mkdir_mondata_all(rdtgroup_default.kn,
2680					&rdtgroup_default, &kn_mondata);
2681		if (ret < 0)
2682			goto out_mongrp;
2683		rdtgroup_default.mon.mon_data_kn = kn_mondata;
2684	}
2685
2686	ret = rdt_pseudo_lock_init();
2687	if (ret)
2688		goto out_mondata;
2689
2690	ret = kernfs_get_tree(fc);
2691	if (ret < 0)
2692		goto out_psl;
2693
2694	if (resctrl_arch_alloc_capable())
2695		resctrl_arch_enable_alloc();
2696	if (resctrl_arch_mon_capable())
2697		resctrl_arch_enable_mon();
2698
2699	if (resctrl_arch_alloc_capable() || resctrl_arch_mon_capable())
2700		resctrl_mounted = true;
2701
2702	if (is_mbm_enabled()) {
2703		r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2704		list_for_each_entry(dom, &r->domains, list)
2705			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL,
2706						   RESCTRL_PICK_ANY_CPU);
2707	}
2708
2709	goto out;
2710
2711out_psl:
2712	rdt_pseudo_lock_release();
2713out_mondata:
2714	if (resctrl_arch_mon_capable())
2715		kernfs_remove(kn_mondata);
2716out_mongrp:
2717	if (resctrl_arch_mon_capable())
2718		kernfs_remove(kn_mongrp);
2719out_info:
2720	kernfs_remove(kn_info);
2721out_schemata_free:
2722	schemata_list_destroy();
2723out_ctx:
2724	rdt_disable_ctx();
2725out_root:
2726	rdtgroup_destroy_root();
2727out:
2728	rdt_last_cmd_clear();
2729	mutex_unlock(&rdtgroup_mutex);
2730	cpus_read_unlock();
2731	return ret;
2732}
2733
2734enum rdt_param {
2735	Opt_cdp,
2736	Opt_cdpl2,
2737	Opt_mba_mbps,
2738	Opt_debug,
2739	nr__rdt_params
2740};
2741
2742static const struct fs_parameter_spec rdt_fs_parameters[] = {
2743	fsparam_flag("cdp",		Opt_cdp),
2744	fsparam_flag("cdpl2",		Opt_cdpl2),
2745	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2746	fsparam_flag("debug",		Opt_debug),
2747	{}
2748};
2749
2750static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2751{
2752	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2753	struct fs_parse_result result;
2754	int opt;
2755
2756	opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2757	if (opt < 0)
2758		return opt;
2759
2760	switch (opt) {
2761	case Opt_cdp:
2762		ctx->enable_cdpl3 = true;
2763		return 0;
2764	case Opt_cdpl2:
2765		ctx->enable_cdpl2 = true;
2766		return 0;
2767	case Opt_mba_mbps:
2768		if (!supports_mba_mbps())
2769			return -EINVAL;
2770		ctx->enable_mba_mbps = true;
2771		return 0;
2772	case Opt_debug:
2773		ctx->enable_debug = true;
2774		return 0;
2775	}
2776
2777	return -EINVAL;
2778}
2779
2780static void rdt_fs_context_free(struct fs_context *fc)
2781{
2782	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2783
2784	kernfs_free_fs_context(fc);
2785	kfree(ctx);
2786}
2787
2788static const struct fs_context_operations rdt_fs_context_ops = {
2789	.free		= rdt_fs_context_free,
2790	.parse_param	= rdt_parse_param,
2791	.get_tree	= rdt_get_tree,
2792};
2793
2794static int rdt_init_fs_context(struct fs_context *fc)
2795{
2796	struct rdt_fs_context *ctx;
2797
2798	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2799	if (!ctx)
2800		return -ENOMEM;
2801
2802	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2803	fc->fs_private = &ctx->kfc;
2804	fc->ops = &rdt_fs_context_ops;
2805	put_user_ns(fc->user_ns);
2806	fc->user_ns = get_user_ns(&init_user_ns);
2807	fc->global = true;
2808	return 0;
2809}
2810
2811static int reset_all_ctrls(struct rdt_resource *r)
2812{
2813	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2814	struct rdt_hw_domain *hw_dom;
2815	struct msr_param msr_param;
2816	cpumask_var_t cpu_mask;
2817	struct rdt_domain *d;
2818	int i;
2819
2820	/* Walking r->domains, ensure it can't race with cpuhp */
2821	lockdep_assert_cpus_held();
2822
2823	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2824		return -ENOMEM;
2825
2826	msr_param.res = r;
2827	msr_param.low = 0;
2828	msr_param.high = hw_res->num_closid;
2829
2830	/*
2831	 * Disable resource control for this resource by setting all
2832	 * CBMs in all domains to the maximum mask value. Pick one CPU
2833	 * from each domain to update the MSRs below.
2834	 */
2835	list_for_each_entry(d, &r->domains, list) {
2836		hw_dom = resctrl_to_arch_dom(d);
2837		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2838
2839		for (i = 0; i < hw_res->num_closid; i++)
2840			hw_dom->ctrl_val[i] = r->default_ctrl;
2841	}
2842
2843	/* Update CBM on all the CPUs in cpu_mask */
2844	on_each_cpu_mask(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2845
2846	free_cpumask_var(cpu_mask);
2847
2848	return 0;
2849}
2850
2851/*
2852 * Move tasks from one to the other group. If @from is NULL, then all tasks
2853 * in the systems are moved unconditionally (used for teardown).
2854 *
2855 * If @mask is not NULL the cpus on which moved tasks are running are set
2856 * in that mask so the update smp function call is restricted to affected
2857 * cpus.
2858 */
2859static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2860				 struct cpumask *mask)
2861{
2862	struct task_struct *p, *t;
2863
2864	read_lock(&tasklist_lock);
2865	for_each_process_thread(p, t) {
2866		if (!from || is_closid_match(t, from) ||
2867		    is_rmid_match(t, from)) {
2868			resctrl_arch_set_closid_rmid(t, to->closid,
2869						     to->mon.rmid);
2870
2871			/*
2872			 * Order the closid/rmid stores above before the loads
2873			 * in task_curr(). This pairs with the full barrier
2874			 * between the rq->curr update and resctrl_sched_in()
2875			 * during context switch.
2876			 */
2877			smp_mb();
2878
2879			/*
2880			 * If the task is on a CPU, set the CPU in the mask.
2881			 * The detection is inaccurate as tasks might move or
2882			 * schedule before the smp function call takes place.
2883			 * In such a case the function call is pointless, but
2884			 * there is no other side effect.
2885			 */
2886			if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2887				cpumask_set_cpu(task_cpu(t), mask);
2888		}
2889	}
2890	read_unlock(&tasklist_lock);
2891}
2892
2893static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2894{
2895	struct rdtgroup *sentry, *stmp;
2896	struct list_head *head;
2897
2898	head = &rdtgrp->mon.crdtgrp_list;
2899	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2900		free_rmid(sentry->closid, sentry->mon.rmid);
2901		list_del(&sentry->mon.crdtgrp_list);
2902
2903		if (atomic_read(&sentry->waitcount) != 0)
2904			sentry->flags = RDT_DELETED;
2905		else
2906			rdtgroup_remove(sentry);
2907	}
2908}
2909
2910/*
2911 * Forcibly remove all of subdirectories under root.
2912 */
2913static void rmdir_all_sub(void)
2914{
2915	struct rdtgroup *rdtgrp, *tmp;
2916
2917	/* Move all tasks to the default resource group */
2918	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2919
2920	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2921		/* Free any child rmids */
2922		free_all_child_rdtgrp(rdtgrp);
2923
2924		/* Remove each rdtgroup other than root */
2925		if (rdtgrp == &rdtgroup_default)
2926			continue;
2927
2928		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2929		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2930			rdtgroup_pseudo_lock_remove(rdtgrp);
2931
2932		/*
2933		 * Give any CPUs back to the default group. We cannot copy
2934		 * cpu_online_mask because a CPU might have executed the
2935		 * offline callback already, but is still marked online.
2936		 */
2937		cpumask_or(&rdtgroup_default.cpu_mask,
2938			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2939
2940		free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
2941
2942		kernfs_remove(rdtgrp->kn);
2943		list_del(&rdtgrp->rdtgroup_list);
2944
2945		if (atomic_read(&rdtgrp->waitcount) != 0)
2946			rdtgrp->flags = RDT_DELETED;
2947		else
2948			rdtgroup_remove(rdtgrp);
2949	}
2950	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2951	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2952
2953	kernfs_remove(kn_info);
2954	kernfs_remove(kn_mongrp);
2955	kernfs_remove(kn_mondata);
2956}
2957
2958static void rdt_kill_sb(struct super_block *sb)
2959{
2960	struct rdt_resource *r;
2961
2962	cpus_read_lock();
2963	mutex_lock(&rdtgroup_mutex);
2964
2965	rdt_disable_ctx();
2966
2967	/*Put everything back to default values. */
2968	for_each_alloc_capable_rdt_resource(r)
2969		reset_all_ctrls(r);
2970	rmdir_all_sub();
2971	rdt_pseudo_lock_release();
2972	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2973	schemata_list_destroy();
2974	rdtgroup_destroy_root();
2975	if (resctrl_arch_alloc_capable())
2976		resctrl_arch_disable_alloc();
2977	if (resctrl_arch_mon_capable())
2978		resctrl_arch_disable_mon();
2979	resctrl_mounted = false;
2980	kernfs_kill_sb(sb);
2981	mutex_unlock(&rdtgroup_mutex);
2982	cpus_read_unlock();
2983}
2984
2985static struct file_system_type rdt_fs_type = {
2986	.name			= "resctrl",
2987	.init_fs_context	= rdt_init_fs_context,
2988	.parameters		= rdt_fs_parameters,
2989	.kill_sb		= rdt_kill_sb,
2990};
2991
2992static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2993		       void *priv)
2994{
2995	struct kernfs_node *kn;
2996	int ret = 0;
2997
2998	kn = __kernfs_create_file(parent_kn, name, 0444,
2999				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
3000				  &kf_mondata_ops, priv, NULL, NULL);
3001	if (IS_ERR(kn))
3002		return PTR_ERR(kn);
3003
3004	ret = rdtgroup_kn_set_ugid(kn);
3005	if (ret) {
3006		kernfs_remove(kn);
3007		return ret;
3008	}
3009
3010	return ret;
3011}
3012
3013/*
3014 * Remove all subdirectories of mon_data of ctrl_mon groups
3015 * and monitor groups with given domain id.
3016 */
3017static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3018					   unsigned int dom_id)
3019{
3020	struct rdtgroup *prgrp, *crgrp;
3021	char name[32];
3022
3023	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3024		sprintf(name, "mon_%s_%02d", r->name, dom_id);
3025		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
3026
3027		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
3028			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
3029	}
3030}
3031
3032static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
3033				struct rdt_domain *d,
3034				struct rdt_resource *r, struct rdtgroup *prgrp)
3035{
3036	union mon_data_bits priv;
3037	struct kernfs_node *kn;
3038	struct mon_evt *mevt;
3039	struct rmid_read rr;
3040	char name[32];
3041	int ret;
3042
3043	sprintf(name, "mon_%s_%02d", r->name, d->id);
3044	/* create the directory */
3045	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
3046	if (IS_ERR(kn))
3047		return PTR_ERR(kn);
3048
3049	ret = rdtgroup_kn_set_ugid(kn);
3050	if (ret)
3051		goto out_destroy;
3052
3053	if (WARN_ON(list_empty(&r->evt_list))) {
3054		ret = -EPERM;
3055		goto out_destroy;
3056	}
3057
3058	priv.u.rid = r->rid;
3059	priv.u.domid = d->id;
3060	list_for_each_entry(mevt, &r->evt_list, list) {
3061		priv.u.evtid = mevt->evtid;
3062		ret = mon_addfile(kn, mevt->name, priv.priv);
3063		if (ret)
3064			goto out_destroy;
3065
3066		if (is_mbm_event(mevt->evtid))
3067			mon_event_read(&rr, r, d, prgrp, mevt->evtid, true);
3068	}
3069	kernfs_activate(kn);
3070	return 0;
3071
3072out_destroy:
3073	kernfs_remove(kn);
3074	return ret;
3075}
3076
3077/*
3078 * Add all subdirectories of mon_data for "ctrl_mon" groups
3079 * and "monitor" groups with given domain id.
3080 */
3081static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3082					   struct rdt_domain *d)
3083{
3084	struct kernfs_node *parent_kn;
3085	struct rdtgroup *prgrp, *crgrp;
3086	struct list_head *head;
3087
3088	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3089		parent_kn = prgrp->mon.mon_data_kn;
3090		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
3091
3092		head = &prgrp->mon.crdtgrp_list;
3093		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
3094			parent_kn = crgrp->mon.mon_data_kn;
3095			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
3096		}
3097	}
3098}
3099
3100static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
3101				       struct rdt_resource *r,
3102				       struct rdtgroup *prgrp)
3103{
3104	struct rdt_domain *dom;
3105	int ret;
3106
3107	/* Walking r->domains, ensure it can't race with cpuhp */
3108	lockdep_assert_cpus_held();
3109
3110	list_for_each_entry(dom, &r->domains, list) {
3111		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
3112		if (ret)
3113			return ret;
3114	}
3115
3116	return 0;
3117}
3118
3119/*
3120 * This creates a directory mon_data which contains the monitored data.
3121 *
3122 * mon_data has one directory for each domain which are named
3123 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
3124 * with L3 domain looks as below:
3125 * ./mon_data:
3126 * mon_L3_00
3127 * mon_L3_01
3128 * mon_L3_02
3129 * ...
3130 *
3131 * Each domain directory has one file per event:
3132 * ./mon_L3_00/:
3133 * llc_occupancy
3134 *
3135 */
3136static int mkdir_mondata_all(struct kernfs_node *parent_kn,
3137			     struct rdtgroup *prgrp,
3138			     struct kernfs_node **dest_kn)
3139{
3140	struct rdt_resource *r;
3141	struct kernfs_node *kn;
3142	int ret;
3143
3144	/*
3145	 * Create the mon_data directory first.
3146	 */
3147	ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
3148	if (ret)
3149		return ret;
3150
3151	if (dest_kn)
3152		*dest_kn = kn;
3153
3154	/*
3155	 * Create the subdirectories for each domain. Note that all events
3156	 * in a domain like L3 are grouped into a resource whose domain is L3
3157	 */
3158	for_each_mon_capable_rdt_resource(r) {
3159		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
3160		if (ret)
3161			goto out_destroy;
3162	}
3163
3164	return 0;
3165
3166out_destroy:
3167	kernfs_remove(kn);
3168	return ret;
3169}
3170
3171/**
3172 * cbm_ensure_valid - Enforce validity on provided CBM
3173 * @_val:	Candidate CBM
3174 * @r:		RDT resource to which the CBM belongs
3175 *
3176 * The provided CBM represents all cache portions available for use. This
3177 * may be represented by a bitmap that does not consist of contiguous ones
3178 * and thus be an invalid CBM.
3179 * Here the provided CBM is forced to be a valid CBM by only considering
3180 * the first set of contiguous bits as valid and clearing all bits.
3181 * The intention here is to provide a valid default CBM with which a new
3182 * resource group is initialized. The user can follow this with a
3183 * modification to the CBM if the default does not satisfy the
3184 * requirements.
3185 */
3186static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
3187{
3188	unsigned int cbm_len = r->cache.cbm_len;
3189	unsigned long first_bit, zero_bit;
3190	unsigned long val = _val;
3191
3192	if (!val)
3193		return 0;
3194
3195	first_bit = find_first_bit(&val, cbm_len);
3196	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
3197
3198	/* Clear any remaining bits to ensure contiguous region */
3199	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
3200	return (u32)val;
3201}
3202
3203/*
3204 * Initialize cache resources per RDT domain
3205 *
3206 * Set the RDT domain up to start off with all usable allocations. That is,
3207 * all shareable and unused bits. All-zero CBM is invalid.
3208 */
3209static int __init_one_rdt_domain(struct rdt_domain *d, struct resctrl_schema *s,
3210				 u32 closid)
3211{
3212	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
3213	enum resctrl_conf_type t = s->conf_type;
3214	struct resctrl_staged_config *cfg;
3215	struct rdt_resource *r = s->res;
3216	u32 used_b = 0, unused_b = 0;
3217	unsigned long tmp_cbm;
3218	enum rdtgrp_mode mode;
3219	u32 peer_ctl, ctrl_val;
3220	int i;
3221
3222	cfg = &d->staged_config[t];
3223	cfg->have_new_ctrl = false;
3224	cfg->new_ctrl = r->cache.shareable_bits;
3225	used_b = r->cache.shareable_bits;
3226	for (i = 0; i < closids_supported(); i++) {
3227		if (closid_allocated(i) && i != closid) {
3228			mode = rdtgroup_mode_by_closid(i);
3229			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
3230				/*
3231				 * ctrl values for locksetup aren't relevant
3232				 * until the schemata is written, and the mode
3233				 * becomes RDT_MODE_PSEUDO_LOCKED.
3234				 */
3235				continue;
3236			/*
3237			 * If CDP is active include peer domain's
3238			 * usage to ensure there is no overlap
3239			 * with an exclusive group.
3240			 */
3241			if (resctrl_arch_get_cdp_enabled(r->rid))
3242				peer_ctl = resctrl_arch_get_config(r, d, i,
3243								   peer_type);
3244			else
3245				peer_ctl = 0;
3246			ctrl_val = resctrl_arch_get_config(r, d, i,
3247							   s->conf_type);
3248			used_b |= ctrl_val | peer_ctl;
3249			if (mode == RDT_MODE_SHAREABLE)
3250				cfg->new_ctrl |= ctrl_val | peer_ctl;
3251		}
3252	}
3253	if (d->plr && d->plr->cbm > 0)
3254		used_b |= d->plr->cbm;
3255	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
3256	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
3257	cfg->new_ctrl |= unused_b;
3258	/*
3259	 * Force the initial CBM to be valid, user can
3260	 * modify the CBM based on system availability.
3261	 */
3262	cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
3263	/*
3264	 * Assign the u32 CBM to an unsigned long to ensure that
3265	 * bitmap_weight() does not access out-of-bound memory.
3266	 */
3267	tmp_cbm = cfg->new_ctrl;
3268	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
3269		rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->id);
3270		return -ENOSPC;
3271	}
3272	cfg->have_new_ctrl = true;
3273
3274	return 0;
3275}
3276
3277/*
3278 * Initialize cache resources with default values.
3279 *
3280 * A new RDT group is being created on an allocation capable (CAT)
3281 * supporting system. Set this group up to start off with all usable
3282 * allocations.
3283 *
3284 * If there are no more shareable bits available on any domain then
3285 * the entire allocation will fail.
3286 */
3287static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
3288{
3289	struct rdt_domain *d;
3290	int ret;
3291
3292	list_for_each_entry(d, &s->res->domains, list) {
3293		ret = __init_one_rdt_domain(d, s, closid);
3294		if (ret < 0)
3295			return ret;
3296	}
3297
3298	return 0;
3299}
3300
3301/* Initialize MBA resource with default values. */
3302static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
3303{
3304	struct resctrl_staged_config *cfg;
3305	struct rdt_domain *d;
3306
3307	list_for_each_entry(d, &r->domains, list) {
3308		if (is_mba_sc(r)) {
3309			d->mbps_val[closid] = MBA_MAX_MBPS;
3310			continue;
3311		}
3312
3313		cfg = &d->staged_config[CDP_NONE];
3314		cfg->new_ctrl = r->default_ctrl;
3315		cfg->have_new_ctrl = true;
3316	}
3317}
3318
3319/* Initialize the RDT group's allocations. */
3320static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
3321{
3322	struct resctrl_schema *s;
3323	struct rdt_resource *r;
3324	int ret = 0;
3325
3326	rdt_staged_configs_clear();
3327
3328	list_for_each_entry(s, &resctrl_schema_all, list) {
3329		r = s->res;
3330		if (r->rid == RDT_RESOURCE_MBA ||
3331		    r->rid == RDT_RESOURCE_SMBA) {
3332			rdtgroup_init_mba(r, rdtgrp->closid);
3333			if (is_mba_sc(r))
3334				continue;
3335		} else {
3336			ret = rdtgroup_init_cat(s, rdtgrp->closid);
3337			if (ret < 0)
3338				goto out;
3339		}
3340
3341		ret = resctrl_arch_update_domains(r, rdtgrp->closid);
3342		if (ret < 0) {
3343			rdt_last_cmd_puts("Failed to initialize allocations\n");
3344			goto out;
3345		}
3346
3347	}
3348
3349	rdtgrp->mode = RDT_MODE_SHAREABLE;
3350
3351out:
3352	rdt_staged_configs_clear();
3353	return ret;
3354}
3355
3356static int mkdir_rdt_prepare_rmid_alloc(struct rdtgroup *rdtgrp)
3357{
3358	int ret;
3359
3360	if (!resctrl_arch_mon_capable())
3361		return 0;
3362
3363	ret = alloc_rmid(rdtgrp->closid);
3364	if (ret < 0) {
3365		rdt_last_cmd_puts("Out of RMIDs\n");
3366		return ret;
3367	}
3368	rdtgrp->mon.rmid = ret;
3369
3370	ret = mkdir_mondata_all(rdtgrp->kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
3371	if (ret) {
3372		rdt_last_cmd_puts("kernfs subdir error\n");
3373		free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3374		return ret;
3375	}
3376
3377	return 0;
3378}
3379
3380static void mkdir_rdt_prepare_rmid_free(struct rdtgroup *rgrp)
3381{
3382	if (resctrl_arch_mon_capable())
3383		free_rmid(rgrp->closid, rgrp->mon.rmid);
3384}
3385
3386static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
3387			     const char *name, umode_t mode,
3388			     enum rdt_group_type rtype, struct rdtgroup **r)
3389{
3390	struct rdtgroup *prdtgrp, *rdtgrp;
3391	unsigned long files = 0;
3392	struct kernfs_node *kn;
3393	int ret;
3394
3395	prdtgrp = rdtgroup_kn_lock_live(parent_kn);
3396	if (!prdtgrp) {
3397		ret = -ENODEV;
3398		goto out_unlock;
3399	}
3400
3401	if (rtype == RDTMON_GROUP &&
3402	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3403	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
3404		ret = -EINVAL;
3405		rdt_last_cmd_puts("Pseudo-locking in progress\n");
3406		goto out_unlock;
3407	}
3408
3409	/* allocate the rdtgroup. */
3410	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
3411	if (!rdtgrp) {
3412		ret = -ENOSPC;
3413		rdt_last_cmd_puts("Kernel out of memory\n");
3414		goto out_unlock;
3415	}
3416	*r = rdtgrp;
3417	rdtgrp->mon.parent = prdtgrp;
3418	rdtgrp->type = rtype;
3419	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
3420
3421	/* kernfs creates the directory for rdtgrp */
3422	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
3423	if (IS_ERR(kn)) {
3424		ret = PTR_ERR(kn);
3425		rdt_last_cmd_puts("kernfs create error\n");
3426		goto out_free_rgrp;
3427	}
3428	rdtgrp->kn = kn;
3429
3430	/*
3431	 * kernfs_remove() will drop the reference count on "kn" which
3432	 * will free it. But we still need it to stick around for the
3433	 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
3434	 * which will be dropped by kernfs_put() in rdtgroup_remove().
3435	 */
3436	kernfs_get(kn);
3437
3438	ret = rdtgroup_kn_set_ugid(kn);
3439	if (ret) {
3440		rdt_last_cmd_puts("kernfs perm error\n");
3441		goto out_destroy;
3442	}
3443
3444	if (rtype == RDTCTRL_GROUP) {
3445		files = RFTYPE_BASE | RFTYPE_CTRL;
3446		if (resctrl_arch_mon_capable())
3447			files |= RFTYPE_MON;
3448	} else {
3449		files = RFTYPE_BASE | RFTYPE_MON;
3450	}
3451
3452	ret = rdtgroup_add_files(kn, files);
3453	if (ret) {
3454		rdt_last_cmd_puts("kernfs fill error\n");
3455		goto out_destroy;
3456	}
3457
3458	/*
3459	 * The caller unlocks the parent_kn upon success.
3460	 */
3461	return 0;
3462
3463out_destroy:
3464	kernfs_put(rdtgrp->kn);
3465	kernfs_remove(rdtgrp->kn);
3466out_free_rgrp:
3467	kfree(rdtgrp);
3468out_unlock:
3469	rdtgroup_kn_unlock(parent_kn);
3470	return ret;
3471}
3472
3473static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
3474{
3475	kernfs_remove(rgrp->kn);
3476	rdtgroup_remove(rgrp);
3477}
3478
3479/*
3480 * Create a monitor group under "mon_groups" directory of a control
3481 * and monitor group(ctrl_mon). This is a resource group
3482 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
3483 */
3484static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
3485			      const char *name, umode_t mode)
3486{
3487	struct rdtgroup *rdtgrp, *prgrp;
3488	int ret;
3489
3490	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
3491	if (ret)
3492		return ret;
3493
3494	prgrp = rdtgrp->mon.parent;
3495	rdtgrp->closid = prgrp->closid;
3496
3497	ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3498	if (ret) {
3499		mkdir_rdt_prepare_clean(rdtgrp);
3500		goto out_unlock;
3501	}
3502
3503	kernfs_activate(rdtgrp->kn);
3504
3505	/*
3506	 * Add the rdtgrp to the list of rdtgrps the parent
3507	 * ctrl_mon group has to track.
3508	 */
3509	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
3510
3511out_unlock:
3512	rdtgroup_kn_unlock(parent_kn);
3513	return ret;
3514}
3515
3516/*
3517 * These are rdtgroups created under the root directory. Can be used
3518 * to allocate and monitor resources.
3519 */
3520static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3521				   const char *name, umode_t mode)
3522{
3523	struct rdtgroup *rdtgrp;
3524	struct kernfs_node *kn;
3525	u32 closid;
3526	int ret;
3527
3528	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3529	if (ret)
3530		return ret;
3531
3532	kn = rdtgrp->kn;
3533	ret = closid_alloc();
3534	if (ret < 0) {
3535		rdt_last_cmd_puts("Out of CLOSIDs\n");
3536		goto out_common_fail;
3537	}
3538	closid = ret;
3539	ret = 0;
3540
3541	rdtgrp->closid = closid;
3542
3543	ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp);
3544	if (ret)
3545		goto out_closid_free;
3546
3547	kernfs_activate(rdtgrp->kn);
3548
3549	ret = rdtgroup_init_alloc(rdtgrp);
3550	if (ret < 0)
3551		goto out_rmid_free;
3552
3553	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3554
3555	if (resctrl_arch_mon_capable()) {
3556		/*
3557		 * Create an empty mon_groups directory to hold the subset
3558		 * of tasks and cpus to monitor.
3559		 */
3560		ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3561		if (ret) {
3562			rdt_last_cmd_puts("kernfs subdir error\n");
3563			goto out_del_list;
3564		}
3565	}
3566
3567	goto out_unlock;
3568
3569out_del_list:
3570	list_del(&rdtgrp->rdtgroup_list);
3571out_rmid_free:
3572	mkdir_rdt_prepare_rmid_free(rdtgrp);
3573out_closid_free:
3574	closid_free(closid);
3575out_common_fail:
3576	mkdir_rdt_prepare_clean(rdtgrp);
3577out_unlock:
3578	rdtgroup_kn_unlock(parent_kn);
3579	return ret;
3580}
3581
3582/*
3583 * We allow creating mon groups only with in a directory called "mon_groups"
3584 * which is present in every ctrl_mon group. Check if this is a valid
3585 * "mon_groups" directory.
3586 *
3587 * 1. The directory should be named "mon_groups".
3588 * 2. The mon group itself should "not" be named "mon_groups".
3589 *   This makes sure "mon_groups" directory always has a ctrl_mon group
3590 *   as parent.
3591 */
3592static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3593{
3594	return (!strcmp(kn->name, "mon_groups") &&
3595		strcmp(name, "mon_groups"));
3596}
3597
3598static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3599			  umode_t mode)
3600{
3601	/* Do not accept '\n' to avoid unparsable situation. */
3602	if (strchr(name, '\n'))
3603		return -EINVAL;
3604
3605	/*
3606	 * If the parent directory is the root directory and RDT
3607	 * allocation is supported, add a control and monitoring
3608	 * subdirectory
3609	 */
3610	if (resctrl_arch_alloc_capable() && parent_kn == rdtgroup_default.kn)
3611		return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3612
3613	/*
3614	 * If RDT monitoring is supported and the parent directory is a valid
3615	 * "mon_groups" directory, add a monitoring subdirectory.
3616	 */
3617	if (resctrl_arch_mon_capable() && is_mon_groups(parent_kn, name))
3618		return rdtgroup_mkdir_mon(parent_kn, name, mode);
3619
3620	return -EPERM;
3621}
3622
3623static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3624{
3625	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3626	int cpu;
3627
3628	/* Give any tasks back to the parent group */
3629	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3630
3631	/* Update per cpu rmid of the moved CPUs first */
3632	for_each_cpu(cpu, &rdtgrp->cpu_mask)
3633		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3634	/*
3635	 * Update the MSR on moved CPUs and CPUs which have moved
3636	 * task running on them.
3637	 */
3638	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3639	update_closid_rmid(tmpmask, NULL);
3640
3641	rdtgrp->flags = RDT_DELETED;
3642	free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3643
3644	/*
3645	 * Remove the rdtgrp from the parent ctrl_mon group's list
3646	 */
3647	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3648	list_del(&rdtgrp->mon.crdtgrp_list);
3649
3650	kernfs_remove(rdtgrp->kn);
3651
3652	return 0;
3653}
3654
3655static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3656{
3657	rdtgrp->flags = RDT_DELETED;
3658	list_del(&rdtgrp->rdtgroup_list);
3659
3660	kernfs_remove(rdtgrp->kn);
3661	return 0;
3662}
3663
3664static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3665{
3666	int cpu;
3667
3668	/* Give any tasks back to the default group */
3669	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3670
3671	/* Give any CPUs back to the default group */
3672	cpumask_or(&rdtgroup_default.cpu_mask,
3673		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3674
3675	/* Update per cpu closid and rmid of the moved CPUs first */
3676	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3677		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3678		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3679	}
3680
3681	/*
3682	 * Update the MSR on moved CPUs and CPUs which have moved
3683	 * task running on them.
3684	 */
3685	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3686	update_closid_rmid(tmpmask, NULL);
3687
3688	free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
3689	closid_free(rdtgrp->closid);
3690
3691	rdtgroup_ctrl_remove(rdtgrp);
3692
3693	/*
3694	 * Free all the child monitor group rmids.
3695	 */
3696	free_all_child_rdtgrp(rdtgrp);
3697
3698	return 0;
3699}
3700
3701static int rdtgroup_rmdir(struct kernfs_node *kn)
3702{
3703	struct kernfs_node *parent_kn = kn->parent;
3704	struct rdtgroup *rdtgrp;
3705	cpumask_var_t tmpmask;
3706	int ret = 0;
3707
3708	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3709		return -ENOMEM;
3710
3711	rdtgrp = rdtgroup_kn_lock_live(kn);
3712	if (!rdtgrp) {
3713		ret = -EPERM;
3714		goto out;
3715	}
3716
3717	/*
3718	 * If the rdtgroup is a ctrl_mon group and parent directory
3719	 * is the root directory, remove the ctrl_mon group.
3720	 *
3721	 * If the rdtgroup is a mon group and parent directory
3722	 * is a valid "mon_groups" directory, remove the mon group.
3723	 */
3724	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3725	    rdtgrp != &rdtgroup_default) {
3726		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3727		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3728			ret = rdtgroup_ctrl_remove(rdtgrp);
3729		} else {
3730			ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3731		}
3732	} else if (rdtgrp->type == RDTMON_GROUP &&
3733		 is_mon_groups(parent_kn, kn->name)) {
3734		ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3735	} else {
3736		ret = -EPERM;
3737	}
3738
3739out:
3740	rdtgroup_kn_unlock(kn);
3741	free_cpumask_var(tmpmask);
3742	return ret;
3743}
3744
3745/**
3746 * mongrp_reparent() - replace parent CTRL_MON group of a MON group
3747 * @rdtgrp:		the MON group whose parent should be replaced
3748 * @new_prdtgrp:	replacement parent CTRL_MON group for @rdtgrp
3749 * @cpus:		cpumask provided by the caller for use during this call
3750 *
3751 * Replaces the parent CTRL_MON group for a MON group, resulting in all member
3752 * tasks' CLOSID immediately changing to that of the new parent group.
3753 * Monitoring data for the group is unaffected by this operation.
3754 */
3755static void mongrp_reparent(struct rdtgroup *rdtgrp,
3756			    struct rdtgroup *new_prdtgrp,
3757			    cpumask_var_t cpus)
3758{
3759	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3760
3761	WARN_ON(rdtgrp->type != RDTMON_GROUP);
3762	WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP);
3763
3764	/* Nothing to do when simply renaming a MON group. */
3765	if (prdtgrp == new_prdtgrp)
3766		return;
3767
3768	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3769	list_move_tail(&rdtgrp->mon.crdtgrp_list,
3770		       &new_prdtgrp->mon.crdtgrp_list);
3771
3772	rdtgrp->mon.parent = new_prdtgrp;
3773	rdtgrp->closid = new_prdtgrp->closid;
3774
3775	/* Propagate updated closid to all tasks in this group. */
3776	rdt_move_group_tasks(rdtgrp, rdtgrp, cpus);
3777
3778	update_closid_rmid(cpus, NULL);
3779}
3780
3781static int rdtgroup_rename(struct kernfs_node *kn,
3782			   struct kernfs_node *new_parent, const char *new_name)
3783{
3784	struct rdtgroup *new_prdtgrp;
3785	struct rdtgroup *rdtgrp;
3786	cpumask_var_t tmpmask;
3787	int ret;
3788
3789	rdtgrp = kernfs_to_rdtgroup(kn);
3790	new_prdtgrp = kernfs_to_rdtgroup(new_parent);
3791	if (!rdtgrp || !new_prdtgrp)
3792		return -ENOENT;
3793
3794	/* Release both kernfs active_refs before obtaining rdtgroup mutex. */
3795	rdtgroup_kn_get(rdtgrp, kn);
3796	rdtgroup_kn_get(new_prdtgrp, new_parent);
3797
3798	mutex_lock(&rdtgroup_mutex);
3799
3800	rdt_last_cmd_clear();
3801
3802	/*
3803	 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if
3804	 * either kernfs_node is a file.
3805	 */
3806	if (kernfs_type(kn) != KERNFS_DIR ||
3807	    kernfs_type(new_parent) != KERNFS_DIR) {
3808		rdt_last_cmd_puts("Source and destination must be directories");
3809		ret = -EPERM;
3810		goto out;
3811	}
3812
3813	if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) {
3814		ret = -ENOENT;
3815		goto out;
3816	}
3817
3818	if (rdtgrp->type != RDTMON_GROUP || !kn->parent ||
3819	    !is_mon_groups(kn->parent, kn->name)) {
3820		rdt_last_cmd_puts("Source must be a MON group\n");
3821		ret = -EPERM;
3822		goto out;
3823	}
3824
3825	if (!is_mon_groups(new_parent, new_name)) {
3826		rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n");
3827		ret = -EPERM;
3828		goto out;
3829	}
3830
3831	/*
3832	 * If the MON group is monitoring CPUs, the CPUs must be assigned to the
3833	 * current parent CTRL_MON group and therefore cannot be assigned to
3834	 * the new parent, making the move illegal.
3835	 */
3836	if (!cpumask_empty(&rdtgrp->cpu_mask) &&
3837	    rdtgrp->mon.parent != new_prdtgrp) {
3838		rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n");
3839		ret = -EPERM;
3840		goto out;
3841	}
3842
3843	/*
3844	 * Allocate the cpumask for use in mongrp_reparent() to avoid the
3845	 * possibility of failing to allocate it after kernfs_rename() has
3846	 * succeeded.
3847	 */
3848	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) {
3849		ret = -ENOMEM;
3850		goto out;
3851	}
3852
3853	/*
3854	 * Perform all input validation and allocations needed to ensure
3855	 * mongrp_reparent() will succeed before calling kernfs_rename(),
3856	 * otherwise it would be necessary to revert this call if
3857	 * mongrp_reparent() failed.
3858	 */
3859	ret = kernfs_rename(kn, new_parent, new_name);
3860	if (!ret)
3861		mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask);
3862
3863	free_cpumask_var(tmpmask);
3864
3865out:
3866	mutex_unlock(&rdtgroup_mutex);
3867	rdtgroup_kn_put(rdtgrp, kn);
3868	rdtgroup_kn_put(new_prdtgrp, new_parent);
3869	return ret;
3870}
3871
3872static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3873{
3874	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
3875		seq_puts(seq, ",cdp");
3876
3877	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
3878		seq_puts(seq, ",cdpl2");
3879
3880	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl))
3881		seq_puts(seq, ",mba_MBps");
3882
3883	if (resctrl_debug)
3884		seq_puts(seq, ",debug");
3885
3886	return 0;
3887}
3888
3889static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3890	.mkdir		= rdtgroup_mkdir,
3891	.rmdir		= rdtgroup_rmdir,
3892	.rename		= rdtgroup_rename,
3893	.show_options	= rdtgroup_show_options,
3894};
3895
3896static int rdtgroup_setup_root(struct rdt_fs_context *ctx)
3897{
3898	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3899				      KERNFS_ROOT_CREATE_DEACTIVATED |
3900				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3901				      &rdtgroup_default);
3902	if (IS_ERR(rdt_root))
3903		return PTR_ERR(rdt_root);
3904
3905	ctx->kfc.root = rdt_root;
3906	rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
3907
3908	return 0;
3909}
3910
3911static void rdtgroup_destroy_root(void)
3912{
3913	kernfs_destroy_root(rdt_root);
3914	rdtgroup_default.kn = NULL;
3915}
3916
3917static void __init rdtgroup_setup_default(void)
3918{
3919	mutex_lock(&rdtgroup_mutex);
3920
3921	rdtgroup_default.closid = RESCTRL_RESERVED_CLOSID;
3922	rdtgroup_default.mon.rmid = RESCTRL_RESERVED_RMID;
3923	rdtgroup_default.type = RDTCTRL_GROUP;
3924	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3925
3926	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3927
3928	mutex_unlock(&rdtgroup_mutex);
3929}
3930
3931static void domain_destroy_mon_state(struct rdt_domain *d)
3932{
3933	bitmap_free(d->rmid_busy_llc);
3934	kfree(d->mbm_total);
3935	kfree(d->mbm_local);
3936}
3937
3938void resctrl_offline_domain(struct rdt_resource *r, struct rdt_domain *d)
3939{
3940	mutex_lock(&rdtgroup_mutex);
3941
3942	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3943		mba_sc_domain_destroy(r, d);
3944
3945	if (!r->mon_capable)
3946		goto out_unlock;
3947
3948	/*
3949	 * If resctrl is mounted, remove all the
3950	 * per domain monitor data directories.
3951	 */
3952	if (resctrl_mounted && resctrl_arch_mon_capable())
3953		rmdir_mondata_subdir_allrdtgrp(r, d->id);
3954
3955	if (is_mbm_enabled())
3956		cancel_delayed_work(&d->mbm_over);
3957	if (is_llc_occupancy_enabled() && has_busy_rmid(d)) {
3958		/*
3959		 * When a package is going down, forcefully
3960		 * decrement rmid->ebusy. There is no way to know
3961		 * that the L3 was flushed and hence may lead to
3962		 * incorrect counts in rare scenarios, but leaving
3963		 * the RMID as busy creates RMID leaks if the
3964		 * package never comes back.
3965		 */
3966		__check_limbo(d, true);
3967		cancel_delayed_work(&d->cqm_limbo);
3968	}
3969
3970	domain_destroy_mon_state(d);
3971
3972out_unlock:
3973	mutex_unlock(&rdtgroup_mutex);
3974}
3975
3976static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d)
3977{
3978	u32 idx_limit = resctrl_arch_system_num_rmid_idx();
3979	size_t tsize;
3980
3981	if (is_llc_occupancy_enabled()) {
3982		d->rmid_busy_llc = bitmap_zalloc(idx_limit, GFP_KERNEL);
3983		if (!d->rmid_busy_llc)
3984			return -ENOMEM;
3985	}
3986	if (is_mbm_total_enabled()) {
3987		tsize = sizeof(*d->mbm_total);
3988		d->mbm_total = kcalloc(idx_limit, tsize, GFP_KERNEL);
3989		if (!d->mbm_total) {
3990			bitmap_free(d->rmid_busy_llc);
3991			return -ENOMEM;
3992		}
3993	}
3994	if (is_mbm_local_enabled()) {
3995		tsize = sizeof(*d->mbm_local);
3996		d->mbm_local = kcalloc(idx_limit, tsize, GFP_KERNEL);
3997		if (!d->mbm_local) {
3998			bitmap_free(d->rmid_busy_llc);
3999			kfree(d->mbm_total);
4000			return -ENOMEM;
4001		}
4002	}
4003
4004	return 0;
4005}
4006
4007int resctrl_online_domain(struct rdt_resource *r, struct rdt_domain *d)
4008{
4009	int err = 0;
4010
4011	mutex_lock(&rdtgroup_mutex);
4012
4013	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) {
4014		/* RDT_RESOURCE_MBA is never mon_capable */
4015		err = mba_sc_domain_allocate(r, d);
4016		goto out_unlock;
4017	}
4018
4019	if (!r->mon_capable)
4020		goto out_unlock;
4021
4022	err = domain_setup_mon_state(r, d);
4023	if (err)
4024		goto out_unlock;
4025
4026	if (is_mbm_enabled()) {
4027		INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
4028		mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL,
4029					   RESCTRL_PICK_ANY_CPU);
4030	}
4031
4032	if (is_llc_occupancy_enabled())
4033		INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
4034
4035	/*
4036	 * If the filesystem is not mounted then only the default resource group
4037	 * exists. Creation of its directories is deferred until mount time
4038	 * by rdt_get_tree() calling mkdir_mondata_all().
4039	 * If resctrl is mounted, add per domain monitor data directories.
4040	 */
4041	if (resctrl_mounted && resctrl_arch_mon_capable())
4042		mkdir_mondata_subdir_allrdtgrp(r, d);
4043
4044out_unlock:
4045	mutex_unlock(&rdtgroup_mutex);
4046
4047	return err;
4048}
4049
4050void resctrl_online_cpu(unsigned int cpu)
4051{
4052	mutex_lock(&rdtgroup_mutex);
4053	/* The CPU is set in default rdtgroup after online. */
4054	cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask);
4055	mutex_unlock(&rdtgroup_mutex);
4056}
4057
4058static void clear_childcpus(struct rdtgroup *r, unsigned int cpu)
4059{
4060	struct rdtgroup *cr;
4061
4062	list_for_each_entry(cr, &r->mon.crdtgrp_list, mon.crdtgrp_list) {
4063		if (cpumask_test_and_clear_cpu(cpu, &cr->cpu_mask))
4064			break;
4065	}
4066}
4067
4068void resctrl_offline_cpu(unsigned int cpu)
4069{
4070	struct rdt_resource *l3 = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
4071	struct rdtgroup *rdtgrp;
4072	struct rdt_domain *d;
4073
4074	mutex_lock(&rdtgroup_mutex);
4075	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
4076		if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask)) {
4077			clear_childcpus(rdtgrp, cpu);
4078			break;
4079		}
4080	}
4081
4082	if (!l3->mon_capable)
4083		goto out_unlock;
4084
4085	d = get_domain_from_cpu(cpu, l3);
4086	if (d) {
4087		if (is_mbm_enabled() && cpu == d->mbm_work_cpu) {
4088			cancel_delayed_work(&d->mbm_over);
4089			mbm_setup_overflow_handler(d, 0, cpu);
4090		}
4091		if (is_llc_occupancy_enabled() && cpu == d->cqm_work_cpu &&
4092		    has_busy_rmid(d)) {
4093			cancel_delayed_work(&d->cqm_limbo);
4094			cqm_setup_limbo_handler(d, 0, cpu);
4095		}
4096	}
4097
4098out_unlock:
4099	mutex_unlock(&rdtgroup_mutex);
4100}
4101
4102/*
4103 * rdtgroup_init - rdtgroup initialization
4104 *
4105 * Setup resctrl file system including set up root, create mount point,
4106 * register rdtgroup filesystem, and initialize files under root directory.
4107 *
4108 * Return: 0 on success or -errno
4109 */
4110int __init rdtgroup_init(void)
4111{
4112	int ret = 0;
4113
4114	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
4115		     sizeof(last_cmd_status_buf));
4116
4117	rdtgroup_setup_default();
4118
4119	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
4120	if (ret)
4121		return ret;
4122
4123	ret = register_filesystem(&rdt_fs_type);
4124	if (ret)
4125		goto cleanup_mountpoint;
4126
4127	/*
4128	 * Adding the resctrl debugfs directory here may not be ideal since
4129	 * it would let the resctrl debugfs directory appear on the debugfs
4130	 * filesystem before the resctrl filesystem is mounted.
4131	 * It may also be ok since that would enable debugging of RDT before
4132	 * resctrl is mounted.
4133	 * The reason why the debugfs directory is created here and not in
4134	 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
4135	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
4136	 * (the lockdep class of inode->i_rwsem). Other filesystem
4137	 * interactions (eg. SyS_getdents) have the lock ordering:
4138	 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
4139	 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
4140	 * is taken, thus creating dependency:
4141	 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
4142	 * issues considering the other two lock dependencies.
4143	 * By creating the debugfs directory here we avoid a dependency
4144	 * that may cause deadlock (even though file operations cannot
4145	 * occur until the filesystem is mounted, but I do not know how to
4146	 * tell lockdep that).
4147	 */
4148	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
4149
4150	return 0;
4151
4152cleanup_mountpoint:
4153	sysfs_remove_mount_point(fs_kobj, "resctrl");
4154
4155	return ret;
4156}
4157
4158void __exit rdtgroup_exit(void)
4159{
4160	debugfs_remove_recursive(debugfs_resctrl);
4161	unregister_filesystem(&rdt_fs_type);
4162	sysfs_remove_mount_point(fs_kobj, "resctrl");
4163}
4164