1// SPDX-License-Identifier: GPL-2.0
2#include <linux/moduleloader.h>
3#include <linux/workqueue.h>
4#include <linux/netdevice.h>
5#include <linux/filter.h>
6#include <linux/bpf.h>
7#include <linux/cache.h>
8#include <linux/if_vlan.h>
9
10#include <asm/cacheflush.h>
11#include <asm/ptrace.h>
12
13#include "bpf_jit_64.h"
14
15static inline bool is_simm13(unsigned int value)
16{
17	return value + 0x1000 < 0x2000;
18}
19
20static inline bool is_simm10(unsigned int value)
21{
22	return value + 0x200 < 0x400;
23}
24
25static inline bool is_simm5(unsigned int value)
26{
27	return value + 0x10 < 0x20;
28}
29
30static inline bool is_sethi(unsigned int value)
31{
32	return (value & ~0x3fffff) == 0;
33}
34
35static void bpf_flush_icache(void *start_, void *end_)
36{
37	/* Cheetah's I-cache is fully coherent.  */
38	if (tlb_type == spitfire) {
39		unsigned long start = (unsigned long) start_;
40		unsigned long end = (unsigned long) end_;
41
42		start &= ~7UL;
43		end = (end + 7UL) & ~7UL;
44		while (start < end) {
45			flushi(start);
46			start += 32;
47		}
48	}
49}
50
51#define S13(X)		((X) & 0x1fff)
52#define S5(X)		((X) & 0x1f)
53#define IMMED		0x00002000
54#define RD(X)		((X) << 25)
55#define RS1(X)		((X) << 14)
56#define RS2(X)		((X))
57#define OP(X)		((X) << 30)
58#define OP2(X)		((X) << 22)
59#define OP3(X)		((X) << 19)
60#define COND(X)		(((X) & 0xf) << 25)
61#define CBCOND(X)	(((X) & 0x1f) << 25)
62#define F1(X)		OP(X)
63#define F2(X, Y)	(OP(X) | OP2(Y))
64#define F3(X, Y)	(OP(X) | OP3(Y))
65#define ASI(X)		(((X) & 0xff) << 5)
66
67#define CONDN		COND(0x0)
68#define CONDE		COND(0x1)
69#define CONDLE		COND(0x2)
70#define CONDL		COND(0x3)
71#define CONDLEU		COND(0x4)
72#define CONDCS		COND(0x5)
73#define CONDNEG		COND(0x6)
74#define CONDVC		COND(0x7)
75#define CONDA		COND(0x8)
76#define CONDNE		COND(0x9)
77#define CONDG		COND(0xa)
78#define CONDGE		COND(0xb)
79#define CONDGU		COND(0xc)
80#define CONDCC		COND(0xd)
81#define CONDPOS		COND(0xe)
82#define CONDVS		COND(0xf)
83
84#define CONDGEU		CONDCC
85#define CONDLU		CONDCS
86
87#define WDISP22(X)	(((X) >> 2) & 0x3fffff)
88#define WDISP19(X)	(((X) >> 2) & 0x7ffff)
89
90/* The 10-bit branch displacement for CBCOND is split into two fields */
91static u32 WDISP10(u32 off)
92{
93	u32 ret = ((off >> 2) & 0xff) << 5;
94
95	ret |= ((off >> (2 + 8)) & 0x03) << 19;
96
97	return ret;
98}
99
100#define CBCONDE		CBCOND(0x09)
101#define CBCONDLE	CBCOND(0x0a)
102#define CBCONDL		CBCOND(0x0b)
103#define CBCONDLEU	CBCOND(0x0c)
104#define CBCONDCS	CBCOND(0x0d)
105#define CBCONDN		CBCOND(0x0e)
106#define CBCONDVS	CBCOND(0x0f)
107#define CBCONDNE	CBCOND(0x19)
108#define CBCONDG		CBCOND(0x1a)
109#define CBCONDGE	CBCOND(0x1b)
110#define CBCONDGU	CBCOND(0x1c)
111#define CBCONDCC	CBCOND(0x1d)
112#define CBCONDPOS	CBCOND(0x1e)
113#define CBCONDVC	CBCOND(0x1f)
114
115#define CBCONDGEU	CBCONDCC
116#define CBCONDLU	CBCONDCS
117
118#define ANNUL		(1 << 29)
119#define XCC		(1 << 21)
120
121#define BRANCH		(F2(0, 1) | XCC)
122#define CBCOND_OP	(F2(0, 3) | XCC)
123
124#define BA		(BRANCH | CONDA)
125#define BG		(BRANCH | CONDG)
126#define BL		(BRANCH | CONDL)
127#define BLE		(BRANCH | CONDLE)
128#define BGU		(BRANCH | CONDGU)
129#define BLEU		(BRANCH | CONDLEU)
130#define BGE		(BRANCH | CONDGE)
131#define BGEU		(BRANCH | CONDGEU)
132#define BLU		(BRANCH | CONDLU)
133#define BE		(BRANCH | CONDE)
134#define BNE		(BRANCH | CONDNE)
135
136#define SETHI(K, REG)	\
137	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
138#define OR_LO(K, REG)	\
139	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
140
141#define ADD		F3(2, 0x00)
142#define AND		F3(2, 0x01)
143#define ANDCC		F3(2, 0x11)
144#define OR		F3(2, 0x02)
145#define XOR		F3(2, 0x03)
146#define SUB		F3(2, 0x04)
147#define SUBCC		F3(2, 0x14)
148#define MUL		F3(2, 0x0a)
149#define MULX		F3(2, 0x09)
150#define UDIVX		F3(2, 0x0d)
151#define DIV		F3(2, 0x0e)
152#define SLL		F3(2, 0x25)
153#define SLLX		(F3(2, 0x25)|(1<<12))
154#define SRA		F3(2, 0x27)
155#define SRAX		(F3(2, 0x27)|(1<<12))
156#define SRL		F3(2, 0x26)
157#define SRLX		(F3(2, 0x26)|(1<<12))
158#define JMPL		F3(2, 0x38)
159#define SAVE		F3(2, 0x3c)
160#define RESTORE		F3(2, 0x3d)
161#define CALL		F1(1)
162#define BR		F2(0, 0x01)
163#define RD_Y		F3(2, 0x28)
164#define WR_Y		F3(2, 0x30)
165
166#define LD32		F3(3, 0x00)
167#define LD8		F3(3, 0x01)
168#define LD16		F3(3, 0x02)
169#define LD64		F3(3, 0x0b)
170#define LD64A		F3(3, 0x1b)
171#define ST8		F3(3, 0x05)
172#define ST16		F3(3, 0x06)
173#define ST32		F3(3, 0x04)
174#define ST64		F3(3, 0x0e)
175
176#define CAS		F3(3, 0x3c)
177#define CASX		F3(3, 0x3e)
178
179#define LDPTR		LD64
180#define BASE_STACKFRAME	176
181
182#define LD32I		(LD32 | IMMED)
183#define LD8I		(LD8 | IMMED)
184#define LD16I		(LD16 | IMMED)
185#define LD64I		(LD64 | IMMED)
186#define LDPTRI		(LDPTR | IMMED)
187#define ST32I		(ST32 | IMMED)
188
189struct jit_ctx {
190	struct bpf_prog		*prog;
191	unsigned int		*offset;
192	int			idx;
193	int			epilogue_offset;
194	bool 			tmp_1_used;
195	bool 			tmp_2_used;
196	bool 			tmp_3_used;
197	bool			saw_frame_pointer;
198	bool			saw_call;
199	bool			saw_tail_call;
200	u32			*image;
201};
202
203#define TMP_REG_1	(MAX_BPF_JIT_REG + 0)
204#define TMP_REG_2	(MAX_BPF_JIT_REG + 1)
205#define TMP_REG_3	(MAX_BPF_JIT_REG + 2)
206
207/* Map BPF registers to SPARC registers */
208static const int bpf2sparc[] = {
209	/* return value from in-kernel function, and exit value from eBPF */
210	[BPF_REG_0] = O5,
211
212	/* arguments from eBPF program to in-kernel function */
213	[BPF_REG_1] = O0,
214	[BPF_REG_2] = O1,
215	[BPF_REG_3] = O2,
216	[BPF_REG_4] = O3,
217	[BPF_REG_5] = O4,
218
219	/* callee saved registers that in-kernel function will preserve */
220	[BPF_REG_6] = L0,
221	[BPF_REG_7] = L1,
222	[BPF_REG_8] = L2,
223	[BPF_REG_9] = L3,
224
225	/* read-only frame pointer to access stack */
226	[BPF_REG_FP] = L6,
227
228	[BPF_REG_AX] = G7,
229
230	/* temporary register for BPF JIT */
231	[TMP_REG_1] = G1,
232	[TMP_REG_2] = G2,
233	[TMP_REG_3] = G3,
234};
235
236static void emit(const u32 insn, struct jit_ctx *ctx)
237{
238	if (ctx->image != NULL)
239		ctx->image[ctx->idx] = insn;
240
241	ctx->idx++;
242}
243
244static void emit_call(u32 *func, struct jit_ctx *ctx)
245{
246	if (ctx->image != NULL) {
247		void *here = &ctx->image[ctx->idx];
248		unsigned int off;
249
250		off = (void *)func - here;
251		ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
252	}
253	ctx->idx++;
254}
255
256static void emit_nop(struct jit_ctx *ctx)
257{
258	emit(SETHI(0, G0), ctx);
259}
260
261static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
262{
263	emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
264}
265
266/* Emit 32-bit constant, zero extended. */
267static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
268{
269	emit(SETHI(K, reg), ctx);
270	emit(OR_LO(K, reg), ctx);
271}
272
273/* Emit 32-bit constant, sign extended. */
274static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
275{
276	if (K >= 0) {
277		emit(SETHI(K, reg), ctx);
278		emit(OR_LO(K, reg), ctx);
279	} else {
280		u32 hbits = ~(u32) K;
281		u32 lbits = -0x400 | (u32) K;
282
283		emit(SETHI(hbits, reg), ctx);
284		emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
285	}
286}
287
288static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
289{
290	emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
291}
292
293static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
294{
295	emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
296}
297
298static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
299		       struct jit_ctx *ctx)
300{
301	bool small_immed = is_simm13(imm);
302	unsigned int insn = opcode;
303
304	insn |= RS1(dst) | RD(dst);
305	if (small_immed) {
306		emit(insn | IMMED | S13(imm), ctx);
307	} else {
308		unsigned int tmp = bpf2sparc[TMP_REG_1];
309
310		ctx->tmp_1_used = true;
311
312		emit_set_const_sext(imm, tmp, ctx);
313		emit(insn | RS2(tmp), ctx);
314	}
315}
316
317static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
318			unsigned int dst, struct jit_ctx *ctx)
319{
320	bool small_immed = is_simm13(imm);
321	unsigned int insn = opcode;
322
323	insn |= RS1(src) | RD(dst);
324	if (small_immed) {
325		emit(insn | IMMED | S13(imm), ctx);
326	} else {
327		unsigned int tmp = bpf2sparc[TMP_REG_1];
328
329		ctx->tmp_1_used = true;
330
331		emit_set_const_sext(imm, tmp, ctx);
332		emit(insn | RS2(tmp), ctx);
333	}
334}
335
336static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
337{
338	if (K >= 0 && is_simm13(K)) {
339		/* or %g0, K, DEST */
340		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
341	} else {
342		emit_set_const(K, dest, ctx);
343	}
344}
345
346static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
347{
348	if (is_simm13(K)) {
349		/* or %g0, K, DEST */
350		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
351	} else {
352		emit_set_const(K, dest, ctx);
353	}
354}
355
356static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
357{
358	if (is_simm13(K)) {
359		/* or %g0, K, DEST */
360		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
361	} else {
362		emit_set_const_sext(K, dest, ctx);
363	}
364}
365
366static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
367				   int *hbsp, int *lbsp, int *abbasp)
368{
369	int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
370	int i;
371
372	lowest_bit_set = highest_bit_set = -1;
373	i = 0;
374	do {
375		if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
376			lowest_bit_set = i;
377		if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
378			highest_bit_set = (64 - i - 1);
379	}  while (++i < 32 && (highest_bit_set == -1 ||
380			       lowest_bit_set == -1));
381	if (i == 32) {
382		i = 0;
383		do {
384			if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
385				lowest_bit_set = i + 32;
386			if (highest_bit_set == -1 &&
387			    ((low_bits >> (32 - i - 1)) & 1))
388				highest_bit_set = 32 - i - 1;
389		} while (++i < 32 && (highest_bit_set == -1 ||
390				      lowest_bit_set == -1));
391	}
392
393	all_bits_between_are_set = 1;
394	for (i = lowest_bit_set; i <= highest_bit_set; i++) {
395		if (i < 32) {
396			if ((low_bits & (1 << i)) != 0)
397				continue;
398		} else {
399			if ((high_bits & (1 << (i - 32))) != 0)
400				continue;
401		}
402		all_bits_between_are_set = 0;
403		break;
404	}
405	*hbsp = highest_bit_set;
406	*lbsp = lowest_bit_set;
407	*abbasp = all_bits_between_are_set;
408}
409
410static unsigned long create_simple_focus_bits(unsigned long high_bits,
411					      unsigned long low_bits,
412					      int lowest_bit_set, int shift)
413{
414	long hi, lo;
415
416	if (lowest_bit_set < 32) {
417		lo = (low_bits >> lowest_bit_set) << shift;
418		hi = ((high_bits << (32 - lowest_bit_set)) << shift);
419	} else {
420		lo = 0;
421		hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
422	}
423	return hi | lo;
424}
425
426static bool const64_is_2insns(unsigned long high_bits,
427			      unsigned long low_bits)
428{
429	int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
430
431	if (high_bits == 0 || high_bits == 0xffffffff)
432		return true;
433
434	analyze_64bit_constant(high_bits, low_bits,
435			       &highest_bit_set, &lowest_bit_set,
436			       &all_bits_between_are_set);
437
438	if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
439	    all_bits_between_are_set != 0)
440		return true;
441
442	if (highest_bit_set - lowest_bit_set < 21)
443		return true;
444
445	return false;
446}
447
448static void sparc_emit_set_const64_quick2(unsigned long high_bits,
449					  unsigned long low_imm,
450					  unsigned int dest,
451					  int shift_count, struct jit_ctx *ctx)
452{
453	emit_loadimm32(high_bits, dest, ctx);
454
455	/* Now shift it up into place.  */
456	emit_alu_K(SLLX, dest, shift_count, ctx);
457
458	/* If there is a low immediate part piece, finish up by
459	 * putting that in as well.
460	 */
461	if (low_imm != 0)
462		emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
463}
464
465static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
466{
467	int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
468	unsigned int tmp = bpf2sparc[TMP_REG_1];
469	u32 low_bits = (K & 0xffffffff);
470	u32 high_bits = (K >> 32);
471
472	/* These two tests also take care of all of the one
473	 * instruction cases.
474	 */
475	if (high_bits == 0xffffffff && (low_bits & 0x80000000))
476		return emit_loadimm_sext(K, dest, ctx);
477	if (high_bits == 0x00000000)
478		return emit_loadimm32(K, dest, ctx);
479
480	analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
481			       &lowest_bit_set, &all_bits_between_are_set);
482
483	/* 1) mov	-1, %reg
484	 *    sllx	%reg, shift, %reg
485	 * 2) mov	-1, %reg
486	 *    srlx	%reg, shift, %reg
487	 * 3) mov	some_small_const, %reg
488	 *    sllx	%reg, shift, %reg
489	 */
490	if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
491	     all_bits_between_are_set != 0) ||
492	    ((highest_bit_set - lowest_bit_set) < 12)) {
493		int shift = lowest_bit_set;
494		long the_const = -1;
495
496		if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
497		    all_bits_between_are_set == 0) {
498			the_const =
499				create_simple_focus_bits(high_bits, low_bits,
500							 lowest_bit_set, 0);
501		} else if (lowest_bit_set == 0)
502			shift = -(63 - highest_bit_set);
503
504		emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
505		if (shift > 0)
506			emit_alu_K(SLLX, dest, shift, ctx);
507		else if (shift < 0)
508			emit_alu_K(SRLX, dest, -shift, ctx);
509
510		return;
511	}
512
513	/* Now a range of 22 or less bits set somewhere.
514	 * 1) sethi	%hi(focus_bits), %reg
515	 *    sllx	%reg, shift, %reg
516	 * 2) sethi	%hi(focus_bits), %reg
517	 *    srlx	%reg, shift, %reg
518	 */
519	if ((highest_bit_set - lowest_bit_set) < 21) {
520		unsigned long focus_bits =
521			create_simple_focus_bits(high_bits, low_bits,
522						 lowest_bit_set, 10);
523
524		emit(SETHI(focus_bits, dest), ctx);
525
526		/* If lowest_bit_set == 10 then a sethi alone could
527		 * have done it.
528		 */
529		if (lowest_bit_set < 10)
530			emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
531		else if (lowest_bit_set > 10)
532			emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
533		return;
534	}
535
536	/* Ok, now 3 instruction sequences.  */
537	if (low_bits == 0) {
538		emit_loadimm32(high_bits, dest, ctx);
539		emit_alu_K(SLLX, dest, 32, ctx);
540		return;
541	}
542
543	/* We may be able to do something quick
544	 * when the constant is negated, so try that.
545	 */
546	if (const64_is_2insns((~high_bits) & 0xffffffff,
547			      (~low_bits) & 0xfffffc00)) {
548		/* NOTE: The trailing bits get XOR'd so we need the
549		 * non-negated bits, not the negated ones.
550		 */
551		unsigned long trailing_bits = low_bits & 0x3ff;
552
553		if ((((~high_bits) & 0xffffffff) == 0 &&
554		     ((~low_bits) & 0x80000000) == 0) ||
555		    (((~high_bits) & 0xffffffff) == 0xffffffff &&
556		     ((~low_bits) & 0x80000000) != 0)) {
557			unsigned long fast_int = (~low_bits & 0xffffffff);
558
559			if ((is_sethi(fast_int) &&
560			     (~high_bits & 0xffffffff) == 0)) {
561				emit(SETHI(fast_int, dest), ctx);
562			} else if (is_simm13(fast_int)) {
563				emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
564			} else {
565				emit_loadimm64(fast_int, dest, ctx);
566			}
567		} else {
568			u64 n = ((~low_bits) & 0xfffffc00) |
569				(((unsigned long)((~high_bits) & 0xffffffff))<<32);
570			emit_loadimm64(n, dest, ctx);
571		}
572
573		low_bits = -0x400 | trailing_bits;
574
575		emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
576		return;
577	}
578
579	/* 1) sethi	%hi(xxx), %reg
580	 *    or	%reg, %lo(xxx), %reg
581	 *    sllx	%reg, yyy, %reg
582	 */
583	if ((highest_bit_set - lowest_bit_set) < 32) {
584		unsigned long focus_bits =
585			create_simple_focus_bits(high_bits, low_bits,
586						 lowest_bit_set, 0);
587
588		/* So what we know is that the set bits straddle the
589		 * middle of the 64-bit word.
590		 */
591		sparc_emit_set_const64_quick2(focus_bits, 0, dest,
592					      lowest_bit_set, ctx);
593		return;
594	}
595
596	/* 1) sethi	%hi(high_bits), %reg
597	 *    or	%reg, %lo(high_bits), %reg
598	 *    sllx	%reg, 32, %reg
599	 *    or	%reg, low_bits, %reg
600	 */
601	if (is_simm13(low_bits) && ((int)low_bits > 0)) {
602		sparc_emit_set_const64_quick2(high_bits, low_bits,
603					      dest, 32, ctx);
604		return;
605	}
606
607	/* Oh well, we tried... Do a full 64-bit decomposition.  */
608	ctx->tmp_1_used = true;
609
610	emit_loadimm32(high_bits, tmp, ctx);
611	emit_loadimm32(low_bits, dest, ctx);
612	emit_alu_K(SLLX, tmp, 32, ctx);
613	emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
614}
615
616static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
617			struct jit_ctx *ctx)
618{
619	unsigned int off = to_idx - from_idx;
620
621	if (br_opc & XCC)
622		emit(br_opc | WDISP19(off << 2), ctx);
623	else
624		emit(br_opc | WDISP22(off << 2), ctx);
625}
626
627static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
628			const u8 dst, const u8 src, struct jit_ctx *ctx)
629{
630	unsigned int off = to_idx - from_idx;
631
632	emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
633}
634
635static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
636			 const u8 dst, s32 imm, struct jit_ctx *ctx)
637{
638	unsigned int off = to_idx - from_idx;
639
640	emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
641}
642
643#define emit_read_y(REG, CTX)	emit(RD_Y | RD(REG), CTX)
644#define emit_write_y(REG, CTX)	emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
645
646#define emit_cmp(R1, R2, CTX)				\
647	emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
648
649#define emit_cmpi(R1, IMM, CTX)				\
650	emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
651
652#define emit_btst(R1, R2, CTX)				\
653	emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
654
655#define emit_btsti(R1, IMM, CTX)			\
656	emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
657
658static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
659				   const s32 imm, bool is_imm, int branch_dst,
660				   struct jit_ctx *ctx)
661{
662	bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
663	const u8 tmp = bpf2sparc[TMP_REG_1];
664
665	branch_dst = ctx->offset[branch_dst];
666
667	if (!is_simm10(branch_dst - ctx->idx) ||
668	    BPF_OP(code) == BPF_JSET)
669		use_cbcond = false;
670
671	if (is_imm) {
672		bool fits = true;
673
674		if (use_cbcond) {
675			if (!is_simm5(imm))
676				fits = false;
677		} else if (!is_simm13(imm)) {
678			fits = false;
679		}
680		if (!fits) {
681			ctx->tmp_1_used = true;
682			emit_loadimm_sext(imm, tmp, ctx);
683			src = tmp;
684			is_imm = false;
685		}
686	}
687
688	if (!use_cbcond) {
689		u32 br_opcode;
690
691		if (BPF_OP(code) == BPF_JSET) {
692			if (is_imm)
693				emit_btsti(dst, imm, ctx);
694			else
695				emit_btst(dst, src, ctx);
696		} else {
697			if (is_imm)
698				emit_cmpi(dst, imm, ctx);
699			else
700				emit_cmp(dst, src, ctx);
701		}
702		switch (BPF_OP(code)) {
703		case BPF_JEQ:
704			br_opcode = BE;
705			break;
706		case BPF_JGT:
707			br_opcode = BGU;
708			break;
709		case BPF_JLT:
710			br_opcode = BLU;
711			break;
712		case BPF_JGE:
713			br_opcode = BGEU;
714			break;
715		case BPF_JLE:
716			br_opcode = BLEU;
717			break;
718		case BPF_JSET:
719		case BPF_JNE:
720			br_opcode = BNE;
721			break;
722		case BPF_JSGT:
723			br_opcode = BG;
724			break;
725		case BPF_JSLT:
726			br_opcode = BL;
727			break;
728		case BPF_JSGE:
729			br_opcode = BGE;
730			break;
731		case BPF_JSLE:
732			br_opcode = BLE;
733			break;
734		default:
735			/* Make sure we dont leak kernel information to the
736			 * user.
737			 */
738			return -EFAULT;
739		}
740		emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
741		emit_nop(ctx);
742	} else {
743		u32 cbcond_opcode;
744
745		switch (BPF_OP(code)) {
746		case BPF_JEQ:
747			cbcond_opcode = CBCONDE;
748			break;
749		case BPF_JGT:
750			cbcond_opcode = CBCONDGU;
751			break;
752		case BPF_JLT:
753			cbcond_opcode = CBCONDLU;
754			break;
755		case BPF_JGE:
756			cbcond_opcode = CBCONDGEU;
757			break;
758		case BPF_JLE:
759			cbcond_opcode = CBCONDLEU;
760			break;
761		case BPF_JNE:
762			cbcond_opcode = CBCONDNE;
763			break;
764		case BPF_JSGT:
765			cbcond_opcode = CBCONDG;
766			break;
767		case BPF_JSLT:
768			cbcond_opcode = CBCONDL;
769			break;
770		case BPF_JSGE:
771			cbcond_opcode = CBCONDGE;
772			break;
773		case BPF_JSLE:
774			cbcond_opcode = CBCONDLE;
775			break;
776		default:
777			/* Make sure we dont leak kernel information to the
778			 * user.
779			 */
780			return -EFAULT;
781		}
782		cbcond_opcode |= CBCOND_OP;
783		if (is_imm)
784			emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
785				     dst, imm, ctx);
786		else
787			emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
788				    dst, src, ctx);
789	}
790	return 0;
791}
792
793/* Just skip the save instruction and the ctx register move.  */
794#define BPF_TAILCALL_PROLOGUE_SKIP	32
795#define BPF_TAILCALL_CNT_SP_OFF		(STACK_BIAS + 128)
796
797static void build_prologue(struct jit_ctx *ctx)
798{
799	s32 stack_needed = BASE_STACKFRAME;
800
801	if (ctx->saw_frame_pointer || ctx->saw_tail_call) {
802		struct bpf_prog *prog = ctx->prog;
803		u32 stack_depth;
804
805		stack_depth = prog->aux->stack_depth;
806		stack_needed += round_up(stack_depth, 16);
807	}
808
809	if (ctx->saw_tail_call)
810		stack_needed += 8;
811
812	/* save %sp, -176, %sp */
813	emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
814
815	/* tail_call_cnt = 0 */
816	if (ctx->saw_tail_call) {
817		u32 off = BPF_TAILCALL_CNT_SP_OFF;
818
819		emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
820	} else {
821		emit_nop(ctx);
822	}
823	if (ctx->saw_frame_pointer) {
824		const u8 vfp = bpf2sparc[BPF_REG_FP];
825
826		emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
827	} else {
828		emit_nop(ctx);
829	}
830
831	emit_reg_move(I0, O0, ctx);
832	emit_reg_move(I1, O1, ctx);
833	emit_reg_move(I2, O2, ctx);
834	emit_reg_move(I3, O3, ctx);
835	emit_reg_move(I4, O4, ctx);
836	/* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */
837}
838
839static void build_epilogue(struct jit_ctx *ctx)
840{
841	ctx->epilogue_offset = ctx->idx;
842
843	/* ret (jmpl %i7 + 8, %g0) */
844	emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
845
846	/* restore %i5, %g0, %o0 */
847	emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
848}
849
850static void emit_tail_call(struct jit_ctx *ctx)
851{
852	const u8 bpf_array = bpf2sparc[BPF_REG_2];
853	const u8 bpf_index = bpf2sparc[BPF_REG_3];
854	const u8 tmp = bpf2sparc[TMP_REG_1];
855	u32 off;
856
857	ctx->saw_tail_call = true;
858
859	off = offsetof(struct bpf_array, map.max_entries);
860	emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
861	emit_cmp(bpf_index, tmp, ctx);
862#define OFFSET1 17
863	emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
864	emit_nop(ctx);
865
866	off = BPF_TAILCALL_CNT_SP_OFF;
867	emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
868	emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
869#define OFFSET2 13
870	emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET2, ctx);
871	emit_nop(ctx);
872
873	emit_alu_K(ADD, tmp, 1, ctx);
874	off = BPF_TAILCALL_CNT_SP_OFF;
875	emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
876
877	emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
878	emit_alu(ADD, bpf_array, tmp, ctx);
879	off = offsetof(struct bpf_array, ptrs);
880	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
881
882	emit_cmpi(tmp, 0, ctx);
883#define OFFSET3 5
884	emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
885	emit_nop(ctx);
886
887	off = offsetof(struct bpf_prog, bpf_func);
888	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
889
890	off = BPF_TAILCALL_PROLOGUE_SKIP;
891	emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
892	emit_nop(ctx);
893}
894
895static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
896{
897	const u8 code = insn->code;
898	const u8 dst = bpf2sparc[insn->dst_reg];
899	const u8 src = bpf2sparc[insn->src_reg];
900	const int i = insn - ctx->prog->insnsi;
901	const s16 off = insn->off;
902	const s32 imm = insn->imm;
903
904	if (insn->src_reg == BPF_REG_FP)
905		ctx->saw_frame_pointer = true;
906
907	switch (code) {
908	/* dst = src */
909	case BPF_ALU | BPF_MOV | BPF_X:
910		emit_alu3_K(SRL, src, 0, dst, ctx);
911		if (insn_is_zext(&insn[1]))
912			return 1;
913		break;
914	case BPF_ALU64 | BPF_MOV | BPF_X:
915		emit_reg_move(src, dst, ctx);
916		break;
917	/* dst = dst OP src */
918	case BPF_ALU | BPF_ADD | BPF_X:
919	case BPF_ALU64 | BPF_ADD | BPF_X:
920		emit_alu(ADD, src, dst, ctx);
921		goto do_alu32_trunc;
922	case BPF_ALU | BPF_SUB | BPF_X:
923	case BPF_ALU64 | BPF_SUB | BPF_X:
924		emit_alu(SUB, src, dst, ctx);
925		goto do_alu32_trunc;
926	case BPF_ALU | BPF_AND | BPF_X:
927	case BPF_ALU64 | BPF_AND | BPF_X:
928		emit_alu(AND, src, dst, ctx);
929		goto do_alu32_trunc;
930	case BPF_ALU | BPF_OR | BPF_X:
931	case BPF_ALU64 | BPF_OR | BPF_X:
932		emit_alu(OR, src, dst, ctx);
933		goto do_alu32_trunc;
934	case BPF_ALU | BPF_XOR | BPF_X:
935	case BPF_ALU64 | BPF_XOR | BPF_X:
936		emit_alu(XOR, src, dst, ctx);
937		goto do_alu32_trunc;
938	case BPF_ALU | BPF_MUL | BPF_X:
939		emit_alu(MUL, src, dst, ctx);
940		goto do_alu32_trunc;
941	case BPF_ALU64 | BPF_MUL | BPF_X:
942		emit_alu(MULX, src, dst, ctx);
943		break;
944	case BPF_ALU | BPF_DIV | BPF_X:
945		emit_write_y(G0, ctx);
946		emit_alu(DIV, src, dst, ctx);
947		if (insn_is_zext(&insn[1]))
948			return 1;
949		break;
950	case BPF_ALU64 | BPF_DIV | BPF_X:
951		emit_alu(UDIVX, src, dst, ctx);
952		break;
953	case BPF_ALU | BPF_MOD | BPF_X: {
954		const u8 tmp = bpf2sparc[TMP_REG_1];
955
956		ctx->tmp_1_used = true;
957
958		emit_write_y(G0, ctx);
959		emit_alu3(DIV, dst, src, tmp, ctx);
960		emit_alu3(MULX, tmp, src, tmp, ctx);
961		emit_alu3(SUB, dst, tmp, dst, ctx);
962		goto do_alu32_trunc;
963	}
964	case BPF_ALU64 | BPF_MOD | BPF_X: {
965		const u8 tmp = bpf2sparc[TMP_REG_1];
966
967		ctx->tmp_1_used = true;
968
969		emit_alu3(UDIVX, dst, src, tmp, ctx);
970		emit_alu3(MULX, tmp, src, tmp, ctx);
971		emit_alu3(SUB, dst, tmp, dst, ctx);
972		break;
973	}
974	case BPF_ALU | BPF_LSH | BPF_X:
975		emit_alu(SLL, src, dst, ctx);
976		goto do_alu32_trunc;
977	case BPF_ALU64 | BPF_LSH | BPF_X:
978		emit_alu(SLLX, src, dst, ctx);
979		break;
980	case BPF_ALU | BPF_RSH | BPF_X:
981		emit_alu(SRL, src, dst, ctx);
982		if (insn_is_zext(&insn[1]))
983			return 1;
984		break;
985	case BPF_ALU64 | BPF_RSH | BPF_X:
986		emit_alu(SRLX, src, dst, ctx);
987		break;
988	case BPF_ALU | BPF_ARSH | BPF_X:
989		emit_alu(SRA, src, dst, ctx);
990		goto do_alu32_trunc;
991	case BPF_ALU64 | BPF_ARSH | BPF_X:
992		emit_alu(SRAX, src, dst, ctx);
993		break;
994
995	/* dst = -dst */
996	case BPF_ALU | BPF_NEG:
997	case BPF_ALU64 | BPF_NEG:
998		emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
999		goto do_alu32_trunc;
1000
1001	case BPF_ALU | BPF_END | BPF_FROM_BE:
1002		switch (imm) {
1003		case 16:
1004			emit_alu_K(SLL, dst, 16, ctx);
1005			emit_alu_K(SRL, dst, 16, ctx);
1006			if (insn_is_zext(&insn[1]))
1007				return 1;
1008			break;
1009		case 32:
1010			if (!ctx->prog->aux->verifier_zext)
1011				emit_alu_K(SRL, dst, 0, ctx);
1012			break;
1013		case 64:
1014			/* nop */
1015			break;
1016
1017		}
1018		break;
1019
1020	/* dst = BSWAP##imm(dst) */
1021	case BPF_ALU | BPF_END | BPF_FROM_LE: {
1022		const u8 tmp = bpf2sparc[TMP_REG_1];
1023		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1024
1025		ctx->tmp_1_used = true;
1026		switch (imm) {
1027		case 16:
1028			emit_alu3_K(AND, dst, 0xff, tmp, ctx);
1029			emit_alu3_K(SRL, dst, 8, dst, ctx);
1030			emit_alu3_K(AND, dst, 0xff, dst, ctx);
1031			emit_alu3_K(SLL, tmp, 8, tmp, ctx);
1032			emit_alu(OR, tmp, dst, ctx);
1033			if (insn_is_zext(&insn[1]))
1034				return 1;
1035			break;
1036
1037		case 32:
1038			ctx->tmp_2_used = true;
1039			emit_alu3_K(SRL, dst, 24, tmp, ctx);	/* tmp  = dst >> 24 */
1040			emit_alu3_K(SRL, dst, 16, tmp2, ctx);	/* tmp2 = dst >> 16 */
1041			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
1042			emit_alu3_K(SLL, tmp2, 8, tmp2, ctx);	/* tmp2 = tmp2 << 8 */
1043			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
1044			emit_alu3_K(SRL, dst, 8, tmp2, ctx);	/* tmp2 = dst >> 8 */
1045			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
1046			emit_alu3_K(SLL, tmp2, 16, tmp2, ctx);	/* tmp2 = tmp2 << 16 */
1047			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
1048			emit_alu3_K(AND, dst, 0xff, dst, ctx);	/* dst	= dst & 0xff */
1049			emit_alu3_K(SLL, dst, 24, dst, ctx);	/* dst  = dst << 24 */
1050			emit_alu(OR, tmp, dst, ctx);		/* dst  = dst | tmp */
1051			if (insn_is_zext(&insn[1]))
1052				return 1;
1053			break;
1054
1055		case 64:
1056			emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
1057			emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1058			emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1059			break;
1060		}
1061		break;
1062	}
1063	/* dst = imm */
1064	case BPF_ALU | BPF_MOV | BPF_K:
1065		emit_loadimm32(imm, dst, ctx);
1066		if (insn_is_zext(&insn[1]))
1067			return 1;
1068		break;
1069	case BPF_ALU64 | BPF_MOV | BPF_K:
1070		emit_loadimm_sext(imm, dst, ctx);
1071		break;
1072	/* dst = dst OP imm */
1073	case BPF_ALU | BPF_ADD | BPF_K:
1074	case BPF_ALU64 | BPF_ADD | BPF_K:
1075		emit_alu_K(ADD, dst, imm, ctx);
1076		goto do_alu32_trunc;
1077	case BPF_ALU | BPF_SUB | BPF_K:
1078	case BPF_ALU64 | BPF_SUB | BPF_K:
1079		emit_alu_K(SUB, dst, imm, ctx);
1080		goto do_alu32_trunc;
1081	case BPF_ALU | BPF_AND | BPF_K:
1082	case BPF_ALU64 | BPF_AND | BPF_K:
1083		emit_alu_K(AND, dst, imm, ctx);
1084		goto do_alu32_trunc;
1085	case BPF_ALU | BPF_OR | BPF_K:
1086	case BPF_ALU64 | BPF_OR | BPF_K:
1087		emit_alu_K(OR, dst, imm, ctx);
1088		goto do_alu32_trunc;
1089	case BPF_ALU | BPF_XOR | BPF_K:
1090	case BPF_ALU64 | BPF_XOR | BPF_K:
1091		emit_alu_K(XOR, dst, imm, ctx);
1092		goto do_alu32_trunc;
1093	case BPF_ALU | BPF_MUL | BPF_K:
1094		emit_alu_K(MUL, dst, imm, ctx);
1095		goto do_alu32_trunc;
1096	case BPF_ALU64 | BPF_MUL | BPF_K:
1097		emit_alu_K(MULX, dst, imm, ctx);
1098		break;
1099	case BPF_ALU | BPF_DIV | BPF_K:
1100		if (imm == 0)
1101			return -EINVAL;
1102
1103		emit_write_y(G0, ctx);
1104		emit_alu_K(DIV, dst, imm, ctx);
1105		goto do_alu32_trunc;
1106	case BPF_ALU64 | BPF_DIV | BPF_K:
1107		if (imm == 0)
1108			return -EINVAL;
1109
1110		emit_alu_K(UDIVX, dst, imm, ctx);
1111		break;
1112	case BPF_ALU64 | BPF_MOD | BPF_K:
1113	case BPF_ALU | BPF_MOD | BPF_K: {
1114		const u8 tmp = bpf2sparc[TMP_REG_2];
1115		unsigned int div;
1116
1117		if (imm == 0)
1118			return -EINVAL;
1119
1120		div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
1121
1122		ctx->tmp_2_used = true;
1123
1124		if (BPF_CLASS(code) != BPF_ALU64)
1125			emit_write_y(G0, ctx);
1126		if (is_simm13(imm)) {
1127			emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
1128			emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
1129			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1130		} else {
1131			const u8 tmp1 = bpf2sparc[TMP_REG_1];
1132
1133			ctx->tmp_1_used = true;
1134
1135			emit_set_const_sext(imm, tmp1, ctx);
1136			emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
1137			emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
1138			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1139		}
1140		goto do_alu32_trunc;
1141	}
1142	case BPF_ALU | BPF_LSH | BPF_K:
1143		emit_alu_K(SLL, dst, imm, ctx);
1144		goto do_alu32_trunc;
1145	case BPF_ALU64 | BPF_LSH | BPF_K:
1146		emit_alu_K(SLLX, dst, imm, ctx);
1147		break;
1148	case BPF_ALU | BPF_RSH | BPF_K:
1149		emit_alu_K(SRL, dst, imm, ctx);
1150		if (insn_is_zext(&insn[1]))
1151			return 1;
1152		break;
1153	case BPF_ALU64 | BPF_RSH | BPF_K:
1154		emit_alu_K(SRLX, dst, imm, ctx);
1155		break;
1156	case BPF_ALU | BPF_ARSH | BPF_K:
1157		emit_alu_K(SRA, dst, imm, ctx);
1158		goto do_alu32_trunc;
1159	case BPF_ALU64 | BPF_ARSH | BPF_K:
1160		emit_alu_K(SRAX, dst, imm, ctx);
1161		break;
1162
1163	do_alu32_trunc:
1164		if (BPF_CLASS(code) == BPF_ALU &&
1165		    !ctx->prog->aux->verifier_zext)
1166			emit_alu_K(SRL, dst, 0, ctx);
1167		break;
1168
1169	/* JUMP off */
1170	case BPF_JMP | BPF_JA:
1171		emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
1172		emit_nop(ctx);
1173		break;
1174	/* IF (dst COND src) JUMP off */
1175	case BPF_JMP | BPF_JEQ | BPF_X:
1176	case BPF_JMP | BPF_JGT | BPF_X:
1177	case BPF_JMP | BPF_JLT | BPF_X:
1178	case BPF_JMP | BPF_JGE | BPF_X:
1179	case BPF_JMP | BPF_JLE | BPF_X:
1180	case BPF_JMP | BPF_JNE | BPF_X:
1181	case BPF_JMP | BPF_JSGT | BPF_X:
1182	case BPF_JMP | BPF_JSLT | BPF_X:
1183	case BPF_JMP | BPF_JSGE | BPF_X:
1184	case BPF_JMP | BPF_JSLE | BPF_X:
1185	case BPF_JMP | BPF_JSET | BPF_X: {
1186		int err;
1187
1188		err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
1189		if (err)
1190			return err;
1191		break;
1192	}
1193	/* IF (dst COND imm) JUMP off */
1194	case BPF_JMP | BPF_JEQ | BPF_K:
1195	case BPF_JMP | BPF_JGT | BPF_K:
1196	case BPF_JMP | BPF_JLT | BPF_K:
1197	case BPF_JMP | BPF_JGE | BPF_K:
1198	case BPF_JMP | BPF_JLE | BPF_K:
1199	case BPF_JMP | BPF_JNE | BPF_K:
1200	case BPF_JMP | BPF_JSGT | BPF_K:
1201	case BPF_JMP | BPF_JSLT | BPF_K:
1202	case BPF_JMP | BPF_JSGE | BPF_K:
1203	case BPF_JMP | BPF_JSLE | BPF_K:
1204	case BPF_JMP | BPF_JSET | BPF_K: {
1205		int err;
1206
1207		err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
1208		if (err)
1209			return err;
1210		break;
1211	}
1212
1213	/* function call */
1214	case BPF_JMP | BPF_CALL:
1215	{
1216		u8 *func = ((u8 *)__bpf_call_base) + imm;
1217
1218		ctx->saw_call = true;
1219
1220		emit_call((u32 *)func, ctx);
1221		emit_nop(ctx);
1222
1223		emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
1224		break;
1225	}
1226
1227	/* tail call */
1228	case BPF_JMP | BPF_TAIL_CALL:
1229		emit_tail_call(ctx);
1230		break;
1231
1232	/* function return */
1233	case BPF_JMP | BPF_EXIT:
1234		/* Optimization: when last instruction is EXIT,
1235		   simply fallthrough to epilogue. */
1236		if (i == ctx->prog->len - 1)
1237			break;
1238		emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
1239		emit_nop(ctx);
1240		break;
1241
1242	/* dst = imm64 */
1243	case BPF_LD | BPF_IMM | BPF_DW:
1244	{
1245		const struct bpf_insn insn1 = insn[1];
1246		u64 imm64;
1247
1248		imm64 = (u64)insn1.imm << 32 | (u32)imm;
1249		emit_loadimm64(imm64, dst, ctx);
1250
1251		return 1;
1252	}
1253
1254	/* LDX: dst = *(size *)(src + off) */
1255	case BPF_LDX | BPF_MEM | BPF_W:
1256	case BPF_LDX | BPF_MEM | BPF_H:
1257	case BPF_LDX | BPF_MEM | BPF_B:
1258	case BPF_LDX | BPF_MEM | BPF_DW: {
1259		const u8 tmp = bpf2sparc[TMP_REG_1];
1260		u32 opcode = 0, rs2;
1261
1262		ctx->tmp_1_used = true;
1263		switch (BPF_SIZE(code)) {
1264		case BPF_W:
1265			opcode = LD32;
1266			break;
1267		case BPF_H:
1268			opcode = LD16;
1269			break;
1270		case BPF_B:
1271			opcode = LD8;
1272			break;
1273		case BPF_DW:
1274			opcode = LD64;
1275			break;
1276		}
1277
1278		if (is_simm13(off)) {
1279			opcode |= IMMED;
1280			rs2 = S13(off);
1281		} else {
1282			emit_loadimm(off, tmp, ctx);
1283			rs2 = RS2(tmp);
1284		}
1285		emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
1286		if (opcode != LD64 && insn_is_zext(&insn[1]))
1287			return 1;
1288		break;
1289	}
1290	/* speculation barrier */
1291	case BPF_ST | BPF_NOSPEC:
1292		break;
1293	/* ST: *(size *)(dst + off) = imm */
1294	case BPF_ST | BPF_MEM | BPF_W:
1295	case BPF_ST | BPF_MEM | BPF_H:
1296	case BPF_ST | BPF_MEM | BPF_B:
1297	case BPF_ST | BPF_MEM | BPF_DW: {
1298		const u8 tmp = bpf2sparc[TMP_REG_1];
1299		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1300		u32 opcode = 0, rs2;
1301
1302		if (insn->dst_reg == BPF_REG_FP)
1303			ctx->saw_frame_pointer = true;
1304
1305		ctx->tmp_2_used = true;
1306		emit_loadimm(imm, tmp2, ctx);
1307
1308		switch (BPF_SIZE(code)) {
1309		case BPF_W:
1310			opcode = ST32;
1311			break;
1312		case BPF_H:
1313			opcode = ST16;
1314			break;
1315		case BPF_B:
1316			opcode = ST8;
1317			break;
1318		case BPF_DW:
1319			opcode = ST64;
1320			break;
1321		}
1322
1323		if (is_simm13(off)) {
1324			opcode |= IMMED;
1325			rs2 = S13(off);
1326		} else {
1327			ctx->tmp_1_used = true;
1328			emit_loadimm(off, tmp, ctx);
1329			rs2 = RS2(tmp);
1330		}
1331		emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
1332		break;
1333	}
1334
1335	/* STX: *(size *)(dst + off) = src */
1336	case BPF_STX | BPF_MEM | BPF_W:
1337	case BPF_STX | BPF_MEM | BPF_H:
1338	case BPF_STX | BPF_MEM | BPF_B:
1339	case BPF_STX | BPF_MEM | BPF_DW: {
1340		const u8 tmp = bpf2sparc[TMP_REG_1];
1341		u32 opcode = 0, rs2;
1342
1343		if (insn->dst_reg == BPF_REG_FP)
1344			ctx->saw_frame_pointer = true;
1345
1346		switch (BPF_SIZE(code)) {
1347		case BPF_W:
1348			opcode = ST32;
1349			break;
1350		case BPF_H:
1351			opcode = ST16;
1352			break;
1353		case BPF_B:
1354			opcode = ST8;
1355			break;
1356		case BPF_DW:
1357			opcode = ST64;
1358			break;
1359		}
1360		if (is_simm13(off)) {
1361			opcode |= IMMED;
1362			rs2 = S13(off);
1363		} else {
1364			ctx->tmp_1_used = true;
1365			emit_loadimm(off, tmp, ctx);
1366			rs2 = RS2(tmp);
1367		}
1368		emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
1369		break;
1370	}
1371
1372	case BPF_STX | BPF_ATOMIC | BPF_W: {
1373		const u8 tmp = bpf2sparc[TMP_REG_1];
1374		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1375		const u8 tmp3 = bpf2sparc[TMP_REG_3];
1376
1377		if (insn->imm != BPF_ADD) {
1378			pr_err_once("unknown atomic op %02x\n", insn->imm);
1379			return -EINVAL;
1380		}
1381
1382		/* lock *(u32 *)(dst + off) += src */
1383
1384		if (insn->dst_reg == BPF_REG_FP)
1385			ctx->saw_frame_pointer = true;
1386
1387		ctx->tmp_1_used = true;
1388		ctx->tmp_2_used = true;
1389		ctx->tmp_3_used = true;
1390		emit_loadimm(off, tmp, ctx);
1391		emit_alu3(ADD, dst, tmp, tmp, ctx);
1392
1393		emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1394		emit_alu3(ADD, tmp2, src, tmp3, ctx);
1395		emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1396		emit_cmp(tmp2, tmp3, ctx);
1397		emit_branch(BNE, 4, 0, ctx);
1398		emit_nop(ctx);
1399		break;
1400	}
1401	/* STX XADD: lock *(u64 *)(dst + off) += src */
1402	case BPF_STX | BPF_ATOMIC | BPF_DW: {
1403		const u8 tmp = bpf2sparc[TMP_REG_1];
1404		const u8 tmp2 = bpf2sparc[TMP_REG_2];
1405		const u8 tmp3 = bpf2sparc[TMP_REG_3];
1406
1407		if (insn->imm != BPF_ADD) {
1408			pr_err_once("unknown atomic op %02x\n", insn->imm);
1409			return -EINVAL;
1410		}
1411
1412		if (insn->dst_reg == BPF_REG_FP)
1413			ctx->saw_frame_pointer = true;
1414
1415		ctx->tmp_1_used = true;
1416		ctx->tmp_2_used = true;
1417		ctx->tmp_3_used = true;
1418		emit_loadimm(off, tmp, ctx);
1419		emit_alu3(ADD, dst, tmp, tmp, ctx);
1420
1421		emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1422		emit_alu3(ADD, tmp2, src, tmp3, ctx);
1423		emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1424		emit_cmp(tmp2, tmp3, ctx);
1425		emit_branch(BNE, 4, 0, ctx);
1426		emit_nop(ctx);
1427		break;
1428	}
1429
1430	default:
1431		pr_err_once("unknown opcode %02x\n", code);
1432		return -EINVAL;
1433	}
1434
1435	return 0;
1436}
1437
1438static int build_body(struct jit_ctx *ctx)
1439{
1440	const struct bpf_prog *prog = ctx->prog;
1441	int i;
1442
1443	for (i = 0; i < prog->len; i++) {
1444		const struct bpf_insn *insn = &prog->insnsi[i];
1445		int ret;
1446
1447		ret = build_insn(insn, ctx);
1448
1449		if (ret > 0) {
1450			i++;
1451			ctx->offset[i] = ctx->idx;
1452			continue;
1453		}
1454		ctx->offset[i] = ctx->idx;
1455		if (ret)
1456			return ret;
1457	}
1458	return 0;
1459}
1460
1461static void jit_fill_hole(void *area, unsigned int size)
1462{
1463	u32 *ptr;
1464	/* We are guaranteed to have aligned memory. */
1465	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
1466		*ptr++ = 0x91d02005; /* ta 5 */
1467}
1468
1469bool bpf_jit_needs_zext(void)
1470{
1471	return true;
1472}
1473
1474struct sparc64_jit_data {
1475	struct bpf_binary_header *header;
1476	u8 *image;
1477	struct jit_ctx ctx;
1478};
1479
1480struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1481{
1482	struct bpf_prog *tmp, *orig_prog = prog;
1483	struct sparc64_jit_data *jit_data;
1484	struct bpf_binary_header *header;
1485	u32 prev_image_size, image_size;
1486	bool tmp_blinded = false;
1487	bool extra_pass = false;
1488	struct jit_ctx ctx;
1489	u8 *image_ptr;
1490	int pass, i;
1491
1492	if (!prog->jit_requested)
1493		return orig_prog;
1494
1495	tmp = bpf_jit_blind_constants(prog);
1496	/* If blinding was requested and we failed during blinding,
1497	 * we must fall back to the interpreter.
1498	 */
1499	if (IS_ERR(tmp))
1500		return orig_prog;
1501	if (tmp != prog) {
1502		tmp_blinded = true;
1503		prog = tmp;
1504	}
1505
1506	jit_data = prog->aux->jit_data;
1507	if (!jit_data) {
1508		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1509		if (!jit_data) {
1510			prog = orig_prog;
1511			goto out;
1512		}
1513		prog->aux->jit_data = jit_data;
1514	}
1515	if (jit_data->ctx.offset) {
1516		ctx = jit_data->ctx;
1517		image_ptr = jit_data->image;
1518		header = jit_data->header;
1519		extra_pass = true;
1520		image_size = sizeof(u32) * ctx.idx;
1521		prev_image_size = image_size;
1522		pass = 1;
1523		goto skip_init_ctx;
1524	}
1525
1526	memset(&ctx, 0, sizeof(ctx));
1527	ctx.prog = prog;
1528
1529	ctx.offset = kmalloc_array(prog->len, sizeof(unsigned int), GFP_KERNEL);
1530	if (ctx.offset == NULL) {
1531		prog = orig_prog;
1532		goto out_off;
1533	}
1534
1535	/* Longest sequence emitted is for bswap32, 12 instructions.  Pre-cook
1536	 * the offset array so that we converge faster.
1537	 */
1538	for (i = 0; i < prog->len; i++)
1539		ctx.offset[i] = i * (12 * 4);
1540
1541	prev_image_size = ~0U;
1542	for (pass = 1; pass < 40; pass++) {
1543		ctx.idx = 0;
1544
1545		build_prologue(&ctx);
1546		if (build_body(&ctx)) {
1547			prog = orig_prog;
1548			goto out_off;
1549		}
1550		build_epilogue(&ctx);
1551
1552		if (bpf_jit_enable > 1)
1553			pr_info("Pass %d: size = %u, seen = [%c%c%c%c%c%c]\n", pass,
1554				ctx.idx * 4,
1555				ctx.tmp_1_used ? '1' : ' ',
1556				ctx.tmp_2_used ? '2' : ' ',
1557				ctx.tmp_3_used ? '3' : ' ',
1558				ctx.saw_frame_pointer ? 'F' : ' ',
1559				ctx.saw_call ? 'C' : ' ',
1560				ctx.saw_tail_call ? 'T' : ' ');
1561
1562		if (ctx.idx * 4 == prev_image_size)
1563			break;
1564		prev_image_size = ctx.idx * 4;
1565		cond_resched();
1566	}
1567
1568	/* Now we know the actual image size. */
1569	image_size = sizeof(u32) * ctx.idx;
1570	header = bpf_jit_binary_alloc(image_size, &image_ptr,
1571				      sizeof(u32), jit_fill_hole);
1572	if (header == NULL) {
1573		prog = orig_prog;
1574		goto out_off;
1575	}
1576
1577	ctx.image = (u32 *)image_ptr;
1578skip_init_ctx:
1579	ctx.idx = 0;
1580
1581	build_prologue(&ctx);
1582
1583	if (build_body(&ctx)) {
1584		bpf_jit_binary_free(header);
1585		prog = orig_prog;
1586		goto out_off;
1587	}
1588
1589	build_epilogue(&ctx);
1590
1591	if (ctx.idx * 4 != prev_image_size) {
1592		pr_err("bpf_jit: Failed to converge, prev_size=%u size=%d\n",
1593		       prev_image_size, ctx.idx * 4);
1594		bpf_jit_binary_free(header);
1595		prog = orig_prog;
1596		goto out_off;
1597	}
1598
1599	if (bpf_jit_enable > 1)
1600		bpf_jit_dump(prog->len, image_size, pass, ctx.image);
1601
1602	bpf_flush_icache(header, (u8 *)header + header->size);
1603
1604	if (!prog->is_func || extra_pass) {
1605		bpf_jit_binary_lock_ro(header);
1606	} else {
1607		jit_data->ctx = ctx;
1608		jit_data->image = image_ptr;
1609		jit_data->header = header;
1610	}
1611
1612	prog->bpf_func = (void *)ctx.image;
1613	prog->jited = 1;
1614	prog->jited_len = image_size;
1615
1616	if (!prog->is_func || extra_pass) {
1617		bpf_prog_fill_jited_linfo(prog, ctx.offset);
1618out_off:
1619		kfree(ctx.offset);
1620		kfree(jit_data);
1621		prog->aux->jit_data = NULL;
1622	}
1623out:
1624	if (tmp_blinded)
1625		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1626					   tmp : orig_prog);
1627	return prog;
1628}
1629