1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Routines for doing kexec-based kdump.
4 *
5 * Copyright (C) 2005, IBM Corp.
6 *
7 * Created by: Michael Ellerman
8 */
9
10#undef DEBUG
11
12#include <linux/crash_dump.h>
13#include <linux/io.h>
14#include <linux/memblock.h>
15#include <linux/of.h>
16#include <asm/code-patching.h>
17#include <asm/kdump.h>
18#include <asm/firmware.h>
19#include <linux/uio.h>
20#include <asm/rtas.h>
21#include <asm/inst.h>
22#include <asm/fadump.h>
23
24#ifdef DEBUG
25#include <asm/udbg.h>
26#define DBG(fmt...) udbg_printf(fmt)
27#else
28#define DBG(fmt...)
29#endif
30
31#ifndef CONFIG_NONSTATIC_KERNEL
32void __init reserve_kdump_trampoline(void)
33{
34	memblock_reserve(0, KDUMP_RESERVE_LIMIT);
35}
36
37static void __init create_trampoline(unsigned long addr)
38{
39	u32 *p = (u32 *)addr;
40
41	/* The maximum range of a single instruction branch, is the current
42	 * instruction's address + (32 MB - 4) bytes. For the trampoline we
43	 * need to branch to current address + 32 MB. So we insert a nop at
44	 * the trampoline address, then the next instruction (+ 4 bytes)
45	 * does a branch to (32 MB - 4). The net effect is that when we
46	 * branch to "addr" we jump to ("addr" + 32 MB). Although it requires
47	 * two instructions it doesn't require any registers.
48	 */
49	patch_instruction(p, ppc_inst(PPC_RAW_NOP()));
50	patch_branch(p + 1, addr + PHYSICAL_START, 0);
51}
52
53void __init setup_kdump_trampoline(void)
54{
55	unsigned long i;
56
57	DBG(" -> setup_kdump_trampoline()\n");
58
59	for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) {
60		create_trampoline(i);
61	}
62
63#ifdef CONFIG_PPC_PSERIES
64	create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START);
65	create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START);
66#endif /* CONFIG_PPC_PSERIES */
67
68	DBG(" <- setup_kdump_trampoline()\n");
69}
70#endif /* CONFIG_NONSTATIC_KERNEL */
71
72ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn,
73			size_t csize, unsigned long offset)
74{
75	void  *vaddr;
76	phys_addr_t paddr;
77
78	if (!csize)
79		return 0;
80
81	csize = min_t(size_t, csize, PAGE_SIZE);
82	paddr = pfn << PAGE_SHIFT;
83
84	if (memblock_is_region_memory(paddr, csize)) {
85		vaddr = __va(paddr);
86		csize = copy_to_iter(vaddr + offset, csize, iter);
87	} else {
88		vaddr = ioremap_cache(paddr, PAGE_SIZE);
89		csize = copy_to_iter(vaddr + offset, csize, iter);
90		iounmap(vaddr);
91	}
92
93	return csize;
94}
95
96/*
97 * Return true only when kexec based kernel dump capturing method is used.
98 * This ensures all restritions applied for kdump case are not automatically
99 * applied for fadump case.
100 */
101bool is_kdump_kernel(void)
102{
103	return !is_fadump_active() && elfcorehdr_addr != ELFCORE_ADDR_MAX;
104}
105EXPORT_SYMBOL_GPL(is_kdump_kernel);
106
107#ifdef CONFIG_PPC_RTAS
108/*
109 * The crashkernel region will almost always overlap the RTAS region, so
110 * we have to be careful when shrinking the crashkernel region.
111 */
112void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
113{
114	unsigned long addr;
115	const __be32 *basep, *sizep;
116	unsigned int rtas_start = 0, rtas_end = 0;
117
118	basep = of_get_property(rtas.dev, "linux,rtas-base", NULL);
119	sizep = of_get_property(rtas.dev, "rtas-size", NULL);
120
121	if (basep && sizep) {
122		rtas_start = be32_to_cpup(basep);
123		rtas_end = rtas_start + be32_to_cpup(sizep);
124	}
125
126	for (addr = begin; addr < end; addr += PAGE_SIZE) {
127		/* Does this page overlap with the RTAS region? */
128		if (addr <= rtas_end && ((addr + PAGE_SIZE) > rtas_start))
129			continue;
130
131		free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
132	}
133}
134#endif
135