1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3#define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4
5#include <asm-generic/pgtable-nop4d.h>
6
7#ifndef __ASSEMBLY__
8#include <linux/mmdebug.h>
9#include <linux/bug.h>
10#include <linux/sizes.h>
11#endif
12
13/*
14 * Common bits between hash and Radix page table
15 */
16
17#define _PAGE_EXEC		0x00001 /* execute permission */
18#define _PAGE_WRITE		0x00002 /* write access allowed */
19#define _PAGE_READ		0x00004	/* read access allowed */
20#define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
21#define _PAGE_SAO		0x00010 /* Strong access order */
22#define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
23#define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
24#define _PAGE_DIRTY		0x00080 /* C: page changed */
25#define _PAGE_ACCESSED		0x00100 /* R: page referenced */
26/*
27 * Software bits
28 */
29#define _RPAGE_SW0		0x2000000000000000UL
30#define _RPAGE_SW1		0x00800
31#define _RPAGE_SW2		0x00400
32#define _RPAGE_SW3		0x00200
33#define _RPAGE_RSV1		0x00040UL
34
35#define _RPAGE_PKEY_BIT4	0x1000000000000000UL
36#define _RPAGE_PKEY_BIT3	0x0800000000000000UL
37#define _RPAGE_PKEY_BIT2	0x0400000000000000UL
38#define _RPAGE_PKEY_BIT1	0x0200000000000000UL
39#define _RPAGE_PKEY_BIT0	0x0100000000000000UL
40
41#define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
42#define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
43/*
44 * We need to mark a pmd pte invalid while splitting. We can do that by clearing
45 * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
46 * differentiate between two use a SW field when invalidating.
47 *
48 * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
49 *
50 * This is used only when _PAGE_PRESENT is cleared.
51 */
52#define _PAGE_INVALID		_RPAGE_SW0
53
54/*
55 * Top and bottom bits of RPN which can be used by hash
56 * translation mode, because we expect them to be zero
57 * otherwise.
58 */
59#define _RPAGE_RPN0		0x01000
60#define _RPAGE_RPN1		0x02000
61#define _RPAGE_RPN43		0x0080000000000000UL
62#define _RPAGE_RPN42		0x0040000000000000UL
63#define _RPAGE_RPN41		0x0020000000000000UL
64
65/* Max physical address bit as per radix table */
66#define _RPAGE_PA_MAX		56
67
68/*
69 * Max physical address bit we will use for now.
70 *
71 * This is mostly a hardware limitation and for now Power9 has
72 * a 51 bit limit.
73 *
74 * This is different from the number of physical bit required to address
75 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
76 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
77 * number of sections we can support (SECTIONS_SHIFT).
78 *
79 * This is different from Radix page table limitation above and
80 * should always be less than that. The limit is done such that
81 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
82 * for hash linux page table specific bits.
83 *
84 * In order to be compatible with future hardware generations we keep
85 * some offsets and limit this for now to 53
86 */
87#define _PAGE_PA_MAX		53
88
89#define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
90#define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
91#define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
92
93/*
94 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
95 * Instead of fixing all of them, add an alternate define which
96 * maps CI pte mapping.
97 */
98#define _PAGE_NO_CACHE		_PAGE_TOLERANT
99/*
100 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
101 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
102 * and every thing below PAGE_SHIFT;
103 */
104#define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
105#define PTE_RPN_SHIFT	PAGE_SHIFT
106/*
107 * set of bits not changed in pmd_modify. Even though we have hash specific bits
108 * in here, on radix we expect them to be zero.
109 */
110#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
111			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
112			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
113/*
114 * user access blocked by key
115 */
116#define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
117#define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
118#define _PAGE_KERNEL_ROX	 (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC)
119#define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
120/*
121 * _PAGE_CHG_MASK masks of bits that are to be preserved across
122 * pgprot changes
123 */
124#define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
125			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
126			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
127
128/*
129 * We define 2 sets of base prot bits, one for basic pages (ie,
130 * cacheable kernel and user pages) and one for non cacheable
131 * pages. We always set _PAGE_COHERENT when SMP is enabled or
132 * the processor might need it for DMA coherency.
133 */
134#define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
135#define _PAGE_BASE	(_PAGE_BASE_NC)
136
137#include <asm/pgtable-masks.h>
138
139/* Permission masks used for kernel mappings */
140#define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
141#define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_TOLERANT)
142#define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NON_IDEMPOTENT)
143#define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
144#define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
145#define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
146
147#ifndef __ASSEMBLY__
148/*
149 * page table defines
150 */
151extern unsigned long __pte_index_size;
152extern unsigned long __pmd_index_size;
153extern unsigned long __pud_index_size;
154extern unsigned long __pgd_index_size;
155extern unsigned long __pud_cache_index;
156#define PTE_INDEX_SIZE  __pte_index_size
157#define PMD_INDEX_SIZE  __pmd_index_size
158#define PUD_INDEX_SIZE  __pud_index_size
159#define PGD_INDEX_SIZE  __pgd_index_size
160/* pmd table use page table fragments */
161#define PMD_CACHE_INDEX  0
162#define PUD_CACHE_INDEX __pud_cache_index
163/*
164 * Because of use of pte fragments and THP, size of page table
165 * are not always derived out of index size above.
166 */
167extern unsigned long __pte_table_size;
168extern unsigned long __pmd_table_size;
169extern unsigned long __pud_table_size;
170extern unsigned long __pgd_table_size;
171#define PTE_TABLE_SIZE	__pte_table_size
172#define PMD_TABLE_SIZE	__pmd_table_size
173#define PUD_TABLE_SIZE	__pud_table_size
174#define PGD_TABLE_SIZE	__pgd_table_size
175
176extern unsigned long __pmd_val_bits;
177extern unsigned long __pud_val_bits;
178extern unsigned long __pgd_val_bits;
179#define PMD_VAL_BITS	__pmd_val_bits
180#define PUD_VAL_BITS	__pud_val_bits
181#define PGD_VAL_BITS	__pgd_val_bits
182
183extern unsigned long __pte_frag_nr;
184#define PTE_FRAG_NR __pte_frag_nr
185extern unsigned long __pte_frag_size_shift;
186#define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
187#define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
188
189extern unsigned long __pmd_frag_nr;
190#define PMD_FRAG_NR __pmd_frag_nr
191extern unsigned long __pmd_frag_size_shift;
192#define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
193#define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
194
195#define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
196#define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
197#define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
198#define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
199
200#define MAX_PTRS_PER_PTE ((H_PTRS_PER_PTE > R_PTRS_PER_PTE) ? H_PTRS_PER_PTE : R_PTRS_PER_PTE)
201#define MAX_PTRS_PER_PMD ((H_PTRS_PER_PMD > R_PTRS_PER_PMD) ? H_PTRS_PER_PMD : R_PTRS_PER_PMD)
202#define MAX_PTRS_PER_PUD ((H_PTRS_PER_PUD > R_PTRS_PER_PUD) ? H_PTRS_PER_PUD : R_PTRS_PER_PUD)
203#define MAX_PTRS_PER_PGD	(1 << (H_PGD_INDEX_SIZE > RADIX_PGD_INDEX_SIZE ? \
204				       H_PGD_INDEX_SIZE : RADIX_PGD_INDEX_SIZE))
205
206/* PMD_SHIFT determines what a second-level page table entry can map */
207#define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
208#define PMD_SIZE	(1UL << PMD_SHIFT)
209#define PMD_MASK	(~(PMD_SIZE-1))
210
211/* PUD_SHIFT determines what a third-level page table entry can map */
212#define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
213#define PUD_SIZE	(1UL << PUD_SHIFT)
214#define PUD_MASK	(~(PUD_SIZE-1))
215
216/* PGDIR_SHIFT determines what a fourth-level page table entry can map */
217#define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
218#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
219#define PGDIR_MASK	(~(PGDIR_SIZE-1))
220
221/* Bits to mask out from a PMD to get to the PTE page */
222#define PMD_MASKED_BITS		0xc0000000000000ffUL
223/* Bits to mask out from a PUD to get to the PMD page */
224#define PUD_MASKED_BITS		0xc0000000000000ffUL
225/* Bits to mask out from a PGD to get to the PUD page */
226#define P4D_MASKED_BITS		0xc0000000000000ffUL
227
228/*
229 * Used as an indicator for rcu callback functions
230 */
231enum pgtable_index {
232	PTE_INDEX = 0,
233	PMD_INDEX,
234	PUD_INDEX,
235	PGD_INDEX,
236	/*
237	 * Below are used with 4k page size and hugetlb
238	 */
239	HTLB_16M_INDEX,
240	HTLB_16G_INDEX,
241};
242
243extern unsigned long __vmalloc_start;
244extern unsigned long __vmalloc_end;
245#define VMALLOC_START	__vmalloc_start
246#define VMALLOC_END	__vmalloc_end
247
248static inline unsigned int ioremap_max_order(void)
249{
250	if (radix_enabled())
251		return PUD_SHIFT;
252	return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
253}
254#define IOREMAP_MAX_ORDER ioremap_max_order()
255
256extern unsigned long __kernel_virt_start;
257extern unsigned long __kernel_io_start;
258extern unsigned long __kernel_io_end;
259#define KERN_VIRT_START __kernel_virt_start
260#define KERN_IO_START  __kernel_io_start
261#define KERN_IO_END __kernel_io_end
262
263extern struct page *vmemmap;
264extern unsigned long pci_io_base;
265#endif /* __ASSEMBLY__ */
266
267#include <asm/book3s/64/hash.h>
268#include <asm/book3s/64/radix.h>
269
270#if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
271#define  MAX_PHYSMEM_BITS	H_MAX_PHYSMEM_BITS
272#else
273#define  MAX_PHYSMEM_BITS	R_MAX_PHYSMEM_BITS
274#endif
275
276
277#ifdef CONFIG_PPC_64K_PAGES
278#include <asm/book3s/64/pgtable-64k.h>
279#else
280#include <asm/book3s/64/pgtable-4k.h>
281#endif
282
283#include <asm/barrier.h>
284/*
285 * IO space itself carved into the PIO region (ISA and PHB IO space) and
286 * the ioremap space
287 *
288 *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
289 *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
290 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
291 */
292#define FULL_IO_SIZE	0x80000000ul
293#define  ISA_IO_BASE	(KERN_IO_START)
294#define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
295#define  PHB_IO_BASE	(ISA_IO_END)
296#define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
297#define IOREMAP_BASE	(PHB_IO_END)
298#define IOREMAP_START	(ioremap_bot)
299#define IOREMAP_END	(KERN_IO_END - FIXADDR_SIZE)
300#define FIXADDR_SIZE	SZ_32M
301#define FIXADDR_TOP	(IOREMAP_END + FIXADDR_SIZE)
302
303#ifndef __ASSEMBLY__
304
305/*
306 * This is the default implementation of various PTE accessors, it's
307 * used in all cases except Book3S with 64K pages where we have a
308 * concept of sub-pages
309 */
310#ifndef __real_pte
311
312#define __real_pte(e, p, o)		((real_pte_t){(e)})
313#define __rpte_to_pte(r)	((r).pte)
314#define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
315
316#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
317	do {							         \
318		index = 0;					         \
319		shift = mmu_psize_defs[psize].shift;		         \
320
321#define pte_iterate_hashed_end() } while(0)
322
323/*
324 * We expect this to be called only for user addresses or kernel virtual
325 * addresses other than the linear mapping.
326 */
327#define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
328
329#endif /* __real_pte */
330
331static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
332				       pte_t *ptep, unsigned long clr,
333				       unsigned long set, int huge)
334{
335	if (radix_enabled())
336		return radix__pte_update(mm, addr, ptep, clr, set, huge);
337	return hash__pte_update(mm, addr, ptep, clr, set, huge);
338}
339/*
340 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
341 * We currently remove entries from the hashtable regardless of whether
342 * the entry was young or dirty.
343 *
344 * We should be more intelligent about this but for the moment we override
345 * these functions and force a tlb flush unconditionally
346 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
347 * function for both hash and radix.
348 */
349static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
350					      unsigned long addr, pte_t *ptep)
351{
352	unsigned long old;
353
354	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
355		return 0;
356	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
357	return (old & _PAGE_ACCESSED) != 0;
358}
359
360#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
361#define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
362({								\
363	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
364})
365
366/*
367 * On Book3S CPUs, clearing the accessed bit without a TLB flush
368 * doesn't cause data corruption. [ It could cause incorrect
369 * page aging and the (mistaken) reclaim of hot pages, but the
370 * chance of that should be relatively low. ]
371 *
372 * So as a performance optimization don't flush the TLB when
373 * clearing the accessed bit, it will eventually be flushed by
374 * a context switch or a VM operation anyway. [ In the rare
375 * event of it not getting flushed for a long time the delay
376 * shouldn't really matter because there's no real memory
377 * pressure for swapout to react to. ]
378 *
379 * Note: this optimisation also exists in pte_needs_flush() and
380 * huge_pmd_needs_flush().
381 */
382#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
383#define ptep_clear_flush_young ptep_test_and_clear_young
384
385#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
386#define pmdp_clear_flush_young pmdp_test_and_clear_young
387
388static inline int pte_write(pte_t pte)
389{
390	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
391}
392
393static inline int pte_read(pte_t pte)
394{
395	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
396}
397
398#define __HAVE_ARCH_PTEP_SET_WRPROTECT
399static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
400				      pte_t *ptep)
401{
402	if (pte_write(*ptep))
403		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
404}
405
406#define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
407static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
408					   unsigned long addr, pte_t *ptep)
409{
410	if (pte_write(*ptep))
411		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
412}
413
414#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
415static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
416				       unsigned long addr, pte_t *ptep)
417{
418	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
419	return __pte(old);
420}
421
422#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
423static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
424					    unsigned long addr,
425					    pte_t *ptep, int full)
426{
427	if (full && radix_enabled()) {
428		/*
429		 * We know that this is a full mm pte clear and
430		 * hence can be sure there is no parallel set_pte.
431		 */
432		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
433	}
434	return ptep_get_and_clear(mm, addr, ptep);
435}
436
437
438static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
439			     pte_t * ptep)
440{
441	pte_update(mm, addr, ptep, ~0UL, 0, 0);
442}
443
444static inline int pte_dirty(pte_t pte)
445{
446	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
447}
448
449static inline int pte_young(pte_t pte)
450{
451	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
452}
453
454static inline int pte_special(pte_t pte)
455{
456	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
457}
458
459static inline bool pte_exec(pte_t pte)
460{
461	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
462}
463
464
465#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
466static inline bool pte_soft_dirty(pte_t pte)
467{
468	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
469}
470
471static inline pte_t pte_mksoft_dirty(pte_t pte)
472{
473	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
474}
475
476static inline pte_t pte_clear_soft_dirty(pte_t pte)
477{
478	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
479}
480#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
481
482#ifdef CONFIG_NUMA_BALANCING
483static inline int pte_protnone(pte_t pte)
484{
485	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
486		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
487}
488#endif /* CONFIG_NUMA_BALANCING */
489
490static inline bool pte_hw_valid(pte_t pte)
491{
492	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
493		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
494}
495
496static inline int pte_present(pte_t pte)
497{
498	/*
499	 * A pte is considerent present if _PAGE_PRESENT is set.
500	 * We also need to consider the pte present which is marked
501	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
502	 * if we find _PAGE_PRESENT cleared.
503	 */
504
505	if (pte_hw_valid(pte))
506		return true;
507	return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
508		cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
509}
510
511#ifdef CONFIG_PPC_MEM_KEYS
512extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
513#else
514static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
515{
516	return true;
517}
518#endif /* CONFIG_PPC_MEM_KEYS */
519
520static inline bool pte_user(pte_t pte)
521{
522	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
523}
524
525#define pte_access_permitted pte_access_permitted
526static inline bool pte_access_permitted(pte_t pte, bool write)
527{
528	/*
529	 * _PAGE_READ is needed for any access and will be cleared for
530	 * PROT_NONE. Execute-only mapping via PROT_EXEC also returns false.
531	 */
532	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
533		return false;
534
535	if (write && !pte_write(pte))
536		return false;
537
538	return arch_pte_access_permitted(pte_val(pte), write, 0);
539}
540
541/*
542 * Conversion functions: convert a page and protection to a page entry,
543 * and a page entry and page directory to the page they refer to.
544 *
545 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
546 * long for now.
547 */
548static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
549{
550	VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
551	VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
552
553	return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
554}
555
556/* Generic modifiers for PTE bits */
557static inline pte_t pte_wrprotect(pte_t pte)
558{
559	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
560}
561
562static inline pte_t pte_exprotect(pte_t pte)
563{
564	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
565}
566
567static inline pte_t pte_mkclean(pte_t pte)
568{
569	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
570}
571
572static inline pte_t pte_mkold(pte_t pte)
573{
574	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
575}
576
577static inline pte_t pte_mkexec(pte_t pte)
578{
579	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
580}
581
582static inline pte_t pte_mkwrite_novma(pte_t pte)
583{
584	/*
585	 * write implies read, hence set both
586	 */
587	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
588}
589
590static inline pte_t pte_mkdirty(pte_t pte)
591{
592	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
593}
594
595static inline pte_t pte_mkyoung(pte_t pte)
596{
597	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
598}
599
600static inline pte_t pte_mkspecial(pte_t pte)
601{
602	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
603}
604
605static inline pte_t pte_mkhuge(pte_t pte)
606{
607	return pte;
608}
609
610static inline pte_t pte_mkdevmap(pte_t pte)
611{
612	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
613}
614
615/*
616 * This is potentially called with a pmd as the argument, in which case it's not
617 * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
618 * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
619 * use in page directory entries (ie. non-ptes).
620 */
621static inline int pte_devmap(pte_t pte)
622{
623	__be64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
624
625	return (pte_raw(pte) & mask) == mask;
626}
627
628static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
629{
630	/* FIXME!! check whether this need to be a conditional */
631	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
632			 cpu_to_be64(pgprot_val(newprot)));
633}
634
635/* Encode and de-code a swap entry */
636#define MAX_SWAPFILES_CHECK() do { \
637	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
638	/*							\
639	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
640	 * We filter HPTEFLAGS on set_pte.			\
641	 */							\
642	BUILD_BUG_ON(_PAGE_HPTEFLAGS & SWP_TYPE_MASK); \
643	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
644	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_EXCLUSIVE);	\
645	} while (0)
646
647#define SWP_TYPE_BITS 5
648#define SWP_TYPE_MASK		((1UL << SWP_TYPE_BITS) - 1)
649#define __swp_type(x)		((x).val & SWP_TYPE_MASK)
650#define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
651#define __swp_entry(type, offset)	((swp_entry_t) { \
652				(type) | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
653/*
654 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
655 * swap type and offset we get from swap and convert that to pte to find a
656 * matching pte in linux page table.
657 * Clear bits not found in swap entries here.
658 */
659#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
660#define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
661#define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
662#define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
663
664#ifdef CONFIG_MEM_SOFT_DIRTY
665#define _PAGE_SWP_SOFT_DIRTY	_PAGE_SOFT_DIRTY
666#else
667#define _PAGE_SWP_SOFT_DIRTY	0UL
668#endif /* CONFIG_MEM_SOFT_DIRTY */
669
670#define _PAGE_SWP_EXCLUSIVE	_PAGE_NON_IDEMPOTENT
671
672#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
673static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
674{
675	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
676}
677
678static inline bool pte_swp_soft_dirty(pte_t pte)
679{
680	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
681}
682
683static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
684{
685	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
686}
687#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
688
689static inline pte_t pte_swp_mkexclusive(pte_t pte)
690{
691	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
692}
693
694static inline int pte_swp_exclusive(pte_t pte)
695{
696	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
697}
698
699static inline pte_t pte_swp_clear_exclusive(pte_t pte)
700{
701	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_EXCLUSIVE));
702}
703
704static inline bool check_pte_access(unsigned long access, unsigned long ptev)
705{
706	/*
707	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
708	 */
709	if (access & ~ptev)
710		return false;
711	/*
712	 * This check for access to privilege space
713	 */
714	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
715		return false;
716
717	return true;
718}
719/*
720 * Generic functions with hash/radix callbacks
721 */
722
723static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
724					   pte_t *ptep, pte_t entry,
725					   unsigned long address,
726					   int psize)
727{
728	if (radix_enabled())
729		return radix__ptep_set_access_flags(vma, ptep, entry,
730						    address, psize);
731	return hash__ptep_set_access_flags(ptep, entry);
732}
733
734#define __HAVE_ARCH_PTE_SAME
735static inline int pte_same(pte_t pte_a, pte_t pte_b)
736{
737	if (radix_enabled())
738		return radix__pte_same(pte_a, pte_b);
739	return hash__pte_same(pte_a, pte_b);
740}
741
742static inline int pte_none(pte_t pte)
743{
744	if (radix_enabled())
745		return radix__pte_none(pte);
746	return hash__pte_none(pte);
747}
748
749static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
750				pte_t *ptep, pte_t pte, int percpu)
751{
752
753	VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
754	/*
755	 * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
756	 * in all the callers.
757	 */
758	pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
759
760	if (radix_enabled())
761		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
762	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
763}
764
765#define _PAGE_CACHE_CTL	(_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
766
767#define pgprot_noncached pgprot_noncached
768static inline pgprot_t pgprot_noncached(pgprot_t prot)
769{
770	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
771			_PAGE_NON_IDEMPOTENT);
772}
773
774#define pgprot_noncached_wc pgprot_noncached_wc
775static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
776{
777	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
778			_PAGE_TOLERANT);
779}
780
781#define pgprot_cached pgprot_cached
782static inline pgprot_t pgprot_cached(pgprot_t prot)
783{
784	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
785}
786
787#define pgprot_writecombine pgprot_writecombine
788static inline pgprot_t pgprot_writecombine(pgprot_t prot)
789{
790	return pgprot_noncached_wc(prot);
791}
792/*
793 * check a pte mapping have cache inhibited property
794 */
795static inline bool pte_ci(pte_t pte)
796{
797	__be64 pte_v = pte_raw(pte);
798
799	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
800	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
801		return true;
802	return false;
803}
804
805static inline void pmd_clear(pmd_t *pmdp)
806{
807	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
808		/*
809		 * Don't use this if we can possibly have a hash page table
810		 * entry mapping this.
811		 */
812		WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
813	}
814	*pmdp = __pmd(0);
815}
816
817static inline int pmd_none(pmd_t pmd)
818{
819	return !pmd_raw(pmd);
820}
821
822static inline int pmd_present(pmd_t pmd)
823{
824	/*
825	 * A pmd is considerent present if _PAGE_PRESENT is set.
826	 * We also need to consider the pmd present which is marked
827	 * invalid during a split. Hence we look for _PAGE_INVALID
828	 * if we find _PAGE_PRESENT cleared.
829	 */
830	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
831		return true;
832
833	return false;
834}
835
836static inline int pmd_is_serializing(pmd_t pmd)
837{
838	/*
839	 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
840	 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
841	 *
842	 * This condition may also occur when flushing a pmd while flushing
843	 * it (see ptep_modify_prot_start), so callers must ensure this
844	 * case is fine as well.
845	 */
846	if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
847						cpu_to_be64(_PAGE_INVALID))
848		return true;
849
850	return false;
851}
852
853static inline int pmd_bad(pmd_t pmd)
854{
855	if (radix_enabled())
856		return radix__pmd_bad(pmd);
857	return hash__pmd_bad(pmd);
858}
859
860static inline void pud_clear(pud_t *pudp)
861{
862	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
863		/*
864		 * Don't use this if we can possibly have a hash page table
865		 * entry mapping this.
866		 */
867		WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
868	}
869	*pudp = __pud(0);
870}
871
872static inline int pud_none(pud_t pud)
873{
874	return !pud_raw(pud);
875}
876
877static inline int pud_present(pud_t pud)
878{
879	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
880}
881
882extern struct page *pud_page(pud_t pud);
883extern struct page *pmd_page(pmd_t pmd);
884static inline pte_t pud_pte(pud_t pud)
885{
886	return __pte_raw(pud_raw(pud));
887}
888
889static inline pud_t pte_pud(pte_t pte)
890{
891	return __pud_raw(pte_raw(pte));
892}
893
894static inline pte_t *pudp_ptep(pud_t *pud)
895{
896	return (pte_t *)pud;
897}
898
899#define pud_pfn(pud)		pte_pfn(pud_pte(pud))
900#define pud_dirty(pud)		pte_dirty(pud_pte(pud))
901#define pud_young(pud)		pte_young(pud_pte(pud))
902#define pud_mkold(pud)		pte_pud(pte_mkold(pud_pte(pud)))
903#define pud_wrprotect(pud)	pte_pud(pte_wrprotect(pud_pte(pud)))
904#define pud_mkdirty(pud)	pte_pud(pte_mkdirty(pud_pte(pud)))
905#define pud_mkclean(pud)	pte_pud(pte_mkclean(pud_pte(pud)))
906#define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
907#define pud_mkwrite(pud)	pte_pud(pte_mkwrite_novma(pud_pte(pud)))
908#define pud_write(pud)		pte_write(pud_pte(pud))
909
910#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
911#define pud_soft_dirty(pmd)    pte_soft_dirty(pud_pte(pud))
912#define pud_mksoft_dirty(pmd)  pte_pud(pte_mksoft_dirty(pud_pte(pud)))
913#define pud_clear_soft_dirty(pmd) pte_pud(pte_clear_soft_dirty(pud_pte(pud)))
914#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
915
916static inline int pud_bad(pud_t pud)
917{
918	if (radix_enabled())
919		return radix__pud_bad(pud);
920	return hash__pud_bad(pud);
921}
922
923#define pud_access_permitted pud_access_permitted
924static inline bool pud_access_permitted(pud_t pud, bool write)
925{
926	return pte_access_permitted(pud_pte(pud), write);
927}
928
929#define __p4d_raw(x)	((p4d_t) { __pgd_raw(x) })
930static inline __be64 p4d_raw(p4d_t x)
931{
932	return pgd_raw(x.pgd);
933}
934
935#define p4d_write(p4d)		pte_write(p4d_pte(p4d))
936
937static inline void p4d_clear(p4d_t *p4dp)
938{
939	*p4dp = __p4d(0);
940}
941
942static inline int p4d_none(p4d_t p4d)
943{
944	return !p4d_raw(p4d);
945}
946
947static inline int p4d_present(p4d_t p4d)
948{
949	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
950}
951
952static inline pte_t p4d_pte(p4d_t p4d)
953{
954	return __pte_raw(p4d_raw(p4d));
955}
956
957static inline p4d_t pte_p4d(pte_t pte)
958{
959	return __p4d_raw(pte_raw(pte));
960}
961
962static inline int p4d_bad(p4d_t p4d)
963{
964	if (radix_enabled())
965		return radix__p4d_bad(p4d);
966	return hash__p4d_bad(p4d);
967}
968
969#define p4d_access_permitted p4d_access_permitted
970static inline bool p4d_access_permitted(p4d_t p4d, bool write)
971{
972	return pte_access_permitted(p4d_pte(p4d), write);
973}
974
975extern struct page *p4d_page(p4d_t p4d);
976
977/* Pointers in the page table tree are physical addresses */
978#define __pgtable_ptr_val(ptr)	__pa(ptr)
979
980static inline pud_t *p4d_pgtable(p4d_t p4d)
981{
982	return (pud_t *)__va(p4d_val(p4d) & ~P4D_MASKED_BITS);
983}
984
985static inline pmd_t *pud_pgtable(pud_t pud)
986{
987	return (pmd_t *)__va(pud_val(pud) & ~PUD_MASKED_BITS);
988}
989
990#define pmd_ERROR(e) \
991	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
992#define pud_ERROR(e) \
993	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
994#define pgd_ERROR(e) \
995	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
996
997static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
998{
999	if (radix_enabled()) {
1000#if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1001		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1002		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1003#endif
1004		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1005	}
1006	return hash__map_kernel_page(ea, pa, prot);
1007}
1008
1009void unmap_kernel_page(unsigned long va);
1010
1011static inline int __meminit vmemmap_create_mapping(unsigned long start,
1012						   unsigned long page_size,
1013						   unsigned long phys)
1014{
1015	if (radix_enabled())
1016		return radix__vmemmap_create_mapping(start, page_size, phys);
1017	return hash__vmemmap_create_mapping(start, page_size, phys);
1018}
1019
1020#ifdef CONFIG_MEMORY_HOTPLUG
1021static inline void vmemmap_remove_mapping(unsigned long start,
1022					  unsigned long page_size)
1023{
1024	if (radix_enabled())
1025		return radix__vmemmap_remove_mapping(start, page_size);
1026	return hash__vmemmap_remove_mapping(start, page_size);
1027}
1028#endif
1029
1030static inline pte_t pmd_pte(pmd_t pmd)
1031{
1032	return __pte_raw(pmd_raw(pmd));
1033}
1034
1035static inline pmd_t pte_pmd(pte_t pte)
1036{
1037	return __pmd_raw(pte_raw(pte));
1038}
1039
1040static inline pte_t *pmdp_ptep(pmd_t *pmd)
1041{
1042	return (pte_t *)pmd;
1043}
1044#define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1045#define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1046#define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1047#define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1048#define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1049#define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1050#define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1051#define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1052#define pmd_mkwrite_novma(pmd)	pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
1053
1054#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1055#define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1056#define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1057#define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1058
1059#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1060#define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1061#define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
1062#define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1063#endif
1064#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1065
1066#ifdef CONFIG_NUMA_BALANCING
1067static inline int pmd_protnone(pmd_t pmd)
1068{
1069	return pte_protnone(pmd_pte(pmd));
1070}
1071#endif /* CONFIG_NUMA_BALANCING */
1072
1073#define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1074
1075#define pmd_access_permitted pmd_access_permitted
1076static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1077{
1078	/*
1079	 * pmdp_invalidate sets this combination (which is not caught by
1080	 * !pte_present() check in pte_access_permitted), to prevent
1081	 * lock-free lookups, as part of the serialize_against_pte_lookup()
1082	 * synchronisation.
1083	 *
1084	 * This also catches the case where the PTE's hardware PRESENT bit is
1085	 * cleared while TLB is flushed, which is suboptimal but should not
1086	 * be frequent.
1087	 */
1088	if (pmd_is_serializing(pmd))
1089		return false;
1090
1091	return pte_access_permitted(pmd_pte(pmd), write);
1092}
1093
1094#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1095extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1096extern pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot);
1097extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1098extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1099extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1100		       pmd_t *pmdp, pmd_t pmd);
1101extern void set_pud_at(struct mm_struct *mm, unsigned long addr,
1102		       pud_t *pudp, pud_t pud);
1103
1104static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1105					unsigned long addr, pmd_t *pmd)
1106{
1107}
1108
1109static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1110					unsigned long addr, pud_t *pud)
1111{
1112}
1113
1114extern int hash__has_transparent_hugepage(void);
1115static inline int has_transparent_hugepage(void)
1116{
1117	if (radix_enabled())
1118		return radix__has_transparent_hugepage();
1119	return hash__has_transparent_hugepage();
1120}
1121#define has_transparent_hugepage has_transparent_hugepage
1122
1123static inline int has_transparent_pud_hugepage(void)
1124{
1125	if (radix_enabled())
1126		return radix__has_transparent_pud_hugepage();
1127	return 0;
1128}
1129#define has_transparent_pud_hugepage has_transparent_pud_hugepage
1130
1131static inline unsigned long
1132pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1133		    unsigned long clr, unsigned long set)
1134{
1135	if (radix_enabled())
1136		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1137	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1138}
1139
1140static inline unsigned long
1141pud_hugepage_update(struct mm_struct *mm, unsigned long addr, pud_t *pudp,
1142		    unsigned long clr, unsigned long set)
1143{
1144	if (radix_enabled())
1145		return radix__pud_hugepage_update(mm, addr, pudp, clr, set);
1146	BUG();
1147	return pud_val(*pudp);
1148}
1149
1150/*
1151 * For radix we should always find H_PAGE_HASHPTE zero. Hence
1152 * the below will work for radix too
1153 */
1154static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1155					      unsigned long addr, pmd_t *pmdp)
1156{
1157	unsigned long old;
1158
1159	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1160		return 0;
1161	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1162	return ((old & _PAGE_ACCESSED) != 0);
1163}
1164
1165static inline int __pudp_test_and_clear_young(struct mm_struct *mm,
1166					      unsigned long addr, pud_t *pudp)
1167{
1168	unsigned long old;
1169
1170	if ((pud_raw(*pudp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1171		return 0;
1172	old = pud_hugepage_update(mm, addr, pudp, _PAGE_ACCESSED, 0);
1173	return ((old & _PAGE_ACCESSED) != 0);
1174}
1175
1176#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1177static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1178				      pmd_t *pmdp)
1179{
1180	if (pmd_write(*pmdp))
1181		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1182}
1183
1184#define __HAVE_ARCH_PUDP_SET_WRPROTECT
1185static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1186				      pud_t *pudp)
1187{
1188	if (pud_write(*pudp))
1189		pud_hugepage_update(mm, addr, pudp, _PAGE_WRITE, 0);
1190}
1191
1192/*
1193 * Only returns true for a THP. False for pmd migration entry.
1194 * We also need to return true when we come across a pte that
1195 * in between a thp split. While splitting THP, we mark the pmd
1196 * invalid (pmdp_invalidate()) before we set it with pte page
1197 * address. A pmd_trans_huge() check against a pmd entry during that time
1198 * should return true.
1199 * We should not call this on a hugetlb entry. We should check for HugeTLB
1200 * entry using vma->vm_flags
1201 * The page table walk rule is explained in Documentation/mm/transhuge.rst
1202 */
1203static inline int pmd_trans_huge(pmd_t pmd)
1204{
1205	if (!pmd_present(pmd))
1206		return false;
1207
1208	if (radix_enabled())
1209		return radix__pmd_trans_huge(pmd);
1210	return hash__pmd_trans_huge(pmd);
1211}
1212
1213static inline int pud_trans_huge(pud_t pud)
1214{
1215	if (!pud_present(pud))
1216		return false;
1217
1218	if (radix_enabled())
1219		return radix__pud_trans_huge(pud);
1220	return 0;
1221}
1222
1223
1224#define __HAVE_ARCH_PMD_SAME
1225static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1226{
1227	if (radix_enabled())
1228		return radix__pmd_same(pmd_a, pmd_b);
1229	return hash__pmd_same(pmd_a, pmd_b);
1230}
1231
1232#define pud_same pud_same
1233static inline int pud_same(pud_t pud_a, pud_t pud_b)
1234{
1235	if (radix_enabled())
1236		return radix__pud_same(pud_a, pud_b);
1237	return hash__pud_same(pud_a, pud_b);
1238}
1239
1240
1241static inline pmd_t __pmd_mkhuge(pmd_t pmd)
1242{
1243	if (radix_enabled())
1244		return radix__pmd_mkhuge(pmd);
1245	return hash__pmd_mkhuge(pmd);
1246}
1247
1248static inline pud_t __pud_mkhuge(pud_t pud)
1249{
1250	if (radix_enabled())
1251		return radix__pud_mkhuge(pud);
1252	BUG();
1253	return pud;
1254}
1255
1256/*
1257 * pfn_pmd return a pmd_t that can be used as pmd pte entry.
1258 */
1259static inline pmd_t pmd_mkhuge(pmd_t pmd)
1260{
1261#ifdef CONFIG_DEBUG_VM
1262	if (radix_enabled())
1263		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0);
1264	else
1265		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) !=
1266			cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE));
1267#endif
1268	return pmd;
1269}
1270
1271static inline pud_t pud_mkhuge(pud_t pud)
1272{
1273#ifdef CONFIG_DEBUG_VM
1274	if (radix_enabled())
1275		WARN_ON((pud_raw(pud) & cpu_to_be64(_PAGE_PTE)) == 0);
1276	else
1277		WARN_ON(1);
1278#endif
1279	return pud;
1280}
1281
1282
1283#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1284extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1285				 unsigned long address, pmd_t *pmdp,
1286				 pmd_t entry, int dirty);
1287#define __HAVE_ARCH_PUDP_SET_ACCESS_FLAGS
1288extern int pudp_set_access_flags(struct vm_area_struct *vma,
1289				 unsigned long address, pud_t *pudp,
1290				 pud_t entry, int dirty);
1291
1292#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1293extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1294				     unsigned long address, pmd_t *pmdp);
1295#define __HAVE_ARCH_PUDP_TEST_AND_CLEAR_YOUNG
1296extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1297				     unsigned long address, pud_t *pudp);
1298
1299
1300#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1301static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1302					    unsigned long addr, pmd_t *pmdp)
1303{
1304	if (radix_enabled())
1305		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1306	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1307}
1308
1309#define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1310static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1311					    unsigned long addr, pud_t *pudp)
1312{
1313	if (radix_enabled())
1314		return radix__pudp_huge_get_and_clear(mm, addr, pudp);
1315	BUG();
1316	return *pudp;
1317}
1318
1319static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1320					unsigned long address, pmd_t *pmdp)
1321{
1322	if (radix_enabled())
1323		return radix__pmdp_collapse_flush(vma, address, pmdp);
1324	return hash__pmdp_collapse_flush(vma, address, pmdp);
1325}
1326#define pmdp_collapse_flush pmdp_collapse_flush
1327
1328#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1329pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1330				   unsigned long addr,
1331				   pmd_t *pmdp, int full);
1332
1333#define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
1334pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
1335				   unsigned long addr,
1336				   pud_t *pudp, int full);
1337
1338#define __HAVE_ARCH_PGTABLE_DEPOSIT
1339static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1340					      pmd_t *pmdp, pgtable_t pgtable)
1341{
1342	if (radix_enabled())
1343		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1344	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1345}
1346
1347#define __HAVE_ARCH_PGTABLE_WITHDRAW
1348static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1349						    pmd_t *pmdp)
1350{
1351	if (radix_enabled())
1352		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1353	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1354}
1355
1356#define __HAVE_ARCH_PMDP_INVALIDATE
1357extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1358			     pmd_t *pmdp);
1359
1360#define pmd_move_must_withdraw pmd_move_must_withdraw
1361struct spinlock;
1362extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1363				  struct spinlock *old_pmd_ptl,
1364				  struct vm_area_struct *vma);
1365/*
1366 * Hash translation mode use the deposited table to store hash pte
1367 * slot information.
1368 */
1369#define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1370static inline bool arch_needs_pgtable_deposit(void)
1371{
1372	if (radix_enabled())
1373		return false;
1374	return true;
1375}
1376extern void serialize_against_pte_lookup(struct mm_struct *mm);
1377
1378
1379static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1380{
1381	if (radix_enabled())
1382		return radix__pmd_mkdevmap(pmd);
1383	return hash__pmd_mkdevmap(pmd);
1384}
1385
1386static inline pud_t pud_mkdevmap(pud_t pud)
1387{
1388	if (radix_enabled())
1389		return radix__pud_mkdevmap(pud);
1390	BUG();
1391	return pud;
1392}
1393
1394static inline int pmd_devmap(pmd_t pmd)
1395{
1396	return pte_devmap(pmd_pte(pmd));
1397}
1398
1399static inline int pud_devmap(pud_t pud)
1400{
1401	return pte_devmap(pud_pte(pud));
1402}
1403
1404static inline int pgd_devmap(pgd_t pgd)
1405{
1406	return 0;
1407}
1408#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1409
1410#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1411pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1412void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1413			     pte_t *, pte_t, pte_t);
1414
1415/*
1416 * Returns true for a R -> RW upgrade of pte
1417 */
1418static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1419{
1420	if (!(old_val & _PAGE_READ))
1421		return false;
1422
1423	if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1424		return true;
1425
1426	return false;
1427}
1428
1429/*
1430 * Like pmd_huge(), but works regardless of config options
1431 */
1432#define pmd_leaf pmd_leaf
1433static inline bool pmd_leaf(pmd_t pmd)
1434{
1435	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1436}
1437
1438#define pud_leaf pud_leaf
1439static inline bool pud_leaf(pud_t pud)
1440{
1441	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1442}
1443
1444#endif /* __ASSEMBLY__ */
1445#endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1446