1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
3#define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
4
5#include <asm-generic/pgtable-nopmd.h>
6
7/*
8 * The "classic" 32-bit implementation of the PowerPC MMU uses a hash
9 * table containing PTEs, together with a set of 16 segment registers,
10 * to define the virtual to physical address mapping.
11 *
12 * We use the hash table as an extended TLB, i.e. a cache of currently
13 * active mappings.  We maintain a two-level page table tree, much
14 * like that used by the i386, for the sake of the Linux memory
15 * management code.  Low-level assembler code in hash_low_32.S
16 * (procedure hash_page) is responsible for extracting ptes from the
17 * tree and putting them into the hash table when necessary, and
18 * updating the accessed and modified bits in the page table tree.
19 */
20
21#define _PAGE_PRESENT	0x001	/* software: pte contains a translation */
22#define _PAGE_HASHPTE	0x002	/* hash_page has made an HPTE for this pte */
23#define _PAGE_READ	0x004	/* software: read access allowed */
24#define _PAGE_GUARDED	0x008	/* G: prohibit speculative access */
25#define _PAGE_COHERENT	0x010	/* M: enforce memory coherence (SMP systems) */
26#define _PAGE_NO_CACHE	0x020	/* I: cache inhibit */
27#define _PAGE_WRITETHRU	0x040	/* W: cache write-through */
28#define _PAGE_DIRTY	0x080	/* C: page changed */
29#define _PAGE_ACCESSED	0x100	/* R: page referenced */
30#define _PAGE_EXEC	0x200	/* software: exec allowed */
31#define _PAGE_WRITE	0x400	/* software: user write access allowed */
32#define _PAGE_SPECIAL	0x800	/* software: Special page */
33
34#ifdef CONFIG_PTE_64BIT
35/* We never clear the high word of the pte */
36#define _PTE_NONE_MASK	(0xffffffff00000000ULL | _PAGE_HASHPTE)
37#else
38#define _PTE_NONE_MASK	_PAGE_HASHPTE
39#endif
40
41#define _PMD_PRESENT	0
42#define _PMD_PRESENT_MASK (PAGE_MASK)
43#define _PMD_BAD	(~PAGE_MASK)
44
45/* We borrow the _PAGE_READ bit to store the exclusive marker in swap PTEs. */
46#define _PAGE_SWP_EXCLUSIVE	_PAGE_READ
47
48/* And here we include common definitions */
49
50#define _PAGE_HPTEFLAGS _PAGE_HASHPTE
51
52/*
53 * Location of the PFN in the PTE. Most 32-bit platforms use the same
54 * as _PAGE_SHIFT here (ie, naturally aligned).
55 * Platform who don't just pre-define the value so we don't override it here.
56 */
57#define PTE_RPN_SHIFT	(PAGE_SHIFT)
58
59/*
60 * The mask covered by the RPN must be a ULL on 32-bit platforms with
61 * 64-bit PTEs.
62 */
63#ifdef CONFIG_PTE_64BIT
64#define PTE_RPN_MASK	(~((1ULL << PTE_RPN_SHIFT) - 1))
65#define MAX_POSSIBLE_PHYSMEM_BITS 36
66#else
67#define PTE_RPN_MASK	(~((1UL << PTE_RPN_SHIFT) - 1))
68#define MAX_POSSIBLE_PHYSMEM_BITS 32
69#endif
70
71/*
72 * _PAGE_CHG_MASK masks of bits that are to be preserved across
73 * pgprot changes.
74 */
75#define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \
76			 _PAGE_ACCESSED | _PAGE_SPECIAL)
77
78/*
79 * We define 2 sets of base prot bits, one for basic pages (ie,
80 * cacheable kernel and user pages) and one for non cacheable
81 * pages. We always set _PAGE_COHERENT when SMP is enabled or
82 * the processor might need it for DMA coherency.
83 */
84#define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
85#define _PAGE_BASE	(_PAGE_BASE_NC | _PAGE_COHERENT)
86
87#include <asm/pgtable-masks.h>
88
89/* Permission masks used for kernel mappings */
90#define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
91#define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
92#define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE | _PAGE_GUARDED)
93#define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
94#define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
95#define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
96
97#define PTE_INDEX_SIZE	PTE_SHIFT
98#define PMD_INDEX_SIZE	0
99#define PUD_INDEX_SIZE	0
100#define PGD_INDEX_SIZE	(32 - PGDIR_SHIFT)
101
102#define PMD_CACHE_INDEX	PMD_INDEX_SIZE
103#define PUD_CACHE_INDEX	PUD_INDEX_SIZE
104
105#ifndef __ASSEMBLY__
106#define PTE_TABLE_SIZE	(sizeof(pte_t) << PTE_INDEX_SIZE)
107#define PMD_TABLE_SIZE	0
108#define PUD_TABLE_SIZE	0
109#define PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
110
111/* Bits to mask out from a PMD to get to the PTE page */
112#define PMD_MASKED_BITS		(PTE_TABLE_SIZE - 1)
113#endif	/* __ASSEMBLY__ */
114
115#define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
116#define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
117
118/*
119 * The normal case is that PTEs are 32-bits and we have a 1-page
120 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
121 *
122 * For any >32-bit physical address platform, we can use the following
123 * two level page table layout where the pgdir is 8KB and the MS 13 bits
124 * are an index to the second level table.  The combined pgdir/pmd first
125 * level has 2048 entries and the second level has 512 64-bit PTE entries.
126 * -Matt
127 */
128/* PGDIR_SHIFT determines what a top-level page table entry can map */
129#define PGDIR_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
130#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
131#define PGDIR_MASK	(~(PGDIR_SIZE-1))
132
133#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
134
135#ifndef __ASSEMBLY__
136
137int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
138void unmap_kernel_page(unsigned long va);
139
140#endif /* !__ASSEMBLY__ */
141
142/*
143 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
144 * value (for now) on others, from where we can start layout kernel
145 * virtual space that goes below PKMAP and FIXMAP
146 */
147
148#define FIXADDR_SIZE	0
149#ifdef CONFIG_KASAN
150#include <asm/kasan.h>
151#define FIXADDR_TOP	(KASAN_SHADOW_START - PAGE_SIZE)
152#else
153#define FIXADDR_TOP	((unsigned long)(-PAGE_SIZE))
154#endif
155
156/*
157 * ioremap_bot starts at that address. Early ioremaps move down from there,
158 * until mem_init() at which point this becomes the top of the vmalloc
159 * and ioremap space
160 */
161#ifdef CONFIG_HIGHMEM
162#define IOREMAP_TOP	PKMAP_BASE
163#else
164#define IOREMAP_TOP	FIXADDR_START
165#endif
166
167/* PPC32 shares vmalloc area with ioremap */
168#define IOREMAP_START	VMALLOC_START
169#define IOREMAP_END	VMALLOC_END
170
171/*
172 * Just any arbitrary offset to the start of the vmalloc VM area: the
173 * current 16MB value just means that there will be a 64MB "hole" after the
174 * physical memory until the kernel virtual memory starts.  That means that
175 * any out-of-bounds memory accesses will hopefully be caught.
176 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
177 * area for the same reason. ;)
178 *
179 * We no longer map larger than phys RAM with the BATs so we don't have
180 * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
181 * about clashes between our early calls to ioremap() that start growing down
182 * from ioremap_base being run into the VM area allocations (growing upwards
183 * from VMALLOC_START).  For this reason we have ioremap_bot to check when
184 * we actually run into our mappings setup in the early boot with the VM
185 * system.  This really does become a problem for machines with good amounts
186 * of RAM.  -- Cort
187 */
188#define VMALLOC_OFFSET (0x1000000) /* 16M */
189
190#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
191
192#ifdef CONFIG_KASAN_VMALLOC
193#define VMALLOC_END	ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
194#else
195#define VMALLOC_END	ioremap_bot
196#endif
197
198#define MODULES_END	ALIGN_DOWN(PAGE_OFFSET, SZ_256M)
199#define MODULES_VADDR	(MODULES_END - SZ_256M)
200
201#ifndef __ASSEMBLY__
202#include <linux/sched.h>
203#include <linux/threads.h>
204
205/* Bits to mask out from a PGD to get to the PUD page */
206#define PGD_MASKED_BITS		0
207
208#define pgd_ERROR(e) \
209	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
210/*
211 * Bits in a linux-style PTE.  These match the bits in the
212 * (hardware-defined) PowerPC PTE as closely as possible.
213 */
214
215#define pte_clear(mm, addr, ptep) \
216	do { pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0); } while (0)
217
218#define pmd_none(pmd)		(!pmd_val(pmd))
219#define	pmd_bad(pmd)		(pmd_val(pmd) & _PMD_BAD)
220#define	pmd_present(pmd)	(pmd_val(pmd) & _PMD_PRESENT_MASK)
221static inline void pmd_clear(pmd_t *pmdp)
222{
223	*pmdp = __pmd(0);
224}
225
226
227/*
228 * When flushing the tlb entry for a page, we also need to flush the hash
229 * table entry.  flush_hash_pages is assembler (for speed) in hashtable.S.
230 */
231extern int flush_hash_pages(unsigned context, unsigned long va,
232			    unsigned long pmdval, int count);
233
234/* Add an HPTE to the hash table */
235extern void add_hash_page(unsigned context, unsigned long va,
236			  unsigned long pmdval);
237
238/* Flush an entry from the TLB/hash table */
239static inline void flush_hash_entry(struct mm_struct *mm, pte_t *ptep, unsigned long addr)
240{
241	if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) {
242		unsigned long ptephys = __pa(ptep) & PAGE_MASK;
243
244		flush_hash_pages(mm->context.id, addr, ptephys, 1);
245	}
246}
247
248/*
249 * PTE updates. This function is called whenever an existing
250 * valid PTE is updated. This does -not- include set_pte_at()
251 * which nowadays only sets a new PTE.
252 *
253 * Depending on the type of MMU, we may need to use atomic updates
254 * and the PTE may be either 32 or 64 bit wide. In the later case,
255 * when using atomic updates, only the low part of the PTE is
256 * accessed atomically.
257 */
258static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
259				     unsigned long clr, unsigned long set, int huge)
260{
261	pte_basic_t old;
262
263	if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) {
264		unsigned long tmp;
265
266		asm volatile(
267#ifndef CONFIG_PTE_64BIT
268	"1:	lwarx	%0, 0, %3\n"
269	"	andc	%1, %0, %4\n"
270#else
271	"1:	lwarx	%L0, 0, %3\n"
272	"	lwz	%0, -4(%3)\n"
273	"	andc	%1, %L0, %4\n"
274#endif
275	"	or	%1, %1, %5\n"
276	"	stwcx.	%1, 0, %3\n"
277	"	bne-	1b"
278		: "=&r" (old), "=&r" (tmp), "=m" (*p)
279#ifndef CONFIG_PTE_64BIT
280		: "r" (p),
281#else
282		: "b" ((unsigned long)(p) + 4),
283#endif
284		  "r" (clr), "r" (set), "m" (*p)
285		: "cc" );
286	} else {
287		old = pte_val(*p);
288
289		*p = __pte((old & ~(pte_basic_t)clr) | set);
290	}
291
292	return old;
293}
294
295/*
296 * 2.6 calls this without flushing the TLB entry; this is wrong
297 * for our hash-based implementation, we fix that up here.
298 */
299#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
300static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
301					      unsigned long addr, pte_t *ptep)
302{
303	unsigned long old;
304	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
305	if (old & _PAGE_HASHPTE)
306		flush_hash_entry(mm, ptep, addr);
307
308	return (old & _PAGE_ACCESSED) != 0;
309}
310#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
311	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
312
313#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
314static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
315				       pte_t *ptep)
316{
317	return __pte(pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0));
318}
319
320#define __HAVE_ARCH_PTEP_SET_WRPROTECT
321static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
322				      pte_t *ptep)
323{
324	pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
325}
326
327static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
328					   pte_t *ptep, pte_t entry,
329					   unsigned long address,
330					   int psize)
331{
332	unsigned long set = pte_val(entry) &
333		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
334
335	pte_update(vma->vm_mm, address, ptep, 0, set, 0);
336
337	flush_tlb_page(vma, address);
338}
339
340#define __HAVE_ARCH_PTE_SAME
341#define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
342
343#define pmd_pfn(pmd)		(pmd_val(pmd) >> PAGE_SHIFT)
344#define pmd_page(pmd)		pfn_to_page(pmd_pfn(pmd))
345
346/*
347 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
348 * are !pte_none() && !pte_present().
349 *
350 * Format of swap PTEs (32bit PTEs):
351 *
352 *                         1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
353 *   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
354 *   <----------------- offset --------------------> < type -> E H P
355 *
356 *   E is the exclusive marker that is not stored in swap entries.
357 *   _PAGE_PRESENT (P) and __PAGE_HASHPTE (H) must be 0.
358 *
359 * For 64bit PTEs, the offset is extended by 32bit.
360 */
361#define __swp_type(entry)		((entry).val & 0x1f)
362#define __swp_offset(entry)		((entry).val >> 5)
363#define __swp_entry(type, offset)	((swp_entry_t) { ((type) & 0x1f) | ((offset) << 5) })
364#define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) >> 3 })
365#define __swp_entry_to_pte(x)		((pte_t) { (x).val << 3 })
366
367static inline int pte_swp_exclusive(pte_t pte)
368{
369	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
370}
371
372static inline pte_t pte_swp_mkexclusive(pte_t pte)
373{
374	return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
375}
376
377static inline pte_t pte_swp_clear_exclusive(pte_t pte)
378{
379	return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
380}
381
382/* Generic accessors to PTE bits */
383static inline bool pte_read(pte_t pte)
384{
385	return !!(pte_val(pte) & _PAGE_READ);
386}
387
388static inline bool pte_write(pte_t pte)
389{
390	return !!(pte_val(pte) & _PAGE_WRITE);
391}
392
393static inline int pte_dirty(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_DIRTY); }
394static inline int pte_young(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_ACCESSED); }
395static inline int pte_special(pte_t pte)	{ return !!(pte_val(pte) & _PAGE_SPECIAL); }
396static inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
397static inline bool pte_exec(pte_t pte)		{ return pte_val(pte) & _PAGE_EXEC; }
398
399static inline int pte_present(pte_t pte)
400{
401	return pte_val(pte) & _PAGE_PRESENT;
402}
403
404static inline bool pte_hw_valid(pte_t pte)
405{
406	return pte_val(pte) & _PAGE_PRESENT;
407}
408
409static inline bool pte_hashpte(pte_t pte)
410{
411	return !!(pte_val(pte) & _PAGE_HASHPTE);
412}
413
414static inline bool pte_ci(pte_t pte)
415{
416	return !!(pte_val(pte) & _PAGE_NO_CACHE);
417}
418
419/*
420 * We only find page table entry in the last level
421 * Hence no need for other accessors
422 */
423#define pte_access_permitted pte_access_permitted
424static inline bool pte_access_permitted(pte_t pte, bool write)
425{
426	/*
427	 * A read-only access is controlled by _PAGE_READ bit.
428	 * We have _PAGE_READ set for WRITE
429	 */
430	if (!pte_present(pte) || !pte_read(pte))
431		return false;
432
433	if (write && !pte_write(pte))
434		return false;
435
436	return true;
437}
438
439/* Conversion functions: convert a page and protection to a page entry,
440 * and a page entry and page directory to the page they refer to.
441 *
442 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
443 * long for now.
444 */
445static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
446{
447	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
448		     pgprot_val(pgprot));
449}
450
451/* Generic modifiers for PTE bits */
452static inline pte_t pte_wrprotect(pte_t pte)
453{
454	return __pte(pte_val(pte) & ~_PAGE_WRITE);
455}
456
457static inline pte_t pte_exprotect(pte_t pte)
458{
459	return __pte(pte_val(pte) & ~_PAGE_EXEC);
460}
461
462static inline pte_t pte_mkclean(pte_t pte)
463{
464	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
465}
466
467static inline pte_t pte_mkold(pte_t pte)
468{
469	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
470}
471
472static inline pte_t pte_mkexec(pte_t pte)
473{
474	return __pte(pte_val(pte) | _PAGE_EXEC);
475}
476
477static inline pte_t pte_mkpte(pte_t pte)
478{
479	return pte;
480}
481
482static inline pte_t pte_mkwrite_novma(pte_t pte)
483{
484	/*
485	 * write implies read, hence set both
486	 */
487	return __pte(pte_val(pte) | _PAGE_RW);
488}
489
490static inline pte_t pte_mkdirty(pte_t pte)
491{
492	return __pte(pte_val(pte) | _PAGE_DIRTY);
493}
494
495static inline pte_t pte_mkyoung(pte_t pte)
496{
497	return __pte(pte_val(pte) | _PAGE_ACCESSED);
498}
499
500static inline pte_t pte_mkspecial(pte_t pte)
501{
502	return __pte(pte_val(pte) | _PAGE_SPECIAL);
503}
504
505static inline pte_t pte_mkhuge(pte_t pte)
506{
507	return pte;
508}
509
510static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
511{
512	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
513}
514
515
516
517/* This low level function performs the actual PTE insertion
518 * Setting the PTE depends on the MMU type and other factors.
519 *
520 * First case is 32-bit in UP mode with 32-bit PTEs, we need to preserve
521 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
522 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
523 * and see we need to keep track that this PTE needs invalidating.
524 *
525 * Second case is 32-bit with 64-bit PTE.  In this case, we
526 * can just store as long as we do the two halves in the right order
527 * with a barrier in between. This is possible because we take care,
528 * in the hash code, to pre-invalidate if the PTE was already hashed,
529 * which synchronizes us with any concurrent invalidation.
530 * In the percpu case, we fallback to the simple update preserving
531 * the hash bits (ie, same as the non-SMP case).
532 *
533 * Third case is 32-bit in SMP mode with 32-bit PTEs. We use the
534 * helper pte_update() which does an atomic update. We need to do that
535 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
536 * per-CPU PTE such as a kmap_atomic, we also do a simple update preserving
537 * the hash bits instead.
538 */
539static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
540				pte_t *ptep, pte_t pte, int percpu)
541{
542	if ((!IS_ENABLED(CONFIG_SMP) && !IS_ENABLED(CONFIG_PTE_64BIT)) || percpu) {
543		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) |
544			      (pte_val(pte) & ~_PAGE_HASHPTE));
545	} else if (IS_ENABLED(CONFIG_PTE_64BIT)) {
546		if (pte_val(*ptep) & _PAGE_HASHPTE)
547			flush_hash_entry(mm, ptep, addr);
548
549		asm volatile("stw%X0 %2,%0; eieio; stw%X1 %L2,%1" :
550			     "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) :
551			     "r" (pte) : "memory");
552	} else {
553		pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, pte_val(pte), 0);
554	}
555}
556
557/*
558 * Macro to mark a page protection value as "uncacheable".
559 */
560
561#define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
562			 _PAGE_WRITETHRU)
563
564#define pgprot_noncached pgprot_noncached
565static inline pgprot_t pgprot_noncached(pgprot_t prot)
566{
567	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
568			_PAGE_NO_CACHE | _PAGE_GUARDED);
569}
570
571#define pgprot_noncached_wc pgprot_noncached_wc
572static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
573{
574	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
575			_PAGE_NO_CACHE);
576}
577
578#define pgprot_cached pgprot_cached
579static inline pgprot_t pgprot_cached(pgprot_t prot)
580{
581	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
582			_PAGE_COHERENT);
583}
584
585#define pgprot_cached_wthru pgprot_cached_wthru
586static inline pgprot_t pgprot_cached_wthru(pgprot_t prot)
587{
588	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
589			_PAGE_COHERENT | _PAGE_WRITETHRU);
590}
591
592#define pgprot_cached_noncoherent pgprot_cached_noncoherent
593static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)
594{
595	return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);
596}
597
598#define pgprot_writecombine pgprot_writecombine
599static inline pgprot_t pgprot_writecombine(pgprot_t prot)
600{
601	return pgprot_noncached_wc(prot);
602}
603
604#endif /* !__ASSEMBLY__ */
605
606#endif /*  _ASM_POWERPC_BOOK3S_32_PGTABLE_H */
607