1/* SPDX-License-Identifier: BSD-3-Clause */
2/*  Copyright (c) 2024, Intel Corporation
3 *  All rights reserved.
4 *
5 *  Redistribution and use in source and binary forms, with or without
6 *  modification, are permitted provided that the following conditions are met:
7 *
8 *   1. Redistributions of source code must retain the above copyright notice,
9 *      this list of conditions and the following disclaimer.
10 *
11 *   2. Redistributions in binary form must reproduce the above copyright
12 *      notice, this list of conditions and the following disclaimer in the
13 *      documentation and/or other materials provided with the distribution.
14 *
15 *   3. Neither the name of the Intel Corporation nor the names of its
16 *      contributors may be used to endorse or promote products derived from
17 *      this software without specific prior written permission.
18 *
19 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 *  POSSIBILITY OF SUCH DAMAGE.
30 */
31
32#ifndef _VIRTCHNL_H_
33#define _VIRTCHNL_H_
34
35/* Description:
36 * This header file describes the Virtual Function (VF) - Physical Function
37 * (PF) communication protocol used by the drivers for all devices starting
38 * from our 40G product line
39 *
40 * Admin queue buffer usage:
41 * desc->opcode is always aqc_opc_send_msg_to_pf
42 * flags, retval, datalen, and data addr are all used normally.
43 * The Firmware copies the cookie fields when sending messages between the
44 * PF and VF, but uses all other fields internally. Due to this limitation,
45 * we must send all messages as "indirect", i.e. using an external buffer.
46 *
47 * All the VSI indexes are relative to the VF. Each VF can have maximum of
48 * three VSIs. All the queue indexes are relative to the VSI.  Each VF can
49 * have a maximum of sixteen queues for all of its VSIs.
50 *
51 * The PF is required to return a status code in v_retval for all messages
52 * except RESET_VF, which does not require any response. The returned value
53 * is of virtchnl_status_code type, defined here.
54 *
55 * In general, VF driver initialization should roughly follow the order of
56 * these opcodes. The VF driver must first validate the API version of the
57 * PF driver, then request a reset, then get resources, then configure
58 * queues and interrupts. After these operations are complete, the VF
59 * driver may start its queues, optionally add MAC and VLAN filters, and
60 * process traffic.
61 */
62
63/* START GENERIC DEFINES
64 * Need to ensure the following enums and defines hold the same meaning and
65 * value in current and future projects
66 */
67
68#define VIRTCHNL_ETH_LENGTH_OF_ADDRESS	6
69
70/* These macros are used to generate compilation errors if a structure/union
71 * is not exactly the correct length. It gives a divide by zero error if the
72 * structure/union is not of the correct size, otherwise it creates an enum
73 * that is never used.
74 */
75#define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
76	{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
77#define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
78	{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
79
80/* Error Codes
81 * Note that many older versions of various iAVF drivers convert the reported
82 * status code directly into an iavf_status enumeration. For this reason, it
83 * is important that the values of these enumerations line up.
84 */
85enum virtchnl_status_code {
86	VIRTCHNL_STATUS_SUCCESS				= 0,
87	VIRTCHNL_STATUS_ERR_PARAM			= -5,
88	VIRTCHNL_STATUS_ERR_NO_MEMORY			= -18,
89	VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH		= -38,
90	VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR		= -39,
91	VIRTCHNL_STATUS_ERR_INVALID_VF_ID		= -40,
92	VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR		= -53,
93	VIRTCHNL_STATUS_ERR_NOT_SUPPORTED		= -64,
94};
95
96/* Backward compatibility */
97#define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
98#define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
99
100#define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT		0x0
101#define VIRTCHNL_LINK_SPEED_100MB_SHIFT		0x1
102#define VIRTCHNL_LINK_SPEED_1000MB_SHIFT	0x2
103#define VIRTCHNL_LINK_SPEED_10GB_SHIFT		0x3
104#define VIRTCHNL_LINK_SPEED_40GB_SHIFT		0x4
105#define VIRTCHNL_LINK_SPEED_20GB_SHIFT		0x5
106#define VIRTCHNL_LINK_SPEED_25GB_SHIFT		0x6
107#define VIRTCHNL_LINK_SPEED_5GB_SHIFT		0x7
108
109enum virtchnl_link_speed {
110	VIRTCHNL_LINK_SPEED_UNKNOWN	= 0,
111	VIRTCHNL_LINK_SPEED_100MB	= BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
112	VIRTCHNL_LINK_SPEED_1GB		= BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
113	VIRTCHNL_LINK_SPEED_10GB	= BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
114	VIRTCHNL_LINK_SPEED_40GB	= BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
115	VIRTCHNL_LINK_SPEED_20GB	= BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
116	VIRTCHNL_LINK_SPEED_25GB	= BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
117	VIRTCHNL_LINK_SPEED_2_5GB	= BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
118	VIRTCHNL_LINK_SPEED_5GB		= BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
119};
120
121/* for hsplit_0 field of Rx HMC context */
122/* deprecated with AVF 1.0 */
123enum virtchnl_rx_hsplit {
124	VIRTCHNL_RX_HSPLIT_NO_SPLIT      = 0,
125	VIRTCHNL_RX_HSPLIT_SPLIT_L2      = 1,
126	VIRTCHNL_RX_HSPLIT_SPLIT_IP      = 2,
127	VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
128	VIRTCHNL_RX_HSPLIT_SPLIT_SCTP    = 8,
129};
130
131enum virtchnl_bw_limit_type {
132	VIRTCHNL_BW_SHAPER = 0,
133};
134/* END GENERIC DEFINES */
135
136/* Opcodes for VF-PF communication. These are placed in the v_opcode field
137 * of the virtchnl_msg structure.
138 */
139enum virtchnl_ops {
140/* The PF sends status change events to VFs using
141 * the VIRTCHNL_OP_EVENT opcode.
142 * VFs send requests to the PF using the other ops.
143 * Use of "advanced opcode" features must be negotiated as part of capabilities
144 * exchange and are not considered part of base mode feature set.
145 *
146 */
147	VIRTCHNL_OP_UNKNOWN = 0,
148	VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
149	VIRTCHNL_OP_RESET_VF = 2,
150	VIRTCHNL_OP_GET_VF_RESOURCES = 3,
151	VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
152	VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
153	VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
154	VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
155	VIRTCHNL_OP_ENABLE_QUEUES = 8,
156	VIRTCHNL_OP_DISABLE_QUEUES = 9,
157	VIRTCHNL_OP_ADD_ETH_ADDR = 10,
158	VIRTCHNL_OP_DEL_ETH_ADDR = 11,
159	VIRTCHNL_OP_ADD_VLAN = 12,
160	VIRTCHNL_OP_DEL_VLAN = 13,
161	VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
162	VIRTCHNL_OP_GET_STATS = 15,
163	VIRTCHNL_OP_RSVD = 16,
164	VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
165	/* opcode 19 is reserved */
166	/* opcodes 20, 21, and 22 are reserved */
167	VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
168	VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
169	VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
170	VIRTCHNL_OP_SET_RSS_HENA = 26,
171	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
172	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
173	VIRTCHNL_OP_REQUEST_QUEUES = 29,
174	VIRTCHNL_OP_ENABLE_CHANNELS = 30,
175	VIRTCHNL_OP_DISABLE_CHANNELS = 31,
176	VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
177	VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
178	/* opcode 34 is reserved */
179	/* opcodes 38, 39, 40, 41, 42 and 43 are reserved */
180	/* opcode 44 is reserved */
181	VIRTCHNL_OP_ADD_RSS_CFG = 45,
182	VIRTCHNL_OP_DEL_RSS_CFG = 46,
183	VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
184	VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
185	VIRTCHNL_OP_GET_MAX_RSS_QREGION = 50,
186	VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51,
187	VIRTCHNL_OP_ADD_VLAN_V2 = 52,
188	VIRTCHNL_OP_DEL_VLAN_V2 = 53,
189	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54,
190	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55,
191	VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56,
192	VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57,
193	VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2 = 58,
194	VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 = 59,
195	/* opcodes 60 through 65 are reserved */
196	VIRTCHNL_OP_GET_QOS_CAPS = 66,
197	VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP = 67,
198	/* opcode 68 through 70 are reserved */
199	VIRTCHNL_OP_ENABLE_QUEUES_V2 = 107,
200	VIRTCHNL_OP_DISABLE_QUEUES_V2 = 108,
201	VIRTCHNL_OP_MAP_QUEUE_VECTOR = 111,
202	VIRTCHNL_OP_CONFIG_QUEUE_BW = 112,
203	VIRTCHNL_OP_CONFIG_QUANTA = 113,
204	VIRTCHNL_OP_FLOW_SUBSCRIBE = 114,
205	VIRTCHNL_OP_FLOW_UNSUBSCRIBE = 115,
206	/* opcode 116 through 130 are reserved */
207	VIRTCHNL_OP_MAX,
208};
209
210static inline const char *virtchnl_op_str(enum virtchnl_ops v_opcode)
211{
212	switch (v_opcode) {
213	case VIRTCHNL_OP_UNKNOWN:
214		return "VIRTCHNL_OP_UNKNOWN";
215	case VIRTCHNL_OP_VERSION:
216		return "VIRTCHNL_OP_VERSION";
217	case VIRTCHNL_OP_RESET_VF:
218		return "VIRTCHNL_OP_RESET_VF";
219	case VIRTCHNL_OP_GET_VF_RESOURCES:
220		return "VIRTCHNL_OP_GET_VF_RESOURCES";
221	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
222		return "VIRTCHNL_OP_CONFIG_TX_QUEUE";
223	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
224		return "VIRTCHNL_OP_CONFIG_RX_QUEUE";
225	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
226		return "VIRTCHNL_OP_CONFIG_VSI_QUEUES";
227	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
228		return "VIRTCHNL_OP_CONFIG_IRQ_MAP";
229	case VIRTCHNL_OP_ENABLE_QUEUES:
230		return "VIRTCHNL_OP_ENABLE_QUEUES";
231	case VIRTCHNL_OP_DISABLE_QUEUES:
232		return "VIRTCHNL_OP_DISABLE_QUEUES";
233	case VIRTCHNL_OP_ADD_ETH_ADDR:
234		return "VIRTCHNL_OP_ADD_ETH_ADDR";
235	case VIRTCHNL_OP_DEL_ETH_ADDR:
236		return "VIRTCHNL_OP_DEL_ETH_ADDR";
237	case VIRTCHNL_OP_ADD_VLAN:
238		return "VIRTCHNL_OP_ADD_VLAN";
239	case VIRTCHNL_OP_DEL_VLAN:
240		return "VIRTCHNL_OP_DEL_VLAN";
241	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
242		return "VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE";
243	case VIRTCHNL_OP_GET_STATS:
244		return "VIRTCHNL_OP_GET_STATS";
245	case VIRTCHNL_OP_RSVD:
246		return "VIRTCHNL_OP_RSVD";
247	case VIRTCHNL_OP_EVENT:
248		return "VIRTCHNL_OP_EVENT";
249	case VIRTCHNL_OP_CONFIG_RSS_KEY:
250		return "VIRTCHNL_OP_CONFIG_RSS_KEY";
251	case VIRTCHNL_OP_CONFIG_RSS_LUT:
252		return "VIRTCHNL_OP_CONFIG_RSS_LUT";
253	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
254		return "VIRTCHNL_OP_GET_RSS_HENA_CAPS";
255	case VIRTCHNL_OP_SET_RSS_HENA:
256		return "VIRTCHNL_OP_SET_RSS_HENA";
257	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
258		return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING";
259	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
260		return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING";
261	case VIRTCHNL_OP_REQUEST_QUEUES:
262		return "VIRTCHNL_OP_REQUEST_QUEUES";
263	case VIRTCHNL_OP_ENABLE_CHANNELS:
264		return "VIRTCHNL_OP_ENABLE_CHANNELS";
265	case VIRTCHNL_OP_DISABLE_CHANNELS:
266		return "VIRTCHNL_OP_DISABLE_CHANNELS";
267	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
268		return "VIRTCHNL_OP_ADD_CLOUD_FILTER";
269	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
270		return "VIRTCHNL_OP_DEL_CLOUD_FILTER";
271	case VIRTCHNL_OP_ADD_RSS_CFG:
272		return "VIRTCHNL_OP_ADD_RSS_CFG";
273	case VIRTCHNL_OP_DEL_RSS_CFG:
274		return "VIRTCHNL_OP_DEL_RSS_CFG";
275	case VIRTCHNL_OP_ADD_FDIR_FILTER:
276		return "VIRTCHNL_OP_ADD_FDIR_FILTER";
277	case VIRTCHNL_OP_DEL_FDIR_FILTER:
278		return "VIRTCHNL_OP_DEL_FDIR_FILTER";
279	case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
280		return "VIRTCHNL_OP_GET_MAX_RSS_QREGION";
281	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
282		return "VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS";
283	case VIRTCHNL_OP_ADD_VLAN_V2:
284		return "VIRTCHNL_OP_ADD_VLAN_V2";
285	case VIRTCHNL_OP_DEL_VLAN_V2:
286		return "VIRTCHNL_OP_DEL_VLAN_V2";
287	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
288		return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2";
289	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
290		return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2";
291	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
292		return "VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2";
293	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
294		return "VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2";
295	case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
296		return "VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2";
297	case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
298		return "VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2";
299	case VIRTCHNL_OP_ENABLE_QUEUES_V2:
300		return "VIRTCHNL_OP_ENABLE_QUEUES_V2";
301	case VIRTCHNL_OP_DISABLE_QUEUES_V2:
302		return "VIRTCHNL_OP_DISABLE_QUEUES_V2";
303	case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
304		return "VIRTCHNL_OP_MAP_QUEUE_VECTOR";
305	case VIRTCHNL_OP_FLOW_SUBSCRIBE:
306		return "VIRTCHNL_OP_FLOW_SUBSCRIBE";
307	case VIRTCHNL_OP_FLOW_UNSUBSCRIBE:
308		return "VIRTCHNL_OP_FLOW_UNSUBSCRIBE";
309	case VIRTCHNL_OP_MAX:
310		return "VIRTCHNL_OP_MAX";
311	default:
312		return "Unsupported (update virtchnl.h)";
313	}
314}
315
316static inline const char *virtchnl_stat_str(enum virtchnl_status_code v_status)
317{
318	switch (v_status) {
319	case VIRTCHNL_STATUS_SUCCESS:
320		return "VIRTCHNL_STATUS_SUCCESS";
321	case VIRTCHNL_STATUS_ERR_PARAM:
322		return "VIRTCHNL_STATUS_ERR_PARAM";
323	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
324		return "VIRTCHNL_STATUS_ERR_NO_MEMORY";
325	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
326		return "VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH";
327	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
328		return "VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR";
329	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
330		return "VIRTCHNL_STATUS_ERR_INVALID_VF_ID";
331	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
332		return "VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR";
333	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
334		return "VIRTCHNL_STATUS_ERR_NOT_SUPPORTED";
335	default:
336		return "Unknown status code (update virtchnl.h)";
337	}
338}
339
340/* Virtual channel message descriptor. This overlays the admin queue
341 * descriptor. All other data is passed in external buffers.
342 */
343
344struct virtchnl_msg {
345	u8 pad[8];			 /* AQ flags/opcode/len/retval fields */
346
347	/* avoid confusion with desc->opcode */
348	enum virtchnl_ops v_opcode;
349
350	/* ditto for desc->retval */
351	enum virtchnl_status_code v_retval;
352	u32 vfid;			 /* used by PF when sending to VF */
353};
354
355VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg);
356
357/* Message descriptions and data structures. */
358
359/* VIRTCHNL_OP_VERSION
360 * VF posts its version number to the PF. PF responds with its version number
361 * in the same format, along with a return code.
362 * Reply from PF has its major/minor versions also in param0 and param1.
363 * If there is a major version mismatch, then the VF cannot operate.
364 * If there is a minor version mismatch, then the VF can operate but should
365 * add a warning to the system log.
366 *
367 * This enum element MUST always be specified as == 1, regardless of other
368 * changes in the API. The PF must always respond to this message without
369 * error regardless of version mismatch.
370 */
371#define VIRTCHNL_VERSION_MAJOR		1
372#define VIRTCHNL_VERSION_MINOR		1
373#define VIRTCHNL_VERSION_MAJOR_2	2
374#define VIRTCHNL_VERSION_MINOR_0	0
375#define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS	0
376
377struct virtchnl_version_info {
378	u32 major;
379	u32 minor;
380};
381
382VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
383
384#define VF_IS_V10(_ver) (((_ver)->major == 1) && ((_ver)->minor == 0))
385#define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
386#define VF_IS_V20(_ver) (((_ver)->major == 2) && ((_ver)->minor == 0))
387
388/* VIRTCHNL_OP_RESET_VF
389 * VF sends this request to PF with no parameters
390 * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
391 * until reset completion is indicated. The admin queue must be reinitialized
392 * after this operation.
393 *
394 * When reset is complete, PF must ensure that all queues in all VSIs associated
395 * with the VF are stopped, all queue configurations in the HMC are set to 0,
396 * and all MAC and VLAN filters (except the default MAC address) on all VSIs
397 * are cleared.
398 */
399
400/* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
401 * vsi_type should always be 6 for backward compatibility. Add other fields
402 * as needed.
403 */
404enum virtchnl_vsi_type {
405	VIRTCHNL_VSI_TYPE_INVALID = 0,
406	VIRTCHNL_VSI_SRIOV = 6,
407};
408
409/* VIRTCHNL_OP_GET_VF_RESOURCES
410 * Version 1.0 VF sends this request to PF with no parameters
411 * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
412 * PF responds with an indirect message containing
413 * virtchnl_vf_resource and one or more
414 * virtchnl_vsi_resource structures.
415 */
416
417struct virtchnl_vsi_resource {
418	u16 vsi_id;
419	u16 num_queue_pairs;
420
421	/* see enum virtchnl_vsi_type */
422	s32 vsi_type;
423	u16 qset_handle;
424	u8 default_mac_addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
425};
426
427VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
428
429/* VF capability flags
430 * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
431 * TX/RX Checksum offloading and TSO for non-tunnelled packets.
432 */
433#define VIRTCHNL_VF_OFFLOAD_L2			BIT(0)
434#define VIRTCHNL_VF_OFFLOAD_IWARP		BIT(1)
435#define VIRTCHNL_VF_CAP_RDMA			VIRTCHNL_VF_OFFLOAD_IWARP
436#define VIRTCHNL_VF_OFFLOAD_RSS_AQ		BIT(3)
437#define VIRTCHNL_VF_OFFLOAD_RSS_REG		BIT(4)
438#define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR		BIT(5)
439#define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES		BIT(6)
440/* used to negotiate communicating link speeds in Mbps */
441#define VIRTCHNL_VF_CAP_ADV_LINK_SPEED		BIT(7)
442	/* BIT(8) is reserved */
443#define VIRTCHNL_VF_LARGE_NUM_QPAIRS		BIT(9)
444#define VIRTCHNL_VF_OFFLOAD_CRC			BIT(10)
445#define VIRTCHNL_VF_OFFLOAD_FSUB_PF		BIT(14)
446#define VIRTCHNL_VF_OFFLOAD_VLAN_V2		BIT(15)
447#define VIRTCHNL_VF_OFFLOAD_VLAN		BIT(16)
448#define VIRTCHNL_VF_OFFLOAD_RX_POLLING		BIT(17)
449#define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2	BIT(18)
450#define VIRTCHNL_VF_OFFLOAD_RSS_PF		BIT(19)
451#define VIRTCHNL_VF_OFFLOAD_ENCAP		BIT(20)
452#define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM		BIT(21)
453#define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM	BIT(22)
454#define VIRTCHNL_VF_OFFLOAD_ADQ			BIT(23)
455#define VIRTCHNL_VF_OFFLOAD_ADQ_V2		BIT(24)
456#define VIRTCHNL_VF_OFFLOAD_USO			BIT(25)
457	/* BIT(26) is reserved */
458#define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF		BIT(27)
459#define VIRTCHNL_VF_OFFLOAD_FDIR_PF		BIT(28)
460#define VIRTCHNL_VF_OFFLOAD_QOS			BIT(29)
461	/* BIT(30) is reserved */
462	/* BIT(31) is reserved */
463
464#define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
465			       VIRTCHNL_VF_OFFLOAD_VLAN | \
466			       VIRTCHNL_VF_OFFLOAD_RSS_PF)
467
468struct virtchnl_vf_resource {
469	u16 num_vsis;
470	u16 num_queue_pairs;
471	u16 max_vectors;
472	u16 max_mtu;
473
474	u32 vf_cap_flags;
475	u32 rss_key_size;
476	u32 rss_lut_size;
477
478	struct virtchnl_vsi_resource vsi_res[1];
479};
480
481VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource);
482
483/* VIRTCHNL_OP_CONFIG_TX_QUEUE
484 * VF sends this message to set up parameters for one TX queue.
485 * External data buffer contains one instance of virtchnl_txq_info.
486 * PF configures requested queue and returns a status code.
487 */
488
489/* Tx queue config info */
490struct virtchnl_txq_info {
491	u16 vsi_id;
492	u16 queue_id;
493	u16 ring_len;		/* number of descriptors, multiple of 8 */
494	u16 headwb_enabled; /* deprecated with AVF 1.0 */
495	u64 dma_ring_addr;
496	u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
497};
498
499VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
500
501/* RX descriptor IDs (range from 0 to 63) */
502enum virtchnl_rx_desc_ids {
503	VIRTCHNL_RXDID_0_16B_BASE		= 0,
504	VIRTCHNL_RXDID_1_32B_BASE		= 1,
505	VIRTCHNL_RXDID_2_FLEX_SQ_NIC		= 2,
506	VIRTCHNL_RXDID_3_FLEX_SQ_SW		= 3,
507	VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB	= 4,
508	VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL	= 5,
509	VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2		= 6,
510	VIRTCHNL_RXDID_7_HW_RSVD		= 7,
511	/* 8 through 15 are reserved */
512	VIRTCHNL_RXDID_16_COMMS_GENERIC 	= 16,
513	VIRTCHNL_RXDID_17_COMMS_AUX_VLAN 	= 17,
514	VIRTCHNL_RXDID_18_COMMS_AUX_IPV4 	= 18,
515	VIRTCHNL_RXDID_19_COMMS_AUX_IPV6 	= 19,
516	VIRTCHNL_RXDID_20_COMMS_AUX_FLOW 	= 20,
517	VIRTCHNL_RXDID_21_COMMS_AUX_TCP 	= 21,
518	/* 22 through 63 are reserved */
519};
520
521/* RX descriptor ID bitmasks */
522enum virtchnl_rx_desc_id_bitmasks {
523	VIRTCHNL_RXDID_0_16B_BASE_M		= BIT(VIRTCHNL_RXDID_0_16B_BASE),
524	VIRTCHNL_RXDID_1_32B_BASE_M		= BIT(VIRTCHNL_RXDID_1_32B_BASE),
525	VIRTCHNL_RXDID_2_FLEX_SQ_NIC_M		= BIT(VIRTCHNL_RXDID_2_FLEX_SQ_NIC),
526	VIRTCHNL_RXDID_3_FLEX_SQ_SW_M		= BIT(VIRTCHNL_RXDID_3_FLEX_SQ_SW),
527	VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB_M	= BIT(VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB),
528	VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL_M	= BIT(VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL),
529	VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2_M	= BIT(VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2),
530	VIRTCHNL_RXDID_7_HW_RSVD_M		= BIT(VIRTCHNL_RXDID_7_HW_RSVD),
531	/* 9 through 15 are reserved */
532	VIRTCHNL_RXDID_16_COMMS_GENERIC_M	= BIT(VIRTCHNL_RXDID_16_COMMS_GENERIC),
533	VIRTCHNL_RXDID_17_COMMS_AUX_VLAN_M	= BIT(VIRTCHNL_RXDID_17_COMMS_AUX_VLAN),
534	VIRTCHNL_RXDID_18_COMMS_AUX_IPV4_M	= BIT(VIRTCHNL_RXDID_18_COMMS_AUX_IPV4),
535	VIRTCHNL_RXDID_19_COMMS_AUX_IPV6_M	= BIT(VIRTCHNL_RXDID_19_COMMS_AUX_IPV6),
536	VIRTCHNL_RXDID_20_COMMS_AUX_FLOW_M	= BIT(VIRTCHNL_RXDID_20_COMMS_AUX_FLOW),
537	VIRTCHNL_RXDID_21_COMMS_AUX_TCP_M	= BIT(VIRTCHNL_RXDID_21_COMMS_AUX_TCP),
538	/* 22 through 63 are reserved */
539};
540
541/* VIRTCHNL_OP_CONFIG_RX_QUEUE
542 * VF sends this message to set up parameters for one RX queue.
543 * External data buffer contains one instance of virtchnl_rxq_info.
544 * PF configures requested queue and returns a status code. The
545 * crc_disable flag disables CRC stripping on the VF. Setting
546 * the crc_disable flag to 1 will disable CRC stripping for each
547 * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC
548 * offload must have been set prior to sending this info or the PF
549 * will ignore the request. This flag should be set the same for
550 * all of the queues for a VF.
551 */
552
553/* Rx queue config info */
554struct virtchnl_rxq_info {
555	u16 vsi_id;
556	u16 queue_id;
557	u32 ring_len;		/* number of descriptors, multiple of 32 */
558	u16 hdr_size;
559	u16 splithdr_enabled; /* deprecated with AVF 1.0 */
560	u32 databuffer_size;
561	u32 max_pkt_size;
562	u8 crc_disable;
563	u8 pad1[3];
564	u64 dma_ring_addr;
565
566	/* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */
567	s32 rx_split_pos;
568	u32 pad2;
569};
570
571VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
572
573/* VIRTCHNL_OP_CONFIG_VSI_QUEUES
574 * VF sends this message to set parameters for active TX and RX queues
575 * associated with the specified VSI.
576 * PF configures queues and returns status.
577 * If the number of queues specified is greater than the number of queues
578 * associated with the VSI, an error is returned and no queues are configured.
579 * NOTE: The VF is not required to configure all queues in a single request.
580 * It may send multiple messages. PF drivers must correctly handle all VF
581 * requests.
582 */
583struct virtchnl_queue_pair_info {
584	/* NOTE: vsi_id and queue_id should be identical for both queues. */
585	struct virtchnl_txq_info txq;
586	struct virtchnl_rxq_info rxq;
587};
588
589VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
590
591struct virtchnl_vsi_queue_config_info {
592	u16 vsi_id;
593	u16 num_queue_pairs;
594	u32 pad;
595	struct virtchnl_queue_pair_info qpair[1];
596};
597
598VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info);
599
600/* VIRTCHNL_OP_REQUEST_QUEUES
601 * VF sends this message to request the PF to allocate additional queues to
602 * this VF.  Each VF gets a guaranteed number of queues on init but asking for
603 * additional queues must be negotiated.  This is a best effort request as it
604 * is possible the PF does not have enough queues left to support the request.
605 * If the PF cannot support the number requested it will respond with the
606 * maximum number it is able to support.  If the request is successful, PF will
607 * then reset the VF to institute required changes.
608 */
609
610/* VF resource request */
611struct virtchnl_vf_res_request {
612	u16 num_queue_pairs;
613};
614
615/* VIRTCHNL_OP_CONFIG_IRQ_MAP
616 * VF uses this message to map vectors to queues.
617 * The rxq_map and txq_map fields are bitmaps used to indicate which queues
618 * are to be associated with the specified vector.
619 * The "other" causes are always mapped to vector 0. The VF may not request
620 * that vector 0 be used for traffic.
621 * PF configures interrupt mapping and returns status.
622 * NOTE: due to hardware requirements, all active queues (both TX and RX)
623 * should be mapped to interrupts, even if the driver intends to operate
624 * only in polling mode. In this case the interrupt may be disabled, but
625 * the ITR timer will still run to trigger writebacks.
626 */
627struct virtchnl_vector_map {
628	u16 vsi_id;
629	u16 vector_id;
630	u16 rxq_map;
631	u16 txq_map;
632	u16 rxitr_idx;
633	u16 txitr_idx;
634};
635
636VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
637
638struct virtchnl_irq_map_info {
639	u16 num_vectors;
640	struct virtchnl_vector_map vecmap[1];
641};
642
643VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info);
644
645/* VIRTCHNL_OP_ENABLE_QUEUES
646 * VIRTCHNL_OP_DISABLE_QUEUES
647 * VF sends these message to enable or disable TX/RX queue pairs.
648 * The queues fields are bitmaps indicating which queues to act upon.
649 * (Currently, we only support 16 queues per VF, but we make the field
650 * u32 to allow for expansion.)
651 * PF performs requested action and returns status.
652 * NOTE: The VF is not required to enable/disable all queues in a single
653 * request. It may send multiple messages.
654 * PF drivers must correctly handle all VF requests.
655 */
656struct virtchnl_queue_select {
657	u16 vsi_id;
658	u16 pad;
659	u32 rx_queues;
660	u32 tx_queues;
661};
662
663VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
664
665/* VIRTCHNL_OP_GET_MAX_RSS_QREGION
666 *
667 * if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
668 * then this op must be supported.
669 *
670 * VF sends this message in order to query the max RSS queue region
671 * size supported by PF, when VIRTCHNL_VF_LARGE_NUM_QPAIRS is enabled.
672 * This information should be used when configuring the RSS LUT and/or
673 * configuring queue region based filters.
674 *
675 * The maximum RSS queue region is 2^qregion_width. So, a qregion_width
676 * of 6 would inform the VF that the PF supports a maximum RSS queue region
677 * of 64.
678 *
679 * A queue region represents a range of queues that can be used to configure
680 * a RSS LUT. For example, if a VF is given 64 queues, but only a max queue
681 * region size of 16 (i.e. 2^qregion_width = 16) then it will only be able
682 * to configure the RSS LUT with queue indices from 0 to 15. However, other
683 * filters can be used to direct packets to queues >15 via specifying a queue
684 * base/offset and queue region width.
685 */
686struct virtchnl_max_rss_qregion {
687	u16 vport_id;
688	u16 qregion_width;
689	u8 pad[4];
690};
691
692VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_max_rss_qregion);
693
694/* VIRTCHNL_OP_ADD_ETH_ADDR
695 * VF sends this message in order to add one or more unicast or multicast
696 * address filters for the specified VSI.
697 * PF adds the filters and returns status.
698 */
699
700/* VIRTCHNL_OP_DEL_ETH_ADDR
701 * VF sends this message in order to remove one or more unicast or multicast
702 * filters for the specified VSI.
703 * PF removes the filters and returns status.
704 */
705
706/* VIRTCHNL_ETHER_ADDR_LEGACY
707 * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
708 * bytes. Moving forward all VF drivers should not set type to
709 * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
710 * behavior. The control plane function (i.e. PF) can use a best effort method
711 * of tracking the primary/device unicast in this case, but there is no
712 * guarantee and functionality depends on the implementation of the PF.
713 */
714
715/* VIRTCHNL_ETHER_ADDR_PRIMARY
716 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
717 * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
718 * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
719 * function (i.e. PF) to accurately track and use this MAC address for
720 * displaying on the host and for VM/function reset.
721 */
722
723/* VIRTCHNL_ETHER_ADDR_EXTRA
724 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
725 * unicast and/or multicast filters that are being added/deleted via
726 * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
727 */
728struct virtchnl_ether_addr {
729	u8 addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
730	u8 type;
731#define VIRTCHNL_ETHER_ADDR_LEGACY	0
732#define VIRTCHNL_ETHER_ADDR_PRIMARY	1
733#define VIRTCHNL_ETHER_ADDR_EXTRA	2
734#define VIRTCHNL_ETHER_ADDR_TYPE_MASK	3 /* first two bits of type are valid */
735	u8 pad;
736};
737
738VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
739
740struct virtchnl_ether_addr_list {
741	u16 vsi_id;
742	u16 num_elements;
743	struct virtchnl_ether_addr list[1];
744};
745
746VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list);
747
748/* VIRTCHNL_OP_ADD_VLAN
749 * VF sends this message to add one or more VLAN tag filters for receives.
750 * PF adds the filters and returns status.
751 * If a port VLAN is configured by the PF, this operation will return an
752 * error to the VF.
753 */
754
755/* VIRTCHNL_OP_DEL_VLAN
756 * VF sends this message to remove one or more VLAN tag filters for receives.
757 * PF removes the filters and returns status.
758 * If a port VLAN is configured by the PF, this operation will return an
759 * error to the VF.
760 */
761
762struct virtchnl_vlan_filter_list {
763	u16 vsi_id;
764	u16 num_elements;
765	u16 vlan_id[1];
766};
767
768VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list);
769
770/* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related
771 * structures and opcodes.
772 *
773 * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver
774 * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED.
775 *
776 * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype.
777 * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype.
778 * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype.
779 *
780 * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported
781 * by the PF concurrently. For example, if the PF can support
782 * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it
783 * would OR the following bits:
784 *
785 *	VIRTHCNL_VLAN_ETHERTYPE_8100 |
786 *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
787 *	VIRTCHNL_VLAN_ETHERTYPE_AND;
788 *
789 * The VF would interpret this as VLAN filtering can be supported on both 0x8100
790 * and 0x88A8 VLAN ethertypes.
791 *
792 * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported
793 * by the PF concurrently. For example if the PF can support
794 * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping
795 * offload it would OR the following bits:
796 *
797 *	VIRTCHNL_VLAN_ETHERTYPE_8100 |
798 *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
799 *	VIRTCHNL_VLAN_ETHERTYPE_XOR;
800 *
801 * The VF would interpret this as VLAN stripping can be supported on either
802 * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via
803 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override
804 * the previously set value.
805 *
806 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or
807 * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors.
808 *
809 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware
810 * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor.
811 *
812 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware
813 * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor.
814 *
815 * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for
816 * VLAN filtering if the underlying PF supports it.
817 *
818 * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a
819 * certain VLAN capability can be toggled. For example if the underlying PF/CP
820 * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should
821 * set this bit along with the supported ethertypes.
822 */
823enum virtchnl_vlan_support {
824	VIRTCHNL_VLAN_UNSUPPORTED =		0,
825	VIRTCHNL_VLAN_ETHERTYPE_8100 =		0x00000001,
826	VIRTCHNL_VLAN_ETHERTYPE_88A8 =		0x00000002,
827	VIRTCHNL_VLAN_ETHERTYPE_9100 =		0x00000004,
828	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 =	0x00000100,
829	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 =	0x00000200,
830	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 =	0x00000400,
831	VIRTCHNL_VLAN_PRIO =			0x01000000,
832	VIRTCHNL_VLAN_FILTER_MASK =		0x10000000,
833	VIRTCHNL_VLAN_ETHERTYPE_AND =		0x20000000,
834	VIRTCHNL_VLAN_ETHERTYPE_XOR =		0x40000000,
835	VIRTCHNL_VLAN_TOGGLE =			0x80000000
836};
837
838/* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
839 * for filtering, insertion, and stripping capabilities.
840 *
841 * If only outer capabilities are supported (for filtering, insertion, and/or
842 * stripping) then this refers to the outer most or single VLAN from the VF's
843 * perspective.
844 *
845 * If only inner capabilities are supported (for filtering, insertion, and/or
846 * stripping) then this refers to the outer most or single VLAN from the VF's
847 * perspective. Functionally this is the same as if only outer capabilities are
848 * supported. The VF driver is just forced to use the inner fields when
849 * adding/deleting filters and enabling/disabling offloads (if supported).
850 *
851 * If both outer and inner capabilities are supported (for filtering, insertion,
852 * and/or stripping) then outer refers to the outer most or single VLAN and
853 * inner refers to the second VLAN, if it exists, in the packet.
854 *
855 * There is no support for tunneled VLAN offloads, so outer or inner are never
856 * referring to a tunneled packet from the VF's perspective.
857 */
858struct virtchnl_vlan_supported_caps {
859	u32 outer;
860	u32 inner;
861};
862
863/* The PF populates these fields based on the supported VLAN filtering. If a
864 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
865 * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using
866 * the unsupported fields.
867 *
868 * Also, a VF is only allowed to toggle its VLAN filtering setting if the
869 * VIRTCHNL_VLAN_TOGGLE bit is set.
870 *
871 * The ethertype(s) specified in the ethertype_init field are the ethertypes
872 * enabled for VLAN filtering. VLAN filtering in this case refers to the outer
873 * most VLAN from the VF's perspective. If both inner and outer filtering are
874 * allowed then ethertype_init only refers to the outer most VLAN as only
875 * VLAN ethertype supported for inner VLAN filtering is
876 * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled
877 * when both inner and outer filtering are allowed.
878 *
879 * The max_filters field tells the VF how many VLAN filters it's allowed to have
880 * at any one time. If it exceeds this amount and tries to add another filter,
881 * then the request will be rejected by the PF. To prevent failures, the VF
882 * should keep track of how many VLAN filters it has added and not attempt to
883 * add more than max_filters.
884 */
885struct virtchnl_vlan_filtering_caps {
886	struct virtchnl_vlan_supported_caps filtering_support;
887	u32 ethertype_init;
888	u16 max_filters;
889	u8 pad[2];
890};
891
892VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps);
893
894/* This enum is used for the virtchnl_vlan_offload_caps structure to specify
895 * if the PF supports a different ethertype for stripping and insertion.
896 *
897 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified
898 * for stripping affect the ethertype(s) specified for insertion and visa versa
899 * as well. If the VF tries to configure VLAN stripping via
900 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then
901 * that will be the ethertype for both stripping and insertion.
902 *
903 * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for
904 * stripping do not affect the ethertype(s) specified for insertion and visa
905 * versa.
906 */
907enum virtchnl_vlan_ethertype_match {
908	VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0,
909	VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1,
910};
911
912/* The PF populates these fields based on the supported VLAN offloads. If a
913 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
914 * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or
915 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields.
916 *
917 * Also, a VF is only allowed to toggle its VLAN offload setting if the
918 * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set.
919 *
920 * The VF driver needs to be aware of how the tags are stripped by hardware and
921 * inserted by the VF driver based on the level of offload support. The PF will
922 * populate these fields based on where the VLAN tags are expected to be
923 * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to
924 * interpret these fields. See the definition of the
925 * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support
926 * enumeration.
927 */
928struct virtchnl_vlan_offload_caps {
929	struct virtchnl_vlan_supported_caps stripping_support;
930	struct virtchnl_vlan_supported_caps insertion_support;
931	u32 ethertype_init;
932	u8 ethertype_match;
933	u8 pad[3];
934};
935
936VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps);
937
938/* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
939 * VF sends this message to determine its VLAN capabilities.
940 *
941 * PF will mark which capabilities it supports based on hardware support and
942 * current configuration. For example, if a port VLAN is configured the PF will
943 * not allow outer VLAN filtering, stripping, or insertion to be configured so
944 * it will block these features from the VF.
945 *
946 * The VF will need to cross reference its capabilities with the PFs
947 * capabilities in the response message from the PF to determine the VLAN
948 * support.
949 */
950struct virtchnl_vlan_caps {
951	struct virtchnl_vlan_filtering_caps filtering;
952	struct virtchnl_vlan_offload_caps offloads;
953};
954
955VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps);
956
957struct virtchnl_vlan {
958	u16 tci;	/* tci[15:13] = PCP and tci[11:0] = VID */
959	u16 tci_mask;	/* only valid if VIRTCHNL_VLAN_FILTER_MASK set in
960			 * filtering caps
961			 */
962	u16 tpid;	/* 0x8100, 0x88a8, etc. and only type(s) set in
963			 * filtering caps. Note that tpid here does not refer to
964			 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the
965			 * actual 2-byte VLAN TPID
966			 */
967	u8 pad[2];
968};
969
970VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan);
971
972struct virtchnl_vlan_filter {
973	struct virtchnl_vlan inner;
974	struct virtchnl_vlan outer;
975	u8 pad[16];
976};
977
978VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter);
979
980/* VIRTCHNL_OP_ADD_VLAN_V2
981 * VIRTCHNL_OP_DEL_VLAN_V2
982 *
983 * VF sends these messages to add/del one or more VLAN tag filters for Rx
984 * traffic.
985 *
986 * The PF attempts to add the filters and returns status.
987 *
988 * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the
989 * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS.
990 */
991struct virtchnl_vlan_filter_list_v2 {
992	u16 vport_id;
993	u16 num_elements;
994	u8 pad[4];
995	struct virtchnl_vlan_filter filters[1];
996};
997
998VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2);
999
1000/* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
1001 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
1002 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
1003 * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
1004 *
1005 * VF sends this message to enable or disable VLAN stripping or insertion. It
1006 * also needs to specify an ethertype. The VF knows which VLAN ethertypes are
1007 * allowed and whether or not it's allowed to enable/disable the specific
1008 * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
1009 * parse the virtchnl_vlan_caps.offloads fields to determine which offload
1010 * messages are allowed.
1011 *
1012 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
1013 * following manner the VF will be allowed to enable and/or disable 0x8100 inner
1014 * VLAN insertion and/or stripping via the opcodes listed above. Inner in this
1015 * case means the outer most or single VLAN from the VF's perspective. This is
1016 * because no outer offloads are supported. See the comments above the
1017 * virtchnl_vlan_supported_caps structure for more details.
1018 *
1019 * virtchnl_vlan_caps.offloads.stripping_support.inner =
1020 *			VIRTCHNL_VLAN_TOGGLE |
1021 *			VIRTCHNL_VLAN_ETHERTYPE_8100;
1022 *
1023 * virtchnl_vlan_caps.offloads.insertion_support.inner =
1024 *			VIRTCHNL_VLAN_TOGGLE |
1025 *			VIRTCHNL_VLAN_ETHERTYPE_8100;
1026 *
1027 * In order to enable inner (again note that in this case inner is the outer
1028 * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100
1029 * VLANs, the VF would populate the virtchnl_vlan_setting structure in the
1030 * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
1031 *
1032 * virtchnl_vlan_setting.inner_ethertype_setting =
1033 *			VIRTCHNL_VLAN_ETHERTYPE_8100;
1034 *
1035 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
1036 * initialization.
1037 *
1038 * The reason that VLAN TPID(s) are not being used for the
1039 * outer_ethertype_setting and inner_ethertype_setting fields is because it's
1040 * possible a device could support VLAN insertion and/or stripping offload on
1041 * multiple ethertypes concurrently, so this method allows a VF to request
1042 * multiple ethertypes in one message using the virtchnl_vlan_support
1043 * enumeration.
1044 *
1045 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
1046 * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer
1047 * VLAN insertion and stripping simultaneously. The
1048 * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be
1049 * populated based on what the PF can support.
1050 *
1051 * virtchnl_vlan_caps.offloads.stripping_support.outer =
1052 *			VIRTCHNL_VLAN_TOGGLE |
1053 *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1054 *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1055 *			VIRTCHNL_VLAN_ETHERTYPE_AND;
1056 *
1057 * virtchnl_vlan_caps.offloads.insertion_support.outer =
1058 *			VIRTCHNL_VLAN_TOGGLE |
1059 *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1060 *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1061 *			VIRTCHNL_VLAN_ETHERTYPE_AND;
1062 *
1063 * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF
1064 * would populate the virthcnl_vlan_offload_structure in the following manner
1065 * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
1066 *
1067 * virtchnl_vlan_setting.outer_ethertype_setting =
1068 *			VIRTHCNL_VLAN_ETHERTYPE_8100 |
1069 *			VIRTHCNL_VLAN_ETHERTYPE_88A8;
1070 *
1071 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
1072 * initialization.
1073 *
1074 * There is also the case where a PF and the underlying hardware can support
1075 * VLAN offloads on multiple ethertypes, but not concurrently. For example, if
1076 * the PF populates the virtchnl_vlan_caps.offloads in the following manner the
1077 * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN
1078 * offloads. The ethertypes must match for stripping and insertion.
1079 *
1080 * virtchnl_vlan_caps.offloads.stripping_support.outer =
1081 *			VIRTCHNL_VLAN_TOGGLE |
1082 *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1083 *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1084 *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
1085 *
1086 * virtchnl_vlan_caps.offloads.insertion_support.outer =
1087 *			VIRTCHNL_VLAN_TOGGLE |
1088 *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1089 *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1090 *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
1091 *
1092 * virtchnl_vlan_caps.offloads.ethertype_match =
1093 *			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
1094 *
1095 * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would
1096 * populate the virtchnl_vlan_setting structure in the following manner and send
1097 * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the
1098 * ethertype for VLAN insertion if it's enabled. So, for completeness, a
1099 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent.
1100 *
1101 * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8;
1102 *
1103 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
1104 * initialization.
1105 *
1106 * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2
1107 * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2
1108 *
1109 * VF sends this message to enable or disable VLAN filtering. It also needs to
1110 * specify an ethertype. The VF knows which VLAN ethertypes are allowed and
1111 * whether or not it's allowed to enable/disable filtering via the
1112 * VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
1113 * parse the virtchnl_vlan_caps.filtering fields to determine which, if any,
1114 * filtering messages are allowed.
1115 *
1116 * For example, if the PF populates the virtchnl_vlan_caps.filtering in the
1117 * following manner the VF will be allowed to enable/disable 0x8100 and 0x88a8
1118 * outer VLAN filtering together. Note, that the VIRTCHNL_VLAN_ETHERTYPE_AND
1119 * means that all filtering ethertypes will to be enabled and disabled together
1120 * regardless of the request from the VF. This means that the underlying
1121 * hardware only supports VLAN filtering for all VLAN the specified ethertypes
1122 * or none of them.
1123 *
1124 * virtchnl_vlan_caps.filtering.filtering_support.outer =
1125 *			VIRTCHNL_VLAN_TOGGLE |
1126 *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1127 *			VIRTHCNL_VLAN_ETHERTYPE_88A8 |
1128 *			VIRTCHNL_VLAN_ETHERTYPE_9100 |
1129 *			VIRTCHNL_VLAN_ETHERTYPE_AND;
1130 *
1131 * In order to enable outer VLAN filtering for 0x88a8 and 0x8100 VLANs (0x9100
1132 * VLANs aren't supported by the VF driver), the VF would populate the
1133 * virtchnl_vlan_setting structure in the following manner and send the
1134 * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2. The same message format would be used
1135 * to disable outer VLAN filtering for 0x88a8 and 0x8100 VLANs, but the
1136 * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 opcode is used.
1137 *
1138 * virtchnl_vlan_setting.outer_ethertype_setting =
1139 *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1140 *			VIRTCHNL_VLAN_ETHERTYPE_88A8;
1141 *
1142 */
1143struct virtchnl_vlan_setting {
1144	u32 outer_ethertype_setting;
1145	u32 inner_ethertype_setting;
1146	u16 vport_id;
1147	u8 pad[6];
1148};
1149
1150VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting);
1151
1152/* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
1153 * VF sends VSI id and flags.
1154 * PF returns status code in retval.
1155 * Note: we assume that broadcast accept mode is always enabled.
1156 */
1157struct virtchnl_promisc_info {
1158	u16 vsi_id;
1159	u16 flags;
1160};
1161
1162VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
1163
1164#define FLAG_VF_UNICAST_PROMISC	0x00000001
1165#define FLAG_VF_MULTICAST_PROMISC	0x00000002
1166
1167/* VIRTCHNL_OP_GET_STATS
1168 * VF sends this message to request stats for the selected VSI. VF uses
1169 * the virtchnl_queue_select struct to specify the VSI. The queue_id
1170 * field is ignored by the PF.
1171 *
1172 * PF replies with struct virtchnl_eth_stats in an external buffer.
1173 */
1174
1175struct virtchnl_eth_stats {
1176	u64 rx_bytes;			/* received bytes */
1177	u64 rx_unicast;			/* received unicast pkts */
1178	u64 rx_multicast;		/* received multicast pkts */
1179	u64 rx_broadcast;		/* received broadcast pkts */
1180	u64 rx_discards;
1181	u64 rx_unknown_protocol;
1182	u64 tx_bytes;			/* transmitted bytes */
1183	u64 tx_unicast;			/* transmitted unicast pkts */
1184	u64 tx_multicast;		/* transmitted multicast pkts */
1185	u64 tx_broadcast;		/* transmitted broadcast pkts */
1186	u64 tx_discards;
1187	u64 tx_errors;
1188};
1189
1190/* VIRTCHNL_OP_CONFIG_RSS_KEY
1191 * VIRTCHNL_OP_CONFIG_RSS_LUT
1192 * VF sends these messages to configure RSS. Only supported if both PF
1193 * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
1194 * configuration negotiation. If this is the case, then the RSS fields in
1195 * the VF resource struct are valid.
1196 * Both the key and LUT are initialized to 0 by the PF, meaning that
1197 * RSS is effectively disabled until set up by the VF.
1198 */
1199struct virtchnl_rss_key {
1200	u16 vsi_id;
1201	u16 key_len;
1202	u8 key[1];         /* RSS hash key, packed bytes */
1203};
1204
1205VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key);
1206
1207struct virtchnl_rss_lut {
1208	u16 vsi_id;
1209	u16 lut_entries;
1210	u8 lut[1];        /* RSS lookup table */
1211};
1212
1213VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut);
1214
1215/* enum virthcnl_hash_filter
1216 *
1217 * Bits defining the hash filters in the hena field of the virtchnl_rss_hena
1218 * structure. Each bit indicates a specific hash filter for RSS.
1219 *
1220 * Note that not all bits are supported on all hardware. The VF should use
1221 * VIRTCHNL_OP_GET_RSS_HENA_CAPS to determine which bits the PF is capable of
1222 * before using VIRTCHNL_OP_SET_RSS_HENA to enable specific filters.
1223 */
1224enum virtchnl_hash_filter {
1225	/* Bits 0 through 28 are reserved for future use */
1226	/* Bit 29, 30, and 32 are not supported on XL710 a X710 */
1227	VIRTCHNL_HASH_FILTER_UNICAST_IPV4_UDP		= 29,
1228	VIRTCHNL_HASH_FILTER_MULTICAST_IPV4_UDP		= 30,
1229	VIRTCHNL_HASH_FILTER_IPV4_UDP			= 31,
1230	VIRTCHNL_HASH_FILTER_IPV4_TCP_SYN_NO_ACK	= 32,
1231	VIRTCHNL_HASH_FILTER_IPV4_TCP			= 33,
1232	VIRTCHNL_HASH_FILTER_IPV4_SCTP			= 34,
1233	VIRTCHNL_HASH_FILTER_IPV4_OTHER			= 35,
1234	VIRTCHNL_HASH_FILTER_FRAG_IPV4			= 36,
1235	/* Bits 37 and 38 are reserved for future use */
1236	/* Bit 39, 40, and 42 are not supported on XL710 a X710 */
1237	VIRTCHNL_HASH_FILTER_UNICAST_IPV6_UDP		= 39,
1238	VIRTCHNL_HASH_FILTER_MULTICAST_IPV6_UDP		= 40,
1239	VIRTCHNL_HASH_FILTER_IPV6_UDP			= 41,
1240	VIRTCHNL_HASH_FILTER_IPV6_TCP_SYN_NO_ACK	= 42,
1241	VIRTCHNL_HASH_FILTER_IPV6_TCP			= 43,
1242	VIRTCHNL_HASH_FILTER_IPV6_SCTP			= 44,
1243	VIRTCHNL_HASH_FILTER_IPV6_OTHER			= 45,
1244	VIRTCHNL_HASH_FILTER_FRAG_IPV6			= 46,
1245	/* Bit 37 is reserved for future use */
1246	VIRTCHNL_HASH_FILTER_FCOE_OX			= 48,
1247	VIRTCHNL_HASH_FILTER_FCOE_RX			= 49,
1248	VIRTCHNL_HASH_FILTER_FCOE_OTHER			= 50,
1249	/* Bits 51 through 62 are reserved for future use */
1250	VIRTCHNL_HASH_FILTER_L2_PAYLOAD			= 63,
1251};
1252
1253#define VIRTCHNL_HASH_FILTER_INVALID	(0)
1254
1255/* VIRTCHNL_OP_GET_RSS_HENA_CAPS
1256 * VIRTCHNL_OP_SET_RSS_HENA
1257 * VF sends these messages to get and set the hash filter enable bits for RSS.
1258 * By default, the PF sets these to all possible traffic types that the
1259 * hardware supports. The VF can query this value if it wants to change the
1260 * traffic types that are hashed by the hardware.
1261 */
1262struct virtchnl_rss_hena {
1263	/* see enum virtchnl_hash_filter */
1264	u64 hena;
1265};
1266
1267VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
1268
1269/* Type of RSS algorithm */
1270enum virtchnl_rss_algorithm {
1271	VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC	= 0,
1272	VIRTCHNL_RSS_ALG_R_ASYMMETRIC		= 1,
1273	VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC	= 2,
1274	VIRTCHNL_RSS_ALG_XOR_SYMMETRIC		= 3,
1275};
1276
1277/* This is used by PF driver to enforce how many channels can be supported.
1278 * When ADQ_V2 capability is negotiated, it will allow 16 channels otherwise
1279 * PF driver will allow only max 4 channels
1280 */
1281#define VIRTCHNL_MAX_ADQ_CHANNELS 4
1282#define VIRTCHNL_MAX_ADQ_V2_CHANNELS 16
1283
1284/* VIRTCHNL_OP_ENABLE_CHANNELS
1285 * VIRTCHNL_OP_DISABLE_CHANNELS
1286 * VF sends these messages to enable or disable channels based on
1287 * the user specified queue count and queue offset for each traffic class.
1288 * This struct encompasses all the information that the PF needs from
1289 * VF to create a channel.
1290 */
1291struct virtchnl_channel_info {
1292	u16 count; /* number of queues in a channel */
1293	u16 offset; /* queues in a channel start from 'offset' */
1294	u32 pad;
1295	u64 max_tx_rate;
1296};
1297
1298VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
1299
1300struct virtchnl_tc_info {
1301	u32	num_tc;
1302	u32	pad;
1303	struct	virtchnl_channel_info list[1];
1304};
1305
1306VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info);
1307
1308/* VIRTCHNL_ADD_CLOUD_FILTER
1309 * VIRTCHNL_DEL_CLOUD_FILTER
1310 * VF sends these messages to add or delete a cloud filter based on the
1311 * user specified match and action filters. These structures encompass
1312 * all the information that the PF needs from the VF to add/delete a
1313 * cloud filter.
1314 */
1315
1316struct virtchnl_l4_spec {
1317	u8	src_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
1318	u8	dst_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
1319	/* vlan_prio is part of this 16 bit field even from OS perspective
1320	 * vlan_id:12 is actual vlan_id, then vlanid:bit14..12 is vlan_prio
1321	 * in future, when decided to offload vlan_prio, pass that information
1322	 * as part of the "vlan_id" field, Bit14..12
1323	 */
1324	__be16	vlan_id;
1325	__be16	pad; /* reserved for future use */
1326	__be32	src_ip[4];
1327	__be32	dst_ip[4];
1328	__be16	src_port;
1329	__be16	dst_port;
1330};
1331
1332VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
1333
1334union virtchnl_flow_spec {
1335	struct	virtchnl_l4_spec tcp_spec;
1336	u8	buffer[128]; /* reserved for future use */
1337};
1338
1339VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
1340
1341enum virtchnl_action {
1342	/* action types */
1343	VIRTCHNL_ACTION_DROP = 0,
1344	VIRTCHNL_ACTION_TC_REDIRECT,
1345	VIRTCHNL_ACTION_PASSTHRU,
1346	VIRTCHNL_ACTION_QUEUE,
1347	VIRTCHNL_ACTION_Q_REGION,
1348	VIRTCHNL_ACTION_MARK,
1349	VIRTCHNL_ACTION_COUNT,
1350};
1351
1352enum virtchnl_flow_type {
1353	/* flow types */
1354	VIRTCHNL_TCP_V4_FLOW = 0,
1355	VIRTCHNL_TCP_V6_FLOW,
1356	VIRTCHNL_UDP_V4_FLOW,
1357	VIRTCHNL_UDP_V6_FLOW,
1358};
1359
1360struct virtchnl_filter {
1361	union	virtchnl_flow_spec data;
1362	union	virtchnl_flow_spec mask;
1363
1364	/* see enum virtchnl_flow_type */
1365	s32 	flow_type;
1366
1367	/* see enum virtchnl_action */
1368	s32	action;
1369	u32	action_meta;
1370	u8	field_flags;
1371};
1372
1373VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
1374
1375struct virtchnl_shaper_bw {
1376	/* Unit is Kbps */
1377	u32 committed;
1378	u32 peak;
1379};
1380
1381VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_shaper_bw);
1382
1383/* VIRTCHNL_OP_EVENT
1384 * PF sends this message to inform the VF driver of events that may affect it.
1385 * No direct response is expected from the VF, though it may generate other
1386 * messages in response to this one.
1387 */
1388enum virtchnl_event_codes {
1389	VIRTCHNL_EVENT_UNKNOWN = 0,
1390	VIRTCHNL_EVENT_LINK_CHANGE,
1391	VIRTCHNL_EVENT_RESET_IMPENDING,
1392	VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
1393};
1394
1395#define PF_EVENT_SEVERITY_INFO		0
1396#define PF_EVENT_SEVERITY_ATTENTION	1
1397#define PF_EVENT_SEVERITY_ACTION_REQUIRED	2
1398#define PF_EVENT_SEVERITY_CERTAIN_DOOM	255
1399
1400struct virtchnl_pf_event {
1401	/* see enum virtchnl_event_codes */
1402	s32 event;
1403	union {
1404		/* If the PF driver does not support the new speed reporting
1405		 * capabilities then use link_event else use link_event_adv to
1406		 * get the speed and link information. The ability to understand
1407		 * new speeds is indicated by setting the capability flag
1408		 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
1409		 * in virtchnl_vf_resource struct and can be used to determine
1410		 * which link event struct to use below.
1411		 */
1412		struct {
1413			enum virtchnl_link_speed link_speed;
1414			bool link_status;
1415			u8 pad[3];
1416		} link_event;
1417		struct {
1418			/* link_speed provided in Mbps */
1419			u32 link_speed;
1420			u8 link_status;
1421			u8 pad[3];
1422		} link_event_adv;
1423	} event_data;
1424
1425	s32 severity;
1426};
1427
1428VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
1429
1430/* VF reset states - these are written into the RSTAT register:
1431 * VFGEN_RSTAT on the VF
1432 * When the PF initiates a reset, it writes 0
1433 * When the reset is complete, it writes 1
1434 * When the PF detects that the VF has recovered, it writes 2
1435 * VF checks this register periodically to determine if a reset has occurred,
1436 * then polls it to know when the reset is complete.
1437 * If either the PF or VF reads the register while the hardware
1438 * is in a reset state, it will return DEADBEEF, which, when masked
1439 * will result in 3.
1440 */
1441enum virtchnl_vfr_states {
1442	VIRTCHNL_VFR_INPROGRESS = 0,
1443	VIRTCHNL_VFR_COMPLETED,
1444	VIRTCHNL_VFR_VFACTIVE,
1445};
1446
1447#define VIRTCHNL_MAX_NUM_PROTO_HDRS	32
1448#define VIRTCHNL_MAX_NUM_PROTO_HDRS_W_MSK	16
1449#define VIRTCHNL_MAX_SIZE_RAW_PACKET	1024
1450#define PROTO_HDR_SHIFT			5
1451#define PROTO_HDR_FIELD_START(proto_hdr_type) \
1452					(proto_hdr_type << PROTO_HDR_SHIFT)
1453#define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
1454
1455/* VF use these macros to configure each protocol header.
1456 * Specify which protocol headers and protocol header fields base on
1457 * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
1458 * @param hdr: a struct of virtchnl_proto_hdr
1459 * @param hdr_type: ETH/IPV4/TCP, etc
1460 * @param field: SRC/DST/TEID/SPI, etc
1461 */
1462#define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
1463	((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
1464#define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
1465	((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
1466#define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
1467	((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
1468#define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr)	((hdr)->field_selector)
1469
1470#define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1471	(VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
1472		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1473#define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1474	(VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
1475		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1476
1477#define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
1478	((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
1479#define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
1480	(((hdr)->type) >> PROTO_HDR_SHIFT)
1481#define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
1482	((hdr)->type == ((s32)((val) >> PROTO_HDR_SHIFT)))
1483#define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
1484	(VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) && \
1485	 VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val))
1486
1487/* Protocol header type within a packet segment. A segment consists of one or
1488 * more protocol headers that make up a logical group of protocol headers. Each
1489 * logical group of protocol headers encapsulates or is encapsulated using/by
1490 * tunneling or encapsulation protocols for network virtualization.
1491 */
1492enum virtchnl_proto_hdr_type {
1493	VIRTCHNL_PROTO_HDR_NONE,
1494	VIRTCHNL_PROTO_HDR_ETH,
1495	VIRTCHNL_PROTO_HDR_S_VLAN,
1496	VIRTCHNL_PROTO_HDR_C_VLAN,
1497	VIRTCHNL_PROTO_HDR_IPV4,
1498	VIRTCHNL_PROTO_HDR_IPV6,
1499	VIRTCHNL_PROTO_HDR_TCP,
1500	VIRTCHNL_PROTO_HDR_UDP,
1501	VIRTCHNL_PROTO_HDR_SCTP,
1502	VIRTCHNL_PROTO_HDR_GTPU_IP,
1503	VIRTCHNL_PROTO_HDR_GTPU_EH,
1504	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
1505	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
1506	VIRTCHNL_PROTO_HDR_PPPOE,
1507	VIRTCHNL_PROTO_HDR_L2TPV3,
1508	VIRTCHNL_PROTO_HDR_ESP,
1509	VIRTCHNL_PROTO_HDR_AH,
1510	VIRTCHNL_PROTO_HDR_PFCP,
1511	VIRTCHNL_PROTO_HDR_GTPC,
1512	VIRTCHNL_PROTO_HDR_ECPRI,
1513	VIRTCHNL_PROTO_HDR_L2TPV2,
1514	VIRTCHNL_PROTO_HDR_PPP,
1515	/* IPv4 and IPv6 Fragment header types are only associated to
1516	 * VIRTCHNL_PROTO_HDR_IPV4 and VIRTCHNL_PROTO_HDR_IPV6 respectively,
1517	 * cannot be used independently.
1518	 */
1519	VIRTCHNL_PROTO_HDR_IPV4_FRAG,
1520	VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG,
1521	VIRTCHNL_PROTO_HDR_GRE,
1522};
1523
1524/* Protocol header field within a protocol header. */
1525enum virtchnl_proto_hdr_field {
1526	/* ETHER */
1527	VIRTCHNL_PROTO_HDR_ETH_SRC =
1528		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
1529	VIRTCHNL_PROTO_HDR_ETH_DST,
1530	VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
1531	/* S-VLAN */
1532	VIRTCHNL_PROTO_HDR_S_VLAN_ID =
1533		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
1534	/* C-VLAN */
1535	VIRTCHNL_PROTO_HDR_C_VLAN_ID =
1536		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
1537	/* IPV4 */
1538	VIRTCHNL_PROTO_HDR_IPV4_SRC =
1539		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
1540	VIRTCHNL_PROTO_HDR_IPV4_DST,
1541	VIRTCHNL_PROTO_HDR_IPV4_DSCP,
1542	VIRTCHNL_PROTO_HDR_IPV4_TTL,
1543	VIRTCHNL_PROTO_HDR_IPV4_PROT,
1544	VIRTCHNL_PROTO_HDR_IPV4_CHKSUM,
1545	/* IPV6 */
1546	VIRTCHNL_PROTO_HDR_IPV6_SRC =
1547		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
1548	VIRTCHNL_PROTO_HDR_IPV6_DST,
1549	VIRTCHNL_PROTO_HDR_IPV6_TC,
1550	VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
1551	VIRTCHNL_PROTO_HDR_IPV6_PROT,
1552	/* IPV6 Prefix */
1553	VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_SRC,
1554	VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_DST,
1555	VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_SRC,
1556	VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_DST,
1557	VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_SRC,
1558	VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_DST,
1559	VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_SRC,
1560	VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_DST,
1561	VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_SRC,
1562	VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_DST,
1563	VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_SRC,
1564	VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_DST,
1565	/* TCP */
1566	VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
1567		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
1568	VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
1569	VIRTCHNL_PROTO_HDR_TCP_CHKSUM,
1570	/* UDP */
1571	VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
1572		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
1573	VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
1574	VIRTCHNL_PROTO_HDR_UDP_CHKSUM,
1575	/* SCTP */
1576	VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
1577		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
1578	VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
1579	VIRTCHNL_PROTO_HDR_SCTP_CHKSUM,
1580	/* GTPU_IP */
1581	VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
1582		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
1583	/* GTPU_EH */
1584	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
1585		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
1586	VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
1587	/* PPPOE */
1588	VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
1589		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
1590	/* L2TPV3 */
1591	VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
1592		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
1593	/* ESP */
1594	VIRTCHNL_PROTO_HDR_ESP_SPI =
1595		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
1596	/* AH */
1597	VIRTCHNL_PROTO_HDR_AH_SPI =
1598		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
1599	/* PFCP */
1600	VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
1601		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
1602	VIRTCHNL_PROTO_HDR_PFCP_SEID,
1603	/* GTPC */
1604	VIRTCHNL_PROTO_HDR_GTPC_TEID =
1605		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPC),
1606	/* ECPRI */
1607	VIRTCHNL_PROTO_HDR_ECPRI_MSG_TYPE =
1608		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ECPRI),
1609	VIRTCHNL_PROTO_HDR_ECPRI_PC_RTC_ID,
1610	/* IPv4 Dummy Fragment */
1611	VIRTCHNL_PROTO_HDR_IPV4_FRAG_PKID =
1612		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4_FRAG),
1613	/* IPv6 Extension Fragment */
1614	VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG_PKID =
1615		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG),
1616	/* GTPU_DWN/UP */
1617	VIRTCHNL_PROTO_HDR_GTPU_DWN_QFI =
1618		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN),
1619	VIRTCHNL_PROTO_HDR_GTPU_UP_QFI =
1620		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP),
1621	/* L2TPv2 */
1622	VIRTCHNL_PROTO_HDR_L2TPV2_SESS_ID =
1623		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV2),
1624	VIRTCHNL_PROTO_HDR_L2TPV2_LEN_SESS_ID,
1625};
1626
1627struct virtchnl_proto_hdr {
1628	/* see enum virtchnl_proto_hdr_type */
1629	s32 type;
1630	u32 field_selector; /* a bit mask to select field for header type */
1631	u8 buffer[64];
1632	/**
1633	 * binary buffer in network order for specific header type.
1634	 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
1635	 * header is expected to be copied into the buffer.
1636	 */
1637};
1638
1639VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
1640
1641struct virtchnl_proto_hdr_w_msk {
1642	/* see enum virtchnl_proto_hdr_type */
1643	s32 type;
1644	u32 pad;
1645	/**
1646	 * binary buffer in network order for specific header type.
1647	 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
1648	 * header is expected to be copied into the buffer.
1649	 */
1650	u8 buffer_spec[64];
1651	/* binary buffer for bit-mask applied to specific header type */
1652	u8 buffer_mask[64];
1653};
1654
1655VIRTCHNL_CHECK_STRUCT_LEN(136, virtchnl_proto_hdr_w_msk);
1656
1657struct virtchnl_proto_hdrs {
1658	u8 tunnel_level;
1659	/**
1660	 * specify where protocol header start from.
1661	 * must be 0 when sending a raw packet request.
1662	 * 0 - from the outer layer
1663	 * 1 - from the first inner layer
1664	 * 2 - from the second inner layer
1665	 * ....
1666	 */
1667	int count;
1668	/**
1669	 * count must <=
1670	 * VIRTCHNL_MAX_NUM_PROTO_HDRS + VIRTCHNL_MAX_NUM_PROTO_HDRS_W_MSK
1671	 * count = 0 :					select raw
1672	 * 1 < count <= VIRTCHNL_MAX_NUM_PROTO_HDRS :	select proto_hdr
1673	 * count > VIRTCHNL_MAX_NUM_PROTO_HDRS :	select proto_hdr_w_msk
1674	 * last valid index = count - VIRTCHNL_MAX_NUM_PROTO_HDRS
1675	 */
1676	union {
1677		struct virtchnl_proto_hdr
1678			proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
1679		struct virtchnl_proto_hdr_w_msk
1680			proto_hdr_w_msk[VIRTCHNL_MAX_NUM_PROTO_HDRS_W_MSK];
1681		struct {
1682			u16 pkt_len;
1683			u8 spec[VIRTCHNL_MAX_SIZE_RAW_PACKET];
1684			u8 mask[VIRTCHNL_MAX_SIZE_RAW_PACKET];
1685		} raw;
1686	};
1687};
1688
1689VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
1690
1691struct virtchnl_rss_cfg {
1692	struct virtchnl_proto_hdrs proto_hdrs;	   /* protocol headers */
1693
1694	/* see enum virtchnl_rss_algorithm; rss algorithm type */
1695	s32 rss_algorithm;
1696	u8 reserved[128];                          /* reserve for future */
1697};
1698
1699VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
1700
1701/* action configuration for FDIR and FSUB */
1702struct virtchnl_filter_action {
1703	/* see enum virtchnl_action type */
1704	s32 type;
1705	union {
1706		/* used for queue and qgroup action */
1707		struct {
1708			u16 index;
1709			u8 region;
1710		} queue;
1711		/* used for count action */
1712		struct {
1713			/* share counter ID with other flow rules */
1714			u8 shared;
1715			u32 id; /* counter ID */
1716		} count;
1717		/* used for mark action */
1718		u32 mark_id;
1719		u8 reserve[32];
1720	} act_conf;
1721};
1722
1723VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
1724
1725#define VIRTCHNL_MAX_NUM_ACTIONS  8
1726
1727struct virtchnl_filter_action_set {
1728	/* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
1729	int count;
1730	struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
1731};
1732
1733VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
1734
1735/* pattern and action for FDIR rule */
1736struct virtchnl_fdir_rule {
1737	struct virtchnl_proto_hdrs proto_hdrs;
1738	struct virtchnl_filter_action_set action_set;
1739};
1740
1741VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
1742
1743/* Status returned to VF after VF requests FDIR commands
1744 * VIRTCHNL_FDIR_SUCCESS
1745 * VF FDIR related request is successfully done by PF
1746 * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER.
1747 *
1748 * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
1749 * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
1750 *
1751 * VIRTCHNL_FDIR_FAILURE_RULE_EXIST
1752 * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
1753 *
1754 * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
1755 * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
1756 *
1757 * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
1758 * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
1759 *
1760 * VIRTCHNL_FDIR_FAILURE_RULE_INVALID
1761 * OP_ADD_FDIR_FILTER request is failed due to parameters validation
1762 * or HW doesn't support.
1763 *
1764 * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
1765 * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
1766 * for programming.
1767 *
1768 * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID
1769 * OP_QUERY_FDIR_FILTER request is failed due to parameters validation,
1770 * for example, VF query counter of a rule who has no counter action.
1771 */
1772enum virtchnl_fdir_prgm_status {
1773	VIRTCHNL_FDIR_SUCCESS = 0,
1774	VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
1775	VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
1776	VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
1777	VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
1778	VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
1779	VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
1780	VIRTCHNL_FDIR_FAILURE_QUERY_INVALID,
1781};
1782
1783/* VIRTCHNL_OP_ADD_FDIR_FILTER
1784 * VF sends this request to PF by filling out vsi_id,
1785 * validate_only and rule_cfg. PF will return flow_id
1786 * if the request is successfully done and return add_status to VF.
1787 */
1788struct virtchnl_fdir_add {
1789	u16 vsi_id;  /* INPUT */
1790	/*
1791	 * 1 for validating a fdir rule, 0 for creating a fdir rule.
1792	 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
1793	 */
1794	u16 validate_only; /* INPUT */
1795	u32 flow_id;       /* OUTPUT */
1796	struct virtchnl_fdir_rule rule_cfg; /* INPUT */
1797
1798	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1799	s32 status;
1800};
1801
1802VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
1803
1804/* VIRTCHNL_OP_DEL_FDIR_FILTER
1805 * VF sends this request to PF by filling out vsi_id
1806 * and flow_id. PF will return del_status to VF.
1807 */
1808struct virtchnl_fdir_del {
1809	u16 vsi_id;  /* INPUT */
1810	u16 pad;
1811	u32 flow_id; /* INPUT */
1812
1813	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1814	s32 status;
1815};
1816
1817VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
1818
1819/* Status returned to VF after VF requests FSUB commands
1820 * VIRTCHNL_FSUB_SUCCESS
1821 * VF FLOW related request is successfully done by PF
1822 * The request can be OP_FLOW_SUBSCRIBE/UNSUBSCRIBE.
1823 *
1824 * VIRTCHNL_FSUB_FAILURE_RULE_NORESOURCE
1825 * OP_FLOW_SUBSCRIBE request is failed due to no Hardware resource.
1826 *
1827 * VIRTCHNL_FSUB_FAILURE_RULE_EXIST
1828 * OP_FLOW_SUBSCRIBE request is failed due to the rule is already existed.
1829 *
1830 * VIRTCHNL_FSUB_FAILURE_RULE_NONEXIST
1831 * OP_FLOW_UNSUBSCRIBE request is failed due to this rule doesn't exist.
1832 *
1833 * VIRTCHNL_FSUB_FAILURE_RULE_INVALID
1834 * OP_FLOW_SUBSCRIBE request is failed due to parameters validation
1835 * or HW doesn't support.
1836 */
1837enum virtchnl_fsub_prgm_status {
1838	VIRTCHNL_FSUB_SUCCESS = 0,
1839	VIRTCHNL_FSUB_FAILURE_RULE_NORESOURCE,
1840	VIRTCHNL_FSUB_FAILURE_RULE_EXIST,
1841	VIRTCHNL_FSUB_FAILURE_RULE_NONEXIST,
1842	VIRTCHNL_FSUB_FAILURE_RULE_INVALID,
1843};
1844
1845/* VIRTCHNL_OP_FLOW_SUBSCRIBE
1846 * VF sends this request to PF by filling out vsi_id,
1847 * validate_only, priority, proto_hdrs and actions.
1848 * PF will return flow_id
1849 * if the request is successfully done and return status to VF.
1850 */
1851struct virtchnl_flow_sub {
1852	u16 vsi_id; /* INPUT */
1853	u8 validate_only; /* INPUT */
1854	/* 0 is the highest priority; INPUT */
1855	u8 priority;
1856	u32 flow_id; /* OUTPUT */
1857	struct virtchnl_proto_hdrs proto_hdrs; /* INPUT */
1858	struct virtchnl_filter_action_set actions; /* INPUT */
1859	/* see enum virtchnl_fsub_prgm_status; OUTPUT */
1860	s32 status;
1861};
1862
1863VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_flow_sub);
1864
1865/* VIRTCHNL_OP_FLOW_UNSUBSCRIBE
1866 * VF sends this request to PF by filling out vsi_id
1867 * and flow_id. PF will return status to VF.
1868 */
1869struct virtchnl_flow_unsub {
1870	u16 vsi_id; /* INPUT */
1871	u16 pad;
1872	u32 flow_id; /* INPUT */
1873	/* see enum virtchnl_fsub_prgm_status; OUTPUT */
1874	s32 status;
1875};
1876
1877VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_flow_unsub);
1878
1879/* VIRTCHNL_OP_GET_QOS_CAPS
1880 * VF sends this message to get its QoS Caps, such as
1881 * TC number, Arbiter and Bandwidth.
1882 */
1883struct virtchnl_qos_cap_elem {
1884	u8 tc_num;
1885	u8 tc_prio;
1886#define VIRTCHNL_ABITER_STRICT      0
1887#define VIRTCHNL_ABITER_ETS         2
1888	u8 arbiter;
1889#define VIRTCHNL_STRICT_WEIGHT      1
1890	u8 weight;
1891	enum virtchnl_bw_limit_type type;
1892	union {
1893		struct virtchnl_shaper_bw shaper;
1894		u8 pad2[32];
1895	};
1896};
1897
1898VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_qos_cap_elem);
1899
1900struct virtchnl_qos_cap_list {
1901	u16 vsi_id;
1902	u16 num_elem;
1903	struct virtchnl_qos_cap_elem cap[1];
1904};
1905
1906VIRTCHNL_CHECK_STRUCT_LEN(44, virtchnl_qos_cap_list);
1907
1908/* VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP
1909 * VF sends message virtchnl_queue_tc_mapping to set queue to tc
1910 * mapping for all the Tx and Rx queues with a specified VSI, and
1911 * would get response about bitmap of valid user priorities
1912 * associated with queues.
1913 */
1914struct virtchnl_queue_tc_mapping {
1915	u16 vsi_id;
1916	u16 num_tc;
1917	u16 num_queue_pairs;
1918	u8 pad[2];
1919	union {
1920		struct {
1921			u16 start_queue_id;
1922			u16 queue_count;
1923		} req;
1924		struct {
1925#define VIRTCHNL_USER_PRIO_TYPE_UP	0
1926#define VIRTCHNL_USER_PRIO_TYPE_DSCP	1
1927			u16 prio_type;
1928			u16 valid_prio_bitmap;
1929		} resp;
1930	} tc[1];
1931};
1932
1933VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_tc_mapping);
1934
1935/* VIRTCHNL_OP_CONFIG_QUEUE_BW */
1936struct virtchnl_queue_bw {
1937	u16 queue_id;
1938	u8 tc;
1939	u8 pad;
1940	struct virtchnl_shaper_bw shaper;
1941};
1942
1943VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_bw);
1944
1945struct virtchnl_queues_bw_cfg {
1946	u16 vsi_id;
1947	u16 num_queues;
1948	struct virtchnl_queue_bw cfg[1];
1949};
1950
1951VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queues_bw_cfg);
1952
1953/* queue types */
1954enum virtchnl_queue_type {
1955	VIRTCHNL_QUEUE_TYPE_TX			= 0,
1956	VIRTCHNL_QUEUE_TYPE_RX			= 1,
1957};
1958
1959/* structure to specify a chunk of contiguous queues */
1960struct virtchnl_queue_chunk {
1961	/* see enum virtchnl_queue_type */
1962	s32 type;
1963	u16 start_queue_id;
1964	u16 num_queues;
1965};
1966
1967VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_queue_chunk);
1968
1969/* structure to specify several chunks of contiguous queues */
1970struct virtchnl_queue_chunks {
1971	u16 num_chunks;
1972	u16 rsvd;
1973	struct virtchnl_queue_chunk chunks[1];
1974};
1975
1976VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_chunks);
1977
1978/* VIRTCHNL_OP_ENABLE_QUEUES_V2
1979 * VIRTCHNL_OP_DISABLE_QUEUES_V2
1980 *
1981 * These opcodes can be used if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in
1982 * VIRTCHNL_OP_GET_VF_RESOURCES
1983 *
1984 * VF sends virtchnl_ena_dis_queues struct to specify the queues to be
1985 * enabled/disabled in chunks. Also applicable to single queue RX or
1986 * TX. PF performs requested action and returns status.
1987 */
1988struct virtchnl_del_ena_dis_queues {
1989	u16 vport_id;
1990	u16 pad;
1991	struct virtchnl_queue_chunks chunks;
1992};
1993
1994VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_del_ena_dis_queues);
1995
1996/* Virtchannel interrupt throttling rate index */
1997enum virtchnl_itr_idx {
1998	VIRTCHNL_ITR_IDX_0	= 0,
1999	VIRTCHNL_ITR_IDX_1	= 1,
2000	VIRTCHNL_ITR_IDX_NO_ITR	= 3,
2001};
2002
2003/* Queue to vector mapping */
2004struct virtchnl_queue_vector {
2005	u16 queue_id;
2006	u16 vector_id;
2007	u8 pad[4];
2008
2009	/* see enum virtchnl_itr_idx */
2010	s32 itr_idx;
2011
2012	/* see enum virtchnl_queue_type */
2013	s32 queue_type;
2014};
2015
2016VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queue_vector);
2017
2018/* VIRTCHNL_OP_MAP_QUEUE_VECTOR
2019 *
2020 * This opcode can be used only if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated
2021 * in VIRTCHNL_OP_GET_VF_RESOURCES
2022 *
2023 * VF sends this message to map queues to vectors and ITR index registers.
2024 * External data buffer contains virtchnl_queue_vector_maps structure
2025 * that contains num_qv_maps of virtchnl_queue_vector structures.
2026 * PF maps the requested queue vector maps after validating the queue and vector
2027 * ids and returns a status code.
2028 */
2029struct virtchnl_queue_vector_maps {
2030	u16 vport_id;
2031	u16 num_qv_maps;
2032	u8 pad[4];
2033	struct virtchnl_queue_vector qv_maps[1];
2034};
2035
2036VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_queue_vector_maps);
2037
2038struct virtchnl_quanta_cfg {
2039	u16 quanta_size;
2040	struct virtchnl_queue_chunk queue_select;
2041};
2042
2043VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_quanta_cfg);
2044
2045/* Since VF messages are limited by u16 size, precalculate the maximum possible
2046 * values of nested elements in virtchnl structures that virtual channel can
2047 * possibly handle in a single message.
2048 */
2049enum virtchnl_vector_limits {
2050	VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX	=
2051		((u16)(~0) - sizeof(struct virtchnl_vsi_queue_config_info)) /
2052		sizeof(struct virtchnl_queue_pair_info),
2053
2054	VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX		=
2055		((u16)(~0) - sizeof(struct virtchnl_irq_map_info)) /
2056		sizeof(struct virtchnl_vector_map),
2057
2058	VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX	=
2059		((u16)(~0) - sizeof(struct virtchnl_ether_addr_list)) /
2060		sizeof(struct virtchnl_ether_addr),
2061
2062	VIRTCHNL_OP_ADD_DEL_VLAN_MAX		=
2063		((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list)) /
2064		sizeof(u16),
2065
2066	VIRTCHNL_OP_ENABLE_CHANNELS_MAX		=
2067		((u16)(~0) - sizeof(struct virtchnl_tc_info)) /
2068		sizeof(struct virtchnl_channel_info),
2069
2070	VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX	=
2071		((u16)(~0) - sizeof(struct virtchnl_del_ena_dis_queues)) /
2072		sizeof(struct virtchnl_queue_chunk),
2073
2074	VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX	=
2075		((u16)(~0) - sizeof(struct virtchnl_queue_vector_maps)) /
2076		sizeof(struct virtchnl_queue_vector),
2077
2078	VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX		=
2079		((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list_v2)) /
2080		sizeof(struct virtchnl_vlan_filter),
2081};
2082
2083/**
2084 * virtchnl_vc_validate_vf_msg
2085 * @ver: Virtchnl version info
2086 * @v_opcode: Opcode for the message
2087 * @msg: pointer to the msg buffer
2088 * @msglen: msg length
2089 *
2090 * validate msg format against struct for each opcode
2091 */
2092static inline int
2093virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
2094			    u8 *msg, u16 msglen)
2095{
2096	bool err_msg_format = false;
2097	u32 valid_len = 0;
2098
2099	/* Validate message length. */
2100	switch (v_opcode) {
2101	case VIRTCHNL_OP_VERSION:
2102		valid_len = sizeof(struct virtchnl_version_info);
2103		break;
2104	case VIRTCHNL_OP_RESET_VF:
2105		break;
2106	case VIRTCHNL_OP_GET_VF_RESOURCES:
2107		if (VF_IS_V11(ver))
2108			valid_len = sizeof(u32);
2109		break;
2110	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
2111		valid_len = sizeof(struct virtchnl_txq_info);
2112		break;
2113	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
2114		valid_len = sizeof(struct virtchnl_rxq_info);
2115		break;
2116	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
2117		valid_len = sizeof(struct virtchnl_vsi_queue_config_info);
2118		if (msglen >= valid_len) {
2119			struct virtchnl_vsi_queue_config_info *vqc =
2120			    (struct virtchnl_vsi_queue_config_info *)msg;
2121
2122			if (vqc->num_queue_pairs == 0 || vqc->num_queue_pairs >
2123			    VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX) {
2124				err_msg_format = true;
2125				break;
2126			}
2127
2128			valid_len += (vqc->num_queue_pairs *
2129				      sizeof(struct
2130					     virtchnl_queue_pair_info));
2131		}
2132		break;
2133	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
2134		valid_len = sizeof(struct virtchnl_irq_map_info);
2135		if (msglen >= valid_len) {
2136			struct virtchnl_irq_map_info *vimi =
2137			    (struct virtchnl_irq_map_info *)msg;
2138
2139			if (vimi->num_vectors == 0 || vimi->num_vectors >
2140			    VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX) {
2141				err_msg_format = true;
2142				break;
2143			}
2144
2145			valid_len += (vimi->num_vectors *
2146				      sizeof(struct virtchnl_vector_map));
2147		}
2148		break;
2149	case VIRTCHNL_OP_ENABLE_QUEUES:
2150	case VIRTCHNL_OP_DISABLE_QUEUES:
2151		valid_len = sizeof(struct virtchnl_queue_select);
2152		break;
2153	case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
2154		break;
2155	case VIRTCHNL_OP_ADD_ETH_ADDR:
2156	case VIRTCHNL_OP_DEL_ETH_ADDR:
2157		valid_len = sizeof(struct virtchnl_ether_addr_list);
2158		if (msglen >= valid_len) {
2159			struct virtchnl_ether_addr_list *veal =
2160			    (struct virtchnl_ether_addr_list *)msg;
2161
2162			if (veal->num_elements == 0 || veal->num_elements >
2163			    VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX) {
2164				err_msg_format = true;
2165				break;
2166			}
2167
2168			valid_len += veal->num_elements *
2169			    sizeof(struct virtchnl_ether_addr);
2170		}
2171		break;
2172	case VIRTCHNL_OP_ADD_VLAN:
2173	case VIRTCHNL_OP_DEL_VLAN:
2174		valid_len = sizeof(struct virtchnl_vlan_filter_list);
2175		if (msglen >= valid_len) {
2176			struct virtchnl_vlan_filter_list *vfl =
2177			    (struct virtchnl_vlan_filter_list *)msg;
2178
2179			if (vfl->num_elements == 0 || vfl->num_elements >
2180			    VIRTCHNL_OP_ADD_DEL_VLAN_MAX) {
2181				err_msg_format = true;
2182				break;
2183			}
2184
2185			valid_len += vfl->num_elements * sizeof(u16);
2186		}
2187		break;
2188	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
2189		valid_len = sizeof(struct virtchnl_promisc_info);
2190		break;
2191	case VIRTCHNL_OP_GET_STATS:
2192		valid_len = sizeof(struct virtchnl_queue_select);
2193		break;
2194	case VIRTCHNL_OP_CONFIG_RSS_KEY:
2195		valid_len = sizeof(struct virtchnl_rss_key);
2196		if (msglen >= valid_len) {
2197			struct virtchnl_rss_key *vrk =
2198				(struct virtchnl_rss_key *)msg;
2199
2200			if (vrk->key_len == 0) {
2201				/* zero length is allowed as input */
2202				break;
2203			}
2204
2205			valid_len += vrk->key_len - 1;
2206		}
2207		break;
2208	case VIRTCHNL_OP_CONFIG_RSS_LUT:
2209		valid_len = sizeof(struct virtchnl_rss_lut);
2210		if (msglen >= valid_len) {
2211			struct virtchnl_rss_lut *vrl =
2212				(struct virtchnl_rss_lut *)msg;
2213
2214			if (vrl->lut_entries == 0) {
2215				/* zero entries is allowed as input */
2216				break;
2217			}
2218
2219			valid_len += vrl->lut_entries - 1;
2220		}
2221		break;
2222	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
2223		break;
2224	case VIRTCHNL_OP_SET_RSS_HENA:
2225		valid_len = sizeof(struct virtchnl_rss_hena);
2226		break;
2227	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
2228	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
2229		break;
2230	case VIRTCHNL_OP_REQUEST_QUEUES:
2231		valid_len = sizeof(struct virtchnl_vf_res_request);
2232		break;
2233	case VIRTCHNL_OP_ENABLE_CHANNELS:
2234		valid_len = sizeof(struct virtchnl_tc_info);
2235		if (msglen >= valid_len) {
2236			struct virtchnl_tc_info *vti =
2237				(struct virtchnl_tc_info *)msg;
2238
2239			if (vti->num_tc == 0 || vti->num_tc >
2240			    VIRTCHNL_OP_ENABLE_CHANNELS_MAX) {
2241				err_msg_format = true;
2242				break;
2243			}
2244
2245			valid_len += (vti->num_tc - 1) *
2246				     sizeof(struct virtchnl_channel_info);
2247		}
2248		break;
2249	case VIRTCHNL_OP_DISABLE_CHANNELS:
2250		break;
2251	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
2252	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
2253		valid_len = sizeof(struct virtchnl_filter);
2254		break;
2255	case VIRTCHNL_OP_ADD_RSS_CFG:
2256	case VIRTCHNL_OP_DEL_RSS_CFG:
2257		valid_len = sizeof(struct virtchnl_rss_cfg);
2258		break;
2259	case VIRTCHNL_OP_ADD_FDIR_FILTER:
2260		valid_len = sizeof(struct virtchnl_fdir_add);
2261		break;
2262	case VIRTCHNL_OP_DEL_FDIR_FILTER:
2263		valid_len = sizeof(struct virtchnl_fdir_del);
2264		break;
2265	case VIRTCHNL_OP_FLOW_SUBSCRIBE:
2266		valid_len = sizeof(struct virtchnl_flow_sub);
2267		break;
2268	case VIRTCHNL_OP_FLOW_UNSUBSCRIBE:
2269		valid_len = sizeof(struct virtchnl_flow_unsub);
2270		break;
2271	case VIRTCHNL_OP_GET_QOS_CAPS:
2272		break;
2273	case VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP:
2274		valid_len = sizeof(struct virtchnl_queue_tc_mapping);
2275		if (msglen >= valid_len) {
2276			struct virtchnl_queue_tc_mapping *q_tc =
2277				(struct virtchnl_queue_tc_mapping *)msg;
2278			if (q_tc->num_tc == 0) {
2279				err_msg_format = true;
2280				break;
2281			}
2282			valid_len += (q_tc->num_tc - 1) *
2283					 sizeof(q_tc->tc[0]);
2284		}
2285		break;
2286	case VIRTCHNL_OP_CONFIG_QUEUE_BW:
2287		valid_len = sizeof(struct virtchnl_queues_bw_cfg);
2288		if (msglen >= valid_len) {
2289			struct virtchnl_queues_bw_cfg *q_bw =
2290				(struct virtchnl_queues_bw_cfg *)msg;
2291			if (q_bw->num_queues == 0) {
2292				err_msg_format = true;
2293				break;
2294			}
2295			valid_len += (q_bw->num_queues - 1) *
2296					 sizeof(q_bw->cfg[0]);
2297		}
2298		break;
2299	case VIRTCHNL_OP_CONFIG_QUANTA:
2300		valid_len = sizeof(struct virtchnl_quanta_cfg);
2301		if (msglen >= valid_len) {
2302			struct virtchnl_quanta_cfg *q_quanta =
2303				(struct virtchnl_quanta_cfg *)msg;
2304			if (q_quanta->quanta_size == 0 ||
2305			    q_quanta->queue_select.num_queues == 0) {
2306				err_msg_format = true;
2307				break;
2308			}
2309		}
2310		break;
2311	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
2312		break;
2313	case VIRTCHNL_OP_ADD_VLAN_V2:
2314	case VIRTCHNL_OP_DEL_VLAN_V2:
2315		valid_len = sizeof(struct virtchnl_vlan_filter_list_v2);
2316		if (msglen >= valid_len) {
2317			struct virtchnl_vlan_filter_list_v2 *vfl =
2318			    (struct virtchnl_vlan_filter_list_v2 *)msg;
2319
2320			if (vfl->num_elements == 0 || vfl->num_elements >
2321			    VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX) {
2322				err_msg_format = true;
2323				break;
2324			}
2325
2326			valid_len += (vfl->num_elements - 1) *
2327				sizeof(struct virtchnl_vlan_filter);
2328		}
2329		break;
2330	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
2331	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
2332	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
2333	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
2334	case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
2335	case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
2336		valid_len = sizeof(struct virtchnl_vlan_setting);
2337		break;
2338	case VIRTCHNL_OP_ENABLE_QUEUES_V2:
2339	case VIRTCHNL_OP_DISABLE_QUEUES_V2:
2340		valid_len = sizeof(struct virtchnl_del_ena_dis_queues);
2341		if (msglen >= valid_len) {
2342			struct virtchnl_del_ena_dis_queues *qs =
2343				(struct virtchnl_del_ena_dis_queues *)msg;
2344			if (qs->chunks.num_chunks == 0 ||
2345			    qs->chunks.num_chunks > VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX) {
2346				err_msg_format = true;
2347				break;
2348			}
2349			valid_len += (qs->chunks.num_chunks - 1) *
2350				      sizeof(struct virtchnl_queue_chunk);
2351		}
2352		break;
2353	case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
2354		valid_len = sizeof(struct virtchnl_queue_vector_maps);
2355		if (msglen >= valid_len) {
2356			struct virtchnl_queue_vector_maps *v_qp =
2357				(struct virtchnl_queue_vector_maps *)msg;
2358			if (v_qp->num_qv_maps == 0 ||
2359			    v_qp->num_qv_maps > VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX) {
2360				err_msg_format = true;
2361				break;
2362			}
2363			valid_len += (v_qp->num_qv_maps - 1) *
2364				      sizeof(struct virtchnl_queue_vector);
2365		}
2366		break;
2367	/* These are always errors coming from the VF. */
2368	case VIRTCHNL_OP_EVENT:
2369	case VIRTCHNL_OP_UNKNOWN:
2370	default:
2371		return VIRTCHNL_STATUS_ERR_PARAM;
2372	}
2373	/* few more checks */
2374	if (err_msg_format || valid_len != msglen)
2375		return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
2376
2377	return 0;
2378}
2379#endif /* _VIRTCHNL_H_ */
2380