/* SPDX-License-Identifier: BSD-3-Clause */ /* Copyright (c) 2024, Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef _VIRTCHNL_H_ #define _VIRTCHNL_H_ /* Description: * This header file describes the Virtual Function (VF) - Physical Function * (PF) communication protocol used by the drivers for all devices starting * from our 40G product line * * Admin queue buffer usage: * desc->opcode is always aqc_opc_send_msg_to_pf * flags, retval, datalen, and data addr are all used normally. * The Firmware copies the cookie fields when sending messages between the * PF and VF, but uses all other fields internally. Due to this limitation, * we must send all messages as "indirect", i.e. using an external buffer. * * All the VSI indexes are relative to the VF. Each VF can have maximum of * three VSIs. All the queue indexes are relative to the VSI. Each VF can * have a maximum of sixteen queues for all of its VSIs. * * The PF is required to return a status code in v_retval for all messages * except RESET_VF, which does not require any response. The returned value * is of virtchnl_status_code type, defined here. * * In general, VF driver initialization should roughly follow the order of * these opcodes. The VF driver must first validate the API version of the * PF driver, then request a reset, then get resources, then configure * queues and interrupts. After these operations are complete, the VF * driver may start its queues, optionally add MAC and VLAN filters, and * process traffic. */ /* START GENERIC DEFINES * Need to ensure the following enums and defines hold the same meaning and * value in current and future projects */ #define VIRTCHNL_ETH_LENGTH_OF_ADDRESS 6 /* These macros are used to generate compilation errors if a structure/union * is not exactly the correct length. It gives a divide by zero error if the * structure/union is not of the correct size, otherwise it creates an enum * that is never used. */ #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \ { virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) } #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \ { virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) } /* Error Codes * Note that many older versions of various iAVF drivers convert the reported * status code directly into an iavf_status enumeration. For this reason, it * is important that the values of these enumerations line up. */ enum virtchnl_status_code { VIRTCHNL_STATUS_SUCCESS = 0, VIRTCHNL_STATUS_ERR_PARAM = -5, VIRTCHNL_STATUS_ERR_NO_MEMORY = -18, VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH = -38, VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR = -39, VIRTCHNL_STATUS_ERR_INVALID_VF_ID = -40, VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR = -53, VIRTCHNL_STATUS_ERR_NOT_SUPPORTED = -64, }; /* Backward compatibility */ #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT 0x0 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT 0x1 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT 0x2 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT 0x3 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT 0x4 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT 0x5 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT 0x6 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT 0x7 enum virtchnl_link_speed { VIRTCHNL_LINK_SPEED_UNKNOWN = 0, VIRTCHNL_LINK_SPEED_100MB = BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT), VIRTCHNL_LINK_SPEED_1GB = BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT), VIRTCHNL_LINK_SPEED_10GB = BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT), VIRTCHNL_LINK_SPEED_40GB = BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT), VIRTCHNL_LINK_SPEED_20GB = BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT), VIRTCHNL_LINK_SPEED_25GB = BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT), VIRTCHNL_LINK_SPEED_2_5GB = BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT), VIRTCHNL_LINK_SPEED_5GB = BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT), }; /* for hsplit_0 field of Rx HMC context */ /* deprecated with AVF 1.0 */ enum virtchnl_rx_hsplit { VIRTCHNL_RX_HSPLIT_NO_SPLIT = 0, VIRTCHNL_RX_HSPLIT_SPLIT_L2 = 1, VIRTCHNL_RX_HSPLIT_SPLIT_IP = 2, VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4, VIRTCHNL_RX_HSPLIT_SPLIT_SCTP = 8, }; enum virtchnl_bw_limit_type { VIRTCHNL_BW_SHAPER = 0, }; /* END GENERIC DEFINES */ /* Opcodes for VF-PF communication. These are placed in the v_opcode field * of the virtchnl_msg structure. */ enum virtchnl_ops { /* The PF sends status change events to VFs using * the VIRTCHNL_OP_EVENT opcode. * VFs send requests to the PF using the other ops. * Use of "advanced opcode" features must be negotiated as part of capabilities * exchange and are not considered part of base mode feature set. * */ VIRTCHNL_OP_UNKNOWN = 0, VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */ VIRTCHNL_OP_RESET_VF = 2, VIRTCHNL_OP_GET_VF_RESOURCES = 3, VIRTCHNL_OP_CONFIG_TX_QUEUE = 4, VIRTCHNL_OP_CONFIG_RX_QUEUE = 5, VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6, VIRTCHNL_OP_CONFIG_IRQ_MAP = 7, VIRTCHNL_OP_ENABLE_QUEUES = 8, VIRTCHNL_OP_DISABLE_QUEUES = 9, VIRTCHNL_OP_ADD_ETH_ADDR = 10, VIRTCHNL_OP_DEL_ETH_ADDR = 11, VIRTCHNL_OP_ADD_VLAN = 12, VIRTCHNL_OP_DEL_VLAN = 13, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14, VIRTCHNL_OP_GET_STATS = 15, VIRTCHNL_OP_RSVD = 16, VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */ /* opcode 19 is reserved */ /* opcodes 20, 21, and 22 are reserved */ VIRTCHNL_OP_CONFIG_RSS_KEY = 23, VIRTCHNL_OP_CONFIG_RSS_LUT = 24, VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25, VIRTCHNL_OP_SET_RSS_HENA = 26, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28, VIRTCHNL_OP_REQUEST_QUEUES = 29, VIRTCHNL_OP_ENABLE_CHANNELS = 30, VIRTCHNL_OP_DISABLE_CHANNELS = 31, VIRTCHNL_OP_ADD_CLOUD_FILTER = 32, VIRTCHNL_OP_DEL_CLOUD_FILTER = 33, /* opcode 34 is reserved */ /* opcodes 38, 39, 40, 41, 42 and 43 are reserved */ /* opcode 44 is reserved */ VIRTCHNL_OP_ADD_RSS_CFG = 45, VIRTCHNL_OP_DEL_RSS_CFG = 46, VIRTCHNL_OP_ADD_FDIR_FILTER = 47, VIRTCHNL_OP_DEL_FDIR_FILTER = 48, VIRTCHNL_OP_GET_MAX_RSS_QREGION = 50, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51, VIRTCHNL_OP_ADD_VLAN_V2 = 52, VIRTCHNL_OP_DEL_VLAN_V2 = 53, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57, VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2 = 58, VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 = 59, /* opcodes 60 through 65 are reserved */ VIRTCHNL_OP_GET_QOS_CAPS = 66, VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP = 67, /* opcode 68 through 70 are reserved */ VIRTCHNL_OP_ENABLE_QUEUES_V2 = 107, VIRTCHNL_OP_DISABLE_QUEUES_V2 = 108, VIRTCHNL_OP_MAP_QUEUE_VECTOR = 111, VIRTCHNL_OP_CONFIG_QUEUE_BW = 112, VIRTCHNL_OP_CONFIG_QUANTA = 113, VIRTCHNL_OP_FLOW_SUBSCRIBE = 114, VIRTCHNL_OP_FLOW_UNSUBSCRIBE = 115, /* opcode 116 through 130 are reserved */ VIRTCHNL_OP_MAX, }; static inline const char *virtchnl_op_str(enum virtchnl_ops v_opcode) { switch (v_opcode) { case VIRTCHNL_OP_UNKNOWN: return "VIRTCHNL_OP_UNKNOWN"; case VIRTCHNL_OP_VERSION: return "VIRTCHNL_OP_VERSION"; case VIRTCHNL_OP_RESET_VF: return "VIRTCHNL_OP_RESET_VF"; case VIRTCHNL_OP_GET_VF_RESOURCES: return "VIRTCHNL_OP_GET_VF_RESOURCES"; case VIRTCHNL_OP_CONFIG_TX_QUEUE: return "VIRTCHNL_OP_CONFIG_TX_QUEUE"; case VIRTCHNL_OP_CONFIG_RX_QUEUE: return "VIRTCHNL_OP_CONFIG_RX_QUEUE"; case VIRTCHNL_OP_CONFIG_VSI_QUEUES: return "VIRTCHNL_OP_CONFIG_VSI_QUEUES"; case VIRTCHNL_OP_CONFIG_IRQ_MAP: return "VIRTCHNL_OP_CONFIG_IRQ_MAP"; case VIRTCHNL_OP_ENABLE_QUEUES: return "VIRTCHNL_OP_ENABLE_QUEUES"; case VIRTCHNL_OP_DISABLE_QUEUES: return "VIRTCHNL_OP_DISABLE_QUEUES"; case VIRTCHNL_OP_ADD_ETH_ADDR: return "VIRTCHNL_OP_ADD_ETH_ADDR"; case VIRTCHNL_OP_DEL_ETH_ADDR: return "VIRTCHNL_OP_DEL_ETH_ADDR"; case VIRTCHNL_OP_ADD_VLAN: return "VIRTCHNL_OP_ADD_VLAN"; case VIRTCHNL_OP_DEL_VLAN: return "VIRTCHNL_OP_DEL_VLAN"; case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: return "VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE"; case VIRTCHNL_OP_GET_STATS: return "VIRTCHNL_OP_GET_STATS"; case VIRTCHNL_OP_RSVD: return "VIRTCHNL_OP_RSVD"; case VIRTCHNL_OP_EVENT: return "VIRTCHNL_OP_EVENT"; case VIRTCHNL_OP_CONFIG_RSS_KEY: return "VIRTCHNL_OP_CONFIG_RSS_KEY"; case VIRTCHNL_OP_CONFIG_RSS_LUT: return "VIRTCHNL_OP_CONFIG_RSS_LUT"; case VIRTCHNL_OP_GET_RSS_HENA_CAPS: return "VIRTCHNL_OP_GET_RSS_HENA_CAPS"; case VIRTCHNL_OP_SET_RSS_HENA: return "VIRTCHNL_OP_SET_RSS_HENA"; case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING"; case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING"; case VIRTCHNL_OP_REQUEST_QUEUES: return "VIRTCHNL_OP_REQUEST_QUEUES"; case VIRTCHNL_OP_ENABLE_CHANNELS: return "VIRTCHNL_OP_ENABLE_CHANNELS"; case VIRTCHNL_OP_DISABLE_CHANNELS: return "VIRTCHNL_OP_DISABLE_CHANNELS"; case VIRTCHNL_OP_ADD_CLOUD_FILTER: return "VIRTCHNL_OP_ADD_CLOUD_FILTER"; case VIRTCHNL_OP_DEL_CLOUD_FILTER: return "VIRTCHNL_OP_DEL_CLOUD_FILTER"; case VIRTCHNL_OP_ADD_RSS_CFG: return "VIRTCHNL_OP_ADD_RSS_CFG"; case VIRTCHNL_OP_DEL_RSS_CFG: return "VIRTCHNL_OP_DEL_RSS_CFG"; case VIRTCHNL_OP_ADD_FDIR_FILTER: return "VIRTCHNL_OP_ADD_FDIR_FILTER"; case VIRTCHNL_OP_DEL_FDIR_FILTER: return "VIRTCHNL_OP_DEL_FDIR_FILTER"; case VIRTCHNL_OP_GET_MAX_RSS_QREGION: return "VIRTCHNL_OP_GET_MAX_RSS_QREGION"; case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: return "VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS"; case VIRTCHNL_OP_ADD_VLAN_V2: return "VIRTCHNL_OP_ADD_VLAN_V2"; case VIRTCHNL_OP_DEL_VLAN_V2: return "VIRTCHNL_OP_DEL_VLAN_V2"; case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2"; case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2"; case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: return "VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2"; case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: return "VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2"; case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2: return "VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2"; case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2: return "VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2"; case VIRTCHNL_OP_ENABLE_QUEUES_V2: return "VIRTCHNL_OP_ENABLE_QUEUES_V2"; case VIRTCHNL_OP_DISABLE_QUEUES_V2: return "VIRTCHNL_OP_DISABLE_QUEUES_V2"; case VIRTCHNL_OP_MAP_QUEUE_VECTOR: return "VIRTCHNL_OP_MAP_QUEUE_VECTOR"; case VIRTCHNL_OP_FLOW_SUBSCRIBE: return "VIRTCHNL_OP_FLOW_SUBSCRIBE"; case VIRTCHNL_OP_FLOW_UNSUBSCRIBE: return "VIRTCHNL_OP_FLOW_UNSUBSCRIBE"; case VIRTCHNL_OP_MAX: return "VIRTCHNL_OP_MAX"; default: return "Unsupported (update virtchnl.h)"; } } static inline const char *virtchnl_stat_str(enum virtchnl_status_code v_status) { switch (v_status) { case VIRTCHNL_STATUS_SUCCESS: return "VIRTCHNL_STATUS_SUCCESS"; case VIRTCHNL_STATUS_ERR_PARAM: return "VIRTCHNL_STATUS_ERR_PARAM"; case VIRTCHNL_STATUS_ERR_NO_MEMORY: return "VIRTCHNL_STATUS_ERR_NO_MEMORY"; case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: return "VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH"; case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: return "VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR"; case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: return "VIRTCHNL_STATUS_ERR_INVALID_VF_ID"; case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: return "VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR"; case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: return "VIRTCHNL_STATUS_ERR_NOT_SUPPORTED"; default: return "Unknown status code (update virtchnl.h)"; } } /* Virtual channel message descriptor. This overlays the admin queue * descriptor. All other data is passed in external buffers. */ struct virtchnl_msg { u8 pad[8]; /* AQ flags/opcode/len/retval fields */ /* avoid confusion with desc->opcode */ enum virtchnl_ops v_opcode; /* ditto for desc->retval */ enum virtchnl_status_code v_retval; u32 vfid; /* used by PF when sending to VF */ }; VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg); /* Message descriptions and data structures. */ /* VIRTCHNL_OP_VERSION * VF posts its version number to the PF. PF responds with its version number * in the same format, along with a return code. * Reply from PF has its major/minor versions also in param0 and param1. * If there is a major version mismatch, then the VF cannot operate. * If there is a minor version mismatch, then the VF can operate but should * add a warning to the system log. * * This enum element MUST always be specified as == 1, regardless of other * changes in the API. The PF must always respond to this message without * error regardless of version mismatch. */ #define VIRTCHNL_VERSION_MAJOR 1 #define VIRTCHNL_VERSION_MINOR 1 #define VIRTCHNL_VERSION_MAJOR_2 2 #define VIRTCHNL_VERSION_MINOR_0 0 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS 0 struct virtchnl_version_info { u32 major; u32 minor; }; VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info); #define VF_IS_V10(_ver) (((_ver)->major == 1) && ((_ver)->minor == 0)) #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1)) #define VF_IS_V20(_ver) (((_ver)->major == 2) && ((_ver)->minor == 0)) /* VIRTCHNL_OP_RESET_VF * VF sends this request to PF with no parameters * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register * until reset completion is indicated. The admin queue must be reinitialized * after this operation. * * When reset is complete, PF must ensure that all queues in all VSIs associated * with the VF are stopped, all queue configurations in the HMC are set to 0, * and all MAC and VLAN filters (except the default MAC address) on all VSIs * are cleared. */ /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV * vsi_type should always be 6 for backward compatibility. Add other fields * as needed. */ enum virtchnl_vsi_type { VIRTCHNL_VSI_TYPE_INVALID = 0, VIRTCHNL_VSI_SRIOV = 6, }; /* VIRTCHNL_OP_GET_VF_RESOURCES * Version 1.0 VF sends this request to PF with no parameters * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities * PF responds with an indirect message containing * virtchnl_vf_resource and one or more * virtchnl_vsi_resource structures. */ struct virtchnl_vsi_resource { u16 vsi_id; u16 num_queue_pairs; /* see enum virtchnl_vsi_type */ s32 vsi_type; u16 qset_handle; u8 default_mac_addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS]; }; VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource); /* VF capability flags * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including * TX/RX Checksum offloading and TSO for non-tunnelled packets. */ #define VIRTCHNL_VF_OFFLOAD_L2 BIT(0) #define VIRTCHNL_VF_OFFLOAD_IWARP BIT(1) #define VIRTCHNL_VF_CAP_RDMA VIRTCHNL_VF_OFFLOAD_IWARP #define VIRTCHNL_VF_OFFLOAD_RSS_AQ BIT(3) #define VIRTCHNL_VF_OFFLOAD_RSS_REG BIT(4) #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR BIT(5) #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES BIT(6) /* used to negotiate communicating link speeds in Mbps */ #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED BIT(7) /* BIT(8) is reserved */ #define VIRTCHNL_VF_LARGE_NUM_QPAIRS BIT(9) #define VIRTCHNL_VF_OFFLOAD_CRC BIT(10) #define VIRTCHNL_VF_OFFLOAD_FSUB_PF BIT(14) #define VIRTCHNL_VF_OFFLOAD_VLAN_V2 BIT(15) #define VIRTCHNL_VF_OFFLOAD_VLAN BIT(16) #define VIRTCHNL_VF_OFFLOAD_RX_POLLING BIT(17) #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2 BIT(18) #define VIRTCHNL_VF_OFFLOAD_RSS_PF BIT(19) #define VIRTCHNL_VF_OFFLOAD_ENCAP BIT(20) #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM BIT(21) #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM BIT(22) #define VIRTCHNL_VF_OFFLOAD_ADQ BIT(23) #define VIRTCHNL_VF_OFFLOAD_ADQ_V2 BIT(24) #define VIRTCHNL_VF_OFFLOAD_USO BIT(25) /* BIT(26) is reserved */ #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF BIT(27) #define VIRTCHNL_VF_OFFLOAD_FDIR_PF BIT(28) #define VIRTCHNL_VF_OFFLOAD_QOS BIT(29) /* BIT(30) is reserved */ /* BIT(31) is reserved */ #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \ VIRTCHNL_VF_OFFLOAD_VLAN | \ VIRTCHNL_VF_OFFLOAD_RSS_PF) struct virtchnl_vf_resource { u16 num_vsis; u16 num_queue_pairs; u16 max_vectors; u16 max_mtu; u32 vf_cap_flags; u32 rss_key_size; u32 rss_lut_size; struct virtchnl_vsi_resource vsi_res[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource); /* VIRTCHNL_OP_CONFIG_TX_QUEUE * VF sends this message to set up parameters for one TX queue. * External data buffer contains one instance of virtchnl_txq_info. * PF configures requested queue and returns a status code. */ /* Tx queue config info */ struct virtchnl_txq_info { u16 vsi_id; u16 queue_id; u16 ring_len; /* number of descriptors, multiple of 8 */ u16 headwb_enabled; /* deprecated with AVF 1.0 */ u64 dma_ring_addr; u64 dma_headwb_addr; /* deprecated with AVF 1.0 */ }; VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info); /* RX descriptor IDs (range from 0 to 63) */ enum virtchnl_rx_desc_ids { VIRTCHNL_RXDID_0_16B_BASE = 0, VIRTCHNL_RXDID_1_32B_BASE = 1, VIRTCHNL_RXDID_2_FLEX_SQ_NIC = 2, VIRTCHNL_RXDID_3_FLEX_SQ_SW = 3, VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB = 4, VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL = 5, VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2 = 6, VIRTCHNL_RXDID_7_HW_RSVD = 7, /* 8 through 15 are reserved */ VIRTCHNL_RXDID_16_COMMS_GENERIC = 16, VIRTCHNL_RXDID_17_COMMS_AUX_VLAN = 17, VIRTCHNL_RXDID_18_COMMS_AUX_IPV4 = 18, VIRTCHNL_RXDID_19_COMMS_AUX_IPV6 = 19, VIRTCHNL_RXDID_20_COMMS_AUX_FLOW = 20, VIRTCHNL_RXDID_21_COMMS_AUX_TCP = 21, /* 22 through 63 are reserved */ }; /* RX descriptor ID bitmasks */ enum virtchnl_rx_desc_id_bitmasks { VIRTCHNL_RXDID_0_16B_BASE_M = BIT(VIRTCHNL_RXDID_0_16B_BASE), VIRTCHNL_RXDID_1_32B_BASE_M = BIT(VIRTCHNL_RXDID_1_32B_BASE), VIRTCHNL_RXDID_2_FLEX_SQ_NIC_M = BIT(VIRTCHNL_RXDID_2_FLEX_SQ_NIC), VIRTCHNL_RXDID_3_FLEX_SQ_SW_M = BIT(VIRTCHNL_RXDID_3_FLEX_SQ_SW), VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB_M = BIT(VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB), VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL_M = BIT(VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL), VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2_M = BIT(VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2), VIRTCHNL_RXDID_7_HW_RSVD_M = BIT(VIRTCHNL_RXDID_7_HW_RSVD), /* 9 through 15 are reserved */ VIRTCHNL_RXDID_16_COMMS_GENERIC_M = BIT(VIRTCHNL_RXDID_16_COMMS_GENERIC), VIRTCHNL_RXDID_17_COMMS_AUX_VLAN_M = BIT(VIRTCHNL_RXDID_17_COMMS_AUX_VLAN), VIRTCHNL_RXDID_18_COMMS_AUX_IPV4_M = BIT(VIRTCHNL_RXDID_18_COMMS_AUX_IPV4), VIRTCHNL_RXDID_19_COMMS_AUX_IPV6_M = BIT(VIRTCHNL_RXDID_19_COMMS_AUX_IPV6), VIRTCHNL_RXDID_20_COMMS_AUX_FLOW_M = BIT(VIRTCHNL_RXDID_20_COMMS_AUX_FLOW), VIRTCHNL_RXDID_21_COMMS_AUX_TCP_M = BIT(VIRTCHNL_RXDID_21_COMMS_AUX_TCP), /* 22 through 63 are reserved */ }; /* VIRTCHNL_OP_CONFIG_RX_QUEUE * VF sends this message to set up parameters for one RX queue. * External data buffer contains one instance of virtchnl_rxq_info. * PF configures requested queue and returns a status code. The * crc_disable flag disables CRC stripping on the VF. Setting * the crc_disable flag to 1 will disable CRC stripping for each * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC * offload must have been set prior to sending this info or the PF * will ignore the request. This flag should be set the same for * all of the queues for a VF. */ /* Rx queue config info */ struct virtchnl_rxq_info { u16 vsi_id; u16 queue_id; u32 ring_len; /* number of descriptors, multiple of 32 */ u16 hdr_size; u16 splithdr_enabled; /* deprecated with AVF 1.0 */ u32 databuffer_size; u32 max_pkt_size; u8 crc_disable; u8 pad1[3]; u64 dma_ring_addr; /* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */ s32 rx_split_pos; u32 pad2; }; VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info); /* VIRTCHNL_OP_CONFIG_VSI_QUEUES * VF sends this message to set parameters for active TX and RX queues * associated with the specified VSI. * PF configures queues and returns status. * If the number of queues specified is greater than the number of queues * associated with the VSI, an error is returned and no queues are configured. * NOTE: The VF is not required to configure all queues in a single request. * It may send multiple messages. PF drivers must correctly handle all VF * requests. */ struct virtchnl_queue_pair_info { /* NOTE: vsi_id and queue_id should be identical for both queues. */ struct virtchnl_txq_info txq; struct virtchnl_rxq_info rxq; }; VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info); struct virtchnl_vsi_queue_config_info { u16 vsi_id; u16 num_queue_pairs; u32 pad; struct virtchnl_queue_pair_info qpair[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info); /* VIRTCHNL_OP_REQUEST_QUEUES * VF sends this message to request the PF to allocate additional queues to * this VF. Each VF gets a guaranteed number of queues on init but asking for * additional queues must be negotiated. This is a best effort request as it * is possible the PF does not have enough queues left to support the request. * If the PF cannot support the number requested it will respond with the * maximum number it is able to support. If the request is successful, PF will * then reset the VF to institute required changes. */ /* VF resource request */ struct virtchnl_vf_res_request { u16 num_queue_pairs; }; /* VIRTCHNL_OP_CONFIG_IRQ_MAP * VF uses this message to map vectors to queues. * The rxq_map and txq_map fields are bitmaps used to indicate which queues * are to be associated with the specified vector. * The "other" causes are always mapped to vector 0. The VF may not request * that vector 0 be used for traffic. * PF configures interrupt mapping and returns status. * NOTE: due to hardware requirements, all active queues (both TX and RX) * should be mapped to interrupts, even if the driver intends to operate * only in polling mode. In this case the interrupt may be disabled, but * the ITR timer will still run to trigger writebacks. */ struct virtchnl_vector_map { u16 vsi_id; u16 vector_id; u16 rxq_map; u16 txq_map; u16 rxitr_idx; u16 txitr_idx; }; VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map); struct virtchnl_irq_map_info { u16 num_vectors; struct virtchnl_vector_map vecmap[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info); /* VIRTCHNL_OP_ENABLE_QUEUES * VIRTCHNL_OP_DISABLE_QUEUES * VF sends these message to enable or disable TX/RX queue pairs. * The queues fields are bitmaps indicating which queues to act upon. * (Currently, we only support 16 queues per VF, but we make the field * u32 to allow for expansion.) * PF performs requested action and returns status. * NOTE: The VF is not required to enable/disable all queues in a single * request. It may send multiple messages. * PF drivers must correctly handle all VF requests. */ struct virtchnl_queue_select { u16 vsi_id; u16 pad; u32 rx_queues; u32 tx_queues; }; VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select); /* VIRTCHNL_OP_GET_MAX_RSS_QREGION * * if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES * then this op must be supported. * * VF sends this message in order to query the max RSS queue region * size supported by PF, when VIRTCHNL_VF_LARGE_NUM_QPAIRS is enabled. * This information should be used when configuring the RSS LUT and/or * configuring queue region based filters. * * The maximum RSS queue region is 2^qregion_width. So, a qregion_width * of 6 would inform the VF that the PF supports a maximum RSS queue region * of 64. * * A queue region represents a range of queues that can be used to configure * a RSS LUT. For example, if a VF is given 64 queues, but only a max queue * region size of 16 (i.e. 2^qregion_width = 16) then it will only be able * to configure the RSS LUT with queue indices from 0 to 15. However, other * filters can be used to direct packets to queues >15 via specifying a queue * base/offset and queue region width. */ struct virtchnl_max_rss_qregion { u16 vport_id; u16 qregion_width; u8 pad[4]; }; VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_max_rss_qregion); /* VIRTCHNL_OP_ADD_ETH_ADDR * VF sends this message in order to add one or more unicast or multicast * address filters for the specified VSI. * PF adds the filters and returns status. */ /* VIRTCHNL_OP_DEL_ETH_ADDR * VF sends this message in order to remove one or more unicast or multicast * filters for the specified VSI. * PF removes the filters and returns status. */ /* VIRTCHNL_ETHER_ADDR_LEGACY * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad * bytes. Moving forward all VF drivers should not set type to * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy * behavior. The control plane function (i.e. PF) can use a best effort method * of tracking the primary/device unicast in this case, but there is no * guarantee and functionality depends on the implementation of the PF. */ /* VIRTCHNL_ETHER_ADDR_PRIMARY * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane * function (i.e. PF) to accurately track and use this MAC address for * displaying on the host and for VM/function reset. */ /* VIRTCHNL_ETHER_ADDR_EXTRA * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra * unicast and/or multicast filters that are being added/deleted via * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively. */ struct virtchnl_ether_addr { u8 addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS]; u8 type; #define VIRTCHNL_ETHER_ADDR_LEGACY 0 #define VIRTCHNL_ETHER_ADDR_PRIMARY 1 #define VIRTCHNL_ETHER_ADDR_EXTRA 2 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK 3 /* first two bits of type are valid */ u8 pad; }; VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr); struct virtchnl_ether_addr_list { u16 vsi_id; u16 num_elements; struct virtchnl_ether_addr list[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list); /* VIRTCHNL_OP_ADD_VLAN * VF sends this message to add one or more VLAN tag filters for receives. * PF adds the filters and returns status. * If a port VLAN is configured by the PF, this operation will return an * error to the VF. */ /* VIRTCHNL_OP_DEL_VLAN * VF sends this message to remove one or more VLAN tag filters for receives. * PF removes the filters and returns status. * If a port VLAN is configured by the PF, this operation will return an * error to the VF. */ struct virtchnl_vlan_filter_list { u16 vsi_id; u16 num_elements; u16 vlan_id[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list); /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related * structures and opcodes. * * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED. * * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype. * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype. * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype. * * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported * by the PF concurrently. For example, if the PF can support * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it * would OR the following bits: * * VIRTHCNL_VLAN_ETHERTYPE_8100 | * VIRTCHNL_VLAN_ETHERTYPE_88A8 | * VIRTCHNL_VLAN_ETHERTYPE_AND; * * The VF would interpret this as VLAN filtering can be supported on both 0x8100 * and 0x88A8 VLAN ethertypes. * * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported * by the PF concurrently. For example if the PF can support * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping * offload it would OR the following bits: * * VIRTCHNL_VLAN_ETHERTYPE_8100 | * VIRTCHNL_VLAN_ETHERTYPE_88A8 | * VIRTCHNL_VLAN_ETHERTYPE_XOR; * * The VF would interpret this as VLAN stripping can be supported on either * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override * the previously set value. * * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors. * * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor. * * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor. * * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for * VLAN filtering if the underlying PF supports it. * * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a * certain VLAN capability can be toggled. For example if the underlying PF/CP * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should * set this bit along with the supported ethertypes. */ enum virtchnl_vlan_support { VIRTCHNL_VLAN_UNSUPPORTED = 0, VIRTCHNL_VLAN_ETHERTYPE_8100 = 0x00000001, VIRTCHNL_VLAN_ETHERTYPE_88A8 = 0x00000002, VIRTCHNL_VLAN_ETHERTYPE_9100 = 0x00000004, VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 = 0x00000100, VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 = 0x00000200, VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 = 0x00000400, VIRTCHNL_VLAN_PRIO = 0x01000000, VIRTCHNL_VLAN_FILTER_MASK = 0x10000000, VIRTCHNL_VLAN_ETHERTYPE_AND = 0x20000000, VIRTCHNL_VLAN_ETHERTYPE_XOR = 0x40000000, VIRTCHNL_VLAN_TOGGLE = 0x80000000 }; /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS * for filtering, insertion, and stripping capabilities. * * If only outer capabilities are supported (for filtering, insertion, and/or * stripping) then this refers to the outer most or single VLAN from the VF's * perspective. * * If only inner capabilities are supported (for filtering, insertion, and/or * stripping) then this refers to the outer most or single VLAN from the VF's * perspective. Functionally this is the same as if only outer capabilities are * supported. The VF driver is just forced to use the inner fields when * adding/deleting filters and enabling/disabling offloads (if supported). * * If both outer and inner capabilities are supported (for filtering, insertion, * and/or stripping) then outer refers to the outer most or single VLAN and * inner refers to the second VLAN, if it exists, in the packet. * * There is no support for tunneled VLAN offloads, so outer or inner are never * referring to a tunneled packet from the VF's perspective. */ struct virtchnl_vlan_supported_caps { u32 outer; u32 inner; }; /* The PF populates these fields based on the supported VLAN filtering. If a * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using * the unsupported fields. * * Also, a VF is only allowed to toggle its VLAN filtering setting if the * VIRTCHNL_VLAN_TOGGLE bit is set. * * The ethertype(s) specified in the ethertype_init field are the ethertypes * enabled for VLAN filtering. VLAN filtering in this case refers to the outer * most VLAN from the VF's perspective. If both inner and outer filtering are * allowed then ethertype_init only refers to the outer most VLAN as only * VLAN ethertype supported for inner VLAN filtering is * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled * when both inner and outer filtering are allowed. * * The max_filters field tells the VF how many VLAN filters it's allowed to have * at any one time. If it exceeds this amount and tries to add another filter, * then the request will be rejected by the PF. To prevent failures, the VF * should keep track of how many VLAN filters it has added and not attempt to * add more than max_filters. */ struct virtchnl_vlan_filtering_caps { struct virtchnl_vlan_supported_caps filtering_support; u32 ethertype_init; u16 max_filters; u8 pad[2]; }; VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps); /* This enum is used for the virtchnl_vlan_offload_caps structure to specify * if the PF supports a different ethertype for stripping and insertion. * * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified * for stripping affect the ethertype(s) specified for insertion and visa versa * as well. If the VF tries to configure VLAN stripping via * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then * that will be the ethertype for both stripping and insertion. * * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for * stripping do not affect the ethertype(s) specified for insertion and visa * versa. */ enum virtchnl_vlan_ethertype_match { VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0, VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1, }; /* The PF populates these fields based on the supported VLAN offloads. If a * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields. * * Also, a VF is only allowed to toggle its VLAN offload setting if the * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set. * * The VF driver needs to be aware of how the tags are stripped by hardware and * inserted by the VF driver based on the level of offload support. The PF will * populate these fields based on where the VLAN tags are expected to be * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to * interpret these fields. See the definition of the * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support * enumeration. */ struct virtchnl_vlan_offload_caps { struct virtchnl_vlan_supported_caps stripping_support; struct virtchnl_vlan_supported_caps insertion_support; u32 ethertype_init; u8 ethertype_match; u8 pad[3]; }; VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps); /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS * VF sends this message to determine its VLAN capabilities. * * PF will mark which capabilities it supports based on hardware support and * current configuration. For example, if a port VLAN is configured the PF will * not allow outer VLAN filtering, stripping, or insertion to be configured so * it will block these features from the VF. * * The VF will need to cross reference its capabilities with the PFs * capabilities in the response message from the PF to determine the VLAN * support. */ struct virtchnl_vlan_caps { struct virtchnl_vlan_filtering_caps filtering; struct virtchnl_vlan_offload_caps offloads; }; VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps); struct virtchnl_vlan { u16 tci; /* tci[15:13] = PCP and tci[11:0] = VID */ u16 tci_mask; /* only valid if VIRTCHNL_VLAN_FILTER_MASK set in * filtering caps */ u16 tpid; /* 0x8100, 0x88a8, etc. and only type(s) set in * filtering caps. Note that tpid here does not refer to * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the * actual 2-byte VLAN TPID */ u8 pad[2]; }; VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan); struct virtchnl_vlan_filter { struct virtchnl_vlan inner; struct virtchnl_vlan outer; u8 pad[16]; }; VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter); /* VIRTCHNL_OP_ADD_VLAN_V2 * VIRTCHNL_OP_DEL_VLAN_V2 * * VF sends these messages to add/del one or more VLAN tag filters for Rx * traffic. * * The PF attempts to add the filters and returns status. * * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS. */ struct virtchnl_vlan_filter_list_v2 { u16 vport_id; u16 num_elements; u8 pad[4]; struct virtchnl_vlan_filter filters[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2); /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 * * VF sends this message to enable or disable VLAN stripping or insertion. It * also needs to specify an ethertype. The VF knows which VLAN ethertypes are * allowed and whether or not it's allowed to enable/disable the specific * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to * parse the virtchnl_vlan_caps.offloads fields to determine which offload * messages are allowed. * * For example, if the PF populates the virtchnl_vlan_caps.offloads in the * following manner the VF will be allowed to enable and/or disable 0x8100 inner * VLAN insertion and/or stripping via the opcodes listed above. Inner in this * case means the outer most or single VLAN from the VF's perspective. This is * because no outer offloads are supported. See the comments above the * virtchnl_vlan_supported_caps structure for more details. * * virtchnl_vlan_caps.offloads.stripping_support.inner = * VIRTCHNL_VLAN_TOGGLE | * VIRTCHNL_VLAN_ETHERTYPE_8100; * * virtchnl_vlan_caps.offloads.insertion_support.inner = * VIRTCHNL_VLAN_TOGGLE | * VIRTCHNL_VLAN_ETHERTYPE_8100; * * In order to enable inner (again note that in this case inner is the outer * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100 * VLANs, the VF would populate the virtchnl_vlan_setting structure in the * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. * * virtchnl_vlan_setting.inner_ethertype_setting = * VIRTCHNL_VLAN_ETHERTYPE_8100; * * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on * initialization. * * The reason that VLAN TPID(s) are not being used for the * outer_ethertype_setting and inner_ethertype_setting fields is because it's * possible a device could support VLAN insertion and/or stripping offload on * multiple ethertypes concurrently, so this method allows a VF to request * multiple ethertypes in one message using the virtchnl_vlan_support * enumeration. * * For example, if the PF populates the virtchnl_vlan_caps.offloads in the * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer * VLAN insertion and stripping simultaneously. The * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be * populated based on what the PF can support. * * virtchnl_vlan_caps.offloads.stripping_support.outer = * VIRTCHNL_VLAN_TOGGLE | * VIRTCHNL_VLAN_ETHERTYPE_8100 | * VIRTCHNL_VLAN_ETHERTYPE_88A8 | * VIRTCHNL_VLAN_ETHERTYPE_AND; * * virtchnl_vlan_caps.offloads.insertion_support.outer = * VIRTCHNL_VLAN_TOGGLE | * VIRTCHNL_VLAN_ETHERTYPE_8100 | * VIRTCHNL_VLAN_ETHERTYPE_88A8 | * VIRTCHNL_VLAN_ETHERTYPE_AND; * * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF * would populate the virthcnl_vlan_offload_structure in the following manner * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. * * virtchnl_vlan_setting.outer_ethertype_setting = * VIRTHCNL_VLAN_ETHERTYPE_8100 | * VIRTHCNL_VLAN_ETHERTYPE_88A8; * * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on * initialization. * * There is also the case where a PF and the underlying hardware can support * VLAN offloads on multiple ethertypes, but not concurrently. For example, if * the PF populates the virtchnl_vlan_caps.offloads in the following manner the * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN * offloads. The ethertypes must match for stripping and insertion. * * virtchnl_vlan_caps.offloads.stripping_support.outer = * VIRTCHNL_VLAN_TOGGLE | * VIRTCHNL_VLAN_ETHERTYPE_8100 | * VIRTCHNL_VLAN_ETHERTYPE_88A8 | * VIRTCHNL_VLAN_ETHERTYPE_XOR; * * virtchnl_vlan_caps.offloads.insertion_support.outer = * VIRTCHNL_VLAN_TOGGLE | * VIRTCHNL_VLAN_ETHERTYPE_8100 | * VIRTCHNL_VLAN_ETHERTYPE_88A8 | * VIRTCHNL_VLAN_ETHERTYPE_XOR; * * virtchnl_vlan_caps.offloads.ethertype_match = * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; * * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would * populate the virtchnl_vlan_setting structure in the following manner and send * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the * ethertype for VLAN insertion if it's enabled. So, for completeness, a * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent. * * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8; * * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on * initialization. * * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2 * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 * * VF sends this message to enable or disable VLAN filtering. It also needs to * specify an ethertype. The VF knows which VLAN ethertypes are allowed and * whether or not it's allowed to enable/disable filtering via the * VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to * parse the virtchnl_vlan_caps.filtering fields to determine which, if any, * filtering messages are allowed. * * For example, if the PF populates the virtchnl_vlan_caps.filtering in the * following manner the VF will be allowed to enable/disable 0x8100 and 0x88a8 * outer VLAN filtering together. Note, that the VIRTCHNL_VLAN_ETHERTYPE_AND * means that all filtering ethertypes will to be enabled and disabled together * regardless of the request from the VF. This means that the underlying * hardware only supports VLAN filtering for all VLAN the specified ethertypes * or none of them. * * virtchnl_vlan_caps.filtering.filtering_support.outer = * VIRTCHNL_VLAN_TOGGLE | * VIRTCHNL_VLAN_ETHERTYPE_8100 | * VIRTHCNL_VLAN_ETHERTYPE_88A8 | * VIRTCHNL_VLAN_ETHERTYPE_9100 | * VIRTCHNL_VLAN_ETHERTYPE_AND; * * In order to enable outer VLAN filtering for 0x88a8 and 0x8100 VLANs (0x9100 * VLANs aren't supported by the VF driver), the VF would populate the * virtchnl_vlan_setting structure in the following manner and send the * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2. The same message format would be used * to disable outer VLAN filtering for 0x88a8 and 0x8100 VLANs, but the * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 opcode is used. * * virtchnl_vlan_setting.outer_ethertype_setting = * VIRTCHNL_VLAN_ETHERTYPE_8100 | * VIRTCHNL_VLAN_ETHERTYPE_88A8; * */ struct virtchnl_vlan_setting { u32 outer_ethertype_setting; u32 inner_ethertype_setting; u16 vport_id; u8 pad[6]; }; VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting); /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE * VF sends VSI id and flags. * PF returns status code in retval. * Note: we assume that broadcast accept mode is always enabled. */ struct virtchnl_promisc_info { u16 vsi_id; u16 flags; }; VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info); #define FLAG_VF_UNICAST_PROMISC 0x00000001 #define FLAG_VF_MULTICAST_PROMISC 0x00000002 /* VIRTCHNL_OP_GET_STATS * VF sends this message to request stats for the selected VSI. VF uses * the virtchnl_queue_select struct to specify the VSI. The queue_id * field is ignored by the PF. * * PF replies with struct virtchnl_eth_stats in an external buffer. */ struct virtchnl_eth_stats { u64 rx_bytes; /* received bytes */ u64 rx_unicast; /* received unicast pkts */ u64 rx_multicast; /* received multicast pkts */ u64 rx_broadcast; /* received broadcast pkts */ u64 rx_discards; u64 rx_unknown_protocol; u64 tx_bytes; /* transmitted bytes */ u64 tx_unicast; /* transmitted unicast pkts */ u64 tx_multicast; /* transmitted multicast pkts */ u64 tx_broadcast; /* transmitted broadcast pkts */ u64 tx_discards; u64 tx_errors; }; /* VIRTCHNL_OP_CONFIG_RSS_KEY * VIRTCHNL_OP_CONFIG_RSS_LUT * VF sends these messages to configure RSS. Only supported if both PF * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during * configuration negotiation. If this is the case, then the RSS fields in * the VF resource struct are valid. * Both the key and LUT are initialized to 0 by the PF, meaning that * RSS is effectively disabled until set up by the VF. */ struct virtchnl_rss_key { u16 vsi_id; u16 key_len; u8 key[1]; /* RSS hash key, packed bytes */ }; VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key); struct virtchnl_rss_lut { u16 vsi_id; u16 lut_entries; u8 lut[1]; /* RSS lookup table */ }; VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut); /* enum virthcnl_hash_filter * * Bits defining the hash filters in the hena field of the virtchnl_rss_hena * structure. Each bit indicates a specific hash filter for RSS. * * Note that not all bits are supported on all hardware. The VF should use * VIRTCHNL_OP_GET_RSS_HENA_CAPS to determine which bits the PF is capable of * before using VIRTCHNL_OP_SET_RSS_HENA to enable specific filters. */ enum virtchnl_hash_filter { /* Bits 0 through 28 are reserved for future use */ /* Bit 29, 30, and 32 are not supported on XL710 a X710 */ VIRTCHNL_HASH_FILTER_UNICAST_IPV4_UDP = 29, VIRTCHNL_HASH_FILTER_MULTICAST_IPV4_UDP = 30, VIRTCHNL_HASH_FILTER_IPV4_UDP = 31, VIRTCHNL_HASH_FILTER_IPV4_TCP_SYN_NO_ACK = 32, VIRTCHNL_HASH_FILTER_IPV4_TCP = 33, VIRTCHNL_HASH_FILTER_IPV4_SCTP = 34, VIRTCHNL_HASH_FILTER_IPV4_OTHER = 35, VIRTCHNL_HASH_FILTER_FRAG_IPV4 = 36, /* Bits 37 and 38 are reserved for future use */ /* Bit 39, 40, and 42 are not supported on XL710 a X710 */ VIRTCHNL_HASH_FILTER_UNICAST_IPV6_UDP = 39, VIRTCHNL_HASH_FILTER_MULTICAST_IPV6_UDP = 40, VIRTCHNL_HASH_FILTER_IPV6_UDP = 41, VIRTCHNL_HASH_FILTER_IPV6_TCP_SYN_NO_ACK = 42, VIRTCHNL_HASH_FILTER_IPV6_TCP = 43, VIRTCHNL_HASH_FILTER_IPV6_SCTP = 44, VIRTCHNL_HASH_FILTER_IPV6_OTHER = 45, VIRTCHNL_HASH_FILTER_FRAG_IPV6 = 46, /* Bit 37 is reserved for future use */ VIRTCHNL_HASH_FILTER_FCOE_OX = 48, VIRTCHNL_HASH_FILTER_FCOE_RX = 49, VIRTCHNL_HASH_FILTER_FCOE_OTHER = 50, /* Bits 51 through 62 are reserved for future use */ VIRTCHNL_HASH_FILTER_L2_PAYLOAD = 63, }; #define VIRTCHNL_HASH_FILTER_INVALID (0) /* VIRTCHNL_OP_GET_RSS_HENA_CAPS * VIRTCHNL_OP_SET_RSS_HENA * VF sends these messages to get and set the hash filter enable bits for RSS. * By default, the PF sets these to all possible traffic types that the * hardware supports. The VF can query this value if it wants to change the * traffic types that are hashed by the hardware. */ struct virtchnl_rss_hena { /* see enum virtchnl_hash_filter */ u64 hena; }; VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena); /* Type of RSS algorithm */ enum virtchnl_rss_algorithm { VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC = 0, VIRTCHNL_RSS_ALG_R_ASYMMETRIC = 1, VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC = 2, VIRTCHNL_RSS_ALG_XOR_SYMMETRIC = 3, }; /* This is used by PF driver to enforce how many channels can be supported. * When ADQ_V2 capability is negotiated, it will allow 16 channels otherwise * PF driver will allow only max 4 channels */ #define VIRTCHNL_MAX_ADQ_CHANNELS 4 #define VIRTCHNL_MAX_ADQ_V2_CHANNELS 16 /* VIRTCHNL_OP_ENABLE_CHANNELS * VIRTCHNL_OP_DISABLE_CHANNELS * VF sends these messages to enable or disable channels based on * the user specified queue count and queue offset for each traffic class. * This struct encompasses all the information that the PF needs from * VF to create a channel. */ struct virtchnl_channel_info { u16 count; /* number of queues in a channel */ u16 offset; /* queues in a channel start from 'offset' */ u32 pad; u64 max_tx_rate; }; VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info); struct virtchnl_tc_info { u32 num_tc; u32 pad; struct virtchnl_channel_info list[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info); /* VIRTCHNL_ADD_CLOUD_FILTER * VIRTCHNL_DEL_CLOUD_FILTER * VF sends these messages to add or delete a cloud filter based on the * user specified match and action filters. These structures encompass * all the information that the PF needs from the VF to add/delete a * cloud filter. */ struct virtchnl_l4_spec { u8 src_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS]; u8 dst_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS]; /* vlan_prio is part of this 16 bit field even from OS perspective * vlan_id:12 is actual vlan_id, then vlanid:bit14..12 is vlan_prio * in future, when decided to offload vlan_prio, pass that information * as part of the "vlan_id" field, Bit14..12 */ __be16 vlan_id; __be16 pad; /* reserved for future use */ __be32 src_ip[4]; __be32 dst_ip[4]; __be16 src_port; __be16 dst_port; }; VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec); union virtchnl_flow_spec { struct virtchnl_l4_spec tcp_spec; u8 buffer[128]; /* reserved for future use */ }; VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec); enum virtchnl_action { /* action types */ VIRTCHNL_ACTION_DROP = 0, VIRTCHNL_ACTION_TC_REDIRECT, VIRTCHNL_ACTION_PASSTHRU, VIRTCHNL_ACTION_QUEUE, VIRTCHNL_ACTION_Q_REGION, VIRTCHNL_ACTION_MARK, VIRTCHNL_ACTION_COUNT, }; enum virtchnl_flow_type { /* flow types */ VIRTCHNL_TCP_V4_FLOW = 0, VIRTCHNL_TCP_V6_FLOW, VIRTCHNL_UDP_V4_FLOW, VIRTCHNL_UDP_V6_FLOW, }; struct virtchnl_filter { union virtchnl_flow_spec data; union virtchnl_flow_spec mask; /* see enum virtchnl_flow_type */ s32 flow_type; /* see enum virtchnl_action */ s32 action; u32 action_meta; u8 field_flags; }; VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter); struct virtchnl_shaper_bw { /* Unit is Kbps */ u32 committed; u32 peak; }; VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_shaper_bw); /* VIRTCHNL_OP_EVENT * PF sends this message to inform the VF driver of events that may affect it. * No direct response is expected from the VF, though it may generate other * messages in response to this one. */ enum virtchnl_event_codes { VIRTCHNL_EVENT_UNKNOWN = 0, VIRTCHNL_EVENT_LINK_CHANGE, VIRTCHNL_EVENT_RESET_IMPENDING, VIRTCHNL_EVENT_PF_DRIVER_CLOSE, }; #define PF_EVENT_SEVERITY_INFO 0 #define PF_EVENT_SEVERITY_ATTENTION 1 #define PF_EVENT_SEVERITY_ACTION_REQUIRED 2 #define PF_EVENT_SEVERITY_CERTAIN_DOOM 255 struct virtchnl_pf_event { /* see enum virtchnl_event_codes */ s32 event; union { /* If the PF driver does not support the new speed reporting * capabilities then use link_event else use link_event_adv to * get the speed and link information. The ability to understand * new speeds is indicated by setting the capability flag * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter * in virtchnl_vf_resource struct and can be used to determine * which link event struct to use below. */ struct { enum virtchnl_link_speed link_speed; bool link_status; u8 pad[3]; } link_event; struct { /* link_speed provided in Mbps */ u32 link_speed; u8 link_status; u8 pad[3]; } link_event_adv; } event_data; s32 severity; }; VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event); /* VF reset states - these are written into the RSTAT register: * VFGEN_RSTAT on the VF * When the PF initiates a reset, it writes 0 * When the reset is complete, it writes 1 * When the PF detects that the VF has recovered, it writes 2 * VF checks this register periodically to determine if a reset has occurred, * then polls it to know when the reset is complete. * If either the PF or VF reads the register while the hardware * is in a reset state, it will return DEADBEEF, which, when masked * will result in 3. */ enum virtchnl_vfr_states { VIRTCHNL_VFR_INPROGRESS = 0, VIRTCHNL_VFR_COMPLETED, VIRTCHNL_VFR_VFACTIVE, }; #define VIRTCHNL_MAX_NUM_PROTO_HDRS 32 #define VIRTCHNL_MAX_NUM_PROTO_HDRS_W_MSK 16 #define VIRTCHNL_MAX_SIZE_RAW_PACKET 1024 #define PROTO_HDR_SHIFT 5 #define PROTO_HDR_FIELD_START(proto_hdr_type) \ (proto_hdr_type << PROTO_HDR_SHIFT) #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1) /* VF use these macros to configure each protocol header. * Specify which protocol headers and protocol header fields base on * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field. * @param hdr: a struct of virtchnl_proto_hdr * @param hdr_type: ETH/IPV4/TCP, etc * @param field: SRC/DST/TEID/SPI, etc */ #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \ ((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK)) #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \ ((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK)) #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \ ((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK)) #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr) ((hdr)->field_selector) #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ (VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \ VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ (VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \ VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \ ((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type) #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \ (((hdr)->type) >> PROTO_HDR_SHIFT) #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \ ((hdr)->type == ((s32)((val) >> PROTO_HDR_SHIFT))) #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \ (VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) && \ VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val)) /* Protocol header type within a packet segment. A segment consists of one or * more protocol headers that make up a logical group of protocol headers. Each * logical group of protocol headers encapsulates or is encapsulated using/by * tunneling or encapsulation protocols for network virtualization. */ enum virtchnl_proto_hdr_type { VIRTCHNL_PROTO_HDR_NONE, VIRTCHNL_PROTO_HDR_ETH, VIRTCHNL_PROTO_HDR_S_VLAN, VIRTCHNL_PROTO_HDR_C_VLAN, VIRTCHNL_PROTO_HDR_IPV4, VIRTCHNL_PROTO_HDR_IPV6, VIRTCHNL_PROTO_HDR_TCP, VIRTCHNL_PROTO_HDR_UDP, VIRTCHNL_PROTO_HDR_SCTP, VIRTCHNL_PROTO_HDR_GTPU_IP, VIRTCHNL_PROTO_HDR_GTPU_EH, VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, VIRTCHNL_PROTO_HDR_PPPOE, VIRTCHNL_PROTO_HDR_L2TPV3, VIRTCHNL_PROTO_HDR_ESP, VIRTCHNL_PROTO_HDR_AH, VIRTCHNL_PROTO_HDR_PFCP, VIRTCHNL_PROTO_HDR_GTPC, VIRTCHNL_PROTO_HDR_ECPRI, VIRTCHNL_PROTO_HDR_L2TPV2, VIRTCHNL_PROTO_HDR_PPP, /* IPv4 and IPv6 Fragment header types are only associated to * VIRTCHNL_PROTO_HDR_IPV4 and VIRTCHNL_PROTO_HDR_IPV6 respectively, * cannot be used independently. */ VIRTCHNL_PROTO_HDR_IPV4_FRAG, VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG, VIRTCHNL_PROTO_HDR_GRE, }; /* Protocol header field within a protocol header. */ enum virtchnl_proto_hdr_field { /* ETHER */ VIRTCHNL_PROTO_HDR_ETH_SRC = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH), VIRTCHNL_PROTO_HDR_ETH_DST, VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE, /* S-VLAN */ VIRTCHNL_PROTO_HDR_S_VLAN_ID = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN), /* C-VLAN */ VIRTCHNL_PROTO_HDR_C_VLAN_ID = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN), /* IPV4 */ VIRTCHNL_PROTO_HDR_IPV4_SRC = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4), VIRTCHNL_PROTO_HDR_IPV4_DST, VIRTCHNL_PROTO_HDR_IPV4_DSCP, VIRTCHNL_PROTO_HDR_IPV4_TTL, VIRTCHNL_PROTO_HDR_IPV4_PROT, VIRTCHNL_PROTO_HDR_IPV4_CHKSUM, /* IPV6 */ VIRTCHNL_PROTO_HDR_IPV6_SRC = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6), VIRTCHNL_PROTO_HDR_IPV6_DST, VIRTCHNL_PROTO_HDR_IPV6_TC, VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT, VIRTCHNL_PROTO_HDR_IPV6_PROT, /* IPV6 Prefix */ VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_SRC, VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_DST, VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_SRC, VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_DST, VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_SRC, VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_DST, VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_SRC, VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_DST, VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_SRC, VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_DST, VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_SRC, VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_DST, /* TCP */ VIRTCHNL_PROTO_HDR_TCP_SRC_PORT = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP), VIRTCHNL_PROTO_HDR_TCP_DST_PORT, VIRTCHNL_PROTO_HDR_TCP_CHKSUM, /* UDP */ VIRTCHNL_PROTO_HDR_UDP_SRC_PORT = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP), VIRTCHNL_PROTO_HDR_UDP_DST_PORT, VIRTCHNL_PROTO_HDR_UDP_CHKSUM, /* SCTP */ VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP), VIRTCHNL_PROTO_HDR_SCTP_DST_PORT, VIRTCHNL_PROTO_HDR_SCTP_CHKSUM, /* GTPU_IP */ VIRTCHNL_PROTO_HDR_GTPU_IP_TEID = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP), /* GTPU_EH */ VIRTCHNL_PROTO_HDR_GTPU_EH_PDU = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH), VIRTCHNL_PROTO_HDR_GTPU_EH_QFI, /* PPPOE */ VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE), /* L2TPV3 */ VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3), /* ESP */ VIRTCHNL_PROTO_HDR_ESP_SPI = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP), /* AH */ VIRTCHNL_PROTO_HDR_AH_SPI = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH), /* PFCP */ VIRTCHNL_PROTO_HDR_PFCP_S_FIELD = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP), VIRTCHNL_PROTO_HDR_PFCP_SEID, /* GTPC */ VIRTCHNL_PROTO_HDR_GTPC_TEID = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPC), /* ECPRI */ VIRTCHNL_PROTO_HDR_ECPRI_MSG_TYPE = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ECPRI), VIRTCHNL_PROTO_HDR_ECPRI_PC_RTC_ID, /* IPv4 Dummy Fragment */ VIRTCHNL_PROTO_HDR_IPV4_FRAG_PKID = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4_FRAG), /* IPv6 Extension Fragment */ VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG_PKID = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG), /* GTPU_DWN/UP */ VIRTCHNL_PROTO_HDR_GTPU_DWN_QFI = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN), VIRTCHNL_PROTO_HDR_GTPU_UP_QFI = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP), /* L2TPv2 */ VIRTCHNL_PROTO_HDR_L2TPV2_SESS_ID = PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV2), VIRTCHNL_PROTO_HDR_L2TPV2_LEN_SESS_ID, }; struct virtchnl_proto_hdr { /* see enum virtchnl_proto_hdr_type */ s32 type; u32 field_selector; /* a bit mask to select field for header type */ u8 buffer[64]; /** * binary buffer in network order for specific header type. * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4 * header is expected to be copied into the buffer. */ }; VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr); struct virtchnl_proto_hdr_w_msk { /* see enum virtchnl_proto_hdr_type */ s32 type; u32 pad; /** * binary buffer in network order for specific header type. * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4 * header is expected to be copied into the buffer. */ u8 buffer_spec[64]; /* binary buffer for bit-mask applied to specific header type */ u8 buffer_mask[64]; }; VIRTCHNL_CHECK_STRUCT_LEN(136, virtchnl_proto_hdr_w_msk); struct virtchnl_proto_hdrs { u8 tunnel_level; /** * specify where protocol header start from. * must be 0 when sending a raw packet request. * 0 - from the outer layer * 1 - from the first inner layer * 2 - from the second inner layer * .... */ int count; /** * count must <= * VIRTCHNL_MAX_NUM_PROTO_HDRS + VIRTCHNL_MAX_NUM_PROTO_HDRS_W_MSK * count = 0 : select raw * 1 < count <= VIRTCHNL_MAX_NUM_PROTO_HDRS : select proto_hdr * count > VIRTCHNL_MAX_NUM_PROTO_HDRS : select proto_hdr_w_msk * last valid index = count - VIRTCHNL_MAX_NUM_PROTO_HDRS */ union { struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS]; struct virtchnl_proto_hdr_w_msk proto_hdr_w_msk[VIRTCHNL_MAX_NUM_PROTO_HDRS_W_MSK]; struct { u16 pkt_len; u8 spec[VIRTCHNL_MAX_SIZE_RAW_PACKET]; u8 mask[VIRTCHNL_MAX_SIZE_RAW_PACKET]; } raw; }; }; VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs); struct virtchnl_rss_cfg { struct virtchnl_proto_hdrs proto_hdrs; /* protocol headers */ /* see enum virtchnl_rss_algorithm; rss algorithm type */ s32 rss_algorithm; u8 reserved[128]; /* reserve for future */ }; VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg); /* action configuration for FDIR and FSUB */ struct virtchnl_filter_action { /* see enum virtchnl_action type */ s32 type; union { /* used for queue and qgroup action */ struct { u16 index; u8 region; } queue; /* used for count action */ struct { /* share counter ID with other flow rules */ u8 shared; u32 id; /* counter ID */ } count; /* used for mark action */ u32 mark_id; u8 reserve[32]; } act_conf; }; VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action); #define VIRTCHNL_MAX_NUM_ACTIONS 8 struct virtchnl_filter_action_set { /* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */ int count; struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS]; }; VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set); /* pattern and action for FDIR rule */ struct virtchnl_fdir_rule { struct virtchnl_proto_hdrs proto_hdrs; struct virtchnl_filter_action_set action_set; }; VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule); /* Status returned to VF after VF requests FDIR commands * VIRTCHNL_FDIR_SUCCESS * VF FDIR related request is successfully done by PF * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER. * * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource. * * VIRTCHNL_FDIR_FAILURE_RULE_EXIST * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed. * * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule. * * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist. * * VIRTCHNL_FDIR_FAILURE_RULE_INVALID * OP_ADD_FDIR_FILTER request is failed due to parameters validation * or HW doesn't support. * * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out * for programming. * * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID * OP_QUERY_FDIR_FILTER request is failed due to parameters validation, * for example, VF query counter of a rule who has no counter action. */ enum virtchnl_fdir_prgm_status { VIRTCHNL_FDIR_SUCCESS = 0, VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE, VIRTCHNL_FDIR_FAILURE_RULE_EXIST, VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT, VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST, VIRTCHNL_FDIR_FAILURE_RULE_INVALID, VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT, VIRTCHNL_FDIR_FAILURE_QUERY_INVALID, }; /* VIRTCHNL_OP_ADD_FDIR_FILTER * VF sends this request to PF by filling out vsi_id, * validate_only and rule_cfg. PF will return flow_id * if the request is successfully done and return add_status to VF. */ struct virtchnl_fdir_add { u16 vsi_id; /* INPUT */ /* * 1 for validating a fdir rule, 0 for creating a fdir rule. * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER. */ u16 validate_only; /* INPUT */ u32 flow_id; /* OUTPUT */ struct virtchnl_fdir_rule rule_cfg; /* INPUT */ /* see enum virtchnl_fdir_prgm_status; OUTPUT */ s32 status; }; VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add); /* VIRTCHNL_OP_DEL_FDIR_FILTER * VF sends this request to PF by filling out vsi_id * and flow_id. PF will return del_status to VF. */ struct virtchnl_fdir_del { u16 vsi_id; /* INPUT */ u16 pad; u32 flow_id; /* INPUT */ /* see enum virtchnl_fdir_prgm_status; OUTPUT */ s32 status; }; VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del); /* Status returned to VF after VF requests FSUB commands * VIRTCHNL_FSUB_SUCCESS * VF FLOW related request is successfully done by PF * The request can be OP_FLOW_SUBSCRIBE/UNSUBSCRIBE. * * VIRTCHNL_FSUB_FAILURE_RULE_NORESOURCE * OP_FLOW_SUBSCRIBE request is failed due to no Hardware resource. * * VIRTCHNL_FSUB_FAILURE_RULE_EXIST * OP_FLOW_SUBSCRIBE request is failed due to the rule is already existed. * * VIRTCHNL_FSUB_FAILURE_RULE_NONEXIST * OP_FLOW_UNSUBSCRIBE request is failed due to this rule doesn't exist. * * VIRTCHNL_FSUB_FAILURE_RULE_INVALID * OP_FLOW_SUBSCRIBE request is failed due to parameters validation * or HW doesn't support. */ enum virtchnl_fsub_prgm_status { VIRTCHNL_FSUB_SUCCESS = 0, VIRTCHNL_FSUB_FAILURE_RULE_NORESOURCE, VIRTCHNL_FSUB_FAILURE_RULE_EXIST, VIRTCHNL_FSUB_FAILURE_RULE_NONEXIST, VIRTCHNL_FSUB_FAILURE_RULE_INVALID, }; /* VIRTCHNL_OP_FLOW_SUBSCRIBE * VF sends this request to PF by filling out vsi_id, * validate_only, priority, proto_hdrs and actions. * PF will return flow_id * if the request is successfully done and return status to VF. */ struct virtchnl_flow_sub { u16 vsi_id; /* INPUT */ u8 validate_only; /* INPUT */ /* 0 is the highest priority; INPUT */ u8 priority; u32 flow_id; /* OUTPUT */ struct virtchnl_proto_hdrs proto_hdrs; /* INPUT */ struct virtchnl_filter_action_set actions; /* INPUT */ /* see enum virtchnl_fsub_prgm_status; OUTPUT */ s32 status; }; VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_flow_sub); /* VIRTCHNL_OP_FLOW_UNSUBSCRIBE * VF sends this request to PF by filling out vsi_id * and flow_id. PF will return status to VF. */ struct virtchnl_flow_unsub { u16 vsi_id; /* INPUT */ u16 pad; u32 flow_id; /* INPUT */ /* see enum virtchnl_fsub_prgm_status; OUTPUT */ s32 status; }; VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_flow_unsub); /* VIRTCHNL_OP_GET_QOS_CAPS * VF sends this message to get its QoS Caps, such as * TC number, Arbiter and Bandwidth. */ struct virtchnl_qos_cap_elem { u8 tc_num; u8 tc_prio; #define VIRTCHNL_ABITER_STRICT 0 #define VIRTCHNL_ABITER_ETS 2 u8 arbiter; #define VIRTCHNL_STRICT_WEIGHT 1 u8 weight; enum virtchnl_bw_limit_type type; union { struct virtchnl_shaper_bw shaper; u8 pad2[32]; }; }; VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_qos_cap_elem); struct virtchnl_qos_cap_list { u16 vsi_id; u16 num_elem; struct virtchnl_qos_cap_elem cap[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(44, virtchnl_qos_cap_list); /* VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP * VF sends message virtchnl_queue_tc_mapping to set queue to tc * mapping for all the Tx and Rx queues with a specified VSI, and * would get response about bitmap of valid user priorities * associated with queues. */ struct virtchnl_queue_tc_mapping { u16 vsi_id; u16 num_tc; u16 num_queue_pairs; u8 pad[2]; union { struct { u16 start_queue_id; u16 queue_count; } req; struct { #define VIRTCHNL_USER_PRIO_TYPE_UP 0 #define VIRTCHNL_USER_PRIO_TYPE_DSCP 1 u16 prio_type; u16 valid_prio_bitmap; } resp; } tc[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_tc_mapping); /* VIRTCHNL_OP_CONFIG_QUEUE_BW */ struct virtchnl_queue_bw { u16 queue_id; u8 tc; u8 pad; struct virtchnl_shaper_bw shaper; }; VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_bw); struct virtchnl_queues_bw_cfg { u16 vsi_id; u16 num_queues; struct virtchnl_queue_bw cfg[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queues_bw_cfg); /* queue types */ enum virtchnl_queue_type { VIRTCHNL_QUEUE_TYPE_TX = 0, VIRTCHNL_QUEUE_TYPE_RX = 1, }; /* structure to specify a chunk of contiguous queues */ struct virtchnl_queue_chunk { /* see enum virtchnl_queue_type */ s32 type; u16 start_queue_id; u16 num_queues; }; VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_queue_chunk); /* structure to specify several chunks of contiguous queues */ struct virtchnl_queue_chunks { u16 num_chunks; u16 rsvd; struct virtchnl_queue_chunk chunks[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_chunks); /* VIRTCHNL_OP_ENABLE_QUEUES_V2 * VIRTCHNL_OP_DISABLE_QUEUES_V2 * * These opcodes can be used if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in * VIRTCHNL_OP_GET_VF_RESOURCES * * VF sends virtchnl_ena_dis_queues struct to specify the queues to be * enabled/disabled in chunks. Also applicable to single queue RX or * TX. PF performs requested action and returns status. */ struct virtchnl_del_ena_dis_queues { u16 vport_id; u16 pad; struct virtchnl_queue_chunks chunks; }; VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_del_ena_dis_queues); /* Virtchannel interrupt throttling rate index */ enum virtchnl_itr_idx { VIRTCHNL_ITR_IDX_0 = 0, VIRTCHNL_ITR_IDX_1 = 1, VIRTCHNL_ITR_IDX_NO_ITR = 3, }; /* Queue to vector mapping */ struct virtchnl_queue_vector { u16 queue_id; u16 vector_id; u8 pad[4]; /* see enum virtchnl_itr_idx */ s32 itr_idx; /* see enum virtchnl_queue_type */ s32 queue_type; }; VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queue_vector); /* VIRTCHNL_OP_MAP_QUEUE_VECTOR * * This opcode can be used only if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated * in VIRTCHNL_OP_GET_VF_RESOURCES * * VF sends this message to map queues to vectors and ITR index registers. * External data buffer contains virtchnl_queue_vector_maps structure * that contains num_qv_maps of virtchnl_queue_vector structures. * PF maps the requested queue vector maps after validating the queue and vector * ids and returns a status code. */ struct virtchnl_queue_vector_maps { u16 vport_id; u16 num_qv_maps; u8 pad[4]; struct virtchnl_queue_vector qv_maps[1]; }; VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_queue_vector_maps); struct virtchnl_quanta_cfg { u16 quanta_size; struct virtchnl_queue_chunk queue_select; }; VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_quanta_cfg); /* Since VF messages are limited by u16 size, precalculate the maximum possible * values of nested elements in virtchnl structures that virtual channel can * possibly handle in a single message. */ enum virtchnl_vector_limits { VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX = ((u16)(~0) - sizeof(struct virtchnl_vsi_queue_config_info)) / sizeof(struct virtchnl_queue_pair_info), VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX = ((u16)(~0) - sizeof(struct virtchnl_irq_map_info)) / sizeof(struct virtchnl_vector_map), VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX = ((u16)(~0) - sizeof(struct virtchnl_ether_addr_list)) / sizeof(struct virtchnl_ether_addr), VIRTCHNL_OP_ADD_DEL_VLAN_MAX = ((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list)) / sizeof(u16), VIRTCHNL_OP_ENABLE_CHANNELS_MAX = ((u16)(~0) - sizeof(struct virtchnl_tc_info)) / sizeof(struct virtchnl_channel_info), VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX = ((u16)(~0) - sizeof(struct virtchnl_del_ena_dis_queues)) / sizeof(struct virtchnl_queue_chunk), VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX = ((u16)(~0) - sizeof(struct virtchnl_queue_vector_maps)) / sizeof(struct virtchnl_queue_vector), VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX = ((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list_v2)) / sizeof(struct virtchnl_vlan_filter), }; /** * virtchnl_vc_validate_vf_msg * @ver: Virtchnl version info * @v_opcode: Opcode for the message * @msg: pointer to the msg buffer * @msglen: msg length * * validate msg format against struct for each opcode */ static inline int virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode, u8 *msg, u16 msglen) { bool err_msg_format = false; u32 valid_len = 0; /* Validate message length. */ switch (v_opcode) { case VIRTCHNL_OP_VERSION: valid_len = sizeof(struct virtchnl_version_info); break; case VIRTCHNL_OP_RESET_VF: break; case VIRTCHNL_OP_GET_VF_RESOURCES: if (VF_IS_V11(ver)) valid_len = sizeof(u32); break; case VIRTCHNL_OP_CONFIG_TX_QUEUE: valid_len = sizeof(struct virtchnl_txq_info); break; case VIRTCHNL_OP_CONFIG_RX_QUEUE: valid_len = sizeof(struct virtchnl_rxq_info); break; case VIRTCHNL_OP_CONFIG_VSI_QUEUES: valid_len = sizeof(struct virtchnl_vsi_queue_config_info); if (msglen >= valid_len) { struct virtchnl_vsi_queue_config_info *vqc = (struct virtchnl_vsi_queue_config_info *)msg; if (vqc->num_queue_pairs == 0 || vqc->num_queue_pairs > VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX) { err_msg_format = true; break; } valid_len += (vqc->num_queue_pairs * sizeof(struct virtchnl_queue_pair_info)); } break; case VIRTCHNL_OP_CONFIG_IRQ_MAP: valid_len = sizeof(struct virtchnl_irq_map_info); if (msglen >= valid_len) { struct virtchnl_irq_map_info *vimi = (struct virtchnl_irq_map_info *)msg; if (vimi->num_vectors == 0 || vimi->num_vectors > VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX) { err_msg_format = true; break; } valid_len += (vimi->num_vectors * sizeof(struct virtchnl_vector_map)); } break; case VIRTCHNL_OP_ENABLE_QUEUES: case VIRTCHNL_OP_DISABLE_QUEUES: valid_len = sizeof(struct virtchnl_queue_select); break; case VIRTCHNL_OP_GET_MAX_RSS_QREGION: break; case VIRTCHNL_OP_ADD_ETH_ADDR: case VIRTCHNL_OP_DEL_ETH_ADDR: valid_len = sizeof(struct virtchnl_ether_addr_list); if (msglen >= valid_len) { struct virtchnl_ether_addr_list *veal = (struct virtchnl_ether_addr_list *)msg; if (veal->num_elements == 0 || veal->num_elements > VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX) { err_msg_format = true; break; } valid_len += veal->num_elements * sizeof(struct virtchnl_ether_addr); } break; case VIRTCHNL_OP_ADD_VLAN: case VIRTCHNL_OP_DEL_VLAN: valid_len = sizeof(struct virtchnl_vlan_filter_list); if (msglen >= valid_len) { struct virtchnl_vlan_filter_list *vfl = (struct virtchnl_vlan_filter_list *)msg; if (vfl->num_elements == 0 || vfl->num_elements > VIRTCHNL_OP_ADD_DEL_VLAN_MAX) { err_msg_format = true; break; } valid_len += vfl->num_elements * sizeof(u16); } break; case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: valid_len = sizeof(struct virtchnl_promisc_info); break; case VIRTCHNL_OP_GET_STATS: valid_len = sizeof(struct virtchnl_queue_select); break; case VIRTCHNL_OP_CONFIG_RSS_KEY: valid_len = sizeof(struct virtchnl_rss_key); if (msglen >= valid_len) { struct virtchnl_rss_key *vrk = (struct virtchnl_rss_key *)msg; if (vrk->key_len == 0) { /* zero length is allowed as input */ break; } valid_len += vrk->key_len - 1; } break; case VIRTCHNL_OP_CONFIG_RSS_LUT: valid_len = sizeof(struct virtchnl_rss_lut); if (msglen >= valid_len) { struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; if (vrl->lut_entries == 0) { /* zero entries is allowed as input */ break; } valid_len += vrl->lut_entries - 1; } break; case VIRTCHNL_OP_GET_RSS_HENA_CAPS: break; case VIRTCHNL_OP_SET_RSS_HENA: valid_len = sizeof(struct virtchnl_rss_hena); break; case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: break; case VIRTCHNL_OP_REQUEST_QUEUES: valid_len = sizeof(struct virtchnl_vf_res_request); break; case VIRTCHNL_OP_ENABLE_CHANNELS: valid_len = sizeof(struct virtchnl_tc_info); if (msglen >= valid_len) { struct virtchnl_tc_info *vti = (struct virtchnl_tc_info *)msg; if (vti->num_tc == 0 || vti->num_tc > VIRTCHNL_OP_ENABLE_CHANNELS_MAX) { err_msg_format = true; break; } valid_len += (vti->num_tc - 1) * sizeof(struct virtchnl_channel_info); } break; case VIRTCHNL_OP_DISABLE_CHANNELS: break; case VIRTCHNL_OP_ADD_CLOUD_FILTER: case VIRTCHNL_OP_DEL_CLOUD_FILTER: valid_len = sizeof(struct virtchnl_filter); break; case VIRTCHNL_OP_ADD_RSS_CFG: case VIRTCHNL_OP_DEL_RSS_CFG: valid_len = sizeof(struct virtchnl_rss_cfg); break; case VIRTCHNL_OP_ADD_FDIR_FILTER: valid_len = sizeof(struct virtchnl_fdir_add); break; case VIRTCHNL_OP_DEL_FDIR_FILTER: valid_len = sizeof(struct virtchnl_fdir_del); break; case VIRTCHNL_OP_FLOW_SUBSCRIBE: valid_len = sizeof(struct virtchnl_flow_sub); break; case VIRTCHNL_OP_FLOW_UNSUBSCRIBE: valid_len = sizeof(struct virtchnl_flow_unsub); break; case VIRTCHNL_OP_GET_QOS_CAPS: break; case VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP: valid_len = sizeof(struct virtchnl_queue_tc_mapping); if (msglen >= valid_len) { struct virtchnl_queue_tc_mapping *q_tc = (struct virtchnl_queue_tc_mapping *)msg; if (q_tc->num_tc == 0) { err_msg_format = true; break; } valid_len += (q_tc->num_tc - 1) * sizeof(q_tc->tc[0]); } break; case VIRTCHNL_OP_CONFIG_QUEUE_BW: valid_len = sizeof(struct virtchnl_queues_bw_cfg); if (msglen >= valid_len) { struct virtchnl_queues_bw_cfg *q_bw = (struct virtchnl_queues_bw_cfg *)msg; if (q_bw->num_queues == 0) { err_msg_format = true; break; } valid_len += (q_bw->num_queues - 1) * sizeof(q_bw->cfg[0]); } break; case VIRTCHNL_OP_CONFIG_QUANTA: valid_len = sizeof(struct virtchnl_quanta_cfg); if (msglen >= valid_len) { struct virtchnl_quanta_cfg *q_quanta = (struct virtchnl_quanta_cfg *)msg; if (q_quanta->quanta_size == 0 || q_quanta->queue_select.num_queues == 0) { err_msg_format = true; break; } } break; case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: break; case VIRTCHNL_OP_ADD_VLAN_V2: case VIRTCHNL_OP_DEL_VLAN_V2: valid_len = sizeof(struct virtchnl_vlan_filter_list_v2); if (msglen >= valid_len) { struct virtchnl_vlan_filter_list_v2 *vfl = (struct virtchnl_vlan_filter_list_v2 *)msg; if (vfl->num_elements == 0 || vfl->num_elements > VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX) { err_msg_format = true; break; } valid_len += (vfl->num_elements - 1) * sizeof(struct virtchnl_vlan_filter); } break; case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2: case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2: valid_len = sizeof(struct virtchnl_vlan_setting); break; case VIRTCHNL_OP_ENABLE_QUEUES_V2: case VIRTCHNL_OP_DISABLE_QUEUES_V2: valid_len = sizeof(struct virtchnl_del_ena_dis_queues); if (msglen >= valid_len) { struct virtchnl_del_ena_dis_queues *qs = (struct virtchnl_del_ena_dis_queues *)msg; if (qs->chunks.num_chunks == 0 || qs->chunks.num_chunks > VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX) { err_msg_format = true; break; } valid_len += (qs->chunks.num_chunks - 1) * sizeof(struct virtchnl_queue_chunk); } break; case VIRTCHNL_OP_MAP_QUEUE_VECTOR: valid_len = sizeof(struct virtchnl_queue_vector_maps); if (msglen >= valid_len) { struct virtchnl_queue_vector_maps *v_qp = (struct virtchnl_queue_vector_maps *)msg; if (v_qp->num_qv_maps == 0 || v_qp->num_qv_maps > VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX) { err_msg_format = true; break; } valid_len += (v_qp->num_qv_maps - 1) * sizeof(struct virtchnl_queue_vector); } break; /* These are always errors coming from the VF. */ case VIRTCHNL_OP_EVENT: case VIRTCHNL_OP_UNKNOWN: default: return VIRTCHNL_STATUS_ERR_PARAM; } /* few more checks */ if (err_msg_format || valid_len != msglen) return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH; return 0; } #endif /* _VIRTCHNL_H_ */