1/*-
2 * Copyright (c) 2011 NetApp, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD: releng/11.0/usr.sbin/bhyve/pci_emul.c 302373 2016-07-06 16:02:15Z ngie $
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: releng/11.0/usr.sbin/bhyve/pci_emul.c 302373 2016-07-06 16:02:15Z ngie $");
31
32#include <sys/param.h>
33#include <sys/linker_set.h>
34
35#include <ctype.h>
36#include <errno.h>
37#include <pthread.h>
38#include <stdio.h>
39#include <stdlib.h>
40#include <string.h>
41#include <strings.h>
42#include <assert.h>
43#include <stdbool.h>
44
45#include <machine/vmm.h>
46#include <vmmapi.h>
47
48#include "acpi.h"
49#include "bhyverun.h"
50#include "inout.h"
51#include "ioapic.h"
52#include "mem.h"
53#include "pci_emul.h"
54#include "pci_irq.h"
55#include "pci_lpc.h"
56
57#define CONF1_ADDR_PORT    0x0cf8
58#define CONF1_DATA_PORT    0x0cfc
59
60#define CONF1_ENABLE	   0x80000000ul
61
62#define	MAXBUSES	(PCI_BUSMAX + 1)
63#define MAXSLOTS	(PCI_SLOTMAX + 1)
64#define	MAXFUNCS	(PCI_FUNCMAX + 1)
65
66struct funcinfo {
67	char	*fi_name;
68	char	*fi_param;
69	struct pci_devinst *fi_devi;
70};
71
72struct intxinfo {
73	int	ii_count;
74	int	ii_pirq_pin;
75	int	ii_ioapic_irq;
76};
77
78struct slotinfo {
79	struct intxinfo si_intpins[4];
80	struct funcinfo si_funcs[MAXFUNCS];
81};
82
83struct businfo {
84	uint16_t iobase, iolimit;		/* I/O window */
85	uint32_t membase32, memlimit32;		/* mmio window below 4GB */
86	uint64_t membase64, memlimit64;		/* mmio window above 4GB */
87	struct slotinfo slotinfo[MAXSLOTS];
88};
89
90static struct businfo *pci_businfo[MAXBUSES];
91
92SET_DECLARE(pci_devemu_set, struct pci_devemu);
93
94static uint64_t pci_emul_iobase;
95static uint64_t pci_emul_membase32;
96static uint64_t pci_emul_membase64;
97
98#define	PCI_EMUL_IOBASE		0x2000
99#define	PCI_EMUL_IOLIMIT	0x10000
100
101#define	PCI_EMUL_ECFG_BASE	0xE0000000		    /* 3.5GB */
102#define	PCI_EMUL_ECFG_SIZE	(MAXBUSES * 1024 * 1024)    /* 1MB per bus */
103SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE);
104
105#define	PCI_EMUL_MEMLIMIT32	PCI_EMUL_ECFG_BASE
106
107#define	PCI_EMUL_MEMBASE64	0xD000000000UL
108#define	PCI_EMUL_MEMLIMIT64	0xFD00000000UL
109
110static struct pci_devemu *pci_emul_finddev(char *name);
111static void pci_lintr_route(struct pci_devinst *pi);
112static void pci_lintr_update(struct pci_devinst *pi);
113static void pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot,
114    int func, int coff, int bytes, uint32_t *val);
115
116static __inline void
117CFGWRITE(struct pci_devinst *pi, int coff, uint32_t val, int bytes)
118{
119
120	if (bytes == 1)
121		pci_set_cfgdata8(pi, coff, val);
122	else if (bytes == 2)
123		pci_set_cfgdata16(pi, coff, val);
124	else
125		pci_set_cfgdata32(pi, coff, val);
126}
127
128static __inline uint32_t
129CFGREAD(struct pci_devinst *pi, int coff, int bytes)
130{
131
132	if (bytes == 1)
133		return (pci_get_cfgdata8(pi, coff));
134	else if (bytes == 2)
135		return (pci_get_cfgdata16(pi, coff));
136	else
137		return (pci_get_cfgdata32(pi, coff));
138}
139
140/*
141 * I/O access
142 */
143
144/*
145 * Slot options are in the form:
146 *
147 *  <bus>:<slot>:<func>,<emul>[,<config>]
148 *  <slot>[:<func>],<emul>[,<config>]
149 *
150 *  slot is 0..31
151 *  func is 0..7
152 *  emul is a string describing the type of PCI device e.g. virtio-net
153 *  config is an optional string, depending on the device, that can be
154 *  used for configuration.
155 *   Examples are:
156 *     1,virtio-net,tap0
157 *     3:0,dummy
158 */
159static void
160pci_parse_slot_usage(char *aopt)
161{
162
163	fprintf(stderr, "Invalid PCI slot info field \"%s\"\n", aopt);
164}
165
166int
167pci_parse_slot(char *opt)
168{
169	struct businfo *bi;
170	struct slotinfo *si;
171	char *emul, *config, *str, *cp;
172	int error, bnum, snum, fnum;
173
174	error = -1;
175	str = strdup(opt);
176
177	emul = config = NULL;
178	if ((cp = strchr(str, ',')) != NULL) {
179		*cp = '\0';
180		emul = cp + 1;
181		if ((cp = strchr(emul, ',')) != NULL) {
182			*cp = '\0';
183			config = cp + 1;
184		}
185	} else {
186		pci_parse_slot_usage(opt);
187		goto done;
188	}
189
190	/* <bus>:<slot>:<func> */
191	if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) {
192		bnum = 0;
193		/* <slot>:<func> */
194		if (sscanf(str, "%d:%d", &snum, &fnum) != 2) {
195			fnum = 0;
196			/* <slot> */
197			if (sscanf(str, "%d", &snum) != 1) {
198				snum = -1;
199			}
200		}
201	}
202
203	if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS ||
204	    fnum < 0 || fnum >= MAXFUNCS) {
205		pci_parse_slot_usage(opt);
206		goto done;
207	}
208
209	if (pci_businfo[bnum] == NULL)
210		pci_businfo[bnum] = calloc(1, sizeof(struct businfo));
211
212	bi = pci_businfo[bnum];
213	si = &bi->slotinfo[snum];
214
215	if (si->si_funcs[fnum].fi_name != NULL) {
216		fprintf(stderr, "pci slot %d:%d already occupied!\n",
217			snum, fnum);
218		goto done;
219	}
220
221	if (pci_emul_finddev(emul) == NULL) {
222		fprintf(stderr, "pci slot %d:%d: unknown device \"%s\"\n",
223			snum, fnum, emul);
224		goto done;
225	}
226
227	error = 0;
228	si->si_funcs[fnum].fi_name = emul;
229	si->si_funcs[fnum].fi_param = config;
230
231done:
232	if (error)
233		free(str);
234
235	return (error);
236}
237
238static int
239pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
240{
241
242	if (offset < pi->pi_msix.pba_offset)
243		return (0);
244
245	if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
246		return (0);
247	}
248
249	return (1);
250}
251
252int
253pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
254		     uint64_t value)
255{
256	int msix_entry_offset;
257	int tab_index;
258	char *dest;
259
260	/* support only 4 or 8 byte writes */
261	if (size != 4 && size != 8)
262		return (-1);
263
264	/*
265	 * Return if table index is beyond what device supports
266	 */
267	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
268	if (tab_index >= pi->pi_msix.table_count)
269		return (-1);
270
271	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
272
273	/* support only aligned writes */
274	if ((msix_entry_offset % size) != 0)
275		return (-1);
276
277	dest = (char *)(pi->pi_msix.table + tab_index);
278	dest += msix_entry_offset;
279
280	if (size == 4)
281		*((uint32_t *)dest) = value;
282	else
283		*((uint64_t *)dest) = value;
284
285	return (0);
286}
287
288uint64_t
289pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
290{
291	char *dest;
292	int msix_entry_offset;
293	int tab_index;
294	uint64_t retval = ~0;
295
296	/*
297	 * The PCI standard only allows 4 and 8 byte accesses to the MSI-X
298	 * table but we also allow 1 byte access to accommodate reads from
299	 * ddb.
300	 */
301	if (size != 1 && size != 4 && size != 8)
302		return (retval);
303
304	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
305
306	/* support only aligned reads */
307	if ((msix_entry_offset % size) != 0) {
308		return (retval);
309	}
310
311	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
312
313	if (tab_index < pi->pi_msix.table_count) {
314		/* valid MSI-X Table access */
315		dest = (char *)(pi->pi_msix.table + tab_index);
316		dest += msix_entry_offset;
317
318		if (size == 1)
319			retval = *((uint8_t *)dest);
320		else if (size == 4)
321			retval = *((uint32_t *)dest);
322		else
323			retval = *((uint64_t *)dest);
324	} else if (pci_valid_pba_offset(pi, offset)) {
325		/* return 0 for PBA access */
326		retval = 0;
327	}
328
329	return (retval);
330}
331
332int
333pci_msix_table_bar(struct pci_devinst *pi)
334{
335
336	if (pi->pi_msix.table != NULL)
337		return (pi->pi_msix.table_bar);
338	else
339		return (-1);
340}
341
342int
343pci_msix_pba_bar(struct pci_devinst *pi)
344{
345
346	if (pi->pi_msix.table != NULL)
347		return (pi->pi_msix.pba_bar);
348	else
349		return (-1);
350}
351
352static int
353pci_emul_io_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
354		    uint32_t *eax, void *arg)
355{
356	struct pci_devinst *pdi = arg;
357	struct pci_devemu *pe = pdi->pi_d;
358	uint64_t offset;
359	int i;
360
361	for (i = 0; i <= PCI_BARMAX; i++) {
362		if (pdi->pi_bar[i].type == PCIBAR_IO &&
363		    port >= pdi->pi_bar[i].addr &&
364		    port + bytes <= pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
365			offset = port - pdi->pi_bar[i].addr;
366			if (in)
367				*eax = (*pe->pe_barread)(ctx, vcpu, pdi, i,
368							 offset, bytes);
369			else
370				(*pe->pe_barwrite)(ctx, vcpu, pdi, i, offset,
371						   bytes, *eax);
372			return (0);
373		}
374	}
375	return (-1);
376}
377
378static int
379pci_emul_mem_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
380		     int size, uint64_t *val, void *arg1, long arg2)
381{
382	struct pci_devinst *pdi = arg1;
383	struct pci_devemu *pe = pdi->pi_d;
384	uint64_t offset;
385	int bidx = (int) arg2;
386
387	assert(bidx <= PCI_BARMAX);
388	assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
389	       pdi->pi_bar[bidx].type == PCIBAR_MEM64);
390	assert(addr >= pdi->pi_bar[bidx].addr &&
391	       addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
392
393	offset = addr - pdi->pi_bar[bidx].addr;
394
395	if (dir == MEM_F_WRITE) {
396		if (size == 8) {
397			(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset,
398					   4, *val & 0xffffffff);
399			(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset + 4,
400					   4, *val >> 32);
401		} else {
402			(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset,
403					   size, *val);
404		}
405	} else {
406		if (size == 8) {
407			*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
408						 offset, 4);
409			*val |= (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
410						  offset + 4, 4) << 32;
411		} else {
412			*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
413						 offset, size);
414		}
415	}
416
417	return (0);
418}
419
420
421static int
422pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
423			uint64_t *addr)
424{
425	uint64_t base;
426
427	assert((size & (size - 1)) == 0);	/* must be a power of 2 */
428
429	base = roundup2(*baseptr, size);
430
431	if (base + size <= limit) {
432		*addr = base;
433		*baseptr = base + size;
434		return (0);
435	} else
436		return (-1);
437}
438
439int
440pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
441		   uint64_t size)
442{
443
444	return (pci_emul_alloc_pbar(pdi, idx, 0, type, size));
445}
446
447/*
448 * Register (or unregister) the MMIO or I/O region associated with the BAR
449 * register 'idx' of an emulated pci device.
450 */
451static void
452modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
453{
454	int error;
455	struct inout_port iop;
456	struct mem_range mr;
457
458	switch (pi->pi_bar[idx].type) {
459	case PCIBAR_IO:
460		bzero(&iop, sizeof(struct inout_port));
461		iop.name = pi->pi_name;
462		iop.port = pi->pi_bar[idx].addr;
463		iop.size = pi->pi_bar[idx].size;
464		if (registration) {
465			iop.flags = IOPORT_F_INOUT;
466			iop.handler = pci_emul_io_handler;
467			iop.arg = pi;
468			error = register_inout(&iop);
469		} else
470			error = unregister_inout(&iop);
471		break;
472	case PCIBAR_MEM32:
473	case PCIBAR_MEM64:
474		bzero(&mr, sizeof(struct mem_range));
475		mr.name = pi->pi_name;
476		mr.base = pi->pi_bar[idx].addr;
477		mr.size = pi->pi_bar[idx].size;
478		if (registration) {
479			mr.flags = MEM_F_RW;
480			mr.handler = pci_emul_mem_handler;
481			mr.arg1 = pi;
482			mr.arg2 = idx;
483			error = register_mem(&mr);
484		} else
485			error = unregister_mem(&mr);
486		break;
487	default:
488		error = EINVAL;
489		break;
490	}
491	assert(error == 0);
492}
493
494static void
495unregister_bar(struct pci_devinst *pi, int idx)
496{
497
498	modify_bar_registration(pi, idx, 0);
499}
500
501static void
502register_bar(struct pci_devinst *pi, int idx)
503{
504
505	modify_bar_registration(pi, idx, 1);
506}
507
508/* Are we decoding i/o port accesses for the emulated pci device? */
509static int
510porten(struct pci_devinst *pi)
511{
512	uint16_t cmd;
513
514	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
515
516	return (cmd & PCIM_CMD_PORTEN);
517}
518
519/* Are we decoding memory accesses for the emulated pci device? */
520static int
521memen(struct pci_devinst *pi)
522{
523	uint16_t cmd;
524
525	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
526
527	return (cmd & PCIM_CMD_MEMEN);
528}
529
530/*
531 * Update the MMIO or I/O address that is decoded by the BAR register.
532 *
533 * If the pci device has enabled the address space decoding then intercept
534 * the address range decoded by the BAR register.
535 */
536static void
537update_bar_address(struct  pci_devinst *pi, uint64_t addr, int idx, int type)
538{
539	int decode;
540
541	if (pi->pi_bar[idx].type == PCIBAR_IO)
542		decode = porten(pi);
543	else
544		decode = memen(pi);
545
546	if (decode)
547		unregister_bar(pi, idx);
548
549	switch (type) {
550	case PCIBAR_IO:
551	case PCIBAR_MEM32:
552		pi->pi_bar[idx].addr = addr;
553		break;
554	case PCIBAR_MEM64:
555		pi->pi_bar[idx].addr &= ~0xffffffffUL;
556		pi->pi_bar[idx].addr |= addr;
557		break;
558	case PCIBAR_MEMHI64:
559		pi->pi_bar[idx].addr &= 0xffffffff;
560		pi->pi_bar[idx].addr |= addr;
561		break;
562	default:
563		assert(0);
564	}
565
566	if (decode)
567		register_bar(pi, idx);
568}
569
570int
571pci_emul_alloc_pbar(struct pci_devinst *pdi, int idx, uint64_t hostbase,
572		    enum pcibar_type type, uint64_t size)
573{
574	int error;
575	uint64_t *baseptr, limit, addr, mask, lobits, bar;
576
577	assert(idx >= 0 && idx <= PCI_BARMAX);
578
579	if ((size & (size - 1)) != 0)
580		size = 1UL << flsl(size);	/* round up to a power of 2 */
581
582	/* Enforce minimum BAR sizes required by the PCI standard */
583	if (type == PCIBAR_IO) {
584		if (size < 4)
585			size = 4;
586	} else {
587		if (size < 16)
588			size = 16;
589	}
590
591	switch (type) {
592	case PCIBAR_NONE:
593		baseptr = NULL;
594		addr = mask = lobits = 0;
595		break;
596	case PCIBAR_IO:
597		baseptr = &pci_emul_iobase;
598		limit = PCI_EMUL_IOLIMIT;
599		mask = PCIM_BAR_IO_BASE;
600		lobits = PCIM_BAR_IO_SPACE;
601		break;
602	case PCIBAR_MEM64:
603		/*
604		 * XXX
605		 * Some drivers do not work well if the 64-bit BAR is allocated
606		 * above 4GB. Allow for this by allocating small requests under
607		 * 4GB unless then allocation size is larger than some arbitrary
608		 * number (32MB currently).
609		 */
610		if (size > 32 * 1024 * 1024) {
611			/*
612			 * XXX special case for device requiring peer-peer DMA
613			 */
614			if (size == 0x100000000UL)
615				baseptr = &hostbase;
616			else
617				baseptr = &pci_emul_membase64;
618			limit = PCI_EMUL_MEMLIMIT64;
619			mask = PCIM_BAR_MEM_BASE;
620			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
621				 PCIM_BAR_MEM_PREFETCH;
622			break;
623		} else {
624			baseptr = &pci_emul_membase32;
625			limit = PCI_EMUL_MEMLIMIT32;
626			mask = PCIM_BAR_MEM_BASE;
627			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
628		}
629		break;
630	case PCIBAR_MEM32:
631		baseptr = &pci_emul_membase32;
632		limit = PCI_EMUL_MEMLIMIT32;
633		mask = PCIM_BAR_MEM_BASE;
634		lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
635		break;
636	default:
637		printf("pci_emul_alloc_base: invalid bar type %d\n", type);
638		assert(0);
639	}
640
641	if (baseptr != NULL) {
642		error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
643		if (error != 0)
644			return (error);
645	}
646
647	pdi->pi_bar[idx].type = type;
648	pdi->pi_bar[idx].addr = addr;
649	pdi->pi_bar[idx].size = size;
650
651	/* Initialize the BAR register in config space */
652	bar = (addr & mask) | lobits;
653	pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
654
655	if (type == PCIBAR_MEM64) {
656		assert(idx + 1 <= PCI_BARMAX);
657		pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
658		pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
659	}
660
661	register_bar(pdi, idx);
662
663	return (0);
664}
665
666#define	CAP_START_OFFSET	0x40
667static int
668pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
669{
670	int i, capoff, reallen;
671	uint16_t sts;
672
673	assert(caplen > 0);
674
675	reallen = roundup2(caplen, 4);		/* dword aligned */
676
677	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
678	if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
679		capoff = CAP_START_OFFSET;
680	else
681		capoff = pi->pi_capend + 1;
682
683	/* Check if we have enough space */
684	if (capoff + reallen > PCI_REGMAX + 1)
685		return (-1);
686
687	/* Set the previous capability pointer */
688	if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
689		pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
690		pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
691	} else
692		pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff);
693
694	/* Copy the capability */
695	for (i = 0; i < caplen; i++)
696		pci_set_cfgdata8(pi, capoff + i, capdata[i]);
697
698	/* Set the next capability pointer */
699	pci_set_cfgdata8(pi, capoff + 1, 0);
700
701	pi->pi_prevcap = capoff;
702	pi->pi_capend = capoff + reallen - 1;
703	return (0);
704}
705
706static struct pci_devemu *
707pci_emul_finddev(char *name)
708{
709	struct pci_devemu **pdpp, *pdp;
710
711	SET_FOREACH(pdpp, pci_devemu_set) {
712		pdp = *pdpp;
713		if (!strcmp(pdp->pe_emu, name)) {
714			return (pdp);
715		}
716	}
717
718	return (NULL);
719}
720
721static int
722pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot,
723    int func, struct funcinfo *fi)
724{
725	struct pci_devinst *pdi;
726	int err;
727
728	pdi = calloc(1, sizeof(struct pci_devinst));
729
730	pdi->pi_vmctx = ctx;
731	pdi->pi_bus = bus;
732	pdi->pi_slot = slot;
733	pdi->pi_func = func;
734	pthread_mutex_init(&pdi->pi_lintr.lock, NULL);
735	pdi->pi_lintr.pin = 0;
736	pdi->pi_lintr.state = IDLE;
737	pdi->pi_lintr.pirq_pin = 0;
738	pdi->pi_lintr.ioapic_irq = 0;
739	pdi->pi_d = pde;
740	snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot);
741
742	/* Disable legacy interrupts */
743	pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
744	pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
745
746	pci_set_cfgdata8(pdi, PCIR_COMMAND,
747		    PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
748
749	err = (*pde->pe_init)(ctx, pdi, fi->fi_param);
750	if (err == 0)
751		fi->fi_devi = pdi;
752	else
753		free(pdi);
754
755	return (err);
756}
757
758void
759pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
760{
761	int mmc;
762
763	/* Number of msi messages must be a power of 2 between 1 and 32 */
764	assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
765	mmc = ffs(msgnum) - 1;
766
767	bzero(msicap, sizeof(struct msicap));
768	msicap->capid = PCIY_MSI;
769	msicap->nextptr = nextptr;
770	msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
771}
772
773int
774pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
775{
776	struct msicap msicap;
777
778	pci_populate_msicap(&msicap, msgnum, 0);
779
780	return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
781}
782
783static void
784pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
785		     uint32_t msix_tab_size)
786{
787
788	assert(msix_tab_size % 4096 == 0);
789
790	bzero(msixcap, sizeof(struct msixcap));
791	msixcap->capid = PCIY_MSIX;
792
793	/*
794	 * Message Control Register, all fields set to
795	 * zero except for the Table Size.
796	 * Note: Table size N is encoded as N-1
797	 */
798	msixcap->msgctrl = msgnum - 1;
799
800	/*
801	 * MSI-X BAR setup:
802	 * - MSI-X table start at offset 0
803	 * - PBA table starts at a 4K aligned offset after the MSI-X table
804	 */
805	msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
806	msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
807}
808
809static void
810pci_msix_table_init(struct pci_devinst *pi, int table_entries)
811{
812	int i, table_size;
813
814	assert(table_entries > 0);
815	assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
816
817	table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
818	pi->pi_msix.table = calloc(1, table_size);
819
820	/* set mask bit of vector control register */
821	for (i = 0; i < table_entries; i++)
822		pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
823}
824
825int
826pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
827{
828	uint32_t tab_size;
829	struct msixcap msixcap;
830
831	assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
832	assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
833
834	tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
835
836	/* Align table size to nearest 4K */
837	tab_size = roundup2(tab_size, 4096);
838
839	pi->pi_msix.table_bar = barnum;
840	pi->pi_msix.pba_bar   = barnum;
841	pi->pi_msix.table_offset = 0;
842	pi->pi_msix.table_count = msgnum;
843	pi->pi_msix.pba_offset = tab_size;
844	pi->pi_msix.pba_size = PBA_SIZE(msgnum);
845
846	pci_msix_table_init(pi, msgnum);
847
848	pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size);
849
850	/* allocate memory for MSI-X Table and PBA */
851	pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
852				tab_size + pi->pi_msix.pba_size);
853
854	return (pci_emul_add_capability(pi, (u_char *)&msixcap,
855					sizeof(msixcap)));
856}
857
858void
859msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
860		 int bytes, uint32_t val)
861{
862	uint16_t msgctrl, rwmask;
863	int off;
864
865	off = offset - capoff;
866	/* Message Control Register */
867	if (off == 2 && bytes == 2) {
868		rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
869		msgctrl = pci_get_cfgdata16(pi, offset);
870		msgctrl &= ~rwmask;
871		msgctrl |= val & rwmask;
872		val = msgctrl;
873
874		pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
875		pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
876		pci_lintr_update(pi);
877	}
878
879	CFGWRITE(pi, offset, val, bytes);
880}
881
882void
883msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
884		int bytes, uint32_t val)
885{
886	uint16_t msgctrl, rwmask, msgdata, mme;
887	uint32_t addrlo;
888
889	/*
890	 * If guest is writing to the message control register make sure
891	 * we do not overwrite read-only fields.
892	 */
893	if ((offset - capoff) == 2 && bytes == 2) {
894		rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
895		msgctrl = pci_get_cfgdata16(pi, offset);
896		msgctrl &= ~rwmask;
897		msgctrl |= val & rwmask;
898		val = msgctrl;
899
900		addrlo = pci_get_cfgdata32(pi, capoff + 4);
901		if (msgctrl & PCIM_MSICTRL_64BIT)
902			msgdata = pci_get_cfgdata16(pi, capoff + 12);
903		else
904			msgdata = pci_get_cfgdata16(pi, capoff + 8);
905
906		mme = msgctrl & PCIM_MSICTRL_MME_MASK;
907		pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
908		if (pi->pi_msi.enabled) {
909			pi->pi_msi.addr = addrlo;
910			pi->pi_msi.msg_data = msgdata;
911			pi->pi_msi.maxmsgnum = 1 << (mme >> 4);
912		} else {
913			pi->pi_msi.maxmsgnum = 0;
914		}
915		pci_lintr_update(pi);
916	}
917
918	CFGWRITE(pi, offset, val, bytes);
919}
920
921void
922pciecap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
923		 int bytes, uint32_t val)
924{
925
926	/* XXX don't write to the readonly parts */
927	CFGWRITE(pi, offset, val, bytes);
928}
929
930#define	PCIECAP_VERSION	0x2
931int
932pci_emul_add_pciecap(struct pci_devinst *pi, int type)
933{
934	int err;
935	struct pciecap pciecap;
936
937	if (type != PCIEM_TYPE_ROOT_PORT)
938		return (-1);
939
940	bzero(&pciecap, sizeof(pciecap));
941
942	pciecap.capid = PCIY_EXPRESS;
943	pciecap.pcie_capabilities = PCIECAP_VERSION | PCIEM_TYPE_ROOT_PORT;
944	pciecap.link_capabilities = 0x411;	/* gen1, x1 */
945	pciecap.link_status = 0x11;		/* gen1, x1 */
946
947	err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
948	return (err);
949}
950
951/*
952 * This function assumes that 'coff' is in the capabilities region of the
953 * config space.
954 */
955static void
956pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val)
957{
958	int capid;
959	uint8_t capoff, nextoff;
960
961	/* Do not allow un-aligned writes */
962	if ((offset & (bytes - 1)) != 0)
963		return;
964
965	/* Find the capability that we want to update */
966	capoff = CAP_START_OFFSET;
967	while (1) {
968		nextoff = pci_get_cfgdata8(pi, capoff + 1);
969		if (nextoff == 0)
970			break;
971		if (offset >= capoff && offset < nextoff)
972			break;
973
974		capoff = nextoff;
975	}
976	assert(offset >= capoff);
977
978	/*
979	 * Capability ID and Next Capability Pointer are readonly.
980	 * However, some o/s's do 4-byte writes that include these.
981	 * For this case, trim the write back to 2 bytes and adjust
982	 * the data.
983	 */
984	if (offset == capoff || offset == capoff + 1) {
985		if (offset == capoff && bytes == 4) {
986			bytes = 2;
987			offset += 2;
988			val >>= 16;
989		} else
990			return;
991	}
992
993	capid = pci_get_cfgdata8(pi, capoff);
994	switch (capid) {
995	case PCIY_MSI:
996		msicap_cfgwrite(pi, capoff, offset, bytes, val);
997		break;
998	case PCIY_MSIX:
999		msixcap_cfgwrite(pi, capoff, offset, bytes, val);
1000		break;
1001	case PCIY_EXPRESS:
1002		pciecap_cfgwrite(pi, capoff, offset, bytes, val);
1003		break;
1004	default:
1005		break;
1006	}
1007}
1008
1009static int
1010pci_emul_iscap(struct pci_devinst *pi, int offset)
1011{
1012	uint16_t sts;
1013
1014	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
1015	if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
1016		if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend)
1017			return (1);
1018	}
1019	return (0);
1020}
1021
1022static int
1023pci_emul_fallback_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
1024			  int size, uint64_t *val, void *arg1, long arg2)
1025{
1026	/*
1027	 * Ignore writes; return 0xff's for reads. The mem read code
1028	 * will take care of truncating to the correct size.
1029	 */
1030	if (dir == MEM_F_READ) {
1031		*val = 0xffffffffffffffff;
1032	}
1033
1034	return (0);
1035}
1036
1037static int
1038pci_emul_ecfg_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
1039    int bytes, uint64_t *val, void *arg1, long arg2)
1040{
1041	int bus, slot, func, coff, in;
1042
1043	coff = addr & 0xfff;
1044	func = (addr >> 12) & 0x7;
1045	slot = (addr >> 15) & 0x1f;
1046	bus = (addr >> 20) & 0xff;
1047	in = (dir == MEM_F_READ);
1048	if (in)
1049		*val = ~0UL;
1050	pci_cfgrw(ctx, vcpu, in, bus, slot, func, coff, bytes, (uint32_t *)val);
1051	return (0);
1052}
1053
1054uint64_t
1055pci_ecfg_base(void)
1056{
1057
1058	return (PCI_EMUL_ECFG_BASE);
1059}
1060
1061#define	BUSIO_ROUNDUP		32
1062#define	BUSMEM_ROUNDUP		(1024 * 1024)
1063
1064int
1065init_pci(struct vmctx *ctx)
1066{
1067	struct mem_range mr;
1068	struct pci_devemu *pde;
1069	struct businfo *bi;
1070	struct slotinfo *si;
1071	struct funcinfo *fi;
1072	size_t lowmem;
1073	int bus, slot, func;
1074	int error;
1075
1076	pci_emul_iobase = PCI_EMUL_IOBASE;
1077	pci_emul_membase32 = vm_get_lowmem_limit(ctx);
1078	pci_emul_membase64 = PCI_EMUL_MEMBASE64;
1079
1080	for (bus = 0; bus < MAXBUSES; bus++) {
1081		if ((bi = pci_businfo[bus]) == NULL)
1082			continue;
1083		/*
1084		 * Keep track of the i/o and memory resources allocated to
1085		 * this bus.
1086		 */
1087		bi->iobase = pci_emul_iobase;
1088		bi->membase32 = pci_emul_membase32;
1089		bi->membase64 = pci_emul_membase64;
1090
1091		for (slot = 0; slot < MAXSLOTS; slot++) {
1092			si = &bi->slotinfo[slot];
1093			for (func = 0; func < MAXFUNCS; func++) {
1094				fi = &si->si_funcs[func];
1095				if (fi->fi_name == NULL)
1096					continue;
1097				pde = pci_emul_finddev(fi->fi_name);
1098				assert(pde != NULL);
1099				error = pci_emul_init(ctx, pde, bus, slot,
1100				    func, fi);
1101				if (error)
1102					return (error);
1103			}
1104		}
1105
1106		/*
1107		 * Add some slop to the I/O and memory resources decoded by
1108		 * this bus to give a guest some flexibility if it wants to
1109		 * reprogram the BARs.
1110		 */
1111		pci_emul_iobase += BUSIO_ROUNDUP;
1112		pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP);
1113		bi->iolimit = pci_emul_iobase;
1114
1115		pci_emul_membase32 += BUSMEM_ROUNDUP;
1116		pci_emul_membase32 = roundup2(pci_emul_membase32,
1117		    BUSMEM_ROUNDUP);
1118		bi->memlimit32 = pci_emul_membase32;
1119
1120		pci_emul_membase64 += BUSMEM_ROUNDUP;
1121		pci_emul_membase64 = roundup2(pci_emul_membase64,
1122		    BUSMEM_ROUNDUP);
1123		bi->memlimit64 = pci_emul_membase64;
1124	}
1125
1126	/*
1127	 * PCI backends are initialized before routing INTx interrupts
1128	 * so that LPC devices are able to reserve ISA IRQs before
1129	 * routing PIRQ pins.
1130	 */
1131	for (bus = 0; bus < MAXBUSES; bus++) {
1132		if ((bi = pci_businfo[bus]) == NULL)
1133			continue;
1134
1135		for (slot = 0; slot < MAXSLOTS; slot++) {
1136			si = &bi->slotinfo[slot];
1137			for (func = 0; func < MAXFUNCS; func++) {
1138				fi = &si->si_funcs[func];
1139				if (fi->fi_devi == NULL)
1140					continue;
1141				pci_lintr_route(fi->fi_devi);
1142			}
1143		}
1144	}
1145	lpc_pirq_routed();
1146
1147	/*
1148	 * The guest physical memory map looks like the following:
1149	 * [0,		    lowmem)		guest system memory
1150	 * [lowmem,	    lowmem_limit)	memory hole (may be absent)
1151	 * [lowmem_limit,   0xE0000000)		PCI hole (32-bit BAR allocation)
1152	 * [0xE0000000,	    0xF0000000)		PCI extended config window
1153	 * [0xF0000000,	    4GB)		LAPIC, IOAPIC, HPET, firmware
1154	 * [4GB,	    4GB + highmem)
1155	 */
1156
1157	/*
1158	 * Accesses to memory addresses that are not allocated to system
1159	 * memory or PCI devices return 0xff's.
1160	 */
1161	lowmem = vm_get_lowmem_size(ctx);
1162	bzero(&mr, sizeof(struct mem_range));
1163	mr.name = "PCI hole";
1164	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1165	mr.base = lowmem;
1166	mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
1167	mr.handler = pci_emul_fallback_handler;
1168	error = register_mem_fallback(&mr);
1169	assert(error == 0);
1170
1171	/* PCI extended config space */
1172	bzero(&mr, sizeof(struct mem_range));
1173	mr.name = "PCI ECFG";
1174	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1175	mr.base = PCI_EMUL_ECFG_BASE;
1176	mr.size = PCI_EMUL_ECFG_SIZE;
1177	mr.handler = pci_emul_ecfg_handler;
1178	error = register_mem(&mr);
1179	assert(error == 0);
1180
1181	return (0);
1182}
1183
1184static void
1185pci_apic_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq,
1186    void *arg)
1187{
1188
1189	dsdt_line("  Package ()");
1190	dsdt_line("  {");
1191	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1192	dsdt_line("    0x%02X,", pin - 1);
1193	dsdt_line("    Zero,");
1194	dsdt_line("    0x%X", ioapic_irq);
1195	dsdt_line("  },");
1196}
1197
1198static void
1199pci_pirq_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq,
1200    void *arg)
1201{
1202	char *name;
1203
1204	name = lpc_pirq_name(pirq_pin);
1205	if (name == NULL)
1206		return;
1207	dsdt_line("  Package ()");
1208	dsdt_line("  {");
1209	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1210	dsdt_line("    0x%02X,", pin - 1);
1211	dsdt_line("    %s,", name);
1212	dsdt_line("    0x00");
1213	dsdt_line("  },");
1214	free(name);
1215}
1216
1217/*
1218 * A bhyve virtual machine has a flat PCI hierarchy with a root port
1219 * corresponding to each PCI bus.
1220 */
1221static void
1222pci_bus_write_dsdt(int bus)
1223{
1224	struct businfo *bi;
1225	struct slotinfo *si;
1226	struct pci_devinst *pi;
1227	int count, func, slot;
1228
1229	/*
1230	 * If there are no devices on this 'bus' then just return.
1231	 */
1232	if ((bi = pci_businfo[bus]) == NULL) {
1233		/*
1234		 * Bus 0 is special because it decodes the I/O ports used
1235		 * for PCI config space access even if there are no devices
1236		 * on it.
1237		 */
1238		if (bus != 0)
1239			return;
1240	}
1241
1242	dsdt_line("  Device (PC%02X)", bus);
1243	dsdt_line("  {");
1244	dsdt_line("    Name (_HID, EisaId (\"PNP0A03\"))");
1245	dsdt_line("    Name (_ADR, Zero)");
1246
1247	dsdt_line("    Method (_BBN, 0, NotSerialized)");
1248	dsdt_line("    {");
1249	dsdt_line("        Return (0x%08X)", bus);
1250	dsdt_line("    }");
1251	dsdt_line("    Name (_CRS, ResourceTemplate ()");
1252	dsdt_line("    {");
1253	dsdt_line("      WordBusNumber (ResourceProducer, MinFixed, "
1254	    "MaxFixed, PosDecode,");
1255	dsdt_line("        0x0000,             // Granularity");
1256	dsdt_line("        0x%04X,             // Range Minimum", bus);
1257	dsdt_line("        0x%04X,             // Range Maximum", bus);
1258	dsdt_line("        0x0000,             // Translation Offset");
1259	dsdt_line("        0x0001,             // Length");
1260	dsdt_line("        ,, )");
1261
1262	if (bus == 0) {
1263		dsdt_indent(3);
1264		dsdt_fixed_ioport(0xCF8, 8);
1265		dsdt_unindent(3);
1266
1267		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1268		    "PosDecode, EntireRange,");
1269		dsdt_line("        0x0000,             // Granularity");
1270		dsdt_line("        0x0000,             // Range Minimum");
1271		dsdt_line("        0x0CF7,             // Range Maximum");
1272		dsdt_line("        0x0000,             // Translation Offset");
1273		dsdt_line("        0x0CF8,             // Length");
1274		dsdt_line("        ,, , TypeStatic)");
1275
1276		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1277		    "PosDecode, EntireRange,");
1278		dsdt_line("        0x0000,             // Granularity");
1279		dsdt_line("        0x0D00,             // Range Minimum");
1280		dsdt_line("        0x%04X,             // Range Maximum",
1281		    PCI_EMUL_IOBASE - 1);
1282		dsdt_line("        0x0000,             // Translation Offset");
1283		dsdt_line("        0x%04X,             // Length",
1284		    PCI_EMUL_IOBASE - 0x0D00);
1285		dsdt_line("        ,, , TypeStatic)");
1286
1287		if (bi == NULL) {
1288			dsdt_line("    })");
1289			goto done;
1290		}
1291	}
1292	assert(bi != NULL);
1293
1294	/* i/o window */
1295	dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1296	    "PosDecode, EntireRange,");
1297	dsdt_line("        0x0000,             // Granularity");
1298	dsdt_line("        0x%04X,             // Range Minimum", bi->iobase);
1299	dsdt_line("        0x%04X,             // Range Maximum",
1300	    bi->iolimit - 1);
1301	dsdt_line("        0x0000,             // Translation Offset");
1302	dsdt_line("        0x%04X,             // Length",
1303	    bi->iolimit - bi->iobase);
1304	dsdt_line("        ,, , TypeStatic)");
1305
1306	/* mmio window (32-bit) */
1307	dsdt_line("      DWordMemory (ResourceProducer, PosDecode, "
1308	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1309	dsdt_line("        0x00000000,         // Granularity");
1310	dsdt_line("        0x%08X,         // Range Minimum\n", bi->membase32);
1311	dsdt_line("        0x%08X,         // Range Maximum\n",
1312	    bi->memlimit32 - 1);
1313	dsdt_line("        0x00000000,         // Translation Offset");
1314	dsdt_line("        0x%08X,         // Length\n",
1315	    bi->memlimit32 - bi->membase32);
1316	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1317
1318	/* mmio window (64-bit) */
1319	dsdt_line("      QWordMemory (ResourceProducer, PosDecode, "
1320	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1321	dsdt_line("        0x0000000000000000, // Granularity");
1322	dsdt_line("        0x%016lX, // Range Minimum\n", bi->membase64);
1323	dsdt_line("        0x%016lX, // Range Maximum\n",
1324	    bi->memlimit64 - 1);
1325	dsdt_line("        0x0000000000000000, // Translation Offset");
1326	dsdt_line("        0x%016lX, // Length\n",
1327	    bi->memlimit64 - bi->membase64);
1328	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1329	dsdt_line("    })");
1330
1331	count = pci_count_lintr(bus);
1332	if (count != 0) {
1333		dsdt_indent(2);
1334		dsdt_line("Name (PPRT, Package ()");
1335		dsdt_line("{");
1336		pci_walk_lintr(bus, pci_pirq_prt_entry, NULL);
1337 		dsdt_line("})");
1338		dsdt_line("Name (APRT, Package ()");
1339		dsdt_line("{");
1340		pci_walk_lintr(bus, pci_apic_prt_entry, NULL);
1341 		dsdt_line("})");
1342		dsdt_line("Method (_PRT, 0, NotSerialized)");
1343		dsdt_line("{");
1344		dsdt_line("  If (PICM)");
1345		dsdt_line("  {");
1346		dsdt_line("    Return (APRT)");
1347		dsdt_line("  }");
1348		dsdt_line("  Else");
1349		dsdt_line("  {");
1350		dsdt_line("    Return (PPRT)");
1351		dsdt_line("  }");
1352		dsdt_line("}");
1353		dsdt_unindent(2);
1354	}
1355
1356	dsdt_indent(2);
1357	for (slot = 0; slot < MAXSLOTS; slot++) {
1358		si = &bi->slotinfo[slot];
1359		for (func = 0; func < MAXFUNCS; func++) {
1360			pi = si->si_funcs[func].fi_devi;
1361			if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL)
1362				pi->pi_d->pe_write_dsdt(pi);
1363		}
1364	}
1365	dsdt_unindent(2);
1366done:
1367	dsdt_line("  }");
1368}
1369
1370void
1371pci_write_dsdt(void)
1372{
1373	int bus;
1374
1375	dsdt_indent(1);
1376	dsdt_line("Name (PICM, 0x00)");
1377	dsdt_line("Method (_PIC, 1, NotSerialized)");
1378	dsdt_line("{");
1379	dsdt_line("  Store (Arg0, PICM)");
1380	dsdt_line("}");
1381	dsdt_line("");
1382	dsdt_line("Scope (_SB)");
1383	dsdt_line("{");
1384	for (bus = 0; bus < MAXBUSES; bus++)
1385		pci_bus_write_dsdt(bus);
1386	dsdt_line("}");
1387	dsdt_unindent(1);
1388}
1389
1390int
1391pci_bus_configured(int bus)
1392{
1393	assert(bus >= 0 && bus < MAXBUSES);
1394	return (pci_businfo[bus] != NULL);
1395}
1396
1397int
1398pci_msi_enabled(struct pci_devinst *pi)
1399{
1400	return (pi->pi_msi.enabled);
1401}
1402
1403int
1404pci_msi_maxmsgnum(struct pci_devinst *pi)
1405{
1406	if (pi->pi_msi.enabled)
1407		return (pi->pi_msi.maxmsgnum);
1408	else
1409		return (0);
1410}
1411
1412int
1413pci_msix_enabled(struct pci_devinst *pi)
1414{
1415
1416	return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
1417}
1418
1419void
1420pci_generate_msix(struct pci_devinst *pi, int index)
1421{
1422	struct msix_table_entry *mte;
1423
1424	if (!pci_msix_enabled(pi))
1425		return;
1426
1427	if (pi->pi_msix.function_mask)
1428		return;
1429
1430	if (index >= pi->pi_msix.table_count)
1431		return;
1432
1433	mte = &pi->pi_msix.table[index];
1434	if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
1435		/* XXX Set PBA bit if interrupt is disabled */
1436		vm_lapic_msi(pi->pi_vmctx, mte->addr, mte->msg_data);
1437	}
1438}
1439
1440void
1441pci_generate_msi(struct pci_devinst *pi, int index)
1442{
1443
1444	if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) {
1445		vm_lapic_msi(pi->pi_vmctx, pi->pi_msi.addr,
1446			     pi->pi_msi.msg_data + index);
1447	}
1448}
1449
1450static bool
1451pci_lintr_permitted(struct pci_devinst *pi)
1452{
1453	uint16_t cmd;
1454
1455	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
1456	return (!(pi->pi_msi.enabled || pi->pi_msix.enabled ||
1457		(cmd & PCIM_CMD_INTxDIS)));
1458}
1459
1460void
1461pci_lintr_request(struct pci_devinst *pi)
1462{
1463	struct businfo *bi;
1464	struct slotinfo *si;
1465	int bestpin, bestcount, pin;
1466
1467	bi = pci_businfo[pi->pi_bus];
1468	assert(bi != NULL);
1469
1470	/*
1471	 * Just allocate a pin from our slot.  The pin will be
1472	 * assigned IRQs later when interrupts are routed.
1473	 */
1474	si = &bi->slotinfo[pi->pi_slot];
1475	bestpin = 0;
1476	bestcount = si->si_intpins[0].ii_count;
1477	for (pin = 1; pin < 4; pin++) {
1478		if (si->si_intpins[pin].ii_count < bestcount) {
1479			bestpin = pin;
1480			bestcount = si->si_intpins[pin].ii_count;
1481		}
1482	}
1483
1484	si->si_intpins[bestpin].ii_count++;
1485	pi->pi_lintr.pin = bestpin + 1;
1486	pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1);
1487}
1488
1489static void
1490pci_lintr_route(struct pci_devinst *pi)
1491{
1492	struct businfo *bi;
1493	struct intxinfo *ii;
1494
1495	if (pi->pi_lintr.pin == 0)
1496		return;
1497
1498	bi = pci_businfo[pi->pi_bus];
1499	assert(bi != NULL);
1500	ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1];
1501
1502	/*
1503	 * Attempt to allocate an I/O APIC pin for this intpin if one
1504	 * is not yet assigned.
1505	 */
1506	if (ii->ii_ioapic_irq == 0)
1507		ii->ii_ioapic_irq = ioapic_pci_alloc_irq();
1508	assert(ii->ii_ioapic_irq > 0);
1509
1510	/*
1511	 * Attempt to allocate a PIRQ pin for this intpin if one is
1512	 * not yet assigned.
1513	 */
1514	if (ii->ii_pirq_pin == 0)
1515		ii->ii_pirq_pin = pirq_alloc_pin(pi->pi_vmctx);
1516	assert(ii->ii_pirq_pin > 0);
1517
1518	pi->pi_lintr.ioapic_irq = ii->ii_ioapic_irq;
1519	pi->pi_lintr.pirq_pin = ii->ii_pirq_pin;
1520	pci_set_cfgdata8(pi, PCIR_INTLINE, pirq_irq(ii->ii_pirq_pin));
1521}
1522
1523void
1524pci_lintr_assert(struct pci_devinst *pi)
1525{
1526
1527	assert(pi->pi_lintr.pin > 0);
1528
1529	pthread_mutex_lock(&pi->pi_lintr.lock);
1530	if (pi->pi_lintr.state == IDLE) {
1531		if (pci_lintr_permitted(pi)) {
1532			pi->pi_lintr.state = ASSERTED;
1533			pci_irq_assert(pi);
1534		} else
1535			pi->pi_lintr.state = PENDING;
1536	}
1537	pthread_mutex_unlock(&pi->pi_lintr.lock);
1538}
1539
1540void
1541pci_lintr_deassert(struct pci_devinst *pi)
1542{
1543
1544	assert(pi->pi_lintr.pin > 0);
1545
1546	pthread_mutex_lock(&pi->pi_lintr.lock);
1547	if (pi->pi_lintr.state == ASSERTED) {
1548		pi->pi_lintr.state = IDLE;
1549		pci_irq_deassert(pi);
1550	} else if (pi->pi_lintr.state == PENDING)
1551		pi->pi_lintr.state = IDLE;
1552	pthread_mutex_unlock(&pi->pi_lintr.lock);
1553}
1554
1555static void
1556pci_lintr_update(struct pci_devinst *pi)
1557{
1558
1559	pthread_mutex_lock(&pi->pi_lintr.lock);
1560	if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) {
1561		pci_irq_deassert(pi);
1562		pi->pi_lintr.state = PENDING;
1563	} else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) {
1564		pi->pi_lintr.state = ASSERTED;
1565		pci_irq_assert(pi);
1566	}
1567	pthread_mutex_unlock(&pi->pi_lintr.lock);
1568}
1569
1570int
1571pci_count_lintr(int bus)
1572{
1573	int count, slot, pin;
1574	struct slotinfo *slotinfo;
1575
1576	count = 0;
1577	if (pci_businfo[bus] != NULL) {
1578		for (slot = 0; slot < MAXSLOTS; slot++) {
1579			slotinfo = &pci_businfo[bus]->slotinfo[slot];
1580			for (pin = 0; pin < 4; pin++) {
1581				if (slotinfo->si_intpins[pin].ii_count != 0)
1582					count++;
1583			}
1584		}
1585	}
1586	return (count);
1587}
1588
1589void
1590pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg)
1591{
1592	struct businfo *bi;
1593	struct slotinfo *si;
1594	struct intxinfo *ii;
1595	int slot, pin;
1596
1597	if ((bi = pci_businfo[bus]) == NULL)
1598		return;
1599
1600	for (slot = 0; slot < MAXSLOTS; slot++) {
1601		si = &bi->slotinfo[slot];
1602		for (pin = 0; pin < 4; pin++) {
1603			ii = &si->si_intpins[pin];
1604			if (ii->ii_count != 0)
1605				cb(bus, slot, pin + 1, ii->ii_pirq_pin,
1606				    ii->ii_ioapic_irq, arg);
1607		}
1608	}
1609}
1610
1611/*
1612 * Return 1 if the emulated device in 'slot' is a multi-function device.
1613 * Return 0 otherwise.
1614 */
1615static int
1616pci_emul_is_mfdev(int bus, int slot)
1617{
1618	struct businfo *bi;
1619	struct slotinfo *si;
1620	int f, numfuncs;
1621
1622	numfuncs = 0;
1623	if ((bi = pci_businfo[bus]) != NULL) {
1624		si = &bi->slotinfo[slot];
1625		for (f = 0; f < MAXFUNCS; f++) {
1626			if (si->si_funcs[f].fi_devi != NULL) {
1627				numfuncs++;
1628			}
1629		}
1630	}
1631	return (numfuncs > 1);
1632}
1633
1634/*
1635 * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
1636 * whether or not is a multi-function being emulated in the pci 'slot'.
1637 */
1638static void
1639pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv)
1640{
1641	int mfdev;
1642
1643	if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
1644		mfdev = pci_emul_is_mfdev(bus, slot);
1645		switch (bytes) {
1646		case 1:
1647		case 2:
1648			*rv &= ~PCIM_MFDEV;
1649			if (mfdev) {
1650				*rv |= PCIM_MFDEV;
1651			}
1652			break;
1653		case 4:
1654			*rv &= ~(PCIM_MFDEV << 16);
1655			if (mfdev) {
1656				*rv |= (PCIM_MFDEV << 16);
1657			}
1658			break;
1659		}
1660	}
1661}
1662
1663static void
1664pci_emul_cmdsts_write(struct pci_devinst *pi, int coff, uint32_t new, int bytes)
1665{
1666	int i, rshift;
1667	uint32_t cmd, cmd2, changed, old, readonly;
1668
1669	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);	/* stash old value */
1670
1671	/*
1672	 * From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3.
1673	 *
1674	 * XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are
1675	 * 'write 1 to clear'. However these bits are not set to '1' by
1676	 * any device emulation so it is simpler to treat them as readonly.
1677	 */
1678	rshift = (coff & 0x3) * 8;
1679	readonly = 0xFFFFF880 >> rshift;
1680
1681	old = CFGREAD(pi, coff, bytes);
1682	new &= ~readonly;
1683	new |= (old & readonly);
1684	CFGWRITE(pi, coff, new, bytes);			/* update config */
1685
1686	cmd2 = pci_get_cfgdata16(pi, PCIR_COMMAND);	/* get updated value */
1687	changed = cmd ^ cmd2;
1688
1689	/*
1690	 * If the MMIO or I/O address space decoding has changed then
1691	 * register/unregister all BARs that decode that address space.
1692	 */
1693	for (i = 0; i <= PCI_BARMAX; i++) {
1694		switch (pi->pi_bar[i].type) {
1695			case PCIBAR_NONE:
1696			case PCIBAR_MEMHI64:
1697				break;
1698			case PCIBAR_IO:
1699				/* I/O address space decoding changed? */
1700				if (changed & PCIM_CMD_PORTEN) {
1701					if (porten(pi))
1702						register_bar(pi, i);
1703					else
1704						unregister_bar(pi, i);
1705				}
1706				break;
1707			case PCIBAR_MEM32:
1708			case PCIBAR_MEM64:
1709				/* MMIO address space decoding changed? */
1710				if (changed & PCIM_CMD_MEMEN) {
1711					if (memen(pi))
1712						register_bar(pi, i);
1713					else
1714						unregister_bar(pi, i);
1715				}
1716				break;
1717			default:
1718				assert(0);
1719		}
1720	}
1721
1722	/*
1723	 * If INTx has been unmasked and is pending, assert the
1724	 * interrupt.
1725	 */
1726	pci_lintr_update(pi);
1727}
1728
1729static void
1730pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot, int func,
1731    int coff, int bytes, uint32_t *eax)
1732{
1733	struct businfo *bi;
1734	struct slotinfo *si;
1735	struct pci_devinst *pi;
1736	struct pci_devemu *pe;
1737	int idx, needcfg;
1738	uint64_t addr, bar, mask;
1739
1740	if ((bi = pci_businfo[bus]) != NULL) {
1741		si = &bi->slotinfo[slot];
1742		pi = si->si_funcs[func].fi_devi;
1743	} else
1744		pi = NULL;
1745
1746	/*
1747	 * Just return if there is no device at this slot:func or if the
1748	 * the guest is doing an un-aligned access.
1749	 */
1750	if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) ||
1751	    (coff & (bytes - 1)) != 0) {
1752		if (in)
1753			*eax = 0xffffffff;
1754		return;
1755	}
1756
1757	/*
1758	 * Ignore all writes beyond the standard config space and return all
1759	 * ones on reads.
1760	 */
1761	if (coff >= PCI_REGMAX + 1) {
1762		if (in) {
1763			*eax = 0xffffffff;
1764			/*
1765			 * Extended capabilities begin at offset 256 in config
1766			 * space. Absence of extended capabilities is signaled
1767			 * with all 0s in the extended capability header at
1768			 * offset 256.
1769			 */
1770			if (coff <= PCI_REGMAX + 4)
1771				*eax = 0x00000000;
1772		}
1773		return;
1774	}
1775
1776	pe = pi->pi_d;
1777
1778	/*
1779	 * Config read
1780	 */
1781	if (in) {
1782		/* Let the device emulation override the default handler */
1783		if (pe->pe_cfgread != NULL) {
1784			needcfg = pe->pe_cfgread(ctx, vcpu, pi, coff, bytes,
1785			    eax);
1786		} else {
1787			needcfg = 1;
1788		}
1789
1790		if (needcfg)
1791			*eax = CFGREAD(pi, coff, bytes);
1792
1793		pci_emul_hdrtype_fixup(bus, slot, coff, bytes, eax);
1794	} else {
1795		/* Let the device emulation override the default handler */
1796		if (pe->pe_cfgwrite != NULL &&
1797		    (*pe->pe_cfgwrite)(ctx, vcpu, pi, coff, bytes, *eax) == 0)
1798			return;
1799
1800		/*
1801		 * Special handling for write to BAR registers
1802		 */
1803		if (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1)) {
1804			/*
1805			 * Ignore writes to BAR registers that are not
1806			 * 4-byte aligned.
1807			 */
1808			if (bytes != 4 || (coff & 0x3) != 0)
1809				return;
1810			idx = (coff - PCIR_BAR(0)) / 4;
1811			mask = ~(pi->pi_bar[idx].size - 1);
1812			switch (pi->pi_bar[idx].type) {
1813			case PCIBAR_NONE:
1814				pi->pi_bar[idx].addr = bar = 0;
1815				break;
1816			case PCIBAR_IO:
1817				addr = *eax & mask;
1818				addr &= 0xffff;
1819				bar = addr | PCIM_BAR_IO_SPACE;
1820				/*
1821				 * Register the new BAR value for interception
1822				 */
1823				if (addr != pi->pi_bar[idx].addr) {
1824					update_bar_address(pi, addr, idx,
1825							   PCIBAR_IO);
1826				}
1827				break;
1828			case PCIBAR_MEM32:
1829				addr = bar = *eax & mask;
1830				bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
1831				if (addr != pi->pi_bar[idx].addr) {
1832					update_bar_address(pi, addr, idx,
1833							   PCIBAR_MEM32);
1834				}
1835				break;
1836			case PCIBAR_MEM64:
1837				addr = bar = *eax & mask;
1838				bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
1839				       PCIM_BAR_MEM_PREFETCH;
1840				if (addr != (uint32_t)pi->pi_bar[idx].addr) {
1841					update_bar_address(pi, addr, idx,
1842							   PCIBAR_MEM64);
1843				}
1844				break;
1845			case PCIBAR_MEMHI64:
1846				mask = ~(pi->pi_bar[idx - 1].size - 1);
1847				addr = ((uint64_t)*eax << 32) & mask;
1848				bar = addr >> 32;
1849				if (bar != pi->pi_bar[idx - 1].addr >> 32) {
1850					update_bar_address(pi, addr, idx - 1,
1851							   PCIBAR_MEMHI64);
1852				}
1853				break;
1854			default:
1855				assert(0);
1856			}
1857			pci_set_cfgdata32(pi, coff, bar);
1858
1859		} else if (pci_emul_iscap(pi, coff)) {
1860			pci_emul_capwrite(pi, coff, bytes, *eax);
1861		} else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) {
1862			pci_emul_cmdsts_write(pi, coff, *eax, bytes);
1863		} else {
1864			CFGWRITE(pi, coff, *eax, bytes);
1865		}
1866	}
1867}
1868
1869static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff;
1870
1871static int
1872pci_emul_cfgaddr(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
1873		 uint32_t *eax, void *arg)
1874{
1875	uint32_t x;
1876
1877	if (bytes != 4) {
1878		if (in)
1879			*eax = (bytes == 2) ? 0xffff : 0xff;
1880		return (0);
1881	}
1882
1883	if (in) {
1884		x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff;
1885		if (cfgenable)
1886			x |= CONF1_ENABLE;
1887		*eax = x;
1888	} else {
1889		x = *eax;
1890		cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE;
1891		cfgoff = x & PCI_REGMAX;
1892		cfgfunc = (x >> 8) & PCI_FUNCMAX;
1893		cfgslot = (x >> 11) & PCI_SLOTMAX;
1894		cfgbus = (x >> 16) & PCI_BUSMAX;
1895	}
1896
1897	return (0);
1898}
1899INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
1900
1901static int
1902pci_emul_cfgdata(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
1903		 uint32_t *eax, void *arg)
1904{
1905	int coff;
1906
1907	assert(bytes == 1 || bytes == 2 || bytes == 4);
1908
1909	coff = cfgoff + (port - CONF1_DATA_PORT);
1910	if (cfgenable) {
1911		pci_cfgrw(ctx, vcpu, in, cfgbus, cfgslot, cfgfunc, coff, bytes,
1912		    eax);
1913	} else {
1914		/* Ignore accesses to cfgdata if not enabled by cfgaddr */
1915		if (in)
1916			*eax = 0xffffffff;
1917	}
1918	return (0);
1919}
1920
1921INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
1922INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
1923INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
1924INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
1925
1926#define PCI_EMUL_TEST
1927#ifdef PCI_EMUL_TEST
1928/*
1929 * Define a dummy test device
1930 */
1931#define DIOSZ	8
1932#define DMEMSZ	4096
1933struct pci_emul_dsoftc {
1934	uint8_t   ioregs[DIOSZ];
1935	uint8_t	  memregs[2][DMEMSZ];
1936};
1937
1938#define	PCI_EMUL_MSI_MSGS	 4
1939#define	PCI_EMUL_MSIX_MSGS	16
1940
1941static int
1942pci_emul_dinit(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
1943{
1944	int error;
1945	struct pci_emul_dsoftc *sc;
1946
1947	sc = calloc(1, sizeof(struct pci_emul_dsoftc));
1948
1949	pi->pi_arg = sc;
1950
1951	pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
1952	pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
1953	pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
1954
1955	error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
1956	assert(error == 0);
1957
1958	error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
1959	assert(error == 0);
1960
1961	error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
1962	assert(error == 0);
1963
1964	error = pci_emul_alloc_bar(pi, 2, PCIBAR_MEM32, DMEMSZ);
1965	assert(error == 0);
1966
1967	return (0);
1968}
1969
1970static void
1971pci_emul_diow(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
1972	      uint64_t offset, int size, uint64_t value)
1973{
1974	int i;
1975	struct pci_emul_dsoftc *sc = pi->pi_arg;
1976
1977	if (baridx == 0) {
1978		if (offset + size > DIOSZ) {
1979			printf("diow: iow too large, offset %ld size %d\n",
1980			       offset, size);
1981			return;
1982		}
1983
1984		if (size == 1) {
1985			sc->ioregs[offset] = value & 0xff;
1986		} else if (size == 2) {
1987			*(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
1988		} else if (size == 4) {
1989			*(uint32_t *)&sc->ioregs[offset] = value;
1990		} else {
1991			printf("diow: iow unknown size %d\n", size);
1992		}
1993
1994		/*
1995		 * Special magic value to generate an interrupt
1996		 */
1997		if (offset == 4 && size == 4 && pci_msi_enabled(pi))
1998			pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi));
1999
2000		if (value == 0xabcdef) {
2001			for (i = 0; i < pci_msi_maxmsgnum(pi); i++)
2002				pci_generate_msi(pi, i);
2003		}
2004	}
2005
2006	if (baridx == 1 || baridx == 2) {
2007		if (offset + size > DMEMSZ) {
2008			printf("diow: memw too large, offset %ld size %d\n",
2009			       offset, size);
2010			return;
2011		}
2012
2013		i = baridx - 1;		/* 'memregs' index */
2014
2015		if (size == 1) {
2016			sc->memregs[i][offset] = value;
2017		} else if (size == 2) {
2018			*(uint16_t *)&sc->memregs[i][offset] = value;
2019		} else if (size == 4) {
2020			*(uint32_t *)&sc->memregs[i][offset] = value;
2021		} else if (size == 8) {
2022			*(uint64_t *)&sc->memregs[i][offset] = value;
2023		} else {
2024			printf("diow: memw unknown size %d\n", size);
2025		}
2026
2027		/*
2028		 * magic interrupt ??
2029		 */
2030	}
2031
2032	if (baridx > 2 || baridx < 0) {
2033		printf("diow: unknown bar idx %d\n", baridx);
2034	}
2035}
2036
2037static uint64_t
2038pci_emul_dior(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2039	      uint64_t offset, int size)
2040{
2041	struct pci_emul_dsoftc *sc = pi->pi_arg;
2042	uint32_t value;
2043	int i;
2044
2045	if (baridx == 0) {
2046		if (offset + size > DIOSZ) {
2047			printf("dior: ior too large, offset %ld size %d\n",
2048			       offset, size);
2049			return (0);
2050		}
2051
2052		value = 0;
2053		if (size == 1) {
2054			value = sc->ioregs[offset];
2055		} else if (size == 2) {
2056			value = *(uint16_t *) &sc->ioregs[offset];
2057		} else if (size == 4) {
2058			value = *(uint32_t *) &sc->ioregs[offset];
2059		} else {
2060			printf("dior: ior unknown size %d\n", size);
2061		}
2062	}
2063
2064	if (baridx == 1 || baridx == 2) {
2065		if (offset + size > DMEMSZ) {
2066			printf("dior: memr too large, offset %ld size %d\n",
2067			       offset, size);
2068			return (0);
2069		}
2070
2071		i = baridx - 1;		/* 'memregs' index */
2072
2073		if (size == 1) {
2074			value = sc->memregs[i][offset];
2075		} else if (size == 2) {
2076			value = *(uint16_t *) &sc->memregs[i][offset];
2077		} else if (size == 4) {
2078			value = *(uint32_t *) &sc->memregs[i][offset];
2079		} else if (size == 8) {
2080			value = *(uint64_t *) &sc->memregs[i][offset];
2081		} else {
2082			printf("dior: ior unknown size %d\n", size);
2083		}
2084	}
2085
2086
2087	if (baridx > 2 || baridx < 0) {
2088		printf("dior: unknown bar idx %d\n", baridx);
2089		return (0);
2090	}
2091
2092	return (value);
2093}
2094
2095struct pci_devemu pci_dummy = {
2096	.pe_emu = "dummy",
2097	.pe_init = pci_emul_dinit,
2098	.pe_barwrite = pci_emul_diow,
2099	.pe_barread = pci_emul_dior
2100};
2101PCI_EMUL_SET(pci_dummy);
2102
2103#endif /* PCI_EMUL_TEST */
2104