if_ti.c revision 87846
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/ti/if_ti.c 87846 2001-12-14 05:56:35Z luigi $
33 */
34
35/*
36 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37 * Manuals, sample driver and firmware source kits are available
38 * from http://www.alteon.com/support/openkits.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Electrical Engineering Department
42 * Columbia University, New York City
43 */
44
45/*
46 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50 * filtering and jumbo (9014 byte) frames. The hardware is largely
51 * controlled by firmware, which must be loaded into the NIC during
52 * initialization.
53 *
54 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55 * revision, which supports new features such as extended commands,
56 * extended jumbo receive ring desciptors and a mini receive ring.
57 *
58 * Alteon Networks is to be commended for releasing such a vast amount
59 * of development material for the Tigon NIC without requiring an NDA
60 * (although they really should have done it a long time ago). With
61 * any luck, the other vendors will finally wise up and follow Alteon's
62 * stellar example.
63 *
64 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65 * this driver by #including it as a C header file. This bloats the
66 * driver somewhat, but it's the easiest method considering that the
67 * driver code and firmware code need to be kept in sync. The source
68 * for the firmware is not provided with the FreeBSD distribution since
69 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70 *
71 * The following people deserve special thanks:
72 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73 *   for testing
74 * - Raymond Lee of Netgear, for providing a pair of Netgear
75 *   GA620 Tigon 2 boards for testing
76 * - Ulf Zimmermann, for bringing the GA260 to my attention and
77 *   convincing me to write this driver.
78 * - Andrew Gallatin for providing FreeBSD/Alpha support.
79 */
80
81#include <sys/param.h>
82#include <sys/systm.h>
83#include <sys/sockio.h>
84#include <sys/mbuf.h>
85#include <sys/malloc.h>
86#include <sys/kernel.h>
87#include <sys/socket.h>
88#include <sys/queue.h>
89
90#include <net/if.h>
91#include <net/if_arp.h>
92#include <net/ethernet.h>
93#include <net/if_dl.h>
94#include <net/if_media.h>
95#include <net/if_types.h>
96#include <net/if_vlan_var.h>
97
98#include <net/bpf.h>
99
100#include <netinet/in_systm.h>
101#include <netinet/in.h>
102#include <netinet/ip.h>
103
104#include <vm/vm.h>              /* for vtophys */
105#include <vm/pmap.h>            /* for vtophys */
106#include <machine/bus_memio.h>
107#include <machine/bus.h>
108#include <machine/resource.h>
109#include <sys/bus.h>
110#include <sys/rman.h>
111
112#include <pci/pcireg.h>
113#include <pci/pcivar.h>
114
115#include <pci/if_tireg.h>
116#include <pci/ti_fw.h>
117#include <pci/ti_fw2.h>
118
119#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
120
121#if !defined(lint)
122static const char rcsid[] =
123  "$FreeBSD: head/sys/dev/ti/if_ti.c 87846 2001-12-14 05:56:35Z luigi $";
124#endif
125
126/*
127 * Various supported device vendors/types and their names.
128 */
129
130static struct ti_type ti_devs[] = {
131	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
132		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
133	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
134		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
135	{ TC_VENDORID,	TC_DEVICEID_3C985,
136		"3Com 3c985-SX Gigabit Ethernet" },
137	{ NG_VENDORID, NG_DEVICEID_GA620,
138		"Netgear GA620 1000baseSX Gigabit Ethernet" },
139	{ NG_VENDORID, NG_DEVICEID_GA620T,
140		"Netgear GA620 1000baseT Gigabit Ethernet" },
141	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
142		"Silicon Graphics Gigabit Ethernet" },
143	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
144		"Farallon PN9000SX Gigabit Ethernet" },
145	{ 0, 0, NULL }
146};
147
148static int ti_probe		__P((device_t));
149static int ti_attach		__P((device_t));
150static int ti_detach		__P((device_t));
151static void ti_txeof		__P((struct ti_softc *));
152static void ti_rxeof		__P((struct ti_softc *));
153
154static void ti_stats_update	__P((struct ti_softc *));
155static int ti_encap		__P((struct ti_softc *, struct mbuf *,
156					u_int32_t *));
157
158static void ti_intr		__P((void *));
159static void ti_start		__P((struct ifnet *));
160static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
161static void ti_init		__P((void *));
162static void ti_init2		__P((struct ti_softc *));
163static void ti_stop		__P((struct ti_softc *));
164static void ti_watchdog		__P((struct ifnet *));
165static void ti_shutdown		__P((device_t));
166static int ti_ifmedia_upd	__P((struct ifnet *));
167static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
168
169static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
170static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
171						int, u_int8_t *));
172static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
173
174static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
175static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
176static void ti_setmulti		__P((struct ti_softc *));
177
178static void ti_mem		__P((struct ti_softc *, u_int32_t,
179					u_int32_t, caddr_t));
180static void ti_loadfw		__P((struct ti_softc *));
181static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
182static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
183					caddr_t, int));
184static void ti_handle_events	__P((struct ti_softc *));
185static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
186static void *ti_jalloc		__P((struct ti_softc *));
187static void ti_jfree		__P((caddr_t, void *));
188static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *));
189static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *));
190static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
191static int ti_init_rx_ring_std	__P((struct ti_softc *));
192static void ti_free_rx_ring_std	__P((struct ti_softc *));
193static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
194static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
195static int ti_init_rx_ring_mini	__P((struct ti_softc *));
196static void ti_free_rx_ring_mini	__P((struct ti_softc *));
197static void ti_free_tx_ring	__P((struct ti_softc *));
198static int ti_init_tx_ring	__P((struct ti_softc *));
199
200static int ti_64bitslot_war	__P((struct ti_softc *));
201static int ti_chipinit		__P((struct ti_softc *));
202static int ti_gibinit		__P((struct ti_softc *));
203
204static device_method_t ti_methods[] = {
205	/* Device interface */
206	DEVMETHOD(device_probe,		ti_probe),
207	DEVMETHOD(device_attach,	ti_attach),
208	DEVMETHOD(device_detach,	ti_detach),
209	DEVMETHOD(device_shutdown,	ti_shutdown),
210	{ 0, 0 }
211};
212
213static driver_t ti_driver = {
214	"ti",
215	ti_methods,
216	sizeof(struct ti_softc)
217};
218
219static devclass_t ti_devclass;
220
221DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
222
223/*
224 * Send an instruction or address to the EEPROM, check for ACK.
225 */
226static u_int32_t ti_eeprom_putbyte(sc, byte)
227	struct ti_softc		*sc;
228	int			byte;
229{
230	register int		i, ack = 0;
231
232	/*
233	 * Make sure we're in TX mode.
234	 */
235	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
236
237	/*
238	 * Feed in each bit and stobe the clock.
239	 */
240	for (i = 0x80; i; i >>= 1) {
241		if (byte & i) {
242			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
243		} else {
244			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
245		}
246		DELAY(1);
247		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
248		DELAY(1);
249		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
250	}
251
252	/*
253	 * Turn off TX mode.
254	 */
255	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
256
257	/*
258	 * Check for ack.
259	 */
260	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
261	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
262	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
263
264	return(ack);
265}
266
267/*
268 * Read a byte of data stored in the EEPROM at address 'addr.'
269 * We have to send two address bytes since the EEPROM can hold
270 * more than 256 bytes of data.
271 */
272static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
273	struct ti_softc		*sc;
274	int			addr;
275	u_int8_t		*dest;
276{
277	register int		i;
278	u_int8_t		byte = 0;
279
280	EEPROM_START;
281
282	/*
283	 * Send write control code to EEPROM.
284	 */
285	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
286		printf("ti%d: failed to send write command, status: %x\n",
287		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
288		return(1);
289	}
290
291	/*
292	 * Send first byte of address of byte we want to read.
293	 */
294	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
295		printf("ti%d: failed to send address, status: %x\n",
296		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
297		return(1);
298	}
299	/*
300	 * Send second byte address of byte we want to read.
301	 */
302	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
303		printf("ti%d: failed to send address, status: %x\n",
304		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
305		return(1);
306	}
307
308	EEPROM_STOP;
309	EEPROM_START;
310	/*
311	 * Send read control code to EEPROM.
312	 */
313	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
314		printf("ti%d: failed to send read command, status: %x\n",
315		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
316		return(1);
317	}
318
319	/*
320	 * Start reading bits from EEPROM.
321	 */
322	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
323	for (i = 0x80; i; i >>= 1) {
324		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
325		DELAY(1);
326		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
327			byte |= i;
328		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
329		DELAY(1);
330	}
331
332	EEPROM_STOP;
333
334	/*
335	 * No ACK generated for read, so just return byte.
336	 */
337
338	*dest = byte;
339
340	return(0);
341}
342
343/*
344 * Read a sequence of bytes from the EEPROM.
345 */
346static int ti_read_eeprom(sc, dest, off, cnt)
347	struct ti_softc		*sc;
348	caddr_t			dest;
349	int			off;
350	int			cnt;
351{
352	int			err = 0, i;
353	u_int8_t		byte = 0;
354
355	for (i = 0; i < cnt; i++) {
356		err = ti_eeprom_getbyte(sc, off + i, &byte);
357		if (err)
358			break;
359		*(dest + i) = byte;
360	}
361
362	return(err ? 1 : 0);
363}
364
365/*
366 * NIC memory access function. Can be used to either clear a section
367 * of NIC local memory or (if buf is non-NULL) copy data into it.
368 */
369static void ti_mem(sc, addr, len, buf)
370	struct ti_softc		*sc;
371	u_int32_t		addr, len;
372	caddr_t			buf;
373{
374	int			segptr, segsize, cnt;
375	caddr_t			ti_winbase, ptr;
376
377	segptr = addr;
378	cnt = len;
379	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
380	ptr = buf;
381
382	while(cnt) {
383		if (cnt < TI_WINLEN)
384			segsize = cnt;
385		else
386			segsize = TI_WINLEN - (segptr % TI_WINLEN);
387		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
388		if (buf == NULL)
389			bzero((char *)ti_winbase + (segptr &
390			    (TI_WINLEN - 1)), segsize);
391		else {
392			bcopy((char *)ptr, (char *)ti_winbase +
393			    (segptr & (TI_WINLEN - 1)), segsize);
394			ptr += segsize;
395		}
396		segptr += segsize;
397		cnt -= segsize;
398	}
399
400	return;
401}
402
403/*
404 * Load firmware image into the NIC. Check that the firmware revision
405 * is acceptable and see if we want the firmware for the Tigon 1 or
406 * Tigon 2.
407 */
408static void ti_loadfw(sc)
409	struct ti_softc		*sc;
410{
411	switch(sc->ti_hwrev) {
412	case TI_HWREV_TIGON:
413		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
414		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
415		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
416			printf("ti%d: firmware revision mismatch; want "
417			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
418			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
419			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
420			    tigonFwReleaseMinor, tigonFwReleaseFix);
421			return;
422		}
423		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
424		    (caddr_t)tigonFwText);
425		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
426		    (caddr_t)tigonFwData);
427		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
428		    (caddr_t)tigonFwRodata);
429		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
430		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
431		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
432		break;
433	case TI_HWREV_TIGON_II:
434		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
435		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
436		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
437			printf("ti%d: firmware revision mismatch; want "
438			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
439			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
440			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
441			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
442			return;
443		}
444		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
445		    (caddr_t)tigon2FwText);
446		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
447		    (caddr_t)tigon2FwData);
448		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
449		    (caddr_t)tigon2FwRodata);
450		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
451		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
452		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
453		break;
454	default:
455		printf("ti%d: can't load firmware: unknown hardware rev\n",
456		    sc->ti_unit);
457		break;
458	}
459
460	return;
461}
462
463/*
464 * Send the NIC a command via the command ring.
465 */
466static void ti_cmd(sc, cmd)
467	struct ti_softc		*sc;
468	struct ti_cmd_desc	*cmd;
469{
470	u_int32_t		index;
471
472	if (sc->ti_rdata->ti_cmd_ring == NULL)
473		return;
474
475	index = sc->ti_cmd_saved_prodidx;
476	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
477	TI_INC(index, TI_CMD_RING_CNT);
478	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
479	sc->ti_cmd_saved_prodidx = index;
480
481	return;
482}
483
484/*
485 * Send the NIC an extended command. The 'len' parameter specifies the
486 * number of command slots to include after the initial command.
487 */
488static void ti_cmd_ext(sc, cmd, arg, len)
489	struct ti_softc		*sc;
490	struct ti_cmd_desc	*cmd;
491	caddr_t			arg;
492	int			len;
493{
494	u_int32_t		index;
495	register int		i;
496
497	if (sc->ti_rdata->ti_cmd_ring == NULL)
498		return;
499
500	index = sc->ti_cmd_saved_prodidx;
501	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
502	TI_INC(index, TI_CMD_RING_CNT);
503	for (i = 0; i < len; i++) {
504		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
505		    *(u_int32_t *)(&arg[i * 4]));
506		TI_INC(index, TI_CMD_RING_CNT);
507	}
508	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
509	sc->ti_cmd_saved_prodidx = index;
510
511	return;
512}
513
514/*
515 * Handle events that have triggered interrupts.
516 */
517static void ti_handle_events(sc)
518	struct ti_softc		*sc;
519{
520	struct ti_event_desc	*e;
521
522	if (sc->ti_rdata->ti_event_ring == NULL)
523		return;
524
525	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
526		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
527		switch(e->ti_event) {
528		case TI_EV_LINKSTAT_CHANGED:
529			sc->ti_linkstat = e->ti_code;
530			if (e->ti_code == TI_EV_CODE_LINK_UP)
531				printf("ti%d: 10/100 link up\n", sc->ti_unit);
532			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
533				printf("ti%d: gigabit link up\n", sc->ti_unit);
534			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
535				printf("ti%d: link down\n", sc->ti_unit);
536			break;
537		case TI_EV_ERROR:
538			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
539				printf("ti%d: invalid command\n", sc->ti_unit);
540			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
541				printf("ti%d: unknown command\n", sc->ti_unit);
542			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
543				printf("ti%d: bad config data\n", sc->ti_unit);
544			break;
545		case TI_EV_FIRMWARE_UP:
546			ti_init2(sc);
547			break;
548		case TI_EV_STATS_UPDATED:
549			ti_stats_update(sc);
550			break;
551		case TI_EV_RESET_JUMBO_RING:
552		case TI_EV_MCAST_UPDATED:
553			/* Who cares. */
554			break;
555		default:
556			printf("ti%d: unknown event: %d\n",
557			    sc->ti_unit, e->ti_event);
558			break;
559		}
560		/* Advance the consumer index. */
561		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
562		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
563	}
564
565	return;
566}
567
568/*
569 * Memory management for the jumbo receive ring is a pain in the
570 * butt. We need to allocate at least 9018 bytes of space per frame,
571 * _and_ it has to be contiguous (unless you use the extended
572 * jumbo descriptor format). Using malloc() all the time won't
573 * work: malloc() allocates memory in powers of two, which means we
574 * would end up wasting a considerable amount of space by allocating
575 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
576 * to do our own memory management.
577 *
578 * The driver needs to allocate a contiguous chunk of memory at boot
579 * time. We then chop this up ourselves into 9K pieces and use them
580 * as external mbuf storage.
581 *
582 * One issue here is how much memory to allocate. The jumbo ring has
583 * 256 slots in it, but at 9K per slot than can consume over 2MB of
584 * RAM. This is a bit much, especially considering we also need
585 * RAM for the standard ring and mini ring (on the Tigon 2). To
586 * save space, we only actually allocate enough memory for 64 slots
587 * by default, which works out to between 500 and 600K. This can
588 * be tuned by changing a #define in if_tireg.h.
589 */
590
591static int ti_alloc_jumbo_mem(sc)
592	struct ti_softc		*sc;
593{
594	caddr_t			ptr;
595	register int		i;
596	struct ti_jpool_entry   *entry;
597
598	/* Grab a big chunk o' storage. */
599	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
600		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
601
602	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
603		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
604		return(ENOBUFS);
605	}
606
607	SLIST_INIT(&sc->ti_jfree_listhead);
608	SLIST_INIT(&sc->ti_jinuse_listhead);
609
610	/*
611	 * Now divide it up into 9K pieces and save the addresses
612	 * in an array.
613	 */
614	ptr = sc->ti_cdata.ti_jumbo_buf;
615	for (i = 0; i < TI_JSLOTS; i++) {
616		sc->ti_cdata.ti_jslots[i] = ptr;
617		ptr += TI_JLEN;
618		entry = malloc(sizeof(struct ti_jpool_entry),
619			       M_DEVBUF, M_NOWAIT);
620		if (entry == NULL) {
621			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
622			           M_DEVBUF);
623			sc->ti_cdata.ti_jumbo_buf = NULL;
624			printf("ti%d: no memory for jumbo "
625			    "buffer queue!\n", sc->ti_unit);
626			return(ENOBUFS);
627		}
628		entry->slot = i;
629		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
630	}
631
632	return(0);
633}
634
635/*
636 * Allocate a jumbo buffer.
637 */
638static void *ti_jalloc(sc)
639	struct ti_softc		*sc;
640{
641	struct ti_jpool_entry   *entry;
642
643	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
644
645	if (entry == NULL) {
646		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
647		return(NULL);
648	}
649
650	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
651	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
652	return(sc->ti_cdata.ti_jslots[entry->slot]);
653}
654
655/*
656 * Release a jumbo buffer.
657 */
658static void ti_jfree(buf, args)
659	caddr_t			buf;
660	void			*args;
661{
662	struct ti_softc		*sc;
663	int		        i;
664	struct ti_jpool_entry   *entry;
665
666	/* Extract the softc struct pointer. */
667	sc = (struct ti_softc *)args;
668
669	if (sc == NULL)
670		panic("ti_jfree: didn't get softc pointer!");
671
672	/* calculate the slot this buffer belongs to */
673	i = ((vm_offset_t)buf
674	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
675
676	if ((i < 0) || (i >= TI_JSLOTS))
677		panic("ti_jfree: asked to free buffer that we don't manage!");
678
679	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
680	if (entry == NULL)
681		panic("ti_jfree: buffer not in use!");
682	entry->slot = i;
683	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
684	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
685
686	return;
687}
688
689
690/*
691 * Intialize a standard receive ring descriptor.
692 */
693static int ti_newbuf_std(sc, i, m)
694	struct ti_softc		*sc;
695	int			i;
696	struct mbuf		*m;
697{
698	struct mbuf		*m_new = NULL;
699	struct ti_rx_desc	*r;
700
701	if (m == NULL) {
702		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
703		if (m_new == NULL)
704			return(ENOBUFS);
705
706		MCLGET(m_new, M_DONTWAIT);
707		if (!(m_new->m_flags & M_EXT)) {
708			m_freem(m_new);
709			return(ENOBUFS);
710		}
711		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
712	} else {
713		m_new = m;
714		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
715		m_new->m_data = m_new->m_ext.ext_buf;
716	}
717
718	m_adj(m_new, ETHER_ALIGN);
719	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
720	r = &sc->ti_rdata->ti_rx_std_ring[i];
721	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
722	r->ti_type = TI_BDTYPE_RECV_BD;
723	r->ti_flags = 0;
724	if (sc->arpcom.ac_if.if_hwassist)
725		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
726	r->ti_len = m_new->m_len;
727	r->ti_idx = i;
728
729	return(0);
730}
731
732/*
733 * Intialize a mini receive ring descriptor. This only applies to
734 * the Tigon 2.
735 */
736static int ti_newbuf_mini(sc, i, m)
737	struct ti_softc		*sc;
738	int			i;
739	struct mbuf		*m;
740{
741	struct mbuf		*m_new = NULL;
742	struct ti_rx_desc	*r;
743
744	if (m == NULL) {
745		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
746		if (m_new == NULL) {
747			printf("ti%d: mbuf allocation failed "
748			    "-- packet dropped!\n", sc->ti_unit);
749			return(ENOBUFS);
750		}
751		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
752	} else {
753		m_new = m;
754		m_new->m_data = m_new->m_pktdat;
755		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
756	}
757
758	m_adj(m_new, ETHER_ALIGN);
759	r = &sc->ti_rdata->ti_rx_mini_ring[i];
760	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
761	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
762	r->ti_type = TI_BDTYPE_RECV_BD;
763	r->ti_flags = TI_BDFLAG_MINI_RING;
764	if (sc->arpcom.ac_if.if_hwassist)
765		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
766	r->ti_len = m_new->m_len;
767	r->ti_idx = i;
768
769	return(0);
770}
771
772/*
773 * Initialize a jumbo receive ring descriptor. This allocates
774 * a jumbo buffer from the pool managed internally by the driver.
775 */
776static int ti_newbuf_jumbo(sc, i, m)
777	struct ti_softc		*sc;
778	int			i;
779	struct mbuf		*m;
780{
781	struct mbuf		*m_new = NULL;
782	struct ti_rx_desc	*r;
783
784	if (m == NULL) {
785		caddr_t			*buf = NULL;
786
787		/* Allocate the mbuf. */
788		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
789		if (m_new == NULL) {
790			printf("ti%d: mbuf allocation failed "
791			    "-- packet dropped!\n", sc->ti_unit);
792			return(ENOBUFS);
793		}
794
795		/* Allocate the jumbo buffer */
796		buf = ti_jalloc(sc);
797		if (buf == NULL) {
798			m_freem(m_new);
799			printf("ti%d: jumbo allocation failed "
800			    "-- packet dropped!\n", sc->ti_unit);
801			return(ENOBUFS);
802		}
803
804		/* Attach the buffer to the mbuf. */
805		m_new->m_data = (void *) buf;
806		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
807		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
808		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
809	} else {
810		m_new = m;
811		m_new->m_data = m_new->m_ext.ext_buf;
812		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
813	}
814
815	m_adj(m_new, ETHER_ALIGN);
816	/* Set up the descriptor. */
817	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
818	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
819	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
820	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
821	r->ti_flags = TI_BDFLAG_JUMBO_RING;
822	if (sc->arpcom.ac_if.if_hwassist)
823		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
824	r->ti_len = m_new->m_len;
825	r->ti_idx = i;
826
827	return(0);
828}
829
830/*
831 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
832 * that's 1MB or memory, which is a lot. For now, we fill only the first
833 * 256 ring entries and hope that our CPU is fast enough to keep up with
834 * the NIC.
835 */
836static int ti_init_rx_ring_std(sc)
837	struct ti_softc		*sc;
838{
839	register int		i;
840	struct ti_cmd_desc	cmd;
841
842	for (i = 0; i < TI_SSLOTS; i++) {
843		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
844			return(ENOBUFS);
845	};
846
847	TI_UPDATE_STDPROD(sc, i - 1);
848	sc->ti_std = i - 1;
849
850	return(0);
851}
852
853static void ti_free_rx_ring_std(sc)
854	struct ti_softc		*sc;
855{
856	register int		i;
857
858	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
859		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
860			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
861			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
862		}
863		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
864		    sizeof(struct ti_rx_desc));
865	}
866
867	return;
868}
869
870static int ti_init_rx_ring_jumbo(sc)
871	struct ti_softc		*sc;
872{
873	register int		i;
874	struct ti_cmd_desc	cmd;
875
876	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
877		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
878			return(ENOBUFS);
879	};
880
881	TI_UPDATE_JUMBOPROD(sc, i - 1);
882	sc->ti_jumbo = i - 1;
883
884	return(0);
885}
886
887static void ti_free_rx_ring_jumbo(sc)
888	struct ti_softc		*sc;
889{
890	register int		i;
891
892	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
893		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
894			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
895			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
896		}
897		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
898		    sizeof(struct ti_rx_desc));
899	}
900
901	return;
902}
903
904static int ti_init_rx_ring_mini(sc)
905	struct ti_softc		*sc;
906{
907	register int		i;
908
909	for (i = 0; i < TI_MSLOTS; i++) {
910		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
911			return(ENOBUFS);
912	};
913
914	TI_UPDATE_MINIPROD(sc, i - 1);
915	sc->ti_mini = i - 1;
916
917	return(0);
918}
919
920static void ti_free_rx_ring_mini(sc)
921	struct ti_softc		*sc;
922{
923	register int		i;
924
925	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
926		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
927			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
928			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
929		}
930		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
931		    sizeof(struct ti_rx_desc));
932	}
933
934	return;
935}
936
937static void ti_free_tx_ring(sc)
938	struct ti_softc		*sc;
939{
940	register int		i;
941
942	if (sc->ti_rdata->ti_tx_ring == NULL)
943		return;
944
945	for (i = 0; i < TI_TX_RING_CNT; i++) {
946		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
947			m_freem(sc->ti_cdata.ti_tx_chain[i]);
948			sc->ti_cdata.ti_tx_chain[i] = NULL;
949		}
950		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
951		    sizeof(struct ti_tx_desc));
952	}
953
954	return;
955}
956
957static int ti_init_tx_ring(sc)
958	struct ti_softc		*sc;
959{
960	sc->ti_txcnt = 0;
961	sc->ti_tx_saved_considx = 0;
962	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
963	return(0);
964}
965
966/*
967 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
968 * but we have to support the old way too so that Tigon 1 cards will
969 * work.
970 */
971void ti_add_mcast(sc, addr)
972	struct ti_softc		*sc;
973	struct ether_addr	*addr;
974{
975	struct ti_cmd_desc	cmd;
976	u_int16_t		*m;
977	u_int32_t		ext[2] = {0, 0};
978
979	m = (u_int16_t *)&addr->octet[0];
980
981	switch(sc->ti_hwrev) {
982	case TI_HWREV_TIGON:
983		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
984		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
985		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
986		break;
987	case TI_HWREV_TIGON_II:
988		ext[0] = htons(m[0]);
989		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
990		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
991		break;
992	default:
993		printf("ti%d: unknown hwrev\n", sc->ti_unit);
994		break;
995	}
996
997	return;
998}
999
1000void ti_del_mcast(sc, addr)
1001	struct ti_softc		*sc;
1002	struct ether_addr	*addr;
1003{
1004	struct ti_cmd_desc	cmd;
1005	u_int16_t		*m;
1006	u_int32_t		ext[2] = {0, 0};
1007
1008	m = (u_int16_t *)&addr->octet[0];
1009
1010	switch(sc->ti_hwrev) {
1011	case TI_HWREV_TIGON:
1012		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1013		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1014		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1015		break;
1016	case TI_HWREV_TIGON_II:
1017		ext[0] = htons(m[0]);
1018		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1019		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1020		break;
1021	default:
1022		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1023		break;
1024	}
1025
1026	return;
1027}
1028
1029/*
1030 * Configure the Tigon's multicast address filter.
1031 *
1032 * The actual multicast table management is a bit of a pain, thanks to
1033 * slight brain damage on the part of both Alteon and us. With our
1034 * multicast code, we are only alerted when the multicast address table
1035 * changes and at that point we only have the current list of addresses:
1036 * we only know the current state, not the previous state, so we don't
1037 * actually know what addresses were removed or added. The firmware has
1038 * state, but we can't get our grubby mits on it, and there is no 'delete
1039 * all multicast addresses' command. Hence, we have to maintain our own
1040 * state so we know what addresses have been programmed into the NIC at
1041 * any given time.
1042 */
1043static void ti_setmulti(sc)
1044	struct ti_softc		*sc;
1045{
1046	struct ifnet		*ifp;
1047	struct ifmultiaddr	*ifma;
1048	struct ti_cmd_desc	cmd;
1049	struct ti_mc_entry	*mc;
1050	u_int32_t		intrs;
1051
1052	ifp = &sc->arpcom.ac_if;
1053
1054	if (ifp->if_flags & IFF_ALLMULTI) {
1055		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1056		return;
1057	} else {
1058		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1059	}
1060
1061	/* Disable interrupts. */
1062	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1063	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1064
1065	/* First, zot all the existing filters. */
1066	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1067		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1068		ti_del_mcast(sc, &mc->mc_addr);
1069		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1070		free(mc, M_DEVBUF);
1071	}
1072
1073	/* Now program new ones. */
1074	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1075		if (ifma->ifma_addr->sa_family != AF_LINK)
1076			continue;
1077		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1078		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1079		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1080		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1081		ti_add_mcast(sc, &mc->mc_addr);
1082	}
1083
1084	/* Re-enable interrupts. */
1085	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1086
1087	return;
1088}
1089
1090/*
1091 * Check to see if the BIOS has configured us for a 64 bit slot when
1092 * we aren't actually in one. If we detect this condition, we can work
1093 * around it on the Tigon 2 by setting a bit in the PCI state register,
1094 * but for the Tigon 1 we must give up and abort the interface attach.
1095 */
1096static int ti_64bitslot_war(sc)
1097	struct ti_softc		*sc;
1098{
1099	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1100		CSR_WRITE_4(sc, 0x600, 0);
1101		CSR_WRITE_4(sc, 0x604, 0);
1102		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1103		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1104			if (sc->ti_hwrev == TI_HWREV_TIGON)
1105				return(EINVAL);
1106			else {
1107				TI_SETBIT(sc, TI_PCI_STATE,
1108				    TI_PCISTATE_32BIT_BUS);
1109				return(0);
1110			}
1111		}
1112	}
1113
1114	return(0);
1115}
1116
1117/*
1118 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1119 * self-test results.
1120 */
1121static int ti_chipinit(sc)
1122	struct ti_softc		*sc;
1123{
1124	u_int32_t		cacheline;
1125	u_int32_t		pci_writemax = 0;
1126
1127	/* Initialize link to down state. */
1128	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1129
1130	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1131		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1132	else
1133		sc->arpcom.ac_if.if_hwassist = 0;
1134
1135	/* Set endianness before we access any non-PCI registers. */
1136#if BYTE_ORDER == BIG_ENDIAN
1137	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1138	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1139#else
1140	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1141	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1142#endif
1143
1144	/* Check the ROM failed bit to see if self-tests passed. */
1145	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1146		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1147		return(ENODEV);
1148	}
1149
1150	/* Halt the CPU. */
1151	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1152
1153	/* Figure out the hardware revision. */
1154	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1155	case TI_REV_TIGON_I:
1156		sc->ti_hwrev = TI_HWREV_TIGON;
1157		break;
1158	case TI_REV_TIGON_II:
1159		sc->ti_hwrev = TI_HWREV_TIGON_II;
1160		break;
1161	default:
1162		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1163		return(ENODEV);
1164	}
1165
1166	/* Do special setup for Tigon 2. */
1167	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1168		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1169		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1170		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1171	}
1172
1173	/* Set up the PCI state register. */
1174	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1175	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1176		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1177	}
1178
1179	/* Clear the read/write max DMA parameters. */
1180	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1181	    TI_PCISTATE_READ_MAXDMA));
1182
1183	/* Get cache line size. */
1184	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1185
1186	/*
1187	 * If the system has set enabled the PCI memory write
1188	 * and invalidate command in the command register, set
1189	 * the write max parameter accordingly. This is necessary
1190	 * to use MWI with the Tigon 2.
1191	 */
1192	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1193		switch(cacheline) {
1194		case 1:
1195		case 4:
1196		case 8:
1197		case 16:
1198		case 32:
1199		case 64:
1200			break;
1201		default:
1202		/* Disable PCI memory write and invalidate. */
1203			if (bootverbose)
1204				printf("ti%d: cache line size %d not "
1205				    "supported; disabling PCI MWI\n",
1206				    sc->ti_unit, cacheline);
1207			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1208			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1209			break;
1210		}
1211	}
1212
1213#ifdef __brokenalpha__
1214	/*
1215	 * From the Alteon sample driver:
1216	 * Must insure that we do not cross an 8K (bytes) boundary
1217	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1218	 * restriction on some ALPHA platforms with early revision
1219	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1220	 */
1221	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1222#else
1223	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1224#endif
1225
1226	/* This sets the min dma param all the way up (0xff). */
1227	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1228
1229	/* Configure DMA variables. */
1230#if BYTE_ORDER == BIG_ENDIAN
1231	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1232	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1233	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1234	    TI_OPMODE_DONT_FRAG_JUMBO);
1235#else
1236	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1237	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1238	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1239#endif
1240
1241	/*
1242	 * Only allow 1 DMA channel to be active at a time.
1243	 * I don't think this is a good idea, but without it
1244	 * the firmware racks up lots of nicDmaReadRingFull
1245	 * errors.  This is not compatible with hardware checksums.
1246	 */
1247	if (sc->arpcom.ac_if.if_hwassist == 0)
1248		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1249
1250	/* Recommended settings from Tigon manual. */
1251	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1252	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1253
1254	if (ti_64bitslot_war(sc)) {
1255		printf("ti%d: bios thinks we're in a 64 bit slot, "
1256		    "but we aren't", sc->ti_unit);
1257		return(EINVAL);
1258	}
1259
1260	return(0);
1261}
1262
1263/*
1264 * Initialize the general information block and firmware, and
1265 * start the CPU(s) running.
1266 */
1267static int ti_gibinit(sc)
1268	struct ti_softc		*sc;
1269{
1270	struct ti_rcb		*rcb;
1271	int			i;
1272	struct ifnet		*ifp;
1273
1274	ifp = &sc->arpcom.ac_if;
1275
1276	/* Disable interrupts for now. */
1277	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1278
1279	/* Tell the chip where to find the general information block. */
1280	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1281	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1282
1283	/* Load the firmware into SRAM. */
1284	ti_loadfw(sc);
1285
1286	/* Set up the contents of the general info and ring control blocks. */
1287
1288	/* Set up the event ring and producer pointer. */
1289	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1290
1291	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1292	rcb->ti_flags = 0;
1293	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1294	    vtophys(&sc->ti_ev_prodidx);
1295	sc->ti_ev_prodidx.ti_idx = 0;
1296	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1297	sc->ti_ev_saved_considx = 0;
1298
1299	/* Set up the command ring and producer mailbox. */
1300	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1301
1302	sc->ti_rdata->ti_cmd_ring =
1303	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1304	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1305	rcb->ti_flags = 0;
1306	rcb->ti_max_len = 0;
1307	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1308		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1309	}
1310	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1311	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1312	sc->ti_cmd_saved_prodidx = 0;
1313
1314	/*
1315	 * Assign the address of the stats refresh buffer.
1316	 * We re-use the current stats buffer for this to
1317	 * conserve memory.
1318	 */
1319	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1320	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1321
1322	/* Set up the standard receive ring. */
1323	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1324	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1325	rcb->ti_max_len = TI_FRAMELEN;
1326	rcb->ti_flags = 0;
1327	if (sc->arpcom.ac_if.if_hwassist)
1328		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1329		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1330	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1331
1332	/* Set up the jumbo receive ring. */
1333	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1334	TI_HOSTADDR(rcb->ti_hostaddr) =
1335	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1336	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1337	rcb->ti_flags = 0;
1338	if (sc->arpcom.ac_if.if_hwassist)
1339		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1340		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1341	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1342
1343	/*
1344	 * Set up the mini ring. Only activated on the
1345	 * Tigon 2 but the slot in the config block is
1346	 * still there on the Tigon 1.
1347	 */
1348	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1349	TI_HOSTADDR(rcb->ti_hostaddr) =
1350	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1351	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1352	if (sc->ti_hwrev == TI_HWREV_TIGON)
1353		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1354	else
1355		rcb->ti_flags = 0;
1356	if (sc->arpcom.ac_if.if_hwassist)
1357		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1358		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1359	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1360
1361	/*
1362	 * Set up the receive return ring.
1363	 */
1364	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1365	TI_HOSTADDR(rcb->ti_hostaddr) =
1366	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1367	rcb->ti_flags = 0;
1368	rcb->ti_max_len = TI_RETURN_RING_CNT;
1369	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1370	    vtophys(&sc->ti_return_prodidx);
1371
1372	/*
1373	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1374	 * of putting the transmit ring in the host's address space and
1375	 * letting the chip DMA it instead of leaving the ring in the NIC's
1376	 * memory and accessing it through the shared memory region. We
1377	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1378	 * so we have to revert to the shared memory scheme if we detect
1379	 * a Tigon 1 chip.
1380	 */
1381	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1382	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1383		sc->ti_rdata->ti_tx_ring_nic =
1384		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1385	}
1386	bzero((char *)sc->ti_rdata->ti_tx_ring,
1387	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1388	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1389	if (sc->ti_hwrev == TI_HWREV_TIGON)
1390		rcb->ti_flags = 0;
1391	else
1392		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1393	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1394	if (sc->arpcom.ac_if.if_hwassist)
1395		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1396		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1397	rcb->ti_max_len = TI_TX_RING_CNT;
1398	if (sc->ti_hwrev == TI_HWREV_TIGON)
1399		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1400	else
1401		TI_HOSTADDR(rcb->ti_hostaddr) =
1402		    vtophys(&sc->ti_rdata->ti_tx_ring);
1403	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1404	    vtophys(&sc->ti_tx_considx);
1405
1406	/* Set up tuneables */
1407	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1408		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1409		    (sc->ti_rx_coal_ticks / 10));
1410	else
1411		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1412	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1413	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1414	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1415	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1416	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1417
1418	/* Turn interrupts on. */
1419	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1420	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1421
1422	/* Start CPU. */
1423	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1424
1425	return(0);
1426}
1427
1428/*
1429 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1430 * against our list and return its name if we find a match.
1431 */
1432static int ti_probe(dev)
1433	device_t		dev;
1434{
1435	struct ti_type		*t;
1436
1437	t = ti_devs;
1438
1439	while(t->ti_name != NULL) {
1440		if ((pci_get_vendor(dev) == t->ti_vid) &&
1441		    (pci_get_device(dev) == t->ti_did)) {
1442			device_set_desc(dev, t->ti_name);
1443			return(0);
1444		}
1445		t++;
1446	}
1447
1448	return(ENXIO);
1449}
1450
1451static int ti_attach(dev)
1452	device_t		dev;
1453{
1454	u_int32_t		command;
1455	struct ifnet		*ifp;
1456	struct ti_softc		*sc;
1457	int			unit, error = 0, rid;
1458
1459	sc = device_get_softc(dev);
1460	unit = device_get_unit(dev);
1461	bzero(sc, sizeof(struct ti_softc));
1462
1463	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
1464	TI_LOCK(sc);
1465	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM;
1466	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
1467
1468	/*
1469	 * Map control/status registers.
1470	 */
1471	pci_enable_busmaster(dev);
1472	pci_enable_io(dev, SYS_RES_MEMORY);
1473	command = pci_read_config(dev, PCIR_COMMAND, 4);
1474
1475	if (!(command & PCIM_CMD_MEMEN)) {
1476		printf("ti%d: failed to enable memory mapping!\n", unit);
1477		error = ENXIO;
1478		goto fail;
1479	}
1480
1481	rid = TI_PCI_LOMEM;
1482	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1483	    0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
1484
1485	if (sc->ti_res == NULL) {
1486		printf ("ti%d: couldn't map memory\n", unit);
1487		error = ENXIO;
1488		goto fail;
1489	}
1490
1491	sc->ti_btag = rman_get_bustag(sc->ti_res);
1492	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1493	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1494
1495	/* Allocate interrupt */
1496	rid = 0;
1497
1498	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1499	    RF_SHAREABLE | RF_ACTIVE);
1500
1501	if (sc->ti_irq == NULL) {
1502		printf("ti%d: couldn't map interrupt\n", unit);
1503		error = ENXIO;
1504		goto fail;
1505	}
1506
1507	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1508	   ti_intr, sc, &sc->ti_intrhand);
1509
1510	if (error) {
1511		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1512		bus_release_resource(dev, SYS_RES_MEMORY,
1513		    TI_PCI_LOMEM, sc->ti_res);
1514		printf("ti%d: couldn't set up irq\n", unit);
1515		goto fail;
1516	}
1517
1518	sc->ti_unit = unit;
1519
1520	if (ti_chipinit(sc)) {
1521		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1522		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1523		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1524		bus_release_resource(dev, SYS_RES_MEMORY,
1525		    TI_PCI_LOMEM, sc->ti_res);
1526		error = ENXIO;
1527		goto fail;
1528	}
1529
1530	/* Zero out the NIC's on-board SRAM. */
1531	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1532
1533	/* Init again -- zeroing memory may have clobbered some registers. */
1534	if (ti_chipinit(sc)) {
1535		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1536		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1537		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1538		bus_release_resource(dev, SYS_RES_MEMORY,
1539		    TI_PCI_LOMEM, sc->ti_res);
1540		error = ENXIO;
1541		goto fail;
1542	}
1543
1544	/*
1545	 * Get station address from the EEPROM. Note: the manual states
1546	 * that the MAC address is at offset 0x8c, however the data is
1547	 * stored as two longwords (since that's how it's loaded into
1548	 * the NIC). This means the MAC address is actually preceded
1549	 * by two zero bytes. We need to skip over those.
1550	 */
1551	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1552				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1553		printf("ti%d: failed to read station address\n", unit);
1554		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1555		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1556		bus_release_resource(dev, SYS_RES_MEMORY,
1557		    TI_PCI_LOMEM, sc->ti_res);
1558		error = ENXIO;
1559		goto fail;
1560	}
1561
1562	/*
1563	 * A Tigon chip was detected. Inform the world.
1564	 */
1565	printf("ti%d: Ethernet address: %6D\n", unit,
1566				sc->arpcom.ac_enaddr, ":");
1567
1568	/* Allocate the general information block and ring buffers. */
1569	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1570	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1571
1572	if (sc->ti_rdata == NULL) {
1573		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1574		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1575		bus_release_resource(dev, SYS_RES_MEMORY,
1576		    TI_PCI_LOMEM, sc->ti_res);
1577		error = ENXIO;
1578		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1579		goto fail;
1580	}
1581
1582	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1583
1584	/* Try to allocate memory for jumbo buffers. */
1585	if (ti_alloc_jumbo_mem(sc)) {
1586		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1587		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1588		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1589		bus_release_resource(dev, SYS_RES_MEMORY,
1590		    TI_PCI_LOMEM, sc->ti_res);
1591		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
1592		    M_DEVBUF);
1593		error = ENXIO;
1594		goto fail;
1595	}
1596
1597	/*
1598	 * We really need a better way to tell a 1000baseTX card
1599	 * from a 1000baseSX one, since in theory there could be
1600	 * OEMed 1000baseTX cards from lame vendors who aren't
1601	 * clever enough to change the PCI ID. For the moment
1602	 * though, the AceNIC is the only copper card available.
1603	 */
1604	if (pci_get_vendor(dev) == ALT_VENDORID &&
1605	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1606		sc->ti_copper = 1;
1607	/* Ok, it's not the only copper card available. */
1608	if (pci_get_vendor(dev) == NG_VENDORID &&
1609	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1610		sc->ti_copper = 1;
1611
1612	/* Set default tuneable values. */
1613	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1614	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1615	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1616	sc->ti_rx_max_coal_bds = 64;
1617	sc->ti_tx_max_coal_bds = 128;
1618	sc->ti_tx_buf_ratio = 21;
1619
1620	/* Set up ifnet structure */
1621	ifp = &sc->arpcom.ac_if;
1622	ifp->if_softc = sc;
1623	ifp->if_unit = sc->ti_unit;
1624	ifp->if_name = "ti";
1625	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1626	ifp->if_ioctl = ti_ioctl;
1627	ifp->if_output = ether_output;
1628	ifp->if_start = ti_start;
1629	ifp->if_watchdog = ti_watchdog;
1630	ifp->if_init = ti_init;
1631	ifp->if_mtu = ETHERMTU;
1632	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1633
1634	/* Set up ifmedia support. */
1635	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1636	if (sc->ti_copper) {
1637		/*
1638		 * Copper cards allow manual 10/100 mode selection,
1639		 * but not manual 1000baseTX mode selection. Why?
1640		 * Becuase currently there's no way to specify the
1641		 * master/slave setting through the firmware interface,
1642		 * so Alteon decided to just bag it and handle it
1643		 * via autonegotiation.
1644		 */
1645		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1646		ifmedia_add(&sc->ifmedia,
1647		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1648		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1649		ifmedia_add(&sc->ifmedia,
1650		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1651		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
1652		ifmedia_add(&sc->ifmedia,
1653		    IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
1654	} else {
1655		/* Fiber cards don't support 10/100 modes. */
1656		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1657		ifmedia_add(&sc->ifmedia,
1658		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1659	}
1660	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1661	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1662
1663	/*
1664	 * Call MI attach routine.
1665	 */
1666	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1667	TI_UNLOCK(sc);
1668	return(0);
1669
1670fail:
1671	TI_UNLOCK(sc);
1672	mtx_destroy(&sc->ti_mtx);
1673	return(error);
1674}
1675
1676static int ti_detach(dev)
1677	device_t		dev;
1678{
1679	struct ti_softc		*sc;
1680	struct ifnet		*ifp;
1681
1682
1683	sc = device_get_softc(dev);
1684	TI_LOCK(sc);
1685	ifp = &sc->arpcom.ac_if;
1686
1687	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1688	ti_stop(sc);
1689
1690	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1691	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1692	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1693
1694	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1695	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1696	ifmedia_removeall(&sc->ifmedia);
1697
1698	TI_UNLOCK(sc);
1699	mtx_destroy(&sc->ti_mtx);
1700
1701	return(0);
1702}
1703
1704/*
1705 * Frame reception handling. This is called if there's a frame
1706 * on the receive return list.
1707 *
1708 * Note: we have to be able to handle three possibilities here:
1709 * 1) the frame is from the mini receive ring (can only happen)
1710 *    on Tigon 2 boards)
1711 * 2) the frame is from the jumbo recieve ring
1712 * 3) the frame is from the standard receive ring
1713 */
1714
1715static void ti_rxeof(sc)
1716	struct ti_softc		*sc;
1717{
1718	struct ifnet		*ifp;
1719	struct ti_cmd_desc	cmd;
1720
1721	ifp = &sc->arpcom.ac_if;
1722
1723	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1724		struct ti_rx_desc	*cur_rx;
1725		u_int32_t		rxidx;
1726		struct ether_header	*eh;
1727		struct mbuf		*m = NULL;
1728		u_int16_t		vlan_tag = 0;
1729		int			have_tag = 0;
1730
1731		cur_rx =
1732		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1733		rxidx = cur_rx->ti_idx;
1734		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1735
1736		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1737			have_tag = 1;
1738			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
1739		}
1740
1741		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1742			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1743			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1744			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1745			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1746				ifp->if_ierrors++;
1747				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1748				continue;
1749			}
1750			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1751				ifp->if_ierrors++;
1752				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1753				continue;
1754			}
1755		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1756			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1757			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1758			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1759			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1760				ifp->if_ierrors++;
1761				ti_newbuf_mini(sc, sc->ti_mini, m);
1762				continue;
1763			}
1764			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1765				ifp->if_ierrors++;
1766				ti_newbuf_mini(sc, sc->ti_mini, m);
1767				continue;
1768			}
1769		} else {
1770			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1771			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1772			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1773			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1774				ifp->if_ierrors++;
1775				ti_newbuf_std(sc, sc->ti_std, m);
1776				continue;
1777			}
1778			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1779				ifp->if_ierrors++;
1780				ti_newbuf_std(sc, sc->ti_std, m);
1781				continue;
1782			}
1783		}
1784
1785		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1786		ifp->if_ipackets++;
1787		eh = mtod(m, struct ether_header *);
1788		m->m_pkthdr.rcvif = ifp;
1789
1790		/* Remove header from mbuf and pass it on. */
1791		m_adj(m, sizeof(struct ether_header));
1792
1793		if (ifp->if_hwassist) {
1794			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1795			    CSUM_DATA_VALID;
1796			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1797				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1798			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1799		}
1800
1801		/*
1802		 * If we received a packet with a vlan tag, pass it
1803		 * to vlan_input() instead of ether_input().
1804		 */
1805		if (have_tag) {
1806			VLAN_INPUT_TAG(eh, m, vlan_tag);
1807			have_tag = vlan_tag = 0;
1808			continue;
1809		}
1810		ether_input(ifp, eh, m);
1811	}
1812
1813	/* Only necessary on the Tigon 1. */
1814	if (sc->ti_hwrev == TI_HWREV_TIGON)
1815		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1816		    sc->ti_rx_saved_considx);
1817
1818	TI_UPDATE_STDPROD(sc, sc->ti_std);
1819	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1820	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1821
1822	return;
1823}
1824
1825static void ti_txeof(sc)
1826	struct ti_softc		*sc;
1827{
1828	struct ti_tx_desc	*cur_tx = NULL;
1829	struct ifnet		*ifp;
1830
1831	ifp = &sc->arpcom.ac_if;
1832
1833	/*
1834	 * Go through our tx ring and free mbufs for those
1835	 * frames that have been sent.
1836	 */
1837	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1838		u_int32_t		idx = 0;
1839
1840		idx = sc->ti_tx_saved_considx;
1841		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1842			if (idx > 383)
1843				CSR_WRITE_4(sc, TI_WINBASE,
1844				    TI_TX_RING_BASE + 6144);
1845			else if (idx > 255)
1846				CSR_WRITE_4(sc, TI_WINBASE,
1847				    TI_TX_RING_BASE + 4096);
1848			else if (idx > 127)
1849				CSR_WRITE_4(sc, TI_WINBASE,
1850				    TI_TX_RING_BASE + 2048);
1851			else
1852				CSR_WRITE_4(sc, TI_WINBASE,
1853				    TI_TX_RING_BASE);
1854			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1855		} else
1856			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1857		if (cur_tx->ti_flags & TI_BDFLAG_END)
1858			ifp->if_opackets++;
1859		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1860			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1861			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1862		}
1863		sc->ti_txcnt--;
1864		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1865		ifp->if_timer = 0;
1866	}
1867
1868	if (cur_tx != NULL)
1869		ifp->if_flags &= ~IFF_OACTIVE;
1870
1871	return;
1872}
1873
1874static void ti_intr(xsc)
1875	void			*xsc;
1876{
1877	struct ti_softc		*sc;
1878	struct ifnet		*ifp;
1879
1880	sc = xsc;
1881	TI_LOCK(sc);
1882	ifp = &sc->arpcom.ac_if;
1883
1884#ifdef notdef
1885	/* Avoid this for now -- checking this register is expensive. */
1886	/* Make sure this is really our interrupt. */
1887	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
1888		TI_UNLOCK(sc);
1889		return;
1890	}
1891#endif
1892
1893	/* Ack interrupt and stop others from occuring. */
1894	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1895
1896	if (ifp->if_flags & IFF_RUNNING) {
1897		/* Check RX return ring producer/consumer */
1898		ti_rxeof(sc);
1899
1900		/* Check TX ring producer/consumer */
1901		ti_txeof(sc);
1902	}
1903
1904	ti_handle_events(sc);
1905
1906	/* Re-enable interrupts. */
1907	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1908
1909	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1910		ti_start(ifp);
1911
1912	TI_UNLOCK(sc);
1913
1914	return;
1915}
1916
1917static void ti_stats_update(sc)
1918	struct ti_softc		*sc;
1919{
1920	struct ifnet		*ifp;
1921
1922	ifp = &sc->arpcom.ac_if;
1923
1924	ifp->if_collisions +=
1925	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1926	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
1927	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
1928	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
1929	   ifp->if_collisions;
1930
1931	return;
1932}
1933
1934/*
1935 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
1936 * pointers to descriptors.
1937 */
1938static int ti_encap(sc, m_head, txidx)
1939	struct ti_softc		*sc;
1940	struct mbuf		*m_head;
1941	u_int32_t		*txidx;
1942{
1943	struct ti_tx_desc	*f = NULL;
1944	struct mbuf		*m;
1945	u_int32_t		frag, cur, cnt = 0;
1946	u_int16_t		csum_flags = 0;
1947	struct ifvlan		*ifv = NULL;
1948
1949	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1950	    m_head->m_pkthdr.rcvif != NULL &&
1951	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1952		ifv = m_head->m_pkthdr.rcvif->if_softc;
1953
1954	m = m_head;
1955	cur = frag = *txidx;
1956
1957	if (m_head->m_pkthdr.csum_flags) {
1958		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1959			csum_flags |= TI_BDFLAG_IP_CKSUM;
1960		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1961			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
1962		if (m_head->m_flags & M_LASTFRAG)
1963			csum_flags |= TI_BDFLAG_IP_FRAG_END;
1964		else if (m_head->m_flags & M_FRAG)
1965			csum_flags |= TI_BDFLAG_IP_FRAG;
1966	}
1967	/*
1968 	 * Start packing the mbufs in this chain into
1969	 * the fragment pointers. Stop when we run out
1970 	 * of fragments or hit the end of the mbuf chain.
1971	 */
1972	for (m = m_head; m != NULL; m = m->m_next) {
1973		if (m->m_len != 0) {
1974			if (sc->ti_hwrev == TI_HWREV_TIGON) {
1975				if (frag > 383)
1976					CSR_WRITE_4(sc, TI_WINBASE,
1977					    TI_TX_RING_BASE + 6144);
1978				else if (frag > 255)
1979					CSR_WRITE_4(sc, TI_WINBASE,
1980					    TI_TX_RING_BASE + 4096);
1981				else if (frag > 127)
1982					CSR_WRITE_4(sc, TI_WINBASE,
1983					    TI_TX_RING_BASE + 2048);
1984				else
1985					CSR_WRITE_4(sc, TI_WINBASE,
1986					    TI_TX_RING_BASE);
1987				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
1988			} else
1989				f = &sc->ti_rdata->ti_tx_ring[frag];
1990			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
1991				break;
1992			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
1993			f->ti_len = m->m_len;
1994			f->ti_flags = csum_flags;
1995
1996			if (ifv != NULL) {
1997				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
1998				f->ti_vlan_tag = ifv->ifv_tag & 0xfff;
1999			} else {
2000				f->ti_vlan_tag = 0;
2001			}
2002
2003			/*
2004			 * Sanity check: avoid coming within 16 descriptors
2005			 * of the end of the ring.
2006			 */
2007			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2008				return(ENOBUFS);
2009			cur = frag;
2010			TI_INC(frag, TI_TX_RING_CNT);
2011			cnt++;
2012		}
2013	}
2014
2015	if (m != NULL)
2016		return(ENOBUFS);
2017
2018	if (frag == sc->ti_tx_saved_considx)
2019		return(ENOBUFS);
2020
2021	if (sc->ti_hwrev == TI_HWREV_TIGON)
2022		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2023		    TI_BDFLAG_END;
2024	else
2025		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2026	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2027	sc->ti_txcnt += cnt;
2028
2029	*txidx = frag;
2030
2031	return(0);
2032}
2033
2034/*
2035 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2036 * to the mbuf data regions directly in the transmit descriptors.
2037 */
2038static void ti_start(ifp)
2039	struct ifnet		*ifp;
2040{
2041	struct ti_softc		*sc;
2042	struct mbuf		*m_head = NULL;
2043	u_int32_t		prodidx = 0;
2044
2045	sc = ifp->if_softc;
2046	TI_LOCK(sc);
2047
2048	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2049
2050	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2051		IF_DEQUEUE(&ifp->if_snd, m_head);
2052		if (m_head == NULL)
2053			break;
2054
2055		/*
2056		 * XXX
2057		 * safety overkill.  If this is a fragmented packet chain
2058		 * with delayed TCP/UDP checksums, then only encapsulate
2059		 * it if we have enough descriptors to handle the entire
2060		 * chain at once.
2061		 * (paranoia -- may not actually be needed)
2062		 */
2063		if (m_head->m_flags & M_FIRSTFRAG &&
2064		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2065			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2066			    m_head->m_pkthdr.csum_data + 16) {
2067				IF_PREPEND(&ifp->if_snd, m_head);
2068				ifp->if_flags |= IFF_OACTIVE;
2069				break;
2070			}
2071		}
2072
2073		/*
2074		 * Pack the data into the transmit ring. If we
2075		 * don't have room, set the OACTIVE flag and wait
2076		 * for the NIC to drain the ring.
2077		 */
2078		if (ti_encap(sc, m_head, &prodidx)) {
2079			IF_PREPEND(&ifp->if_snd, m_head);
2080			ifp->if_flags |= IFF_OACTIVE;
2081			break;
2082		}
2083
2084		/*
2085		 * If there's a BPF listener, bounce a copy of this frame
2086		 * to him.
2087		 */
2088		if (ifp->if_bpf)
2089			bpf_mtap(ifp, m_head);
2090	}
2091
2092	/* Transmit */
2093	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2094
2095	/*
2096	 * Set a timeout in case the chip goes out to lunch.
2097	 */
2098	ifp->if_timer = 5;
2099	TI_UNLOCK(sc);
2100
2101	return;
2102}
2103
2104static void ti_init(xsc)
2105	void			*xsc;
2106{
2107	struct ti_softc		*sc = xsc;
2108
2109	/* Cancel pending I/O and flush buffers. */
2110	ti_stop(sc);
2111
2112	TI_LOCK(sc);
2113	/* Init the gen info block, ring control blocks and firmware. */
2114	if (ti_gibinit(sc)) {
2115		printf("ti%d: initialization failure\n", sc->ti_unit);
2116		TI_UNLOCK(sc);
2117		return;
2118	}
2119
2120	TI_UNLOCK(sc);
2121
2122	return;
2123}
2124
2125static void ti_init2(sc)
2126	struct ti_softc		*sc;
2127{
2128	struct ti_cmd_desc	cmd;
2129	struct ifnet		*ifp;
2130	u_int16_t		*m;
2131	struct ifmedia		*ifm;
2132	int			tmp;
2133
2134	ifp = &sc->arpcom.ac_if;
2135
2136	/* Specify MTU and interface index. */
2137	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2138	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2139	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2140	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2141
2142	/* Load our MAC address. */
2143	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2144	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2145	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2146	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2147
2148	/* Enable or disable promiscuous mode as needed. */
2149	if (ifp->if_flags & IFF_PROMISC) {
2150		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2151	} else {
2152		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2153	}
2154
2155	/* Program multicast filter. */
2156	ti_setmulti(sc);
2157
2158	/*
2159	 * If this is a Tigon 1, we should tell the
2160	 * firmware to use software packet filtering.
2161	 */
2162	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2163		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2164	}
2165
2166	/* Init RX ring. */
2167	ti_init_rx_ring_std(sc);
2168
2169	/* Init jumbo RX ring. */
2170	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2171		ti_init_rx_ring_jumbo(sc);
2172
2173	/*
2174	 * If this is a Tigon 2, we can also configure the
2175	 * mini ring.
2176	 */
2177	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2178		ti_init_rx_ring_mini(sc);
2179
2180	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2181	sc->ti_rx_saved_considx = 0;
2182
2183	/* Init TX ring. */
2184	ti_init_tx_ring(sc);
2185
2186	/* Tell firmware we're alive. */
2187	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2188
2189	/* Enable host interrupts. */
2190	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2191
2192	ifp->if_flags |= IFF_RUNNING;
2193	ifp->if_flags &= ~IFF_OACTIVE;
2194
2195	/*
2196	 * Make sure to set media properly. We have to do this
2197	 * here since we have to issue commands in order to set
2198	 * the link negotiation and we can't issue commands until
2199	 * the firmware is running.
2200	 */
2201	ifm = &sc->ifmedia;
2202	tmp = ifm->ifm_media;
2203	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2204	ti_ifmedia_upd(ifp);
2205	ifm->ifm_media = tmp;
2206
2207	return;
2208}
2209
2210/*
2211 * Set media options.
2212 */
2213static int ti_ifmedia_upd(ifp)
2214	struct ifnet		*ifp;
2215{
2216	struct ti_softc		*sc;
2217	struct ifmedia		*ifm;
2218	struct ti_cmd_desc	cmd;
2219
2220	sc = ifp->if_softc;
2221	ifm = &sc->ifmedia;
2222
2223	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2224		return(EINVAL);
2225
2226	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2227	case IFM_AUTO:
2228		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2229		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2230		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2231		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2232		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2233		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2234		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2235		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2236		break;
2237	case IFM_1000_SX:
2238	case IFM_1000_TX:
2239		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2240		    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2241		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2242		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2243			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2244		}
2245		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2246		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2247		break;
2248	case IFM_100_FX:
2249	case IFM_10_FL:
2250	case IFM_100_TX:
2251	case IFM_10_T:
2252		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2253		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2254		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2255		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2256			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2257		} else {
2258			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2259		}
2260		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2261			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2262		} else {
2263			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2264		}
2265		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2266		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2267		break;
2268	}
2269
2270	return(0);
2271}
2272
2273/*
2274 * Report current media status.
2275 */
2276static void ti_ifmedia_sts(ifp, ifmr)
2277	struct ifnet		*ifp;
2278	struct ifmediareq	*ifmr;
2279{
2280	struct ti_softc		*sc;
2281	u_int32_t		media = 0;
2282
2283	sc = ifp->if_softc;
2284
2285	ifmr->ifm_status = IFM_AVALID;
2286	ifmr->ifm_active = IFM_ETHER;
2287
2288	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2289		return;
2290
2291	ifmr->ifm_status |= IFM_ACTIVE;
2292
2293	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2294		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2295		if (sc->ti_copper)
2296			ifmr->ifm_active |= IFM_1000_TX;
2297		else
2298			ifmr->ifm_active |= IFM_1000_SX;
2299		if (media & TI_GLNK_FULL_DUPLEX)
2300			ifmr->ifm_active |= IFM_FDX;
2301		else
2302			ifmr->ifm_active |= IFM_HDX;
2303	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2304		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2305		if (sc->ti_copper) {
2306			if (media & TI_LNK_100MB)
2307				ifmr->ifm_active |= IFM_100_TX;
2308			if (media & TI_LNK_10MB)
2309				ifmr->ifm_active |= IFM_10_T;
2310		} else {
2311			if (media & TI_LNK_100MB)
2312				ifmr->ifm_active |= IFM_100_FX;
2313			if (media & TI_LNK_10MB)
2314				ifmr->ifm_active |= IFM_10_FL;
2315		}
2316		if (media & TI_LNK_FULL_DUPLEX)
2317			ifmr->ifm_active |= IFM_FDX;
2318		if (media & TI_LNK_HALF_DUPLEX)
2319			ifmr->ifm_active |= IFM_HDX;
2320	}
2321
2322	return;
2323}
2324
2325static int ti_ioctl(ifp, command, data)
2326	struct ifnet		*ifp;
2327	u_long			command;
2328	caddr_t			data;
2329{
2330	struct ti_softc		*sc = ifp->if_softc;
2331	struct ifreq		*ifr = (struct ifreq *) data;
2332	int			mask, error = 0;
2333	struct ti_cmd_desc	cmd;
2334
2335	TI_LOCK(sc);
2336
2337	switch(command) {
2338	case SIOCSIFADDR:
2339	case SIOCGIFADDR:
2340		error = ether_ioctl(ifp, command, data);
2341		break;
2342	case SIOCSIFMTU:
2343		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2344			error = EINVAL;
2345		else {
2346			ifp->if_mtu = ifr->ifr_mtu;
2347			ti_init(sc);
2348		}
2349		break;
2350	case SIOCSIFFLAGS:
2351		if (ifp->if_flags & IFF_UP) {
2352			/*
2353			 * If only the state of the PROMISC flag changed,
2354			 * then just use the 'set promisc mode' command
2355			 * instead of reinitializing the entire NIC. Doing
2356			 * a full re-init means reloading the firmware and
2357			 * waiting for it to start up, which may take a
2358			 * second or two.
2359			 */
2360			if (ifp->if_flags & IFF_RUNNING &&
2361			    ifp->if_flags & IFF_PROMISC &&
2362			    !(sc->ti_if_flags & IFF_PROMISC)) {
2363				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2364				    TI_CMD_CODE_PROMISC_ENB, 0);
2365			} else if (ifp->if_flags & IFF_RUNNING &&
2366			    !(ifp->if_flags & IFF_PROMISC) &&
2367			    sc->ti_if_flags & IFF_PROMISC) {
2368				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2369				    TI_CMD_CODE_PROMISC_DIS, 0);
2370			} else
2371				ti_init(sc);
2372		} else {
2373			if (ifp->if_flags & IFF_RUNNING) {
2374				ti_stop(sc);
2375			}
2376		}
2377		sc->ti_if_flags = ifp->if_flags;
2378		error = 0;
2379		break;
2380	case SIOCADDMULTI:
2381	case SIOCDELMULTI:
2382		if (ifp->if_flags & IFF_RUNNING) {
2383			ti_setmulti(sc);
2384			error = 0;
2385		}
2386		break;
2387	case SIOCSIFMEDIA:
2388	case SIOCGIFMEDIA:
2389		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2390		break;
2391	case SIOCSIFCAP:
2392		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2393		if (mask & IFCAP_HWCSUM) {
2394			if (IFCAP_HWCSUM & ifp->if_capenable)
2395				ifp->if_capenable &= ~IFCAP_HWCSUM;
2396                        else
2397                                ifp->if_capenable |= IFCAP_HWCSUM;
2398			if (ifp->if_flags & IFF_RUNNING)
2399				ti_init(sc);
2400                }
2401		error = 0;
2402		break;
2403	default:
2404		error = EINVAL;
2405		break;
2406	}
2407
2408	TI_UNLOCK(sc);
2409
2410	return(error);
2411}
2412
2413static void ti_watchdog(ifp)
2414	struct ifnet		*ifp;
2415{
2416	struct ti_softc		*sc;
2417
2418	sc = ifp->if_softc;
2419	TI_LOCK(sc);
2420
2421	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2422	ti_stop(sc);
2423	ti_init(sc);
2424
2425	ifp->if_oerrors++;
2426	TI_UNLOCK(sc);
2427
2428	return;
2429}
2430
2431/*
2432 * Stop the adapter and free any mbufs allocated to the
2433 * RX and TX lists.
2434 */
2435static void ti_stop(sc)
2436	struct ti_softc		*sc;
2437{
2438	struct ifnet		*ifp;
2439	struct ti_cmd_desc	cmd;
2440
2441	TI_LOCK(sc);
2442
2443	ifp = &sc->arpcom.ac_if;
2444
2445	/* Disable host interrupts. */
2446	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2447	/*
2448	 * Tell firmware we're shutting down.
2449	 */
2450	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2451
2452	/* Halt and reinitialize. */
2453	ti_chipinit(sc);
2454	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2455	ti_chipinit(sc);
2456
2457	/* Free the RX lists. */
2458	ti_free_rx_ring_std(sc);
2459
2460	/* Free jumbo RX list. */
2461	ti_free_rx_ring_jumbo(sc);
2462
2463	/* Free mini RX list. */
2464	ti_free_rx_ring_mini(sc);
2465
2466	/* Free TX buffers. */
2467	ti_free_tx_ring(sc);
2468
2469	sc->ti_ev_prodidx.ti_idx = 0;
2470	sc->ti_return_prodidx.ti_idx = 0;
2471	sc->ti_tx_considx.ti_idx = 0;
2472	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2473
2474	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2475	TI_UNLOCK(sc);
2476
2477	return;
2478}
2479
2480/*
2481 * Stop all chip I/O so that the kernel's probe routines don't
2482 * get confused by errant DMAs when rebooting.
2483 */
2484static void ti_shutdown(dev)
2485	device_t		dev;
2486{
2487	struct ti_softc		*sc;
2488
2489	sc = device_get_softc(dev);
2490	TI_LOCK(sc);
2491	ti_chipinit(sc);
2492	TI_UNLOCK(sc);
2493
2494	return;
2495}
2496