1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35 * Manuals, sample driver and firmware source kits are available
36 * from http://www.alteon.com/support/openkits.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48 * filtering and jumbo (9014 byte) frames. The hardware is largely
49 * controlled by firmware, which must be loaded into the NIC during
50 * initialization.
51 *
52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53 * revision, which supports new features such as extended commands,
54 * extended jumbo receive ring desciptors and a mini receive ring.
55 *
56 * Alteon Networks is to be commended for releasing such a vast amount
57 * of development material for the Tigon NIC without requiring an NDA
58 * (although they really should have done it a long time ago). With
59 * any luck, the other vendors will finally wise up and follow Alteon's
60 * stellar example.
61 *
62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63 * this driver by #including it as a C header file. This bloats the
64 * driver somewhat, but it's the easiest method considering that the
65 * driver code and firmware code need to be kept in sync. The source
66 * for the firmware is not provided with the FreeBSD distribution since
67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68 *
69 * The following people deserve special thanks:
70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71 *   for testing
72 * - Raymond Lee of Netgear, for providing a pair of Netgear
73 *   GA620 Tigon 2 boards for testing
74 * - Ulf Zimmermann, for bringing the GA260 to my attention and
75 *   convincing me to write this driver.
76 * - Andrew Gallatin for providing FreeBSD/Alpha support.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: stable/11/sys/dev/ti/if_ti.c 324171 2017-10-01 16:57:08Z alc $");
81
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/module.h>
91#include <sys/socket.h>
92#include <sys/queue.h>
93#include <sys/conf.h>
94#include <sys/sf_buf.h>
95
96#include <net/if.h>
97#include <net/if_var.h>
98#include <net/if_arp.h>
99#include <net/ethernet.h>
100#include <net/if_dl.h>
101#include <net/if_media.h>
102#include <net/if_types.h>
103#include <net/if_vlan_var.h>
104
105#include <net/bpf.h>
106
107#include <netinet/in_systm.h>
108#include <netinet/in.h>
109#include <netinet/ip.h>
110
111#include <machine/bus.h>
112#include <machine/resource.h>
113#include <sys/bus.h>
114#include <sys/rman.h>
115
116#ifdef TI_SF_BUF_JUMBO
117#include <vm/vm.h>
118#include <vm/vm_page.h>
119#endif
120
121#include <dev/pci/pcireg.h>
122#include <dev/pci/pcivar.h>
123
124#include <sys/tiio.h>
125#include <dev/ti/if_tireg.h>
126#include <dev/ti/ti_fw.h>
127#include <dev/ti/ti_fw2.h>
128
129#include <sys/sysctl.h>
130
131#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
132/*
133 * We can only turn on header splitting if we're using extended receive
134 * BDs.
135 */
136#if defined(TI_JUMBO_HDRSPLIT) && !defined(TI_SF_BUF_JUMBO)
137#error "options TI_JUMBO_HDRSPLIT requires TI_SF_BUF_JUMBO"
138#endif /* TI_JUMBO_HDRSPLIT && !TI_SF_BUF_JUMBO */
139
140typedef enum {
141	TI_SWAP_HTON,
142	TI_SWAP_NTOH
143} ti_swap_type;
144
145/*
146 * Various supported device vendors/types and their names.
147 */
148
149static const struct ti_type ti_devs[] = {
150	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
151		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
152	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
153		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
154	{ TC_VENDORID,	TC_DEVICEID_3C985,
155		"3Com 3c985-SX Gigabit Ethernet" },
156	{ NG_VENDORID, NG_DEVICEID_GA620,
157		"Netgear GA620 1000baseSX Gigabit Ethernet" },
158	{ NG_VENDORID, NG_DEVICEID_GA620T,
159		"Netgear GA620 1000baseT Gigabit Ethernet" },
160	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
161		"Silicon Graphics Gigabit Ethernet" },
162	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
163		"Farallon PN9000SX Gigabit Ethernet" },
164	{ 0, 0, NULL }
165};
166
167
168static	d_open_t	ti_open;
169static	d_close_t	ti_close;
170static	d_ioctl_t	ti_ioctl2;
171
172static struct cdevsw ti_cdevsw = {
173	.d_version =	D_VERSION,
174	.d_flags =	0,
175	.d_open =	ti_open,
176	.d_close =	ti_close,
177	.d_ioctl =	ti_ioctl2,
178	.d_name =	"ti",
179};
180
181static int ti_probe(device_t);
182static int ti_attach(device_t);
183static int ti_detach(device_t);
184static void ti_txeof(struct ti_softc *);
185static void ti_rxeof(struct ti_softc *);
186
187static int ti_encap(struct ti_softc *, struct mbuf **);
188
189static void ti_intr(void *);
190static void ti_start(struct ifnet *);
191static void ti_start_locked(struct ifnet *);
192static int ti_ioctl(struct ifnet *, u_long, caddr_t);
193static uint64_t ti_get_counter(struct ifnet *, ift_counter);
194static void ti_init(void *);
195static void ti_init_locked(void *);
196static void ti_init2(struct ti_softc *);
197static void ti_stop(struct ti_softc *);
198static void ti_watchdog(void *);
199static int ti_shutdown(device_t);
200static int ti_ifmedia_upd(struct ifnet *);
201static int ti_ifmedia_upd_locked(struct ti_softc *);
202static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
203
204static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
205static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
206static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
207
208static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
209static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
210static void ti_setmulti(struct ti_softc *);
211
212static void ti_mem_read(struct ti_softc *, uint32_t, uint32_t, void *);
213static void ti_mem_write(struct ti_softc *, uint32_t, uint32_t, void *);
214static void ti_mem_zero(struct ti_softc *, uint32_t, uint32_t);
215static int ti_copy_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t, int,
216    int);
217static int ti_copy_scratch(struct ti_softc *, uint32_t, uint32_t, caddr_t,
218    int, int, int);
219static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
220static void ti_loadfw(struct ti_softc *);
221static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
222static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
223static void ti_handle_events(struct ti_softc *);
224static void ti_dma_map_addr(void *, bus_dma_segment_t *, int, int);
225static int ti_dma_alloc(struct ti_softc *);
226static void ti_dma_free(struct ti_softc *);
227static int ti_dma_ring_alloc(struct ti_softc *, bus_size_t, bus_size_t,
228    bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
229static void ti_dma_ring_free(struct ti_softc *, bus_dma_tag_t *, uint8_t **,
230    bus_dmamap_t, bus_addr_t *);
231static int ti_newbuf_std(struct ti_softc *, int);
232static int ti_newbuf_mini(struct ti_softc *, int);
233static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
234static int ti_init_rx_ring_std(struct ti_softc *);
235static void ti_free_rx_ring_std(struct ti_softc *);
236static int ti_init_rx_ring_jumbo(struct ti_softc *);
237static void ti_free_rx_ring_jumbo(struct ti_softc *);
238static int ti_init_rx_ring_mini(struct ti_softc *);
239static void ti_free_rx_ring_mini(struct ti_softc *);
240static void ti_free_tx_ring(struct ti_softc *);
241static int ti_init_tx_ring(struct ti_softc *);
242static void ti_discard_std(struct ti_softc *, int);
243#ifndef TI_SF_BUF_JUMBO
244static void ti_discard_jumbo(struct ti_softc *, int);
245#endif
246static void ti_discard_mini(struct ti_softc *, int);
247
248static int ti_64bitslot_war(struct ti_softc *);
249static int ti_chipinit(struct ti_softc *);
250static int ti_gibinit(struct ti_softc *);
251
252#ifdef TI_JUMBO_HDRSPLIT
253static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len,
254    int idx);
255#endif /* TI_JUMBO_HDRSPLIT */
256
257static void ti_sysctl_node(struct ti_softc *);
258
259static device_method_t ti_methods[] = {
260	/* Device interface */
261	DEVMETHOD(device_probe,		ti_probe),
262	DEVMETHOD(device_attach,	ti_attach),
263	DEVMETHOD(device_detach,	ti_detach),
264	DEVMETHOD(device_shutdown,	ti_shutdown),
265	{ 0, 0 }
266};
267
268static driver_t ti_driver = {
269	"ti",
270	ti_methods,
271	sizeof(struct ti_softc)
272};
273
274static devclass_t ti_devclass;
275
276DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
277MODULE_DEPEND(ti, pci, 1, 1, 1);
278MODULE_DEPEND(ti, ether, 1, 1, 1);
279
280/*
281 * Send an instruction or address to the EEPROM, check for ACK.
282 */
283static uint32_t
284ti_eeprom_putbyte(struct ti_softc *sc, int byte)
285{
286	int i, ack = 0;
287
288	/*
289	 * Make sure we're in TX mode.
290	 */
291	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
292
293	/*
294	 * Feed in each bit and stobe the clock.
295	 */
296	for (i = 0x80; i; i >>= 1) {
297		if (byte & i) {
298			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
299		} else {
300			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
301		}
302		DELAY(1);
303		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
304		DELAY(1);
305		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
306	}
307
308	/*
309	 * Turn off TX mode.
310	 */
311	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
312
313	/*
314	 * Check for ack.
315	 */
316	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
317	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
318	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
319
320	return (ack);
321}
322
323/*
324 * Read a byte of data stored in the EEPROM at address 'addr.'
325 * We have to send two address bytes since the EEPROM can hold
326 * more than 256 bytes of data.
327 */
328static uint8_t
329ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
330{
331	int i;
332	uint8_t byte = 0;
333
334	EEPROM_START;
335
336	/*
337	 * Send write control code to EEPROM.
338	 */
339	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
340		device_printf(sc->ti_dev,
341		    "failed to send write command, status: %x\n",
342		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
343		return (1);
344	}
345
346	/*
347	 * Send first byte of address of byte we want to read.
348	 */
349	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
350		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
351		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
352		return (1);
353	}
354	/*
355	 * Send second byte address of byte we want to read.
356	 */
357	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
358		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
359		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
360		return (1);
361	}
362
363	EEPROM_STOP;
364	EEPROM_START;
365	/*
366	 * Send read control code to EEPROM.
367	 */
368	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
369		device_printf(sc->ti_dev,
370		    "failed to send read command, status: %x\n",
371		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
372		return (1);
373	}
374
375	/*
376	 * Start reading bits from EEPROM.
377	 */
378	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
379	for (i = 0x80; i; i >>= 1) {
380		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
381		DELAY(1);
382		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
383			byte |= i;
384		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
385		DELAY(1);
386	}
387
388	EEPROM_STOP;
389
390	/*
391	 * No ACK generated for read, so just return byte.
392	 */
393
394	*dest = byte;
395
396	return (0);
397}
398
399/*
400 * Read a sequence of bytes from the EEPROM.
401 */
402static int
403ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
404{
405	int err = 0, i;
406	uint8_t byte = 0;
407
408	for (i = 0; i < cnt; i++) {
409		err = ti_eeprom_getbyte(sc, off + i, &byte);
410		if (err)
411			break;
412		*(dest + i) = byte;
413	}
414
415	return (err ? 1 : 0);
416}
417
418/*
419 * NIC memory read function.
420 * Can be used to copy data from NIC local memory.
421 */
422static void
423ti_mem_read(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
424{
425	int segptr, segsize, cnt;
426	char *ptr;
427
428	segptr = addr;
429	cnt = len;
430	ptr = buf;
431
432	while (cnt) {
433		if (cnt < TI_WINLEN)
434			segsize = cnt;
435		else
436			segsize = TI_WINLEN - (segptr % TI_WINLEN);
437		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
438		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
439		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
440		    segsize / 4);
441		ptr += segsize;
442		segptr += segsize;
443		cnt -= segsize;
444	}
445}
446
447
448/*
449 * NIC memory write function.
450 * Can be used to copy data into NIC local memory.
451 */
452static void
453ti_mem_write(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
454{
455	int segptr, segsize, cnt;
456	char *ptr;
457
458	segptr = addr;
459	cnt = len;
460	ptr = buf;
461
462	while (cnt) {
463		if (cnt < TI_WINLEN)
464			segsize = cnt;
465		else
466			segsize = TI_WINLEN - (segptr % TI_WINLEN);
467		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
468		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
469		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
470		    segsize / 4);
471		ptr += segsize;
472		segptr += segsize;
473		cnt -= segsize;
474	}
475}
476
477/*
478 * NIC memory read function.
479 * Can be used to clear a section of NIC local memory.
480 */
481static void
482ti_mem_zero(struct ti_softc *sc, uint32_t addr, uint32_t len)
483{
484	int segptr, segsize, cnt;
485
486	segptr = addr;
487	cnt = len;
488
489	while (cnt) {
490		if (cnt < TI_WINLEN)
491			segsize = cnt;
492		else
493			segsize = TI_WINLEN - (segptr % TI_WINLEN);
494		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
495		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
496		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
497		segptr += segsize;
498		cnt -= segsize;
499	}
500}
501
502static int
503ti_copy_mem(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
504    caddr_t buf, int useraddr, int readdata)
505{
506	int segptr, segsize, cnt;
507	caddr_t ptr;
508	uint32_t origwin;
509	int resid, segresid;
510	int first_pass;
511
512	TI_LOCK_ASSERT(sc);
513
514	/*
515	 * At the moment, we don't handle non-aligned cases, we just bail.
516	 * If this proves to be a problem, it will be fixed.
517	 */
518	if (readdata == 0 && (tigon_addr & 0x3) != 0) {
519		device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
520		    "word-aligned\n", __func__, tigon_addr);
521		device_printf(sc->ti_dev, "%s: unaligned writes aren't "
522		    "yet supported\n", __func__);
523		return (EINVAL);
524	}
525
526	segptr = tigon_addr & ~0x3;
527	segresid = tigon_addr - segptr;
528
529	/*
530	 * This is the non-aligned amount left over that we'll need to
531	 * copy.
532	 */
533	resid = len & 0x3;
534
535	/* Add in the left over amount at the front of the buffer */
536	resid += segresid;
537
538	cnt = len & ~0x3;
539	/*
540	 * If resid + segresid is >= 4, add multiples of 4 to the count and
541	 * decrease the residual by that much.
542	 */
543	cnt += resid & ~0x3;
544	resid -= resid & ~0x3;
545
546	ptr = buf;
547
548	first_pass = 1;
549
550	/*
551	 * Save the old window base value.
552	 */
553	origwin = CSR_READ_4(sc, TI_WINBASE);
554
555	while (cnt) {
556		bus_size_t ti_offset;
557
558		if (cnt < TI_WINLEN)
559			segsize = cnt;
560		else
561			segsize = TI_WINLEN - (segptr % TI_WINLEN);
562		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
563
564		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
565
566		if (readdata) {
567			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
568			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
569			if (useraddr) {
570				/*
571				 * Yeah, this is a little on the kludgy
572				 * side, but at least this code is only
573				 * used for debugging.
574				 */
575				ti_bcopy_swap(sc->ti_membuf, sc->ti_membuf2,
576				    segsize, TI_SWAP_NTOH);
577
578				TI_UNLOCK(sc);
579				if (first_pass) {
580					copyout(&sc->ti_membuf2[segresid], ptr,
581					    segsize - segresid);
582					first_pass = 0;
583				} else
584					copyout(sc->ti_membuf2, ptr, segsize);
585				TI_LOCK(sc);
586			} else {
587				if (first_pass) {
588
589					ti_bcopy_swap(sc->ti_membuf,
590					    sc->ti_membuf2, segsize,
591					    TI_SWAP_NTOH);
592					TI_UNLOCK(sc);
593					bcopy(&sc->ti_membuf2[segresid], ptr,
594					    segsize - segresid);
595					TI_LOCK(sc);
596					first_pass = 0;
597				} else
598					ti_bcopy_swap(sc->ti_membuf, ptr,
599					    segsize, TI_SWAP_NTOH);
600			}
601
602		} else {
603			if (useraddr) {
604				TI_UNLOCK(sc);
605				copyin(ptr, sc->ti_membuf2, segsize);
606				TI_LOCK(sc);
607				ti_bcopy_swap(sc->ti_membuf2, sc->ti_membuf,
608				    segsize, TI_SWAP_HTON);
609			} else
610				ti_bcopy_swap(ptr, sc->ti_membuf, segsize,
611				    TI_SWAP_HTON);
612
613			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
614			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
615		}
616		segptr += segsize;
617		ptr += segsize;
618		cnt -= segsize;
619	}
620
621	/*
622	 * Handle leftover, non-word-aligned bytes.
623	 */
624	if (resid != 0) {
625		uint32_t tmpval, tmpval2;
626		bus_size_t ti_offset;
627
628		/*
629		 * Set the segment pointer.
630		 */
631		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
632
633		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
634
635		/*
636		 * First, grab whatever is in our source/destination.
637		 * We'll obviously need this for reads, but also for
638		 * writes, since we'll be doing read/modify/write.
639		 */
640		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
641		    ti_offset, &tmpval, 1);
642
643		/*
644		 * Next, translate this from little-endian to big-endian
645		 * (at least on i386 boxes).
646		 */
647		tmpval2 = ntohl(tmpval);
648
649		if (readdata) {
650			/*
651			 * If we're reading, just copy the leftover number
652			 * of bytes from the host byte order buffer to
653			 * the user's buffer.
654			 */
655			if (useraddr) {
656				TI_UNLOCK(sc);
657				copyout(&tmpval2, ptr, resid);
658				TI_LOCK(sc);
659			} else
660				bcopy(&tmpval2, ptr, resid);
661		} else {
662			/*
663			 * If we're writing, first copy the bytes to be
664			 * written into the network byte order buffer,
665			 * leaving the rest of the buffer with whatever was
666			 * originally in there.  Then, swap the bytes
667			 * around into host order and write them out.
668			 *
669			 * XXX KDM the read side of this has been verified
670			 * to work, but the write side of it has not been
671			 * verified.  So user beware.
672			 */
673			if (useraddr) {
674				TI_UNLOCK(sc);
675				copyin(ptr, &tmpval2, resid);
676				TI_LOCK(sc);
677			} else
678				bcopy(ptr, &tmpval2, resid);
679
680			tmpval = htonl(tmpval2);
681
682			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
683			    ti_offset, &tmpval, 1);
684		}
685	}
686
687	CSR_WRITE_4(sc, TI_WINBASE, origwin);
688
689	return (0);
690}
691
692static int
693ti_copy_scratch(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
694    caddr_t buf, int useraddr, int readdata, int cpu)
695{
696	uint32_t segptr;
697	int cnt;
698	uint32_t tmpval, tmpval2;
699	caddr_t ptr;
700
701	TI_LOCK_ASSERT(sc);
702
703	/*
704	 * At the moment, we don't handle non-aligned cases, we just bail.
705	 * If this proves to be a problem, it will be fixed.
706	 */
707	if (tigon_addr & 0x3) {
708		device_printf(sc->ti_dev, "%s: tigon address %#x "
709		    "isn't word-aligned\n", __func__, tigon_addr);
710		return (EINVAL);
711	}
712
713	if (len & 0x3) {
714		device_printf(sc->ti_dev, "%s: transfer length %d "
715		    "isn't word-aligned\n", __func__, len);
716		return (EINVAL);
717	}
718
719	segptr = tigon_addr;
720	cnt = len;
721	ptr = buf;
722
723	while (cnt) {
724		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
725
726		if (readdata) {
727			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
728
729			tmpval = ntohl(tmpval2);
730
731			/*
732			 * Note:  I've used this debugging interface
733			 * extensively with Alteon's 12.3.15 firmware,
734			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
735			 *
736			 * When you compile the firmware without
737			 * optimization, which is necessary sometimes in
738			 * order to properly step through it, you sometimes
739			 * read out a bogus value of 0xc0017c instead of
740			 * whatever was supposed to be in that scratchpad
741			 * location.  That value is on the stack somewhere,
742			 * but I've never been able to figure out what was
743			 * causing the problem.
744			 *
745			 * The address seems to pop up in random places,
746			 * often not in the same place on two subsequent
747			 * reads.
748			 *
749			 * In any case, the underlying data doesn't seem
750			 * to be affected, just the value read out.
751			 *
752			 * KDM, 3/7/2000
753			 */
754
755			if (tmpval2 == 0xc0017c)
756				device_printf(sc->ti_dev, "found 0xc0017c at "
757				    "%#x (tmpval2)\n", segptr);
758
759			if (tmpval == 0xc0017c)
760				device_printf(sc->ti_dev, "found 0xc0017c at "
761				    "%#x (tmpval)\n", segptr);
762
763			if (useraddr)
764				copyout(&tmpval, ptr, 4);
765			else
766				bcopy(&tmpval, ptr, 4);
767		} else {
768			if (useraddr)
769				copyin(ptr, &tmpval2, 4);
770			else
771				bcopy(ptr, &tmpval2, 4);
772
773			tmpval = htonl(tmpval2);
774
775			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
776		}
777
778		cnt -= 4;
779		segptr += 4;
780		ptr += 4;
781	}
782
783	return (0);
784}
785
786static int
787ti_bcopy_swap(const void *src, void *dst, size_t len, ti_swap_type swap_type)
788{
789	const uint8_t *tmpsrc;
790	uint8_t *tmpdst;
791	size_t tmplen;
792
793	if (len & 0x3) {
794		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n", len);
795		return (-1);
796	}
797
798	tmpsrc = src;
799	tmpdst = dst;
800	tmplen = len;
801
802	while (tmplen) {
803		if (swap_type == TI_SWAP_NTOH)
804			*(uint32_t *)tmpdst = ntohl(*(const uint32_t *)tmpsrc);
805		else
806			*(uint32_t *)tmpdst = htonl(*(const uint32_t *)tmpsrc);
807		tmpsrc += 4;
808		tmpdst += 4;
809		tmplen -= 4;
810	}
811
812	return (0);
813}
814
815/*
816 * Load firmware image into the NIC. Check that the firmware revision
817 * is acceptable and see if we want the firmware for the Tigon 1 or
818 * Tigon 2.
819 */
820static void
821ti_loadfw(struct ti_softc *sc)
822{
823
824	TI_LOCK_ASSERT(sc);
825
826	switch (sc->ti_hwrev) {
827	case TI_HWREV_TIGON:
828		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
829		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
830		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
831			device_printf(sc->ti_dev, "firmware revision mismatch; "
832			    "want %d.%d.%d, got %d.%d.%d\n",
833			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
834			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
835			    tigonFwReleaseMinor, tigonFwReleaseFix);
836			return;
837		}
838		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
839		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
840		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
841		    tigonFwRodata);
842		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
843		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
844		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
845		break;
846	case TI_HWREV_TIGON_II:
847		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
848		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
849		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
850			device_printf(sc->ti_dev, "firmware revision mismatch; "
851			    "want %d.%d.%d, got %d.%d.%d\n",
852			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
853			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
854			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
855			return;
856		}
857		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
858		    tigon2FwText);
859		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
860		    tigon2FwData);
861		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
862		    tigon2FwRodata);
863		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
864		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
865		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
866		break;
867	default:
868		device_printf(sc->ti_dev,
869		    "can't load firmware: unknown hardware rev\n");
870		break;
871	}
872}
873
874/*
875 * Send the NIC a command via the command ring.
876 */
877static void
878ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
879{
880	int index;
881
882	index = sc->ti_cmd_saved_prodidx;
883	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
884	TI_INC(index, TI_CMD_RING_CNT);
885	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
886	sc->ti_cmd_saved_prodidx = index;
887}
888
889/*
890 * Send the NIC an extended command. The 'len' parameter specifies the
891 * number of command slots to include after the initial command.
892 */
893static void
894ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
895{
896	int index;
897	int i;
898
899	index = sc->ti_cmd_saved_prodidx;
900	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
901	TI_INC(index, TI_CMD_RING_CNT);
902	for (i = 0; i < len; i++) {
903		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
904		    *(uint32_t *)(&arg[i * 4]));
905		TI_INC(index, TI_CMD_RING_CNT);
906	}
907	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
908	sc->ti_cmd_saved_prodidx = index;
909}
910
911/*
912 * Handle events that have triggered interrupts.
913 */
914static void
915ti_handle_events(struct ti_softc *sc)
916{
917	struct ti_event_desc *e;
918
919	if (sc->ti_rdata.ti_event_ring == NULL)
920		return;
921
922	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
923	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_POSTREAD);
924	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
925		e = &sc->ti_rdata.ti_event_ring[sc->ti_ev_saved_considx];
926		switch (TI_EVENT_EVENT(e)) {
927		case TI_EV_LINKSTAT_CHANGED:
928			sc->ti_linkstat = TI_EVENT_CODE(e);
929			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
930				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
931				sc->ti_ifp->if_baudrate = IF_Mbps(100);
932				if (bootverbose)
933					device_printf(sc->ti_dev,
934					    "10/100 link up\n");
935			} else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
936				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
937				sc->ti_ifp->if_baudrate = IF_Gbps(1UL);
938				if (bootverbose)
939					device_printf(sc->ti_dev,
940					    "gigabit link up\n");
941			} else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
942				if_link_state_change(sc->ti_ifp,
943				    LINK_STATE_DOWN);
944				sc->ti_ifp->if_baudrate = 0;
945				if (bootverbose)
946					device_printf(sc->ti_dev,
947					    "link down\n");
948			}
949			break;
950		case TI_EV_ERROR:
951			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
952				device_printf(sc->ti_dev, "invalid command\n");
953			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
954				device_printf(sc->ti_dev, "unknown command\n");
955			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
956				device_printf(sc->ti_dev, "bad config data\n");
957			break;
958		case TI_EV_FIRMWARE_UP:
959			ti_init2(sc);
960			break;
961		case TI_EV_STATS_UPDATED:
962		case TI_EV_RESET_JUMBO_RING:
963		case TI_EV_MCAST_UPDATED:
964			/* Who cares. */
965			break;
966		default:
967			device_printf(sc->ti_dev, "unknown event: %d\n",
968			    TI_EVENT_EVENT(e));
969			break;
970		}
971		/* Advance the consumer index. */
972		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
973		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
974	}
975	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
976	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_PREREAD);
977}
978
979struct ti_dmamap_arg {
980	bus_addr_t	ti_busaddr;
981};
982
983static void
984ti_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
985{
986	struct ti_dmamap_arg *ctx;
987
988	if (error)
989		return;
990
991	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
992
993	ctx = arg;
994	ctx->ti_busaddr = segs->ds_addr;
995}
996
997static int
998ti_dma_ring_alloc(struct ti_softc *sc, bus_size_t alignment, bus_size_t maxsize,
999    bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, bus_addr_t *paddr,
1000    const char *msg)
1001{
1002	struct ti_dmamap_arg ctx;
1003	int error;
1004
1005	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag,
1006	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1007	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
1008	if (error != 0) {
1009		device_printf(sc->ti_dev,
1010		    "could not create %s dma tag\n", msg);
1011		return (error);
1012	}
1013	/* Allocate DMA'able memory for ring. */
1014	error = bus_dmamem_alloc(*tag, (void **)ring,
1015	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1016	if (error != 0) {
1017		device_printf(sc->ti_dev,
1018		    "could not allocate DMA'able memory for %s\n", msg);
1019		return (error);
1020	}
1021	/* Load the address of the ring. */
1022	ctx.ti_busaddr = 0;
1023	error = bus_dmamap_load(*tag, *map, *ring, maxsize, ti_dma_map_addr,
1024	    &ctx, BUS_DMA_NOWAIT);
1025	if (error != 0) {
1026		device_printf(sc->ti_dev,
1027		    "could not load DMA'able memory for %s\n", msg);
1028		return (error);
1029	}
1030	*paddr = ctx.ti_busaddr;
1031	return (0);
1032}
1033
1034static void
1035ti_dma_ring_free(struct ti_softc *sc, bus_dma_tag_t *tag, uint8_t **ring,
1036    bus_dmamap_t map, bus_addr_t *paddr)
1037{
1038
1039	if (*paddr != 0) {
1040		bus_dmamap_unload(*tag, map);
1041		*paddr = 0;
1042	}
1043	if (*ring != NULL) {
1044		bus_dmamem_free(*tag, *ring, map);
1045		*ring = NULL;
1046	}
1047	if (*tag) {
1048		bus_dma_tag_destroy(*tag);
1049		*tag = NULL;
1050	}
1051}
1052
1053static int
1054ti_dma_alloc(struct ti_softc *sc)
1055{
1056	bus_addr_t lowaddr;
1057	int i, error;
1058
1059	lowaddr = BUS_SPACE_MAXADDR;
1060	if (sc->ti_dac == 0)
1061		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1062
1063	error = bus_dma_tag_create(bus_get_dma_tag(sc->ti_dev), 1, 0, lowaddr,
1064	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1065	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1066	    &sc->ti_cdata.ti_parent_tag);
1067	if (error != 0) {
1068		device_printf(sc->ti_dev,
1069		    "could not allocate parent dma tag\n");
1070		return (ENOMEM);
1071	}
1072
1073	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_gib),
1074	    &sc->ti_cdata.ti_gib_tag, (uint8_t **)&sc->ti_rdata.ti_info,
1075	    &sc->ti_cdata.ti_gib_map, &sc->ti_rdata.ti_info_paddr, "GIB");
1076	if (error)
1077		return (error);
1078
1079	/* Producer/consumer status */
1080	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_status),
1081	    &sc->ti_cdata.ti_status_tag, (uint8_t **)&sc->ti_rdata.ti_status,
1082	    &sc->ti_cdata.ti_status_map, &sc->ti_rdata.ti_status_paddr,
1083	    "event ring");
1084	if (error)
1085		return (error);
1086
1087	/* Event ring */
1088	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_EVENT_RING_SZ,
1089	    &sc->ti_cdata.ti_event_ring_tag,
1090	    (uint8_t **)&sc->ti_rdata.ti_event_ring,
1091	    &sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr,
1092	    "event ring");
1093	if (error)
1094		return (error);
1095
1096	/* Command ring lives in shared memory so no need to create DMA area. */
1097
1098	/* Standard RX ring */
1099	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_STD_RX_RING_SZ,
1100	    &sc->ti_cdata.ti_rx_std_ring_tag,
1101	    (uint8_t **)&sc->ti_rdata.ti_rx_std_ring,
1102	    &sc->ti_cdata.ti_rx_std_ring_map,
1103	    &sc->ti_rdata.ti_rx_std_ring_paddr, "RX ring");
1104	if (error)
1105		return (error);
1106
1107	/* Jumbo RX ring */
1108	error = ti_dma_ring_alloc(sc, TI_JUMBO_RING_ALIGN, TI_JUMBO_RX_RING_SZ,
1109	    &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1110	    (uint8_t **)&sc->ti_rdata.ti_rx_jumbo_ring,
1111	    &sc->ti_cdata.ti_rx_jumbo_ring_map,
1112	    &sc->ti_rdata.ti_rx_jumbo_ring_paddr, "jumbo RX ring");
1113	if (error)
1114		return (error);
1115
1116	/* RX return ring */
1117	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_RX_RETURN_RING_SZ,
1118	    &sc->ti_cdata.ti_rx_return_ring_tag,
1119	    (uint8_t **)&sc->ti_rdata.ti_rx_return_ring,
1120	    &sc->ti_cdata.ti_rx_return_ring_map,
1121	    &sc->ti_rdata.ti_rx_return_ring_paddr, "RX return ring");
1122	if (error)
1123		return (error);
1124
1125	/* Create DMA tag for standard RX mbufs. */
1126	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1127	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1128	    MCLBYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_std_tag);
1129	if (error) {
1130		device_printf(sc->ti_dev, "could not allocate RX dma tag\n");
1131		return (error);
1132	}
1133
1134	/* Create DMA tag for jumbo RX mbufs. */
1135#ifdef TI_SF_BUF_JUMBO
1136	/*
1137	 * The VM system will take care of providing aligned pages.  Alignment
1138	 * is set to 1 here so that busdma resources won't be wasted.
1139	 */
1140	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1141	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE * 4, 4,
1142	    PAGE_SIZE, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1143#else
1144	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1145	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MJUM9BYTES, 1,
1146	    MJUM9BYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1147#endif
1148	if (error) {
1149		device_printf(sc->ti_dev,
1150		    "could not allocate jumbo RX dma tag\n");
1151		return (error);
1152	}
1153
1154	/* Create DMA tag for TX mbufs. */
1155	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1,
1156	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1157	    MCLBYTES * TI_MAXTXSEGS, TI_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1158	    &sc->ti_cdata.ti_tx_tag);
1159	if (error) {
1160		device_printf(sc->ti_dev, "could not allocate TX dma tag\n");
1161		return (ENOMEM);
1162	}
1163
1164	/* Create DMA maps for RX buffers. */
1165	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1166		error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1167		    &sc->ti_cdata.ti_rx_std_maps[i]);
1168		if (error) {
1169			device_printf(sc->ti_dev,
1170			    "could not create DMA map for RX\n");
1171			return (error);
1172		}
1173	}
1174	error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1175	    &sc->ti_cdata.ti_rx_std_sparemap);
1176	if (error) {
1177		device_printf(sc->ti_dev,
1178		    "could not create spare DMA map for RX\n");
1179		return (error);
1180	}
1181
1182	/* Create DMA maps for jumbo RX buffers. */
1183	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1184		error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1185		    &sc->ti_cdata.ti_rx_jumbo_maps[i]);
1186		if (error) {
1187			device_printf(sc->ti_dev,
1188			    "could not create DMA map for jumbo RX\n");
1189			return (error);
1190		}
1191	}
1192	error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1193	    &sc->ti_cdata.ti_rx_jumbo_sparemap);
1194	if (error) {
1195		device_printf(sc->ti_dev,
1196		    "could not create spare DMA map for jumbo RX\n");
1197		return (error);
1198	}
1199
1200	/* Create DMA maps for TX buffers. */
1201	for (i = 0; i < TI_TX_RING_CNT; i++) {
1202		error = bus_dmamap_create(sc->ti_cdata.ti_tx_tag, 0,
1203		    &sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1204		if (error) {
1205			device_printf(sc->ti_dev,
1206			    "could not create DMA map for TX\n");
1207			return (ENOMEM);
1208		}
1209	}
1210
1211	/* Mini ring and TX ring is not available on Tigon 1. */
1212	if (sc->ti_hwrev == TI_HWREV_TIGON)
1213		return (0);
1214
1215	/* TX ring */
1216	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_TX_RING_SZ,
1217	    &sc->ti_cdata.ti_tx_ring_tag, (uint8_t **)&sc->ti_rdata.ti_tx_ring,
1218	    &sc->ti_cdata.ti_tx_ring_map, &sc->ti_rdata.ti_tx_ring_paddr,
1219	    "TX ring");
1220	if (error)
1221		return (error);
1222
1223	/* Mini RX ring */
1224	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_MINI_RX_RING_SZ,
1225	    &sc->ti_cdata.ti_rx_mini_ring_tag,
1226	    (uint8_t **)&sc->ti_rdata.ti_rx_mini_ring,
1227	    &sc->ti_cdata.ti_rx_mini_ring_map,
1228	    &sc->ti_rdata.ti_rx_mini_ring_paddr, "mini RX ring");
1229	if (error)
1230		return (error);
1231
1232	/* Create DMA tag for mini RX mbufs. */
1233	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1234	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MHLEN, 1,
1235	    MHLEN, 0, NULL, NULL, &sc->ti_cdata.ti_rx_mini_tag);
1236	if (error) {
1237		device_printf(sc->ti_dev,
1238		    "could not allocate mini RX dma tag\n");
1239		return (error);
1240	}
1241
1242	/* Create DMA maps for mini RX buffers. */
1243	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1244		error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1245		    &sc->ti_cdata.ti_rx_mini_maps[i]);
1246		if (error) {
1247			device_printf(sc->ti_dev,
1248			    "could not create DMA map for mini RX\n");
1249			return (error);
1250		}
1251	}
1252	error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1253	    &sc->ti_cdata.ti_rx_mini_sparemap);
1254	if (error) {
1255		device_printf(sc->ti_dev,
1256		    "could not create spare DMA map for mini RX\n");
1257		return (error);
1258	}
1259
1260	return (0);
1261}
1262
1263static void
1264ti_dma_free(struct ti_softc *sc)
1265{
1266	int i;
1267
1268	/* Destroy DMA maps for RX buffers. */
1269	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1270		if (sc->ti_cdata.ti_rx_std_maps[i]) {
1271			bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1272			    sc->ti_cdata.ti_rx_std_maps[i]);
1273			sc->ti_cdata.ti_rx_std_maps[i] = NULL;
1274		}
1275	}
1276	if (sc->ti_cdata.ti_rx_std_sparemap) {
1277		bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1278		    sc->ti_cdata.ti_rx_std_sparemap);
1279		sc->ti_cdata.ti_rx_std_sparemap = NULL;
1280	}
1281	if (sc->ti_cdata.ti_rx_std_tag) {
1282		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_std_tag);
1283		sc->ti_cdata.ti_rx_std_tag = NULL;
1284	}
1285
1286	/* Destroy DMA maps for jumbo RX buffers. */
1287	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1288		if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1289			bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1290			    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1291			sc->ti_cdata.ti_rx_jumbo_maps[i] = NULL;
1292		}
1293	}
1294	if (sc->ti_cdata.ti_rx_jumbo_sparemap) {
1295		bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1296		    sc->ti_cdata.ti_rx_jumbo_sparemap);
1297		sc->ti_cdata.ti_rx_jumbo_sparemap = NULL;
1298	}
1299	if (sc->ti_cdata.ti_rx_jumbo_tag) {
1300		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_jumbo_tag);
1301		sc->ti_cdata.ti_rx_jumbo_tag = NULL;
1302	}
1303
1304	/* Destroy DMA maps for mini RX buffers. */
1305	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1306		if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1307			bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1308			    sc->ti_cdata.ti_rx_mini_maps[i]);
1309			sc->ti_cdata.ti_rx_mini_maps[i] = NULL;
1310		}
1311	}
1312	if (sc->ti_cdata.ti_rx_mini_sparemap) {
1313		bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1314		    sc->ti_cdata.ti_rx_mini_sparemap);
1315		sc->ti_cdata.ti_rx_mini_sparemap = NULL;
1316	}
1317	if (sc->ti_cdata.ti_rx_mini_tag) {
1318		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_mini_tag);
1319		sc->ti_cdata.ti_rx_mini_tag = NULL;
1320	}
1321
1322	/* Destroy DMA maps for TX buffers. */
1323	for (i = 0; i < TI_TX_RING_CNT; i++) {
1324		if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1325			bus_dmamap_destroy(sc->ti_cdata.ti_tx_tag,
1326			    sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1327			sc->ti_cdata.ti_txdesc[i].tx_dmamap = NULL;
1328		}
1329	}
1330	if (sc->ti_cdata.ti_tx_tag) {
1331		bus_dma_tag_destroy(sc->ti_cdata.ti_tx_tag);
1332		sc->ti_cdata.ti_tx_tag = NULL;
1333	}
1334
1335	/* Destroy standard RX ring. */
1336	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_std_ring_tag,
1337	    (void *)&sc->ti_rdata.ti_rx_std_ring,
1338	    sc->ti_cdata.ti_rx_std_ring_map,
1339	    &sc->ti_rdata.ti_rx_std_ring_paddr);
1340	/* Destroy jumbo RX ring. */
1341	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1342	    (void *)&sc->ti_rdata.ti_rx_jumbo_ring,
1343	    sc->ti_cdata.ti_rx_jumbo_ring_map,
1344	    &sc->ti_rdata.ti_rx_jumbo_ring_paddr);
1345	/* Destroy mini RX ring. */
1346	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_mini_ring_tag,
1347	    (void *)&sc->ti_rdata.ti_rx_mini_ring,
1348	    sc->ti_cdata.ti_rx_mini_ring_map,
1349	    &sc->ti_rdata.ti_rx_mini_ring_paddr);
1350	/* Destroy RX return ring. */
1351	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_return_ring_tag,
1352	    (void *)&sc->ti_rdata.ti_rx_return_ring,
1353	    sc->ti_cdata.ti_rx_return_ring_map,
1354	    &sc->ti_rdata.ti_rx_return_ring_paddr);
1355	/* Destroy TX ring. */
1356	ti_dma_ring_free(sc, &sc->ti_cdata.ti_tx_ring_tag,
1357	    (void *)&sc->ti_rdata.ti_tx_ring, sc->ti_cdata.ti_tx_ring_map,
1358	    &sc->ti_rdata.ti_tx_ring_paddr);
1359	/* Destroy status block. */
1360	ti_dma_ring_free(sc, &sc->ti_cdata.ti_status_tag,
1361	    (void *)&sc->ti_rdata.ti_status, sc->ti_cdata.ti_status_map,
1362	    &sc->ti_rdata.ti_status_paddr);
1363	/* Destroy event ring. */
1364	ti_dma_ring_free(sc, &sc->ti_cdata.ti_event_ring_tag,
1365	    (void *)&sc->ti_rdata.ti_event_ring,
1366	    sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr);
1367	/* Destroy GIB */
1368	ti_dma_ring_free(sc, &sc->ti_cdata.ti_gib_tag,
1369	    (void *)&sc->ti_rdata.ti_info, sc->ti_cdata.ti_gib_map,
1370	    &sc->ti_rdata.ti_info_paddr);
1371
1372	/* Destroy the parent tag. */
1373	if (sc->ti_cdata.ti_parent_tag) {
1374		bus_dma_tag_destroy(sc->ti_cdata.ti_parent_tag);
1375		sc->ti_cdata.ti_parent_tag = NULL;
1376	}
1377}
1378
1379/*
1380 * Intialize a standard receive ring descriptor.
1381 */
1382static int
1383ti_newbuf_std(struct ti_softc *sc, int i)
1384{
1385	bus_dmamap_t map;
1386	bus_dma_segment_t segs[1];
1387	struct mbuf *m;
1388	struct ti_rx_desc *r;
1389	int error, nsegs;
1390
1391	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1392	if (m == NULL)
1393		return (ENOBUFS);
1394	m->m_len = m->m_pkthdr.len = MCLBYTES;
1395	m_adj(m, ETHER_ALIGN);
1396
1397	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_std_tag,
1398	    sc->ti_cdata.ti_rx_std_sparemap, m, segs, &nsegs, 0);
1399	if (error != 0) {
1400		m_freem(m);
1401		return (error);
1402        }
1403	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1404
1405	if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1406		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1407		    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_POSTREAD);
1408		bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag,
1409		    sc->ti_cdata.ti_rx_std_maps[i]);
1410	}
1411
1412	map = sc->ti_cdata.ti_rx_std_maps[i];
1413	sc->ti_cdata.ti_rx_std_maps[i] = sc->ti_cdata.ti_rx_std_sparemap;
1414	sc->ti_cdata.ti_rx_std_sparemap = map;
1415	sc->ti_cdata.ti_rx_std_chain[i] = m;
1416
1417	r = &sc->ti_rdata.ti_rx_std_ring[i];
1418	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1419	r->ti_len = segs[0].ds_len;
1420	r->ti_type = TI_BDTYPE_RECV_BD;
1421	r->ti_flags = 0;
1422	r->ti_vlan_tag = 0;
1423	r->ti_tcp_udp_cksum = 0;
1424	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1425		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1426	r->ti_idx = i;
1427
1428	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1429	    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_PREREAD);
1430	return (0);
1431}
1432
1433/*
1434 * Intialize a mini receive ring descriptor. This only applies to
1435 * the Tigon 2.
1436 */
1437static int
1438ti_newbuf_mini(struct ti_softc *sc, int i)
1439{
1440	bus_dmamap_t map;
1441	bus_dma_segment_t segs[1];
1442	struct mbuf *m;
1443	struct ti_rx_desc *r;
1444	int error, nsegs;
1445
1446	MGETHDR(m, M_NOWAIT, MT_DATA);
1447	if (m == NULL)
1448		return (ENOBUFS);
1449	m->m_len = m->m_pkthdr.len = MHLEN;
1450	m_adj(m, ETHER_ALIGN);
1451
1452	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_mini_tag,
1453	    sc->ti_cdata.ti_rx_mini_sparemap, m, segs, &nsegs, 0);
1454	if (error != 0) {
1455		m_freem(m);
1456		return (error);
1457        }
1458	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1459
1460	if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1461		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1462		    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_POSTREAD);
1463		bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag,
1464		    sc->ti_cdata.ti_rx_mini_maps[i]);
1465	}
1466
1467	map = sc->ti_cdata.ti_rx_mini_maps[i];
1468	sc->ti_cdata.ti_rx_mini_maps[i] = sc->ti_cdata.ti_rx_mini_sparemap;
1469	sc->ti_cdata.ti_rx_mini_sparemap = map;
1470	sc->ti_cdata.ti_rx_mini_chain[i] = m;
1471
1472	r = &sc->ti_rdata.ti_rx_mini_ring[i];
1473	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1474	r->ti_len = segs[0].ds_len;
1475	r->ti_type = TI_BDTYPE_RECV_BD;
1476	r->ti_flags = TI_BDFLAG_MINI_RING;
1477	r->ti_vlan_tag = 0;
1478	r->ti_tcp_udp_cksum = 0;
1479	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1480		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1481	r->ti_idx = i;
1482
1483	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1484	    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_PREREAD);
1485	return (0);
1486}
1487
1488#ifndef TI_SF_BUF_JUMBO
1489
1490/*
1491 * Initialize a jumbo receive ring descriptor. This allocates
1492 * a jumbo buffer from the pool managed internally by the driver.
1493 */
1494static int
1495ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *dummy)
1496{
1497	bus_dmamap_t map;
1498	bus_dma_segment_t segs[1];
1499	struct mbuf *m;
1500	struct ti_rx_desc *r;
1501	int error, nsegs;
1502
1503	(void)dummy;
1504
1505	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1506	if (m == NULL)
1507		return (ENOBUFS);
1508	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1509	m_adj(m, ETHER_ALIGN);
1510
1511	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag,
1512	    sc->ti_cdata.ti_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1513	if (error != 0) {
1514		m_freem(m);
1515		return (error);
1516        }
1517	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1518
1519	if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1520		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1521		    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_POSTREAD);
1522		bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag,
1523		    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1524	}
1525
1526	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1527	sc->ti_cdata.ti_rx_jumbo_maps[i] = sc->ti_cdata.ti_rx_jumbo_sparemap;
1528	sc->ti_cdata.ti_rx_jumbo_sparemap = map;
1529	sc->ti_cdata.ti_rx_jumbo_chain[i] = m;
1530
1531	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
1532	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1533	r->ti_len = segs[0].ds_len;
1534	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1535	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1536	r->ti_vlan_tag = 0;
1537	r->ti_tcp_udp_cksum = 0;
1538	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1539		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1540	r->ti_idx = i;
1541
1542	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1543	    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_PREREAD);
1544	return (0);
1545}
1546
1547#else
1548
1549#if (PAGE_SIZE == 4096)
1550#define NPAYLOAD 2
1551#else
1552#define NPAYLOAD 1
1553#endif
1554
1555#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1556#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1557#define NFS_HDR_LEN (UDP_HDR_LEN)
1558static int HDR_LEN = TCP_HDR_LEN;
1559
1560/*
1561 * Initialize a jumbo receive ring descriptor. This allocates
1562 * a jumbo buffer from the pool managed internally by the driver.
1563 */
1564static int
1565ti_newbuf_jumbo(struct ti_softc *sc, int idx, struct mbuf *m_old)
1566{
1567	bus_dmamap_t map;
1568	struct mbuf *cur, *m_new = NULL;
1569	struct mbuf *m[3] = {NULL, NULL, NULL};
1570	struct ti_rx_desc_ext *r;
1571	vm_page_t frame;
1572	/* 1 extra buf to make nobufs easy*/
1573	struct sf_buf *sf[3] = {NULL, NULL, NULL};
1574	int i;
1575	bus_dma_segment_t segs[4];
1576	int nsegs;
1577
1578	if (m_old != NULL) {
1579		m_new = m_old;
1580		cur = m_old->m_next;
1581		for (i = 0; i <= NPAYLOAD; i++){
1582			m[i] = cur;
1583			cur = cur->m_next;
1584		}
1585	} else {
1586		/* Allocate the mbufs. */
1587		MGETHDR(m_new, M_NOWAIT, MT_DATA);
1588		if (m_new == NULL) {
1589			device_printf(sc->ti_dev, "mbuf allocation failed "
1590			    "-- packet dropped!\n");
1591			goto nobufs;
1592		}
1593		MGET(m[NPAYLOAD], M_NOWAIT, MT_DATA);
1594		if (m[NPAYLOAD] == NULL) {
1595			device_printf(sc->ti_dev, "cluster mbuf allocation "
1596			    "failed -- packet dropped!\n");
1597			goto nobufs;
1598		}
1599		if (!(MCLGET(m[NPAYLOAD], M_NOWAIT))) {
1600			device_printf(sc->ti_dev, "mbuf allocation failed "
1601			    "-- packet dropped!\n");
1602			goto nobufs;
1603		}
1604		m[NPAYLOAD]->m_len = MCLBYTES;
1605
1606		for (i = 0; i < NPAYLOAD; i++){
1607			MGET(m[i], M_NOWAIT, MT_DATA);
1608			if (m[i] == NULL) {
1609				device_printf(sc->ti_dev, "mbuf allocation "
1610				    "failed -- packet dropped!\n");
1611				goto nobufs;
1612			}
1613			frame = vm_page_alloc(NULL, 0,
1614			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1615			    VM_ALLOC_WIRED);
1616			if (frame == NULL) {
1617				device_printf(sc->ti_dev, "buffer allocation "
1618				    "failed -- packet dropped!\n");
1619				printf("      index %d page %d\n", idx, i);
1620				goto nobufs;
1621			}
1622			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1623			if (sf[i] == NULL) {
1624				vm_page_unwire(frame, PQ_NONE);
1625				vm_page_free(frame);
1626				device_printf(sc->ti_dev, "buffer allocation "
1627				    "failed -- packet dropped!\n");
1628				printf("      index %d page %d\n", idx, i);
1629				goto nobufs;
1630			}
1631		}
1632		for (i = 0; i < NPAYLOAD; i++){
1633		/* Attach the buffer to the mbuf. */
1634			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1635			m[i]->m_len = PAGE_SIZE;
1636			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1637			    sf_mext_free, (void*)sf_buf_kva(sf[i]), sf[i],
1638			    0, EXT_DISPOSABLE);
1639			m[i]->m_next = m[i+1];
1640		}
1641		/* link the buffers to the header */
1642		m_new->m_next = m[0];
1643		m_new->m_data += ETHER_ALIGN;
1644		if (sc->ti_hdrsplit)
1645			m_new->m_len = MHLEN - ETHER_ALIGN;
1646		else
1647			m_new->m_len = HDR_LEN;
1648		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1649	}
1650
1651	/* Set up the descriptor. */
1652	r = &sc->ti_rdata.ti_rx_jumbo_ring[idx];
1653	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1654	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1655	if (bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag, map, m_new,
1656	    segs, &nsegs, 0))
1657		return (ENOBUFS);
1658	if ((nsegs < 1) || (nsegs > 4))
1659		return (ENOBUFS);
1660	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1661	r->ti_len0 = m_new->m_len;
1662
1663	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1664	r->ti_len1 = PAGE_SIZE;
1665
1666	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1667	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1668
1669	if (PAGE_SIZE == 4096) {
1670		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1671		r->ti_len3 = MCLBYTES;
1672	} else {
1673		r->ti_len3 = 0;
1674	}
1675	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1676
1677	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1678
1679	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1680		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1681
1682	r->ti_idx = idx;
1683
1684	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map, BUS_DMASYNC_PREREAD);
1685	return (0);
1686
1687nobufs:
1688
1689	/*
1690	 * Warning! :
1691	 * This can only be called before the mbufs are strung together.
1692	 * If the mbufs are strung together, m_freem() will free the chain,
1693	 * so that the later mbufs will be freed multiple times.
1694	 */
1695	if (m_new)
1696		m_freem(m_new);
1697
1698	for (i = 0; i < 3; i++) {
1699		if (m[i])
1700			m_freem(m[i]);
1701		if (sf[i])
1702			sf_mext_free((void *)sf_buf_kva(sf[i]), sf[i]);
1703	}
1704	return (ENOBUFS);
1705}
1706#endif
1707
1708/*
1709 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1710 * that's 1MB or memory, which is a lot. For now, we fill only the first
1711 * 256 ring entries and hope that our CPU is fast enough to keep up with
1712 * the NIC.
1713 */
1714static int
1715ti_init_rx_ring_std(struct ti_softc *sc)
1716{
1717	int i;
1718	struct ti_cmd_desc cmd;
1719
1720	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1721		if (ti_newbuf_std(sc, i) != 0)
1722			return (ENOBUFS);
1723	}
1724
1725	sc->ti_std = TI_STD_RX_RING_CNT - 1;
1726	TI_UPDATE_STDPROD(sc, TI_STD_RX_RING_CNT - 1);
1727
1728	return (0);
1729}
1730
1731static void
1732ti_free_rx_ring_std(struct ti_softc *sc)
1733{
1734	bus_dmamap_t map;
1735	int i;
1736
1737	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1738		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1739			map = sc->ti_cdata.ti_rx_std_maps[i];
1740			bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag, map,
1741			    BUS_DMASYNC_POSTREAD);
1742			bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag, map);
1743			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1744			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1745		}
1746	}
1747	bzero(sc->ti_rdata.ti_rx_std_ring, TI_STD_RX_RING_SZ);
1748	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
1749	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1750}
1751
1752static int
1753ti_init_rx_ring_jumbo(struct ti_softc *sc)
1754{
1755	struct ti_cmd_desc cmd;
1756	int i;
1757
1758	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1759		if (ti_newbuf_jumbo(sc, i, NULL) != 0)
1760			return (ENOBUFS);
1761	}
1762
1763	sc->ti_jumbo = TI_JUMBO_RX_RING_CNT - 1;
1764	TI_UPDATE_JUMBOPROD(sc, TI_JUMBO_RX_RING_CNT - 1);
1765
1766	return (0);
1767}
1768
1769static void
1770ti_free_rx_ring_jumbo(struct ti_softc *sc)
1771{
1772	bus_dmamap_t map;
1773	int i;
1774
1775	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1776		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1777			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1778			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
1779			    BUS_DMASYNC_POSTREAD);
1780			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
1781			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1782			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1783		}
1784	}
1785	bzero(sc->ti_rdata.ti_rx_jumbo_ring, TI_JUMBO_RX_RING_SZ);
1786	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
1787	    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1788}
1789
1790static int
1791ti_init_rx_ring_mini(struct ti_softc *sc)
1792{
1793	int i;
1794
1795	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1796		if (ti_newbuf_mini(sc, i) != 0)
1797			return (ENOBUFS);
1798	}
1799
1800	sc->ti_mini = TI_MINI_RX_RING_CNT - 1;
1801	TI_UPDATE_MINIPROD(sc, TI_MINI_RX_RING_CNT - 1);
1802
1803	return (0);
1804}
1805
1806static void
1807ti_free_rx_ring_mini(struct ti_softc *sc)
1808{
1809	bus_dmamap_t map;
1810	int i;
1811
1812	if (sc->ti_rdata.ti_rx_mini_ring == NULL)
1813		return;
1814
1815	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1816		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1817			map = sc->ti_cdata.ti_rx_mini_maps[i];
1818			bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag, map,
1819			    BUS_DMASYNC_POSTREAD);
1820			bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag, map);
1821			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1822			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1823		}
1824	}
1825	bzero(sc->ti_rdata.ti_rx_mini_ring, TI_MINI_RX_RING_SZ);
1826	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
1827	    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
1828}
1829
1830static void
1831ti_free_tx_ring(struct ti_softc *sc)
1832{
1833	struct ti_txdesc *txd;
1834	int i;
1835
1836	if (sc->ti_rdata.ti_tx_ring == NULL)
1837		return;
1838
1839	for (i = 0; i < TI_TX_RING_CNT; i++) {
1840		txd = &sc->ti_cdata.ti_txdesc[i];
1841		if (txd->tx_m != NULL) {
1842			bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
1843			    BUS_DMASYNC_POSTWRITE);
1844			bus_dmamap_unload(sc->ti_cdata.ti_tx_tag,
1845			    txd->tx_dmamap);
1846			m_freem(txd->tx_m);
1847			txd->tx_m = NULL;
1848		}
1849	}
1850	bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
1851	bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
1852	    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
1853}
1854
1855static int
1856ti_init_tx_ring(struct ti_softc *sc)
1857{
1858	struct ti_txdesc *txd;
1859	int i;
1860
1861	STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1862	STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1863	for (i = 0; i < TI_TX_RING_CNT; i++) {
1864		txd = &sc->ti_cdata.ti_txdesc[i];
1865		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1866	}
1867	sc->ti_txcnt = 0;
1868	sc->ti_tx_saved_considx = 0;
1869	sc->ti_tx_saved_prodidx = 0;
1870	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1871	return (0);
1872}
1873
1874/*
1875 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1876 * but we have to support the old way too so that Tigon 1 cards will
1877 * work.
1878 */
1879static void
1880ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1881{
1882	struct ti_cmd_desc cmd;
1883	uint16_t *m;
1884	uint32_t ext[2] = {0, 0};
1885
1886	m = (uint16_t *)&addr->octet[0];
1887
1888	switch (sc->ti_hwrev) {
1889	case TI_HWREV_TIGON:
1890		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1891		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1892		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1893		break;
1894	case TI_HWREV_TIGON_II:
1895		ext[0] = htons(m[0]);
1896		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1897		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1898		break;
1899	default:
1900		device_printf(sc->ti_dev, "unknown hwrev\n");
1901		break;
1902	}
1903}
1904
1905static void
1906ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1907{
1908	struct ti_cmd_desc cmd;
1909	uint16_t *m;
1910	uint32_t ext[2] = {0, 0};
1911
1912	m = (uint16_t *)&addr->octet[0];
1913
1914	switch (sc->ti_hwrev) {
1915	case TI_HWREV_TIGON:
1916		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1917		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1918		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1919		break;
1920	case TI_HWREV_TIGON_II:
1921		ext[0] = htons(m[0]);
1922		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1923		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1924		break;
1925	default:
1926		device_printf(sc->ti_dev, "unknown hwrev\n");
1927		break;
1928	}
1929}
1930
1931/*
1932 * Configure the Tigon's multicast address filter.
1933 *
1934 * The actual multicast table management is a bit of a pain, thanks to
1935 * slight brain damage on the part of both Alteon and us. With our
1936 * multicast code, we are only alerted when the multicast address table
1937 * changes and at that point we only have the current list of addresses:
1938 * we only know the current state, not the previous state, so we don't
1939 * actually know what addresses were removed or added. The firmware has
1940 * state, but we can't get our grubby mits on it, and there is no 'delete
1941 * all multicast addresses' command. Hence, we have to maintain our own
1942 * state so we know what addresses have been programmed into the NIC at
1943 * any given time.
1944 */
1945static void
1946ti_setmulti(struct ti_softc *sc)
1947{
1948	struct ifnet *ifp;
1949	struct ifmultiaddr *ifma;
1950	struct ti_cmd_desc cmd;
1951	struct ti_mc_entry *mc;
1952	uint32_t intrs;
1953
1954	TI_LOCK_ASSERT(sc);
1955
1956	ifp = sc->ti_ifp;
1957
1958	if (ifp->if_flags & IFF_ALLMULTI) {
1959		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1960		return;
1961	} else {
1962		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1963	}
1964
1965	/* Disable interrupts. */
1966	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1967	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1968
1969	/* First, zot all the existing filters. */
1970	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1971		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1972		ti_del_mcast(sc, &mc->mc_addr);
1973		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1974		free(mc, M_DEVBUF);
1975	}
1976
1977	/* Now program new ones. */
1978	if_maddr_rlock(ifp);
1979	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1980		if (ifma->ifma_addr->sa_family != AF_LINK)
1981			continue;
1982		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1983		if (mc == NULL) {
1984			device_printf(sc->ti_dev,
1985			    "no memory for mcast filter entry\n");
1986			continue;
1987		}
1988		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1989		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1990		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1991		ti_add_mcast(sc, &mc->mc_addr);
1992	}
1993	if_maddr_runlock(ifp);
1994
1995	/* Re-enable interrupts. */
1996	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1997}
1998
1999/*
2000 * Check to see if the BIOS has configured us for a 64 bit slot when
2001 * we aren't actually in one. If we detect this condition, we can work
2002 * around it on the Tigon 2 by setting a bit in the PCI state register,
2003 * but for the Tigon 1 we must give up and abort the interface attach.
2004 */
2005static int
2006ti_64bitslot_war(struct ti_softc *sc)
2007{
2008
2009	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
2010		CSR_WRITE_4(sc, 0x600, 0);
2011		CSR_WRITE_4(sc, 0x604, 0);
2012		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
2013		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
2014			if (sc->ti_hwrev == TI_HWREV_TIGON)
2015				return (EINVAL);
2016			else {
2017				TI_SETBIT(sc, TI_PCI_STATE,
2018				    TI_PCISTATE_32BIT_BUS);
2019				return (0);
2020			}
2021		}
2022	}
2023
2024	return (0);
2025}
2026
2027/*
2028 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2029 * self-test results.
2030 */
2031static int
2032ti_chipinit(struct ti_softc *sc)
2033{
2034	uint32_t cacheline;
2035	uint32_t pci_writemax = 0;
2036	uint32_t hdrsplit;
2037
2038	/* Initialize link to down state. */
2039	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
2040
2041	/* Set endianness before we access any non-PCI registers. */
2042#if 0 && BYTE_ORDER == BIG_ENDIAN
2043	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2044	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
2045#else
2046	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2047	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
2048#endif
2049
2050	/* Check the ROM failed bit to see if self-tests passed. */
2051	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
2052		device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
2053		return (ENODEV);
2054	}
2055
2056	/* Halt the CPU. */
2057	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
2058
2059	/* Figure out the hardware revision. */
2060	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
2061	case TI_REV_TIGON_I:
2062		sc->ti_hwrev = TI_HWREV_TIGON;
2063		break;
2064	case TI_REV_TIGON_II:
2065		sc->ti_hwrev = TI_HWREV_TIGON_II;
2066		break;
2067	default:
2068		device_printf(sc->ti_dev, "unsupported chip revision\n");
2069		return (ENODEV);
2070	}
2071
2072	/* Do special setup for Tigon 2. */
2073	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2074		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
2075		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
2076		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
2077	}
2078
2079	/*
2080	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
2081	 * can't do header splitting.
2082	 */
2083#ifdef TI_JUMBO_HDRSPLIT
2084	if (sc->ti_hwrev != TI_HWREV_TIGON)
2085		sc->ti_hdrsplit = 1;
2086	else
2087		device_printf(sc->ti_dev,
2088		    "can't do header splitting on a Tigon I board\n");
2089#endif /* TI_JUMBO_HDRSPLIT */
2090
2091	/* Set up the PCI state register. */
2092	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
2093	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2094		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
2095	}
2096
2097	/* Clear the read/write max DMA parameters. */
2098	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
2099	    TI_PCISTATE_READ_MAXDMA));
2100
2101	/* Get cache line size. */
2102	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
2103
2104	/*
2105	 * If the system has set enabled the PCI memory write
2106	 * and invalidate command in the command register, set
2107	 * the write max parameter accordingly. This is necessary
2108	 * to use MWI with the Tigon 2.
2109	 */
2110	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
2111		switch (cacheline) {
2112		case 1:
2113		case 4:
2114		case 8:
2115		case 16:
2116		case 32:
2117		case 64:
2118			break;
2119		default:
2120		/* Disable PCI memory write and invalidate. */
2121			if (bootverbose)
2122				device_printf(sc->ti_dev, "cache line size %d"
2123				    " not supported; disabling PCI MWI\n",
2124				    cacheline);
2125			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
2126			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
2127			break;
2128		}
2129	}
2130
2131	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2132
2133	/* This sets the min dma param all the way up (0xff). */
2134	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2135
2136	if (sc->ti_hdrsplit)
2137		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2138	else
2139		hdrsplit = 0;
2140
2141	/* Configure DMA variables. */
2142#if BYTE_ORDER == BIG_ENDIAN
2143	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2144	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2145	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2146	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2147#else /* BYTE_ORDER */
2148	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2149	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2150	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2151#endif /* BYTE_ORDER */
2152
2153	/*
2154	 * Only allow 1 DMA channel to be active at a time.
2155	 * I don't think this is a good idea, but without it
2156	 * the firmware racks up lots of nicDmaReadRingFull
2157	 * errors.  This is not compatible with hardware checksums.
2158	 */
2159	if ((sc->ti_ifp->if_capenable & (IFCAP_TXCSUM | IFCAP_RXCSUM)) == 0)
2160		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2161
2162	/* Recommended settings from Tigon manual. */
2163	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2164	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2165
2166	if (ti_64bitslot_war(sc)) {
2167		device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
2168		    "but we aren't");
2169		return (EINVAL);
2170	}
2171
2172	return (0);
2173}
2174
2175/*
2176 * Initialize the general information block and firmware, and
2177 * start the CPU(s) running.
2178 */
2179static int
2180ti_gibinit(struct ti_softc *sc)
2181{
2182	struct ifnet *ifp;
2183	struct ti_rcb *rcb;
2184	int i;
2185
2186	TI_LOCK_ASSERT(sc);
2187
2188	ifp = sc->ti_ifp;
2189
2190	/* Disable interrupts for now. */
2191	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2192
2193	/* Tell the chip where to find the general information block. */
2194	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI,
2195	    (uint64_t)sc->ti_rdata.ti_info_paddr >> 32);
2196	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO,
2197	    sc->ti_rdata.ti_info_paddr & 0xFFFFFFFF);
2198
2199	/* Load the firmware into SRAM. */
2200	ti_loadfw(sc);
2201
2202	/* Set up the contents of the general info and ring control blocks. */
2203
2204	/* Set up the event ring and producer pointer. */
2205	bzero(sc->ti_rdata.ti_event_ring, TI_EVENT_RING_SZ);
2206	rcb = &sc->ti_rdata.ti_info->ti_ev_rcb;
2207	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_event_ring_paddr);
2208	rcb->ti_flags = 0;
2209	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_ev_prodidx_ptr,
2210	    sc->ti_rdata.ti_status_paddr +
2211	    offsetof(struct ti_status, ti_ev_prodidx_r));
2212	sc->ti_ev_prodidx.ti_idx = 0;
2213	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2214	sc->ti_ev_saved_considx = 0;
2215
2216	/* Set up the command ring and producer mailbox. */
2217	rcb = &sc->ti_rdata.ti_info->ti_cmd_rcb;
2218	ti_hostaddr64(&rcb->ti_hostaddr, TI_GCR_NIC_ADDR(TI_GCR_CMDRING));
2219	rcb->ti_flags = 0;
2220	rcb->ti_max_len = 0;
2221	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2222		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2223	}
2224	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2225	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2226	sc->ti_cmd_saved_prodidx = 0;
2227
2228	/*
2229	 * Assign the address of the stats refresh buffer.
2230	 * We re-use the current stats buffer for this to
2231	 * conserve memory.
2232	 */
2233	bzero(&sc->ti_rdata.ti_info->ti_stats, sizeof(struct ti_stats));
2234	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_refresh_stats_ptr,
2235	    sc->ti_rdata.ti_info_paddr + offsetof(struct ti_gib, ti_stats));
2236
2237	/* Set up the standard receive ring. */
2238	rcb = &sc->ti_rdata.ti_info->ti_std_rx_rcb;
2239	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_std_ring_paddr);
2240	rcb->ti_max_len = TI_FRAMELEN;
2241	rcb->ti_flags = 0;
2242	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2243		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2244		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2245	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2246		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2247
2248	/* Set up the jumbo receive ring. */
2249	rcb = &sc->ti_rdata.ti_info->ti_jumbo_rx_rcb;
2250	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_jumbo_ring_paddr);
2251
2252#ifndef TI_SF_BUF_JUMBO
2253	rcb->ti_max_len = MJUM9BYTES - ETHER_ALIGN;
2254	rcb->ti_flags = 0;
2255#else
2256	rcb->ti_max_len = PAGE_SIZE;
2257	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2258#endif
2259	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2260		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2261		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2262	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2263		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2264
2265	/*
2266	 * Set up the mini ring. Only activated on the
2267	 * Tigon 2 but the slot in the config block is
2268	 * still there on the Tigon 1.
2269	 */
2270	rcb = &sc->ti_rdata.ti_info->ti_mini_rx_rcb;
2271	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_mini_ring_paddr);
2272	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2273	if (sc->ti_hwrev == TI_HWREV_TIGON)
2274		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2275	else
2276		rcb->ti_flags = 0;
2277	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2278		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2279		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2280	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2281		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2282
2283	/*
2284	 * Set up the receive return ring.
2285	 */
2286	rcb = &sc->ti_rdata.ti_info->ti_return_rcb;
2287	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_return_ring_paddr);
2288	rcb->ti_flags = 0;
2289	rcb->ti_max_len = TI_RETURN_RING_CNT;
2290	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_return_prodidx_ptr,
2291	    sc->ti_rdata.ti_status_paddr +
2292	    offsetof(struct ti_status, ti_return_prodidx_r));
2293
2294	/*
2295	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2296	 * of putting the transmit ring in the host's address space and
2297	 * letting the chip DMA it instead of leaving the ring in the NIC's
2298	 * memory and accessing it through the shared memory region. We
2299	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2300	 * so we have to revert to the shared memory scheme if we detect
2301	 * a Tigon 1 chip.
2302	 */
2303	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2304	if (sc->ti_rdata.ti_tx_ring != NULL)
2305		bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
2306	rcb = &sc->ti_rdata.ti_info->ti_tx_rcb;
2307	if (sc->ti_hwrev == TI_HWREV_TIGON)
2308		rcb->ti_flags = 0;
2309	else
2310		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2311	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2312		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2313	if (sc->ti_ifp->if_capenable & IFCAP_TXCSUM)
2314		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2315		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2316	rcb->ti_max_len = TI_TX_RING_CNT;
2317	if (sc->ti_hwrev == TI_HWREV_TIGON)
2318		ti_hostaddr64(&rcb->ti_hostaddr, TI_TX_RING_BASE);
2319	else
2320		ti_hostaddr64(&rcb->ti_hostaddr,
2321		    sc->ti_rdata.ti_tx_ring_paddr);
2322	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_tx_considx_ptr,
2323	    sc->ti_rdata.ti_status_paddr +
2324	    offsetof(struct ti_status, ti_tx_considx_r));
2325
2326	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
2327	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2328	bus_dmamap_sync(sc->ti_cdata.ti_status_tag, sc->ti_cdata.ti_status_map,
2329	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2330	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
2331	    sc->ti_cdata.ti_event_ring_map,
2332	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2333	if (sc->ti_rdata.ti_tx_ring != NULL)
2334		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2335		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
2336
2337	/* Set up tunables */
2338#if 0
2339	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2340		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2341		    (sc->ti_rx_coal_ticks / 10));
2342	else
2343#endif
2344		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2345	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2346	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2347	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2348	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2349	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2350
2351	/* Turn interrupts on. */
2352	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2353	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2354
2355	/* Start CPU. */
2356	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2357
2358	return (0);
2359}
2360
2361/*
2362 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2363 * against our list and return its name if we find a match.
2364 */
2365static int
2366ti_probe(device_t dev)
2367{
2368	const struct ti_type *t;
2369
2370	t = ti_devs;
2371
2372	while (t->ti_name != NULL) {
2373		if ((pci_get_vendor(dev) == t->ti_vid) &&
2374		    (pci_get_device(dev) == t->ti_did)) {
2375			device_set_desc(dev, t->ti_name);
2376			return (BUS_PROBE_DEFAULT);
2377		}
2378		t++;
2379	}
2380
2381	return (ENXIO);
2382}
2383
2384static int
2385ti_attach(device_t dev)
2386{
2387	struct ifnet *ifp;
2388	struct ti_softc *sc;
2389	int error = 0, rid;
2390	u_char eaddr[6];
2391
2392	sc = device_get_softc(dev);
2393	sc->ti_dev = dev;
2394
2395	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2396	    MTX_DEF);
2397	callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2398	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2399	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2400	if (ifp == NULL) {
2401		device_printf(dev, "can not if_alloc()\n");
2402		error = ENOSPC;
2403		goto fail;
2404	}
2405	sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
2406	sc->ti_ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
2407	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2408
2409	/*
2410	 * Map control/status registers.
2411	 */
2412	pci_enable_busmaster(dev);
2413
2414	rid = PCIR_BAR(0);
2415	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2416	    RF_ACTIVE);
2417
2418	if (sc->ti_res == NULL) {
2419		device_printf(dev, "couldn't map memory\n");
2420		error = ENXIO;
2421		goto fail;
2422	}
2423
2424	sc->ti_btag = rman_get_bustag(sc->ti_res);
2425	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2426
2427	/* Allocate interrupt */
2428	rid = 0;
2429
2430	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2431	    RF_SHAREABLE | RF_ACTIVE);
2432
2433	if (sc->ti_irq == NULL) {
2434		device_printf(dev, "couldn't map interrupt\n");
2435		error = ENXIO;
2436		goto fail;
2437	}
2438
2439	if (ti_chipinit(sc)) {
2440		device_printf(dev, "chip initialization failed\n");
2441		error = ENXIO;
2442		goto fail;
2443	}
2444
2445	/* Zero out the NIC's on-board SRAM. */
2446	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2447
2448	/* Init again -- zeroing memory may have clobbered some registers. */
2449	if (ti_chipinit(sc)) {
2450		device_printf(dev, "chip initialization failed\n");
2451		error = ENXIO;
2452		goto fail;
2453	}
2454
2455	/*
2456	 * Get station address from the EEPROM. Note: the manual states
2457	 * that the MAC address is at offset 0x8c, however the data is
2458	 * stored as two longwords (since that's how it's loaded into
2459	 * the NIC). This means the MAC address is actually preceded
2460	 * by two zero bytes. We need to skip over those.
2461	 */
2462	if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2463		device_printf(dev, "failed to read station address\n");
2464		error = ENXIO;
2465		goto fail;
2466	}
2467
2468	/* Allocate working area for memory dump. */
2469	sc->ti_membuf = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF, M_NOWAIT);
2470	sc->ti_membuf2 = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF,
2471	    M_NOWAIT);
2472	if (sc->ti_membuf == NULL || sc->ti_membuf2 == NULL) {
2473		device_printf(dev, "cannot allocate memory buffer\n");
2474		error = ENOMEM;
2475		goto fail;
2476	}
2477	if ((error = ti_dma_alloc(sc)) != 0)
2478		goto fail;
2479
2480	/*
2481	 * We really need a better way to tell a 1000baseTX card
2482	 * from a 1000baseSX one, since in theory there could be
2483	 * OEMed 1000baseTX cards from lame vendors who aren't
2484	 * clever enough to change the PCI ID. For the moment
2485	 * though, the AceNIC is the only copper card available.
2486	 */
2487	if (pci_get_vendor(dev) == ALT_VENDORID &&
2488	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2489		sc->ti_copper = 1;
2490	/* Ok, it's not the only copper card available. */
2491	if (pci_get_vendor(dev) == NG_VENDORID &&
2492	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2493		sc->ti_copper = 1;
2494
2495	/* Set default tunable values. */
2496	ti_sysctl_node(sc);
2497
2498	/* Set up ifnet structure */
2499	ifp->if_softc = sc;
2500	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2501	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2502	ifp->if_ioctl = ti_ioctl;
2503	ifp->if_start = ti_start;
2504	ifp->if_init = ti_init;
2505	ifp->if_get_counter = ti_get_counter;
2506	ifp->if_baudrate = IF_Gbps(1UL);
2507	ifp->if_snd.ifq_drv_maxlen = TI_TX_RING_CNT - 1;
2508	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2509	IFQ_SET_READY(&ifp->if_snd);
2510
2511	/* Set up ifmedia support. */
2512	if (sc->ti_copper) {
2513		/*
2514		 * Copper cards allow manual 10/100 mode selection,
2515		 * but not manual 1000baseTX mode selection. Why?
2516		 * Because currently there's no way to specify the
2517		 * master/slave setting through the firmware interface,
2518		 * so Alteon decided to just bag it and handle it
2519		 * via autonegotiation.
2520		 */
2521		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2522		ifmedia_add(&sc->ifmedia,
2523		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2524		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2525		ifmedia_add(&sc->ifmedia,
2526		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2527		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2528		ifmedia_add(&sc->ifmedia,
2529		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2530	} else {
2531		/* Fiber cards don't support 10/100 modes. */
2532		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2533		ifmedia_add(&sc->ifmedia,
2534		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2535	}
2536	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2537	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2538
2539	/*
2540	 * We're assuming here that card initialization is a sequential
2541	 * thing.  If it isn't, multiple cards probing at the same time
2542	 * could stomp on the list of softcs here.
2543	 */
2544
2545	/* Register the device */
2546	sc->dev = make_dev(&ti_cdevsw, device_get_unit(dev), UID_ROOT,
2547	    GID_OPERATOR, 0600, "ti%d", device_get_unit(dev));
2548	sc->dev->si_drv1 = sc;
2549
2550	/*
2551	 * Call MI attach routine.
2552	 */
2553	ether_ifattach(ifp, eaddr);
2554
2555	/* VLAN capability setup. */
2556	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM |
2557	    IFCAP_VLAN_HWTAGGING;
2558	ifp->if_capenable = ifp->if_capabilities;
2559	/* Tell the upper layer we support VLAN over-sized frames. */
2560	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
2561
2562	/* Driver supports link state tracking. */
2563	ifp->if_capabilities |= IFCAP_LINKSTATE;
2564	ifp->if_capenable |= IFCAP_LINKSTATE;
2565
2566	/* Hook interrupt last to avoid having to lock softc */
2567	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2568	   NULL, ti_intr, sc, &sc->ti_intrhand);
2569
2570	if (error) {
2571		device_printf(dev, "couldn't set up irq\n");
2572		goto fail;
2573	}
2574
2575fail:
2576	if (error)
2577		ti_detach(dev);
2578
2579	return (error);
2580}
2581
2582/*
2583 * Shutdown hardware and free up resources. This can be called any
2584 * time after the mutex has been initialized. It is called in both
2585 * the error case in attach and the normal detach case so it needs
2586 * to be careful about only freeing resources that have actually been
2587 * allocated.
2588 */
2589static int
2590ti_detach(device_t dev)
2591{
2592	struct ti_softc *sc;
2593	struct ifnet *ifp;
2594
2595	sc = device_get_softc(dev);
2596	if (sc->dev)
2597		destroy_dev(sc->dev);
2598	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2599	ifp = sc->ti_ifp;
2600	if (device_is_attached(dev)) {
2601		ether_ifdetach(ifp);
2602		TI_LOCK(sc);
2603		ti_stop(sc);
2604		TI_UNLOCK(sc);
2605	}
2606
2607	/* These should only be active if attach succeeded */
2608	callout_drain(&sc->ti_watchdog);
2609	bus_generic_detach(dev);
2610	ti_dma_free(sc);
2611	ifmedia_removeall(&sc->ifmedia);
2612
2613	if (sc->ti_intrhand)
2614		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2615	if (sc->ti_irq)
2616		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2617	if (sc->ti_res) {
2618		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
2619		    sc->ti_res);
2620	}
2621	if (ifp)
2622		if_free(ifp);
2623	if (sc->ti_membuf)
2624		free(sc->ti_membuf, M_DEVBUF);
2625	if (sc->ti_membuf2)
2626		free(sc->ti_membuf2, M_DEVBUF);
2627
2628	mtx_destroy(&sc->ti_mtx);
2629
2630	return (0);
2631}
2632
2633#ifdef TI_JUMBO_HDRSPLIT
2634/*
2635 * If hdr_len is 0, that means that header splitting wasn't done on
2636 * this packet for some reason.  The two most likely reasons are that
2637 * the protocol isn't a supported protocol for splitting, or this
2638 * packet had a fragment offset that wasn't 0.
2639 *
2640 * The header length, if it is non-zero, will always be the length of
2641 * the headers on the packet, but that length could be longer than the
2642 * first mbuf.  So we take the minimum of the two as the actual
2643 * length.
2644 */
2645static __inline void
2646ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2647{
2648	int i = 0;
2649	int lengths[4] = {0, 0, 0, 0};
2650	struct mbuf *m, *mp;
2651
2652	if (hdr_len != 0)
2653		top->m_len = min(hdr_len, top->m_len);
2654	pkt_len -= top->m_len;
2655	lengths[i++] = top->m_len;
2656
2657	mp = top;
2658	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2659		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2660		pkt_len -= m->m_len;
2661		lengths[i++] = m->m_len;
2662		mp = m;
2663	}
2664
2665#if 0
2666	if (hdr_len != 0)
2667		printf("got split packet: ");
2668	else
2669		printf("got non-split packet: ");
2670
2671	printf("%d,%d,%d,%d = %d\n", lengths[0],
2672	    lengths[1], lengths[2], lengths[3],
2673	    lengths[0] + lengths[1] + lengths[2] +
2674	    lengths[3]);
2675#endif
2676
2677	if (pkt_len)
2678		panic("header splitting didn't");
2679
2680	if (m) {
2681		m_freem(m);
2682		mp->m_next = NULL;
2683
2684	}
2685	if (mp->m_next != NULL)
2686		panic("ti_hdr_split: last mbuf in chain should be null");
2687}
2688#endif /* TI_JUMBO_HDRSPLIT */
2689
2690static void
2691ti_discard_std(struct ti_softc *sc, int i)
2692{
2693
2694	struct ti_rx_desc *r;
2695
2696	r = &sc->ti_rdata.ti_rx_std_ring[i];
2697	r->ti_len = MCLBYTES - ETHER_ALIGN;
2698	r->ti_type = TI_BDTYPE_RECV_BD;
2699	r->ti_flags = 0;
2700	r->ti_vlan_tag = 0;
2701	r->ti_tcp_udp_cksum = 0;
2702	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2703		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2704	r->ti_idx = i;
2705}
2706
2707static void
2708ti_discard_mini(struct ti_softc *sc, int i)
2709{
2710
2711	struct ti_rx_desc *r;
2712
2713	r = &sc->ti_rdata.ti_rx_mini_ring[i];
2714	r->ti_len = MHLEN - ETHER_ALIGN;
2715	r->ti_type = TI_BDTYPE_RECV_BD;
2716	r->ti_flags = TI_BDFLAG_MINI_RING;
2717	r->ti_vlan_tag = 0;
2718	r->ti_tcp_udp_cksum = 0;
2719	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2720		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2721	r->ti_idx = i;
2722}
2723
2724#ifndef TI_SF_BUF_JUMBO
2725static void
2726ti_discard_jumbo(struct ti_softc *sc, int i)
2727{
2728
2729	struct ti_rx_desc *r;
2730
2731	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
2732	r->ti_len = MJUM9BYTES - ETHER_ALIGN;
2733	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
2734	r->ti_flags = TI_BDFLAG_JUMBO_RING;
2735	r->ti_vlan_tag = 0;
2736	r->ti_tcp_udp_cksum = 0;
2737	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2738		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2739	r->ti_idx = i;
2740}
2741#endif
2742
2743/*
2744 * Frame reception handling. This is called if there's a frame
2745 * on the receive return list.
2746 *
2747 * Note: we have to be able to handle three possibilities here:
2748 * 1) the frame is from the mini receive ring (can only happen)
2749 *    on Tigon 2 boards)
2750 * 2) the frame is from the jumbo receive ring
2751 * 3) the frame is from the standard receive ring
2752 */
2753
2754static void
2755ti_rxeof(struct ti_softc *sc)
2756{
2757	struct ifnet *ifp;
2758#ifdef TI_SF_BUF_JUMBO
2759	bus_dmamap_t map;
2760#endif
2761	struct ti_cmd_desc cmd;
2762	int jumbocnt, minicnt, stdcnt, ti_len;
2763
2764	TI_LOCK_ASSERT(sc);
2765
2766	ifp = sc->ti_ifp;
2767
2768	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2769	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
2770	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2771		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2772		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
2773	if (sc->ti_rdata.ti_rx_mini_ring != NULL)
2774		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2775		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_POSTWRITE);
2776	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2777	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
2778
2779	jumbocnt = minicnt = stdcnt = 0;
2780	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2781		struct ti_rx_desc *cur_rx;
2782		uint32_t rxidx;
2783		struct mbuf *m = NULL;
2784		uint16_t vlan_tag = 0;
2785		int have_tag = 0;
2786
2787		cur_rx =
2788		    &sc->ti_rdata.ti_rx_return_ring[sc->ti_rx_saved_considx];
2789		rxidx = cur_rx->ti_idx;
2790		ti_len = cur_rx->ti_len;
2791		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2792
2793		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2794			have_tag = 1;
2795			vlan_tag = cur_rx->ti_vlan_tag;
2796		}
2797
2798		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2799			jumbocnt++;
2800			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2801			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2802#ifndef TI_SF_BUF_JUMBO
2803			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2804				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2805				ti_discard_jumbo(sc, rxidx);
2806				continue;
2807			}
2808			if (ti_newbuf_jumbo(sc, rxidx, NULL) != 0) {
2809				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2810				ti_discard_jumbo(sc, rxidx);
2811				continue;
2812			}
2813			m->m_len = ti_len;
2814#else /* !TI_SF_BUF_JUMBO */
2815			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2816			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2817			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
2818			    BUS_DMASYNC_POSTREAD);
2819			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
2820			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2821				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2822				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2823				continue;
2824			}
2825			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2826				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2827				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2828				continue;
2829			}
2830#ifdef TI_JUMBO_HDRSPLIT
2831			if (sc->ti_hdrsplit)
2832				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2833					     ti_len, rxidx);
2834			else
2835#endif /* TI_JUMBO_HDRSPLIT */
2836			m_adj(m, ti_len - m->m_pkthdr.len);
2837#endif /* TI_SF_BUF_JUMBO */
2838		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2839			minicnt++;
2840			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2841			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2842			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2843				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2844				ti_discard_mini(sc, rxidx);
2845				continue;
2846			}
2847			if (ti_newbuf_mini(sc, rxidx) != 0) {
2848				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2849				ti_discard_mini(sc, rxidx);
2850				continue;
2851			}
2852			m->m_len = ti_len;
2853		} else {
2854			stdcnt++;
2855			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2856			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2857			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2858				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2859				ti_discard_std(sc, rxidx);
2860				continue;
2861			}
2862			if (ti_newbuf_std(sc, rxidx) != 0) {
2863				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2864				ti_discard_std(sc, rxidx);
2865				continue;
2866			}
2867			m->m_len = ti_len;
2868		}
2869
2870		m->m_pkthdr.len = ti_len;
2871		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2872		m->m_pkthdr.rcvif = ifp;
2873
2874		if (ifp->if_capenable & IFCAP_RXCSUM) {
2875			if (cur_rx->ti_flags & TI_BDFLAG_IP_CKSUM) {
2876				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2877				if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2878					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2879			}
2880			if (cur_rx->ti_flags & TI_BDFLAG_TCP_UDP_CKSUM) {
2881				m->m_pkthdr.csum_data =
2882				    cur_rx->ti_tcp_udp_cksum;
2883				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2884			}
2885		}
2886
2887		/*
2888		 * If we received a packet with a vlan tag,
2889		 * tag it before passing the packet upward.
2890		 */
2891		if (have_tag) {
2892			m->m_pkthdr.ether_vtag = vlan_tag;
2893			m->m_flags |= M_VLANTAG;
2894		}
2895		TI_UNLOCK(sc);
2896		(*ifp->if_input)(ifp, m);
2897		TI_LOCK(sc);
2898	}
2899
2900	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2901	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_PREREAD);
2902	/* Only necessary on the Tigon 1. */
2903	if (sc->ti_hwrev == TI_HWREV_TIGON)
2904		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2905		    sc->ti_rx_saved_considx);
2906
2907	if (stdcnt > 0) {
2908		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2909		    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
2910		TI_UPDATE_STDPROD(sc, sc->ti_std);
2911	}
2912	if (minicnt > 0) {
2913		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2914		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
2915		TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2916	}
2917	if (jumbocnt > 0) {
2918		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2919		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
2920		TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2921	}
2922}
2923
2924static void
2925ti_txeof(struct ti_softc *sc)
2926{
2927	struct ti_txdesc *txd;
2928	struct ti_tx_desc txdesc;
2929	struct ti_tx_desc *cur_tx = NULL;
2930	struct ifnet *ifp;
2931	int idx;
2932
2933	ifp = sc->ti_ifp;
2934
2935	txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2936	if (txd == NULL)
2937		return;
2938
2939	if (sc->ti_rdata.ti_tx_ring != NULL)
2940		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2941		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2942	/*
2943	 * Go through our tx ring and free mbufs for those
2944	 * frames that have been sent.
2945	 */
2946	for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2947	    TI_INC(idx, TI_TX_RING_CNT)) {
2948		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2949			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2950			    sizeof(txdesc), &txdesc);
2951			cur_tx = &txdesc;
2952		} else
2953			cur_tx = &sc->ti_rdata.ti_tx_ring[idx];
2954		sc->ti_txcnt--;
2955		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2956		if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2957			continue;
2958		bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
2959		    BUS_DMASYNC_POSTWRITE);
2960		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
2961
2962		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2963		m_freem(txd->tx_m);
2964		txd->tx_m = NULL;
2965		STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2966		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2967		txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2968	}
2969	sc->ti_tx_saved_considx = idx;
2970	if (sc->ti_txcnt == 0)
2971		sc->ti_timer = 0;
2972}
2973
2974static void
2975ti_intr(void *xsc)
2976{
2977	struct ti_softc *sc;
2978	struct ifnet *ifp;
2979
2980	sc = xsc;
2981	TI_LOCK(sc);
2982	ifp = sc->ti_ifp;
2983
2984	/* Make sure this is really our interrupt. */
2985	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2986		TI_UNLOCK(sc);
2987		return;
2988	}
2989
2990	/* Ack interrupt and stop others from occurring. */
2991	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2992
2993	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2994		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
2995		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_POSTREAD);
2996		/* Check RX return ring producer/consumer */
2997		ti_rxeof(sc);
2998
2999		/* Check TX ring producer/consumer */
3000		ti_txeof(sc);
3001		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
3002		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_PREREAD);
3003	}
3004
3005	ti_handle_events(sc);
3006
3007	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3008		/* Re-enable interrupts. */
3009		CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3010		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3011			ti_start_locked(ifp);
3012	}
3013
3014	TI_UNLOCK(sc);
3015}
3016
3017static uint64_t
3018ti_get_counter(struct ifnet *ifp, ift_counter cnt)
3019{
3020
3021	switch (cnt) {
3022	case IFCOUNTER_COLLISIONS:
3023	    {
3024		struct ti_softc *sc;
3025		struct ti_stats *s;
3026		uint64_t rv;
3027
3028		sc = if_getsoftc(ifp);
3029		s = &sc->ti_rdata.ti_info->ti_stats;
3030
3031		TI_LOCK(sc);
3032		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3033		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
3034		rv = s->dot3StatsSingleCollisionFrames +
3035		    s->dot3StatsMultipleCollisionFrames +
3036		    s->dot3StatsExcessiveCollisions +
3037		    s->dot3StatsLateCollisions;
3038		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3039		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_PREREAD);
3040		TI_UNLOCK(sc);
3041		return (rv);
3042	    }
3043	default:
3044		return (if_get_counter_default(ifp, cnt));
3045	}
3046}
3047
3048/*
3049 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3050 * pointers to descriptors.
3051 */
3052static int
3053ti_encap(struct ti_softc *sc, struct mbuf **m_head)
3054{
3055	struct ti_txdesc *txd;
3056	struct ti_tx_desc *f;
3057	struct ti_tx_desc txdesc;
3058	struct mbuf *m;
3059	bus_dma_segment_t txsegs[TI_MAXTXSEGS];
3060	uint16_t csum_flags;
3061	int error, frag, i, nseg;
3062
3063	if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
3064		return (ENOBUFS);
3065
3066	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3067	    *m_head, txsegs, &nseg, 0);
3068	if (error == EFBIG) {
3069		m = m_defrag(*m_head, M_NOWAIT);
3070		if (m == NULL) {
3071			m_freem(*m_head);
3072			*m_head = NULL;
3073			return (ENOMEM);
3074		}
3075		*m_head = m;
3076		error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag,
3077		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
3078		if (error) {
3079			m_freem(*m_head);
3080			*m_head = NULL;
3081			return (error);
3082		}
3083	} else if (error != 0)
3084		return (error);
3085	if (nseg == 0) {
3086		m_freem(*m_head);
3087		*m_head = NULL;
3088		return (EIO);
3089	}
3090
3091	if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
3092		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
3093		return (ENOBUFS);
3094	}
3095	bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3096	    BUS_DMASYNC_PREWRITE);
3097
3098	m = *m_head;
3099	csum_flags = 0;
3100	if (m->m_pkthdr.csum_flags & CSUM_IP)
3101		csum_flags |= TI_BDFLAG_IP_CKSUM;
3102	if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3103		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
3104
3105	frag = sc->ti_tx_saved_prodidx;
3106	for (i = 0; i < nseg; i++) {
3107		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3108			bzero(&txdesc, sizeof(txdesc));
3109			f = &txdesc;
3110		} else
3111			f = &sc->ti_rdata.ti_tx_ring[frag];
3112		ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
3113		f->ti_len = txsegs[i].ds_len;
3114		f->ti_flags = csum_flags;
3115		if (m->m_flags & M_VLANTAG) {
3116			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
3117			f->ti_vlan_tag = m->m_pkthdr.ether_vtag;
3118		} else {
3119			f->ti_vlan_tag = 0;
3120		}
3121
3122		if (sc->ti_hwrev == TI_HWREV_TIGON)
3123			ti_mem_write(sc, TI_TX_RING_BASE + frag *
3124			    sizeof(txdesc), sizeof(txdesc), &txdesc);
3125		TI_INC(frag, TI_TX_RING_CNT);
3126	}
3127
3128	sc->ti_tx_saved_prodidx = frag;
3129	/* set TI_BDFLAG_END on the last descriptor */
3130	frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
3131	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3132		txdesc.ti_flags |= TI_BDFLAG_END;
3133		ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
3134		    sizeof(txdesc), &txdesc);
3135	} else
3136		sc->ti_rdata.ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3137
3138	STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3139	STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3140	txd->tx_m = m;
3141	sc->ti_txcnt += nseg;
3142
3143	return (0);
3144}
3145
3146static void
3147ti_start(struct ifnet *ifp)
3148{
3149	struct ti_softc *sc;
3150
3151	sc = ifp->if_softc;
3152	TI_LOCK(sc);
3153	ti_start_locked(ifp);
3154	TI_UNLOCK(sc);
3155}
3156
3157/*
3158 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3159 * to the mbuf data regions directly in the transmit descriptors.
3160 */
3161static void
3162ti_start_locked(struct ifnet *ifp)
3163{
3164	struct ti_softc *sc;
3165	struct mbuf *m_head = NULL;
3166	int enq = 0;
3167
3168	sc = ifp->if_softc;
3169
3170	for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
3171	    sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3172		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3173		if (m_head == NULL)
3174			break;
3175
3176		/*
3177		 * Pack the data into the transmit ring. If we
3178		 * don't have room, set the OACTIVE flag and wait
3179		 * for the NIC to drain the ring.
3180		 */
3181		if (ti_encap(sc, &m_head)) {
3182			if (m_head == NULL)
3183				break;
3184			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3185			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3186			break;
3187		}
3188
3189		enq++;
3190		/*
3191		 * If there's a BPF listener, bounce a copy of this frame
3192		 * to him.
3193		 */
3194		ETHER_BPF_MTAP(ifp, m_head);
3195	}
3196
3197	if (enq > 0) {
3198		if (sc->ti_rdata.ti_tx_ring != NULL)
3199			bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
3200			    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
3201		/* Transmit */
3202		CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3203
3204		/*
3205		 * Set a timeout in case the chip goes out to lunch.
3206		 */
3207		sc->ti_timer = 5;
3208	}
3209}
3210
3211static void
3212ti_init(void *xsc)
3213{
3214	struct ti_softc *sc;
3215
3216	sc = xsc;
3217	TI_LOCK(sc);
3218	ti_init_locked(sc);
3219	TI_UNLOCK(sc);
3220}
3221
3222static void
3223ti_init_locked(void *xsc)
3224{
3225	struct ti_softc *sc = xsc;
3226
3227	if (sc->ti_ifp->if_drv_flags & IFF_DRV_RUNNING)
3228		return;
3229
3230	/* Cancel pending I/O and flush buffers. */
3231	ti_stop(sc);
3232
3233	/* Init the gen info block, ring control blocks and firmware. */
3234	if (ti_gibinit(sc)) {
3235		device_printf(sc->ti_dev, "initialization failure\n");
3236		return;
3237	}
3238}
3239
3240static void ti_init2(struct ti_softc *sc)
3241{
3242	struct ti_cmd_desc cmd;
3243	struct ifnet *ifp;
3244	uint8_t *ea;
3245	struct ifmedia *ifm;
3246	int tmp;
3247
3248	TI_LOCK_ASSERT(sc);
3249
3250	ifp = sc->ti_ifp;
3251
3252	/* Specify MTU and interface index. */
3253	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_get_unit(sc->ti_dev));
3254	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3255	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3256	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3257
3258	/* Load our MAC address. */
3259	ea = IF_LLADDR(sc->ti_ifp);
3260	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3261	CSR_WRITE_4(sc, TI_GCR_PAR1,
3262	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3263	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3264
3265	/* Enable or disable promiscuous mode as needed. */
3266	if (ifp->if_flags & IFF_PROMISC) {
3267		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3268	} else {
3269		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3270	}
3271
3272	/* Program multicast filter. */
3273	ti_setmulti(sc);
3274
3275	/*
3276	 * If this is a Tigon 1, we should tell the
3277	 * firmware to use software packet filtering.
3278	 */
3279	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3280		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3281	}
3282
3283	/* Init RX ring. */
3284	if (ti_init_rx_ring_std(sc) != 0) {
3285		/* XXX */
3286		device_printf(sc->ti_dev, "no memory for std Rx buffers.\n");
3287		return;
3288	}
3289
3290	/* Init jumbo RX ring. */
3291	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) {
3292		if (ti_init_rx_ring_jumbo(sc) != 0) {
3293			/* XXX */
3294			device_printf(sc->ti_dev,
3295			    "no memory for jumbo Rx buffers.\n");
3296			return;
3297		}
3298	}
3299
3300	/*
3301	 * If this is a Tigon 2, we can also configure the
3302	 * mini ring.
3303	 */
3304	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
3305		if (ti_init_rx_ring_mini(sc) != 0) {
3306			/* XXX */
3307			device_printf(sc->ti_dev,
3308			    "no memory for mini Rx buffers.\n");
3309			return;
3310		}
3311	}
3312
3313	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3314	sc->ti_rx_saved_considx = 0;
3315
3316	/* Init TX ring. */
3317	ti_init_tx_ring(sc);
3318
3319	/* Tell firmware we're alive. */
3320	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3321
3322	/* Enable host interrupts. */
3323	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3324
3325	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3326	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3327	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3328
3329	/*
3330	 * Make sure to set media properly. We have to do this
3331	 * here since we have to issue commands in order to set
3332	 * the link negotiation and we can't issue commands until
3333	 * the firmware is running.
3334	 */
3335	ifm = &sc->ifmedia;
3336	tmp = ifm->ifm_media;
3337	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3338	ti_ifmedia_upd_locked(sc);
3339	ifm->ifm_media = tmp;
3340}
3341
3342/*
3343 * Set media options.
3344 */
3345static int
3346ti_ifmedia_upd(struct ifnet *ifp)
3347{
3348	struct ti_softc *sc;
3349	int error;
3350
3351	sc = ifp->if_softc;
3352	TI_LOCK(sc);
3353	error = ti_ifmedia_upd_locked(sc);
3354	TI_UNLOCK(sc);
3355
3356	return (error);
3357}
3358
3359static int
3360ti_ifmedia_upd_locked(struct ti_softc *sc)
3361{
3362	struct ifmedia *ifm;
3363	struct ti_cmd_desc cmd;
3364	uint32_t flowctl;
3365
3366	ifm = &sc->ifmedia;
3367
3368	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3369		return (EINVAL);
3370
3371	flowctl = 0;
3372
3373	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3374	case IFM_AUTO:
3375		/*
3376		 * Transmit flow control doesn't work on the Tigon 1.
3377		 */
3378		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3379
3380		/*
3381		 * Transmit flow control can also cause problems on the
3382		 * Tigon 2, apparently with both the copper and fiber
3383		 * boards.  The symptom is that the interface will just
3384		 * hang.  This was reproduced with Alteon 180 switches.
3385		 */
3386#if 0
3387		if (sc->ti_hwrev != TI_HWREV_TIGON)
3388			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3389#endif
3390
3391		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3392		    TI_GLNK_FULL_DUPLEX| flowctl |
3393		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3394
3395		flowctl = TI_LNK_RX_FLOWCTL_Y;
3396#if 0
3397		if (sc->ti_hwrev != TI_HWREV_TIGON)
3398			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3399#endif
3400
3401		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3402		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3403		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3404		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3405		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3406		break;
3407	case IFM_1000_SX:
3408	case IFM_1000_T:
3409		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3410#if 0
3411		if (sc->ti_hwrev != TI_HWREV_TIGON)
3412			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3413#endif
3414
3415		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3416		    flowctl |TI_GLNK_ENB);
3417		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3418		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3419			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3420		}
3421		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3422		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3423		break;
3424	case IFM_100_FX:
3425	case IFM_10_FL:
3426	case IFM_100_TX:
3427	case IFM_10_T:
3428		flowctl = TI_LNK_RX_FLOWCTL_Y;
3429#if 0
3430		if (sc->ti_hwrev != TI_HWREV_TIGON)
3431			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3432#endif
3433
3434		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3435		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3436		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3437		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3438			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3439		} else {
3440			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3441		}
3442		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3443			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3444		} else {
3445			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3446		}
3447		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3448		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3449		break;
3450	}
3451
3452	return (0);
3453}
3454
3455/*
3456 * Report current media status.
3457 */
3458static void
3459ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3460{
3461	struct ti_softc *sc;
3462	uint32_t media = 0;
3463
3464	sc = ifp->if_softc;
3465
3466	TI_LOCK(sc);
3467
3468	ifmr->ifm_status = IFM_AVALID;
3469	ifmr->ifm_active = IFM_ETHER;
3470
3471	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
3472		TI_UNLOCK(sc);
3473		return;
3474	}
3475
3476	ifmr->ifm_status |= IFM_ACTIVE;
3477
3478	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3479		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3480		if (sc->ti_copper)
3481			ifmr->ifm_active |= IFM_1000_T;
3482		else
3483			ifmr->ifm_active |= IFM_1000_SX;
3484		if (media & TI_GLNK_FULL_DUPLEX)
3485			ifmr->ifm_active |= IFM_FDX;
3486		else
3487			ifmr->ifm_active |= IFM_HDX;
3488	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3489		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3490		if (sc->ti_copper) {
3491			if (media & TI_LNK_100MB)
3492				ifmr->ifm_active |= IFM_100_TX;
3493			if (media & TI_LNK_10MB)
3494				ifmr->ifm_active |= IFM_10_T;
3495		} else {
3496			if (media & TI_LNK_100MB)
3497				ifmr->ifm_active |= IFM_100_FX;
3498			if (media & TI_LNK_10MB)
3499				ifmr->ifm_active |= IFM_10_FL;
3500		}
3501		if (media & TI_LNK_FULL_DUPLEX)
3502			ifmr->ifm_active |= IFM_FDX;
3503		if (media & TI_LNK_HALF_DUPLEX)
3504			ifmr->ifm_active |= IFM_HDX;
3505	}
3506	TI_UNLOCK(sc);
3507}
3508
3509static int
3510ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3511{
3512	struct ti_softc *sc = ifp->if_softc;
3513	struct ifreq *ifr = (struct ifreq *) data;
3514	struct ti_cmd_desc cmd;
3515	int mask, error = 0;
3516
3517	switch (command) {
3518	case SIOCSIFMTU:
3519		TI_LOCK(sc);
3520		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > TI_JUMBO_MTU)
3521			error = EINVAL;
3522		else {
3523			ifp->if_mtu = ifr->ifr_mtu;
3524			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3525				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3526				ti_init_locked(sc);
3527			}
3528		}
3529		TI_UNLOCK(sc);
3530		break;
3531	case SIOCSIFFLAGS:
3532		TI_LOCK(sc);
3533		if (ifp->if_flags & IFF_UP) {
3534			/*
3535			 * If only the state of the PROMISC flag changed,
3536			 * then just use the 'set promisc mode' command
3537			 * instead of reinitializing the entire NIC. Doing
3538			 * a full re-init means reloading the firmware and
3539			 * waiting for it to start up, which may take a
3540			 * second or two.
3541			 */
3542			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3543			    ifp->if_flags & IFF_PROMISC &&
3544			    !(sc->ti_if_flags & IFF_PROMISC)) {
3545				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3546				    TI_CMD_CODE_PROMISC_ENB, 0);
3547			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3548			    !(ifp->if_flags & IFF_PROMISC) &&
3549			    sc->ti_if_flags & IFF_PROMISC) {
3550				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3551				    TI_CMD_CODE_PROMISC_DIS, 0);
3552			} else
3553				ti_init_locked(sc);
3554		} else {
3555			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3556				ti_stop(sc);
3557			}
3558		}
3559		sc->ti_if_flags = ifp->if_flags;
3560		TI_UNLOCK(sc);
3561		break;
3562	case SIOCADDMULTI:
3563	case SIOCDELMULTI:
3564		TI_LOCK(sc);
3565		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3566			ti_setmulti(sc);
3567		TI_UNLOCK(sc);
3568		break;
3569	case SIOCSIFMEDIA:
3570	case SIOCGIFMEDIA:
3571		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3572		break;
3573	case SIOCSIFCAP:
3574		TI_LOCK(sc);
3575		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3576		if ((mask & IFCAP_TXCSUM) != 0 &&
3577		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3578			ifp->if_capenable ^= IFCAP_TXCSUM;
3579			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
3580				ifp->if_hwassist |= TI_CSUM_FEATURES;
3581                        else
3582				ifp->if_hwassist &= ~TI_CSUM_FEATURES;
3583                }
3584		if ((mask & IFCAP_RXCSUM) != 0 &&
3585		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
3586			ifp->if_capenable ^= IFCAP_RXCSUM;
3587		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3588		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0)
3589                        ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3590		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
3591		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
3592			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
3593		if ((mask & (IFCAP_TXCSUM | IFCAP_RXCSUM |
3594		    IFCAP_VLAN_HWTAGGING)) != 0) {
3595			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3596				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3597				ti_init_locked(sc);
3598			}
3599		}
3600		TI_UNLOCK(sc);
3601		VLAN_CAPABILITIES(ifp);
3602		break;
3603	default:
3604		error = ether_ioctl(ifp, command, data);
3605		break;
3606	}
3607
3608	return (error);
3609}
3610
3611static int
3612ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3613{
3614	struct ti_softc *sc;
3615
3616	sc = dev->si_drv1;
3617	if (sc == NULL)
3618		return (ENODEV);
3619
3620	TI_LOCK(sc);
3621	sc->ti_flags |= TI_FLAG_DEBUGING;
3622	TI_UNLOCK(sc);
3623
3624	return (0);
3625}
3626
3627static int
3628ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3629{
3630	struct ti_softc *sc;
3631
3632	sc = dev->si_drv1;
3633	if (sc == NULL)
3634		return (ENODEV);
3635
3636	TI_LOCK(sc);
3637	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3638	TI_UNLOCK(sc);
3639
3640	return (0);
3641}
3642
3643/*
3644 * This ioctl routine goes along with the Tigon character device.
3645 */
3646static int
3647ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3648    struct thread *td)
3649{
3650	struct ti_softc *sc;
3651	int error;
3652
3653	sc = dev->si_drv1;
3654	if (sc == NULL)
3655		return (ENODEV);
3656
3657	error = 0;
3658
3659	switch (cmd) {
3660	case TIIOCGETSTATS:
3661	{
3662		struct ti_stats *outstats;
3663
3664		outstats = (struct ti_stats *)addr;
3665
3666		TI_LOCK(sc);
3667		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3668		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
3669		bcopy(&sc->ti_rdata.ti_info->ti_stats, outstats,
3670		    sizeof(struct ti_stats));
3671		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3672		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_PREREAD);
3673		TI_UNLOCK(sc);
3674		break;
3675	}
3676	case TIIOCGETPARAMS:
3677	{
3678		struct ti_params *params;
3679
3680		params = (struct ti_params *)addr;
3681
3682		TI_LOCK(sc);
3683		params->ti_stat_ticks = sc->ti_stat_ticks;
3684		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3685		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3686		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3687		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3688		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3689		params->param_mask = TI_PARAM_ALL;
3690		TI_UNLOCK(sc);
3691		break;
3692	}
3693	case TIIOCSETPARAMS:
3694	{
3695		struct ti_params *params;
3696
3697		params = (struct ti_params *)addr;
3698
3699		TI_LOCK(sc);
3700		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3701			sc->ti_stat_ticks = params->ti_stat_ticks;
3702			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3703		}
3704
3705		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3706			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3707			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3708				    sc->ti_rx_coal_ticks);
3709		}
3710
3711		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3712			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3713			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3714				    sc->ti_tx_coal_ticks);
3715		}
3716
3717		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3718			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3719			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3720				    sc->ti_rx_max_coal_bds);
3721		}
3722
3723		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3724			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3725			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3726				    sc->ti_tx_max_coal_bds);
3727		}
3728
3729		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3730			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3731			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3732				    sc->ti_tx_buf_ratio);
3733		}
3734		TI_UNLOCK(sc);
3735		break;
3736	}
3737	case TIIOCSETTRACE: {
3738		ti_trace_type trace_type;
3739
3740		trace_type = *(ti_trace_type *)addr;
3741
3742		/*
3743		 * Set tracing to whatever the user asked for.  Setting
3744		 * this register to 0 should have the effect of disabling
3745		 * tracing.
3746		 */
3747		TI_LOCK(sc);
3748		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3749		TI_UNLOCK(sc);
3750		break;
3751	}
3752	case TIIOCGETTRACE: {
3753		struct ti_trace_buf *trace_buf;
3754		uint32_t trace_start, cur_trace_ptr, trace_len;
3755
3756		trace_buf = (struct ti_trace_buf *)addr;
3757
3758		TI_LOCK(sc);
3759		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3760		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3761		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3762#if 0
3763		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3764		       "trace_len = %d\n", trace_start,
3765		       cur_trace_ptr, trace_len);
3766		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3767		       trace_buf->buf_len);
3768#endif
3769		error = ti_copy_mem(sc, trace_start, min(trace_len,
3770		    trace_buf->buf_len), (caddr_t)trace_buf->buf, 1, 1);
3771		if (error == 0) {
3772			trace_buf->fill_len = min(trace_len,
3773			    trace_buf->buf_len);
3774			if (cur_trace_ptr < trace_start)
3775				trace_buf->cur_trace_ptr =
3776				    trace_start - cur_trace_ptr;
3777			else
3778				trace_buf->cur_trace_ptr =
3779				    cur_trace_ptr - trace_start;
3780		} else
3781			trace_buf->fill_len = 0;
3782		TI_UNLOCK(sc);
3783		break;
3784	}
3785
3786	/*
3787	 * For debugging, five ioctls are needed:
3788	 * ALT_ATTACH
3789	 * ALT_READ_TG_REG
3790	 * ALT_WRITE_TG_REG
3791	 * ALT_READ_TG_MEM
3792	 * ALT_WRITE_TG_MEM
3793	 */
3794	case ALT_ATTACH:
3795		/*
3796		 * From what I can tell, Alteon's Solaris Tigon driver
3797		 * only has one character device, so you have to attach
3798		 * to the Tigon board you're interested in.  This seems
3799		 * like a not-so-good way to do things, since unless you
3800		 * subsequently specify the unit number of the device
3801		 * you're interested in every ioctl, you'll only be
3802		 * able to debug one board at a time.
3803		 */
3804		break;
3805	case ALT_READ_TG_MEM:
3806	case ALT_WRITE_TG_MEM:
3807	{
3808		struct tg_mem *mem_param;
3809		uint32_t sram_end, scratch_end;
3810
3811		mem_param = (struct tg_mem *)addr;
3812
3813		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3814			sram_end = TI_END_SRAM_I;
3815			scratch_end = TI_END_SCRATCH_I;
3816		} else {
3817			sram_end = TI_END_SRAM_II;
3818			scratch_end = TI_END_SCRATCH_II;
3819		}
3820
3821		/*
3822		 * For now, we'll only handle accessing regular SRAM,
3823		 * nothing else.
3824		 */
3825		TI_LOCK(sc);
3826		if (mem_param->tgAddr >= TI_BEG_SRAM &&
3827		    mem_param->tgAddr + mem_param->len <= sram_end) {
3828			/*
3829			 * In this instance, we always copy to/from user
3830			 * space, so the user space argument is set to 1.
3831			 */
3832			error = ti_copy_mem(sc, mem_param->tgAddr,
3833			    mem_param->len, mem_param->userAddr, 1,
3834			    cmd == ALT_READ_TG_MEM ? 1 : 0);
3835		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH &&
3836		    mem_param->tgAddr <= scratch_end) {
3837			error = ti_copy_scratch(sc, mem_param->tgAddr,
3838			    mem_param->len, mem_param->userAddr, 1,
3839			    cmd == ALT_READ_TG_MEM ?  1 : 0, TI_PROCESSOR_A);
3840		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG &&
3841		    mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG) {
3842			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3843				if_printf(sc->ti_ifp,
3844				    "invalid memory range for Tigon I\n");
3845				error = EINVAL;
3846				break;
3847			}
3848			error = ti_copy_scratch(sc, mem_param->tgAddr -
3849			    TI_SCRATCH_DEBUG_OFF, mem_param->len,
3850			    mem_param->userAddr, 1,
3851			    cmd == ALT_READ_TG_MEM ? 1 : 0, TI_PROCESSOR_B);
3852		} else {
3853			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3854			        "out of supported range\n",
3855			        mem_param->tgAddr, mem_param->len);
3856			error = EINVAL;
3857		}
3858		TI_UNLOCK(sc);
3859		break;
3860	}
3861	case ALT_READ_TG_REG:
3862	case ALT_WRITE_TG_REG:
3863	{
3864		struct tg_reg *regs;
3865		uint32_t tmpval;
3866
3867		regs = (struct tg_reg *)addr;
3868
3869		/*
3870		 * Make sure the address in question isn't out of range.
3871		 */
3872		if (regs->addr > TI_REG_MAX) {
3873			error = EINVAL;
3874			break;
3875		}
3876		TI_LOCK(sc);
3877		if (cmd == ALT_READ_TG_REG) {
3878			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3879			    regs->addr, &tmpval, 1);
3880			regs->data = ntohl(tmpval);
3881#if 0
3882			if ((regs->addr == TI_CPU_STATE)
3883			 || (regs->addr == TI_CPU_CTL_B)) {
3884				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3885				       regs->addr, tmpval);
3886			}
3887#endif
3888		} else {
3889			tmpval = htonl(regs->data);
3890			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3891			    regs->addr, &tmpval, 1);
3892		}
3893		TI_UNLOCK(sc);
3894		break;
3895	}
3896	default:
3897		error = ENOTTY;
3898		break;
3899	}
3900	return (error);
3901}
3902
3903static void
3904ti_watchdog(void *arg)
3905{
3906	struct ti_softc *sc;
3907	struct ifnet *ifp;
3908
3909	sc = arg;
3910	TI_LOCK_ASSERT(sc);
3911	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3912	if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3913		return;
3914
3915	/*
3916	 * When we're debugging, the chip is often stopped for long periods
3917	 * of time, and that would normally cause the watchdog timer to fire.
3918	 * Since that impedes debugging, we don't want to do that.
3919	 */
3920	if (sc->ti_flags & TI_FLAG_DEBUGING)
3921		return;
3922
3923	ifp = sc->ti_ifp;
3924	if_printf(ifp, "watchdog timeout -- resetting\n");
3925	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3926	ti_init_locked(sc);
3927
3928	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3929}
3930
3931/*
3932 * Stop the adapter and free any mbufs allocated to the
3933 * RX and TX lists.
3934 */
3935static void
3936ti_stop(struct ti_softc *sc)
3937{
3938	struct ifnet *ifp;
3939	struct ti_cmd_desc cmd;
3940
3941	TI_LOCK_ASSERT(sc);
3942
3943	ifp = sc->ti_ifp;
3944
3945	/* Disable host interrupts. */
3946	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3947	/*
3948	 * Tell firmware we're shutting down.
3949	 */
3950	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3951
3952	/* Halt and reinitialize. */
3953	if (ti_chipinit(sc) == 0) {
3954		ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3955		/* XXX ignore init errors. */
3956		ti_chipinit(sc);
3957	}
3958
3959	/* Free the RX lists. */
3960	ti_free_rx_ring_std(sc);
3961
3962	/* Free jumbo RX list. */
3963	ti_free_rx_ring_jumbo(sc);
3964
3965	/* Free mini RX list. */
3966	ti_free_rx_ring_mini(sc);
3967
3968	/* Free TX buffers. */
3969	ti_free_tx_ring(sc);
3970
3971	sc->ti_ev_prodidx.ti_idx = 0;
3972	sc->ti_return_prodidx.ti_idx = 0;
3973	sc->ti_tx_considx.ti_idx = 0;
3974	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3975
3976	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3977	callout_stop(&sc->ti_watchdog);
3978}
3979
3980/*
3981 * Stop all chip I/O so that the kernel's probe routines don't
3982 * get confused by errant DMAs when rebooting.
3983 */
3984static int
3985ti_shutdown(device_t dev)
3986{
3987	struct ti_softc *sc;
3988
3989	sc = device_get_softc(dev);
3990	TI_LOCK(sc);
3991	ti_chipinit(sc);
3992	TI_UNLOCK(sc);
3993
3994	return (0);
3995}
3996
3997static void
3998ti_sysctl_node(struct ti_softc *sc)
3999{
4000	struct sysctl_ctx_list *ctx;
4001	struct sysctl_oid_list *child;
4002	char tname[32];
4003
4004	ctx = device_get_sysctl_ctx(sc->ti_dev);
4005	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ti_dev));
4006
4007	/* Use DAC */
4008	sc->ti_dac = 1;
4009	snprintf(tname, sizeof(tname), "dev.ti.%d.dac",
4010	    device_get_unit(sc->ti_dev));
4011	TUNABLE_INT_FETCH(tname, &sc->ti_dac);
4012
4013	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_coal_ticks", CTLFLAG_RW,
4014	    &sc->ti_rx_coal_ticks, 0, "Receive coalcesced ticks");
4015	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_max_coal_bds", CTLFLAG_RW,
4016	    &sc->ti_rx_max_coal_bds, 0, "Receive max coalcesced BDs");
4017
4018	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_coal_ticks", CTLFLAG_RW,
4019	    &sc->ti_tx_coal_ticks, 0, "Send coalcesced ticks");
4020	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_max_coal_bds", CTLFLAG_RW,
4021	    &sc->ti_tx_max_coal_bds, 0, "Send max coalcesced BDs");
4022	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_buf_ratio", CTLFLAG_RW,
4023	    &sc->ti_tx_buf_ratio, 0,
4024	    "Ratio of NIC memory devoted to TX buffer");
4025
4026	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "stat_ticks", CTLFLAG_RW,
4027	    &sc->ti_stat_ticks, 0,
4028	    "Number of clock ticks for statistics update interval");
4029
4030	/* Pull in device tunables. */
4031	sc->ti_rx_coal_ticks = 170;
4032	resource_int_value(device_get_name(sc->ti_dev),
4033	    device_get_unit(sc->ti_dev), "rx_coal_ticks",
4034	    &sc->ti_rx_coal_ticks);
4035	sc->ti_rx_max_coal_bds = 64;
4036	resource_int_value(device_get_name(sc->ti_dev),
4037	    device_get_unit(sc->ti_dev), "rx_max_coal_bds",
4038	    &sc->ti_rx_max_coal_bds);
4039
4040	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
4041	resource_int_value(device_get_name(sc->ti_dev),
4042	    device_get_unit(sc->ti_dev), "tx_coal_ticks",
4043	    &sc->ti_tx_coal_ticks);
4044	sc->ti_tx_max_coal_bds = 32;
4045	resource_int_value(device_get_name(sc->ti_dev),
4046	    device_get_unit(sc->ti_dev), "tx_max_coal_bds",
4047	    &sc->ti_tx_max_coal_bds);
4048	sc->ti_tx_buf_ratio = 21;
4049	resource_int_value(device_get_name(sc->ti_dev),
4050	    device_get_unit(sc->ti_dev), "tx_buf_ratio",
4051	    &sc->ti_tx_buf_ratio);
4052
4053	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
4054	resource_int_value(device_get_name(sc->ti_dev),
4055	    device_get_unit(sc->ti_dev), "stat_ticks",
4056	    &sc->ti_stat_ticks);
4057}
4058