if_ti.c revision 76033
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/ti/if_ti.c 76033 2001-04-26 16:40:45Z wpaul $
33 */
34
35/*
36 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37 * Manuals, sample driver and firmware source kits are available
38 * from http://www.alteon.com/support/openkits.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Electrical Engineering Department
42 * Columbia University, New York City
43 */
44
45/*
46 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50 * filtering and jumbo (9014 byte) frames. The hardware is largely
51 * controlled by firmware, which must be loaded into the NIC during
52 * initialization.
53 *
54 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55 * revision, which supports new features such as extended commands,
56 * extended jumbo receive ring desciptors and a mini receive ring.
57 *
58 * Alteon Networks is to be commended for releasing such a vast amount
59 * of development material for the Tigon NIC without requiring an NDA
60 * (although they really should have done it a long time ago). With
61 * any luck, the other vendors will finally wise up and follow Alteon's
62 * stellar example.
63 *
64 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65 * this driver by #including it as a C header file. This bloats the
66 * driver somewhat, but it's the easiest method considering that the
67 * driver code and firmware code need to be kept in sync. The source
68 * for the firmware is not provided with the FreeBSD distribution since
69 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70 *
71 * The following people deserve special thanks:
72 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73 *   for testing
74 * - Raymond Lee of Netgear, for providing a pair of Netgear
75 *   GA620 Tigon 2 boards for testing
76 * - Ulf Zimmermann, for bringing the GA260 to my attention and
77 *   convincing me to write this driver.
78 * - Andrew Gallatin for providing FreeBSD/Alpha support.
79 */
80
81#include "vlan.h"
82
83#include <sys/param.h>
84#include <sys/systm.h>
85#include <sys/sockio.h>
86#include <sys/mbuf.h>
87#include <sys/malloc.h>
88#include <sys/kernel.h>
89#include <sys/socket.h>
90#include <sys/queue.h>
91
92#include <net/if.h>
93#include <net/if_arp.h>
94#include <net/ethernet.h>
95#include <net/if_dl.h>
96#include <net/if_media.h>
97
98#include <net/bpf.h>
99
100#if NVLAN > 0
101#include <net/if_types.h>
102#include <net/if_vlan_var.h>
103#endif
104
105#include <netinet/in_systm.h>
106#include <netinet/in.h>
107#include <netinet/ip.h>
108
109#include <vm/vm.h>              /* for vtophys */
110#include <vm/pmap.h>            /* for vtophys */
111#include <machine/bus_memio.h>
112#include <machine/bus.h>
113#include <machine/resource.h>
114#include <sys/bus.h>
115#include <sys/rman.h>
116
117#include <pci/pcireg.h>
118#include <pci/pcivar.h>
119
120#include <pci/if_tireg.h>
121#include <pci/ti_fw.h>
122#include <pci/ti_fw2.h>
123
124#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
125
126#if !defined(lint)
127static const char rcsid[] =
128  "$FreeBSD: head/sys/dev/ti/if_ti.c 76033 2001-04-26 16:40:45Z wpaul $";
129#endif
130
131/*
132 * Various supported device vendors/types and their names.
133 */
134
135static struct ti_type ti_devs[] = {
136	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
137		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
138	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
139		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
140	{ TC_VENDORID,	TC_DEVICEID_3C985,
141		"3Com 3c985-SX Gigabit Ethernet" },
142	{ NG_VENDORID, NG_DEVICEID_GA620,
143		"Netgear GA620 1000baseSX Gigabit Ethernet" },
144	{ NG_VENDORID, NG_DEVICEID_GA620T,
145		"Netgear GA620 1000baseT Gigabit Ethernet" },
146	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
147		"Silicon Graphics Gigabit Ethernet" },
148	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
149		"Farallon PN9000SX Gigabit Ethernet" },
150	{ 0, 0, NULL }
151};
152
153static int ti_probe		__P((device_t));
154static int ti_attach		__P((device_t));
155static int ti_detach		__P((device_t));
156static void ti_txeof		__P((struct ti_softc *));
157static void ti_rxeof		__P((struct ti_softc *));
158
159static void ti_stats_update	__P((struct ti_softc *));
160static int ti_encap		__P((struct ti_softc *, struct mbuf *,
161					u_int32_t *));
162
163static void ti_intr		__P((void *));
164static void ti_start		__P((struct ifnet *));
165static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
166static void ti_init		__P((void *));
167static void ti_init2		__P((struct ti_softc *));
168static void ti_stop		__P((struct ti_softc *));
169static void ti_watchdog		__P((struct ifnet *));
170static void ti_shutdown		__P((device_t));
171static int ti_ifmedia_upd	__P((struct ifnet *));
172static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
173
174static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
175static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
176						int, u_int8_t *));
177static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
178
179static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
180static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
181static void ti_setmulti		__P((struct ti_softc *));
182
183static void ti_mem		__P((struct ti_softc *, u_int32_t,
184					u_int32_t, caddr_t));
185static void ti_loadfw		__P((struct ti_softc *));
186static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
187static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
188					caddr_t, int));
189static void ti_handle_events	__P((struct ti_softc *));
190static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
191static void *ti_jalloc		__P((struct ti_softc *));
192static void ti_jfree		__P((caddr_t, void *));
193static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *));
194static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *));
195static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
196static int ti_init_rx_ring_std	__P((struct ti_softc *));
197static void ti_free_rx_ring_std	__P((struct ti_softc *));
198static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
199static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
200static int ti_init_rx_ring_mini	__P((struct ti_softc *));
201static void ti_free_rx_ring_mini	__P((struct ti_softc *));
202static void ti_free_tx_ring	__P((struct ti_softc *));
203static int ti_init_tx_ring	__P((struct ti_softc *));
204
205static int ti_64bitslot_war	__P((struct ti_softc *));
206static int ti_chipinit		__P((struct ti_softc *));
207static int ti_gibinit		__P((struct ti_softc *));
208
209static device_method_t ti_methods[] = {
210	/* Device interface */
211	DEVMETHOD(device_probe,		ti_probe),
212	DEVMETHOD(device_attach,	ti_attach),
213	DEVMETHOD(device_detach,	ti_detach),
214	DEVMETHOD(device_shutdown,	ti_shutdown),
215	{ 0, 0 }
216};
217
218static driver_t ti_driver = {
219	"ti",
220	ti_methods,
221	sizeof(struct ti_softc)
222};
223
224static devclass_t ti_devclass;
225
226DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
227
228/*
229 * Send an instruction or address to the EEPROM, check for ACK.
230 */
231static u_int32_t ti_eeprom_putbyte(sc, byte)
232	struct ti_softc		*sc;
233	int			byte;
234{
235	register int		i, ack = 0;
236
237	/*
238	 * Make sure we're in TX mode.
239	 */
240	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
241
242	/*
243	 * Feed in each bit and stobe the clock.
244	 */
245	for (i = 0x80; i; i >>= 1) {
246		if (byte & i) {
247			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
248		} else {
249			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
250		}
251		DELAY(1);
252		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
253		DELAY(1);
254		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
255	}
256
257	/*
258	 * Turn off TX mode.
259	 */
260	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
261
262	/*
263	 * Check for ack.
264	 */
265	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
266	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
267	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
268
269	return(ack);
270}
271
272/*
273 * Read a byte of data stored in the EEPROM at address 'addr.'
274 * We have to send two address bytes since the EEPROM can hold
275 * more than 256 bytes of data.
276 */
277static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
278	struct ti_softc		*sc;
279	int			addr;
280	u_int8_t		*dest;
281{
282	register int		i;
283	u_int8_t		byte = 0;
284
285	EEPROM_START;
286
287	/*
288	 * Send write control code to EEPROM.
289	 */
290	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
291		printf("ti%d: failed to send write command, status: %x\n",
292		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
293		return(1);
294	}
295
296	/*
297	 * Send first byte of address of byte we want to read.
298	 */
299	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
300		printf("ti%d: failed to send address, status: %x\n",
301		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
302		return(1);
303	}
304	/*
305	 * Send second byte address of byte we want to read.
306	 */
307	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
308		printf("ti%d: failed to send address, status: %x\n",
309		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
310		return(1);
311	}
312
313	EEPROM_STOP;
314	EEPROM_START;
315	/*
316	 * Send read control code to EEPROM.
317	 */
318	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
319		printf("ti%d: failed to send read command, status: %x\n",
320		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
321		return(1);
322	}
323
324	/*
325	 * Start reading bits from EEPROM.
326	 */
327	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
328	for (i = 0x80; i; i >>= 1) {
329		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
330		DELAY(1);
331		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
332			byte |= i;
333		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
334		DELAY(1);
335	}
336
337	EEPROM_STOP;
338
339	/*
340	 * No ACK generated for read, so just return byte.
341	 */
342
343	*dest = byte;
344
345	return(0);
346}
347
348/*
349 * Read a sequence of bytes from the EEPROM.
350 */
351static int ti_read_eeprom(sc, dest, off, cnt)
352	struct ti_softc		*sc;
353	caddr_t			dest;
354	int			off;
355	int			cnt;
356{
357	int			err = 0, i;
358	u_int8_t		byte = 0;
359
360	for (i = 0; i < cnt; i++) {
361		err = ti_eeprom_getbyte(sc, off + i, &byte);
362		if (err)
363			break;
364		*(dest + i) = byte;
365	}
366
367	return(err ? 1 : 0);
368}
369
370/*
371 * NIC memory access function. Can be used to either clear a section
372 * of NIC local memory or (if buf is non-NULL) copy data into it.
373 */
374static void ti_mem(sc, addr, len, buf)
375	struct ti_softc		*sc;
376	u_int32_t		addr, len;
377	caddr_t			buf;
378{
379	int			segptr, segsize, cnt;
380	caddr_t			ti_winbase, ptr;
381
382	segptr = addr;
383	cnt = len;
384	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
385	ptr = buf;
386
387	while(cnt) {
388		if (cnt < TI_WINLEN)
389			segsize = cnt;
390		else
391			segsize = TI_WINLEN - (segptr % TI_WINLEN);
392		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
393		if (buf == NULL)
394			bzero((char *)ti_winbase + (segptr &
395			    (TI_WINLEN - 1)), segsize);
396		else {
397			bcopy((char *)ptr, (char *)ti_winbase +
398			    (segptr & (TI_WINLEN - 1)), segsize);
399			ptr += segsize;
400		}
401		segptr += segsize;
402		cnt -= segsize;
403	}
404
405	return;
406}
407
408/*
409 * Load firmware image into the NIC. Check that the firmware revision
410 * is acceptable and see if we want the firmware for the Tigon 1 or
411 * Tigon 2.
412 */
413static void ti_loadfw(sc)
414	struct ti_softc		*sc;
415{
416	switch(sc->ti_hwrev) {
417	case TI_HWREV_TIGON:
418		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
419		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
420		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
421			printf("ti%d: firmware revision mismatch; want "
422			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
423			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
424			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
425			    tigonFwReleaseMinor, tigonFwReleaseFix);
426			return;
427		}
428		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
429		    (caddr_t)tigonFwText);
430		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
431		    (caddr_t)tigonFwData);
432		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
433		    (caddr_t)tigonFwRodata);
434		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
435		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
436		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
437		break;
438	case TI_HWREV_TIGON_II:
439		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
440		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
441		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
442			printf("ti%d: firmware revision mismatch; want "
443			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
444			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
445			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
446			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
447			return;
448		}
449		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
450		    (caddr_t)tigon2FwText);
451		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
452		    (caddr_t)tigon2FwData);
453		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
454		    (caddr_t)tigon2FwRodata);
455		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
456		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
457		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
458		break;
459	default:
460		printf("ti%d: can't load firmware: unknown hardware rev\n",
461		    sc->ti_unit);
462		break;
463	}
464
465	return;
466}
467
468/*
469 * Send the NIC a command via the command ring.
470 */
471static void ti_cmd(sc, cmd)
472	struct ti_softc		*sc;
473	struct ti_cmd_desc	*cmd;
474{
475	u_int32_t		index;
476
477	if (sc->ti_rdata->ti_cmd_ring == NULL)
478		return;
479
480	index = sc->ti_cmd_saved_prodidx;
481	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
482	TI_INC(index, TI_CMD_RING_CNT);
483	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
484	sc->ti_cmd_saved_prodidx = index;
485
486	return;
487}
488
489/*
490 * Send the NIC an extended command. The 'len' parameter specifies the
491 * number of command slots to include after the initial command.
492 */
493static void ti_cmd_ext(sc, cmd, arg, len)
494	struct ti_softc		*sc;
495	struct ti_cmd_desc	*cmd;
496	caddr_t			arg;
497	int			len;
498{
499	u_int32_t		index;
500	register int		i;
501
502	if (sc->ti_rdata->ti_cmd_ring == NULL)
503		return;
504
505	index = sc->ti_cmd_saved_prodidx;
506	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
507	TI_INC(index, TI_CMD_RING_CNT);
508	for (i = 0; i < len; i++) {
509		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
510		    *(u_int32_t *)(&arg[i * 4]));
511		TI_INC(index, TI_CMD_RING_CNT);
512	}
513	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
514	sc->ti_cmd_saved_prodidx = index;
515
516	return;
517}
518
519/*
520 * Handle events that have triggered interrupts.
521 */
522static void ti_handle_events(sc)
523	struct ti_softc		*sc;
524{
525	struct ti_event_desc	*e;
526
527	if (sc->ti_rdata->ti_event_ring == NULL)
528		return;
529
530	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
531		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
532		switch(e->ti_event) {
533		case TI_EV_LINKSTAT_CHANGED:
534			sc->ti_linkstat = e->ti_code;
535			if (e->ti_code == TI_EV_CODE_LINK_UP)
536				printf("ti%d: 10/100 link up\n", sc->ti_unit);
537			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
538				printf("ti%d: gigabit link up\n", sc->ti_unit);
539			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
540				printf("ti%d: link down\n", sc->ti_unit);
541			break;
542		case TI_EV_ERROR:
543			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
544				printf("ti%d: invalid command\n", sc->ti_unit);
545			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
546				printf("ti%d: unknown command\n", sc->ti_unit);
547			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
548				printf("ti%d: bad config data\n", sc->ti_unit);
549			break;
550		case TI_EV_FIRMWARE_UP:
551			ti_init2(sc);
552			break;
553		case TI_EV_STATS_UPDATED:
554			ti_stats_update(sc);
555			break;
556		case TI_EV_RESET_JUMBO_RING:
557		case TI_EV_MCAST_UPDATED:
558			/* Who cares. */
559			break;
560		default:
561			printf("ti%d: unknown event: %d\n",
562			    sc->ti_unit, e->ti_event);
563			break;
564		}
565		/* Advance the consumer index. */
566		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
567		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
568	}
569
570	return;
571}
572
573/*
574 * Memory management for the jumbo receive ring is a pain in the
575 * butt. We need to allocate at least 9018 bytes of space per frame,
576 * _and_ it has to be contiguous (unless you use the extended
577 * jumbo descriptor format). Using malloc() all the time won't
578 * work: malloc() allocates memory in powers of two, which means we
579 * would end up wasting a considerable amount of space by allocating
580 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
581 * to do our own memory management.
582 *
583 * The driver needs to allocate a contiguous chunk of memory at boot
584 * time. We then chop this up ourselves into 9K pieces and use them
585 * as external mbuf storage.
586 *
587 * One issue here is how much memory to allocate. The jumbo ring has
588 * 256 slots in it, but at 9K per slot than can consume over 2MB of
589 * RAM. This is a bit much, especially considering we also need
590 * RAM for the standard ring and mini ring (on the Tigon 2). To
591 * save space, we only actually allocate enough memory for 64 slots
592 * by default, which works out to between 500 and 600K. This can
593 * be tuned by changing a #define in if_tireg.h.
594 */
595
596static int ti_alloc_jumbo_mem(sc)
597	struct ti_softc		*sc;
598{
599	caddr_t			ptr;
600	register int		i;
601	struct ti_jpool_entry   *entry;
602
603	/* Grab a big chunk o' storage. */
604	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
605		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
606
607	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
608		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
609		return(ENOBUFS);
610	}
611
612	SLIST_INIT(&sc->ti_jfree_listhead);
613	SLIST_INIT(&sc->ti_jinuse_listhead);
614
615	/*
616	 * Now divide it up into 9K pieces and save the addresses
617	 * in an array.
618	 */
619	ptr = sc->ti_cdata.ti_jumbo_buf;
620	for (i = 0; i < TI_JSLOTS; i++) {
621		sc->ti_cdata.ti_jslots[i] = ptr;
622		ptr += TI_JLEN;
623		entry = malloc(sizeof(struct ti_jpool_entry),
624			       M_DEVBUF, M_NOWAIT);
625		if (entry == NULL) {
626			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
627			           M_DEVBUF);
628			sc->ti_cdata.ti_jumbo_buf = NULL;
629			printf("ti%d: no memory for jumbo "
630			    "buffer queue!\n", sc->ti_unit);
631			return(ENOBUFS);
632		}
633		entry->slot = i;
634		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
635	}
636
637	return(0);
638}
639
640/*
641 * Allocate a jumbo buffer.
642 */
643static void *ti_jalloc(sc)
644	struct ti_softc		*sc;
645{
646	struct ti_jpool_entry   *entry;
647
648	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
649
650	if (entry == NULL) {
651		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
652		return(NULL);
653	}
654
655	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
656	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
657	return(sc->ti_cdata.ti_jslots[entry->slot]);
658}
659
660/*
661 * Release a jumbo buffer.
662 */
663static void ti_jfree(buf, args)
664	caddr_t			buf;
665	void			*args;
666{
667	struct ti_softc		*sc;
668	int		        i;
669	struct ti_jpool_entry   *entry;
670
671	/* Extract the softc struct pointer. */
672	sc = (struct ti_softc *)args;
673
674	if (sc == NULL)
675		panic("ti_jfree: didn't get softc pointer!");
676
677	/* calculate the slot this buffer belongs to */
678	i = ((vm_offset_t)buf
679	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
680
681	if ((i < 0) || (i >= TI_JSLOTS))
682		panic("ti_jfree: asked to free buffer that we don't manage!");
683
684	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
685	if (entry == NULL)
686		panic("ti_jfree: buffer not in use!");
687	entry->slot = i;
688	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
689	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
690
691	return;
692}
693
694
695/*
696 * Intialize a standard receive ring descriptor.
697 */
698static int ti_newbuf_std(sc, i, m)
699	struct ti_softc		*sc;
700	int			i;
701	struct mbuf		*m;
702{
703	struct mbuf		*m_new = NULL;
704	struct ti_rx_desc	*r;
705
706	if (m == NULL) {
707		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
708		if (m_new == NULL) {
709			printf("ti%d: mbuf allocation failed "
710			    "-- packet dropped!\n", sc->ti_unit);
711			return(ENOBUFS);
712		}
713
714		MCLGET(m_new, M_DONTWAIT);
715		if (!(m_new->m_flags & M_EXT)) {
716			printf("ti%d: cluster allocation failed "
717			    "-- packet dropped!\n", sc->ti_unit);
718			m_freem(m_new);
719			return(ENOBUFS);
720		}
721		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
722	} else {
723		m_new = m;
724		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
725		m_new->m_data = m_new->m_ext.ext_buf;
726	}
727
728	m_adj(m_new, ETHER_ALIGN);
729	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
730	r = &sc->ti_rdata->ti_rx_std_ring[i];
731	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
732	r->ti_type = TI_BDTYPE_RECV_BD;
733	r->ti_flags = 0;
734	if (sc->arpcom.ac_if.if_hwassist)
735		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
736	r->ti_len = m_new->m_len;
737	r->ti_idx = i;
738
739	return(0);
740}
741
742/*
743 * Intialize a mini receive ring descriptor. This only applies to
744 * the Tigon 2.
745 */
746static int ti_newbuf_mini(sc, i, m)
747	struct ti_softc		*sc;
748	int			i;
749	struct mbuf		*m;
750{
751	struct mbuf		*m_new = NULL;
752	struct ti_rx_desc	*r;
753
754	if (m == NULL) {
755		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
756		if (m_new == NULL) {
757			printf("ti%d: mbuf allocation failed "
758			    "-- packet dropped!\n", sc->ti_unit);
759			return(ENOBUFS);
760		}
761		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
762	} else {
763		m_new = m;
764		m_new->m_data = m_new->m_pktdat;
765		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
766	}
767
768	m_adj(m_new, ETHER_ALIGN);
769	r = &sc->ti_rdata->ti_rx_mini_ring[i];
770	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
771	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
772	r->ti_type = TI_BDTYPE_RECV_BD;
773	r->ti_flags = TI_BDFLAG_MINI_RING;
774	if (sc->arpcom.ac_if.if_hwassist)
775		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
776	r->ti_len = m_new->m_len;
777	r->ti_idx = i;
778
779	return(0);
780}
781
782/*
783 * Initialize a jumbo receive ring descriptor. This allocates
784 * a jumbo buffer from the pool managed internally by the driver.
785 */
786static int ti_newbuf_jumbo(sc, i, m)
787	struct ti_softc		*sc;
788	int			i;
789	struct mbuf		*m;
790{
791	struct mbuf		*m_new = NULL;
792	struct ti_rx_desc	*r;
793
794	if (m == NULL) {
795		caddr_t			*buf = NULL;
796
797		/* Allocate the mbuf. */
798		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
799		if (m_new == NULL) {
800			printf("ti%d: mbuf allocation failed "
801			    "-- packet dropped!\n", sc->ti_unit);
802			return(ENOBUFS);
803		}
804
805		/* Allocate the jumbo buffer */
806		buf = ti_jalloc(sc);
807		if (buf == NULL) {
808			m_freem(m_new);
809			printf("ti%d: jumbo allocation failed "
810			    "-- packet dropped!\n", sc->ti_unit);
811			return(ENOBUFS);
812		}
813
814		/* Attach the buffer to the mbuf. */
815		m_new->m_data = (void *) buf;
816		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
817		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
818		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
819	} else {
820		m_new = m;
821		m_new->m_data = m_new->m_ext.ext_buf;
822		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
823	}
824
825	m_adj(m_new, ETHER_ALIGN);
826	/* Set up the descriptor. */
827	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
828	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
829	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
830	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
831	r->ti_flags = TI_BDFLAG_JUMBO_RING;
832	if (sc->arpcom.ac_if.if_hwassist)
833		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
834	r->ti_len = m_new->m_len;
835	r->ti_idx = i;
836
837	return(0);
838}
839
840/*
841 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
842 * that's 1MB or memory, which is a lot. For now, we fill only the first
843 * 256 ring entries and hope that our CPU is fast enough to keep up with
844 * the NIC.
845 */
846static int ti_init_rx_ring_std(sc)
847	struct ti_softc		*sc;
848{
849	register int		i;
850	struct ti_cmd_desc	cmd;
851
852	for (i = 0; i < TI_SSLOTS; i++) {
853		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
854			return(ENOBUFS);
855	};
856
857	TI_UPDATE_STDPROD(sc, i - 1);
858	sc->ti_std = i - 1;
859
860	return(0);
861}
862
863static void ti_free_rx_ring_std(sc)
864	struct ti_softc		*sc;
865{
866	register int		i;
867
868	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
869		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
870			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
871			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
872		}
873		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
874		    sizeof(struct ti_rx_desc));
875	}
876
877	return;
878}
879
880static int ti_init_rx_ring_jumbo(sc)
881	struct ti_softc		*sc;
882{
883	register int		i;
884	struct ti_cmd_desc	cmd;
885
886	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
887		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
888			return(ENOBUFS);
889	};
890
891	TI_UPDATE_JUMBOPROD(sc, i - 1);
892	sc->ti_jumbo = i - 1;
893
894	return(0);
895}
896
897static void ti_free_rx_ring_jumbo(sc)
898	struct ti_softc		*sc;
899{
900	register int		i;
901
902	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
903		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
904			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
905			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
906		}
907		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
908		    sizeof(struct ti_rx_desc));
909	}
910
911	return;
912}
913
914static int ti_init_rx_ring_mini(sc)
915	struct ti_softc		*sc;
916{
917	register int		i;
918
919	for (i = 0; i < TI_MSLOTS; i++) {
920		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
921			return(ENOBUFS);
922	};
923
924	TI_UPDATE_MINIPROD(sc, i - 1);
925	sc->ti_mini = i - 1;
926
927	return(0);
928}
929
930static void ti_free_rx_ring_mini(sc)
931	struct ti_softc		*sc;
932{
933	register int		i;
934
935	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
936		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
937			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
938			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
939		}
940		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
941		    sizeof(struct ti_rx_desc));
942	}
943
944	return;
945}
946
947static void ti_free_tx_ring(sc)
948	struct ti_softc		*sc;
949{
950	register int		i;
951
952	if (sc->ti_rdata->ti_tx_ring == NULL)
953		return;
954
955	for (i = 0; i < TI_TX_RING_CNT; i++) {
956		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
957			m_freem(sc->ti_cdata.ti_tx_chain[i]);
958			sc->ti_cdata.ti_tx_chain[i] = NULL;
959		}
960		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
961		    sizeof(struct ti_tx_desc));
962	}
963
964	return;
965}
966
967static int ti_init_tx_ring(sc)
968	struct ti_softc		*sc;
969{
970	sc->ti_txcnt = 0;
971	sc->ti_tx_saved_considx = 0;
972	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
973	return(0);
974}
975
976/*
977 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
978 * but we have to support the old way too so that Tigon 1 cards will
979 * work.
980 */
981void ti_add_mcast(sc, addr)
982	struct ti_softc		*sc;
983	struct ether_addr	*addr;
984{
985	struct ti_cmd_desc	cmd;
986	u_int16_t		*m;
987	u_int32_t		ext[2] = {0, 0};
988
989	m = (u_int16_t *)&addr->octet[0];
990
991	switch(sc->ti_hwrev) {
992	case TI_HWREV_TIGON:
993		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
994		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
995		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
996		break;
997	case TI_HWREV_TIGON_II:
998		ext[0] = htons(m[0]);
999		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1000		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1001		break;
1002	default:
1003		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1004		break;
1005	}
1006
1007	return;
1008}
1009
1010void ti_del_mcast(sc, addr)
1011	struct ti_softc		*sc;
1012	struct ether_addr	*addr;
1013{
1014	struct ti_cmd_desc	cmd;
1015	u_int16_t		*m;
1016	u_int32_t		ext[2] = {0, 0};
1017
1018	m = (u_int16_t *)&addr->octet[0];
1019
1020	switch(sc->ti_hwrev) {
1021	case TI_HWREV_TIGON:
1022		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1023		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1024		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1025		break;
1026	case TI_HWREV_TIGON_II:
1027		ext[0] = htons(m[0]);
1028		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1029		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1030		break;
1031	default:
1032		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1033		break;
1034	}
1035
1036	return;
1037}
1038
1039/*
1040 * Configure the Tigon's multicast address filter.
1041 *
1042 * The actual multicast table management is a bit of a pain, thanks to
1043 * slight brain damage on the part of both Alteon and us. With our
1044 * multicast code, we are only alerted when the multicast address table
1045 * changes and at that point we only have the current list of addresses:
1046 * we only know the current state, not the previous state, so we don't
1047 * actually know what addresses were removed or added. The firmware has
1048 * state, but we can't get our grubby mits on it, and there is no 'delete
1049 * all multicast addresses' command. Hence, we have to maintain our own
1050 * state so we know what addresses have been programmed into the NIC at
1051 * any given time.
1052 */
1053static void ti_setmulti(sc)
1054	struct ti_softc		*sc;
1055{
1056	struct ifnet		*ifp;
1057	struct ifmultiaddr	*ifma;
1058	struct ti_cmd_desc	cmd;
1059	struct ti_mc_entry	*mc;
1060	u_int32_t		intrs;
1061
1062	ifp = &sc->arpcom.ac_if;
1063
1064	if (ifp->if_flags & IFF_ALLMULTI) {
1065		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1066		return;
1067	} else {
1068		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1069	}
1070
1071	/* Disable interrupts. */
1072	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1073	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1074
1075	/* First, zot all the existing filters. */
1076	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1077		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1078		ti_del_mcast(sc, &mc->mc_addr);
1079		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1080		free(mc, M_DEVBUF);
1081	}
1082
1083	/* Now program new ones. */
1084	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1085		if (ifma->ifma_addr->sa_family != AF_LINK)
1086			continue;
1087		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1088		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1089		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1090		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1091		ti_add_mcast(sc, &mc->mc_addr);
1092	}
1093
1094	/* Re-enable interrupts. */
1095	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1096
1097	return;
1098}
1099
1100/*
1101 * Check to see if the BIOS has configured us for a 64 bit slot when
1102 * we aren't actually in one. If we detect this condition, we can work
1103 * around it on the Tigon 2 by setting a bit in the PCI state register,
1104 * but for the Tigon 1 we must give up and abort the interface attach.
1105 */
1106static int ti_64bitslot_war(sc)
1107	struct ti_softc		*sc;
1108{
1109	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1110		CSR_WRITE_4(sc, 0x600, 0);
1111		CSR_WRITE_4(sc, 0x604, 0);
1112		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1113		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1114			if (sc->ti_hwrev == TI_HWREV_TIGON)
1115				return(EINVAL);
1116			else {
1117				TI_SETBIT(sc, TI_PCI_STATE,
1118				    TI_PCISTATE_32BIT_BUS);
1119				return(0);
1120			}
1121		}
1122	}
1123
1124	return(0);
1125}
1126
1127/*
1128 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1129 * self-test results.
1130 */
1131static int ti_chipinit(sc)
1132	struct ti_softc		*sc;
1133{
1134	u_int32_t		cacheline;
1135	u_int32_t		pci_writemax = 0;
1136
1137	/* Initialize link to down state. */
1138	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1139
1140	sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1141
1142	/* Set endianness before we access any non-PCI registers. */
1143#if BYTE_ORDER == BIG_ENDIAN
1144	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1145	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1146#else
1147	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1148	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1149#endif
1150
1151	/* Check the ROM failed bit to see if self-tests passed. */
1152	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1153		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1154		return(ENODEV);
1155	}
1156
1157	/* Halt the CPU. */
1158	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1159
1160	/* Figure out the hardware revision. */
1161	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1162	case TI_REV_TIGON_I:
1163		sc->ti_hwrev = TI_HWREV_TIGON;
1164		break;
1165	case TI_REV_TIGON_II:
1166		sc->ti_hwrev = TI_HWREV_TIGON_II;
1167		break;
1168	default:
1169		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1170		return(ENODEV);
1171	}
1172
1173	/* Do special setup for Tigon 2. */
1174	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1175		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1176		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1177		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1178	}
1179
1180	/* Set up the PCI state register. */
1181	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1182	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1183		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1184	}
1185
1186	/* Clear the read/write max DMA parameters. */
1187	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1188	    TI_PCISTATE_READ_MAXDMA));
1189
1190	/* Get cache line size. */
1191	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1192
1193	/*
1194	 * If the system has set enabled the PCI memory write
1195	 * and invalidate command in the command register, set
1196	 * the write max parameter accordingly. This is necessary
1197	 * to use MWI with the Tigon 2.
1198	 */
1199	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1200		switch(cacheline) {
1201		case 1:
1202		case 4:
1203		case 8:
1204		case 16:
1205		case 32:
1206		case 64:
1207			break;
1208		default:
1209		/* Disable PCI memory write and invalidate. */
1210			if (bootverbose)
1211				printf("ti%d: cache line size %d not "
1212				    "supported; disabling PCI MWI\n",
1213				    sc->ti_unit, cacheline);
1214			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1215			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1216			break;
1217		}
1218	}
1219
1220#ifdef __brokenalpha__
1221	/*
1222	 * From the Alteon sample driver:
1223	 * Must insure that we do not cross an 8K (bytes) boundary
1224	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1225	 * restriction on some ALPHA platforms with early revision
1226	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1227	 */
1228	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1229#else
1230	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1231#endif
1232
1233	/* This sets the min dma param all the way up (0xff). */
1234	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1235
1236	/* Configure DMA variables. */
1237#if BYTE_ORDER == BIG_ENDIAN
1238	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1239	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1240	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1241	    TI_OPMODE_DONT_FRAG_JUMBO);
1242#else
1243	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1244	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1245	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1246#endif
1247
1248	/*
1249	 * Only allow 1 DMA channel to be active at a time.
1250	 * I don't think this is a good idea, but without it
1251	 * the firmware racks up lots of nicDmaReadRingFull
1252	 * errors.  This is not compatible with hardware checksums.
1253	 */
1254	if (sc->arpcom.ac_if.if_hwassist == 0)
1255		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1256
1257	/* Recommended settings from Tigon manual. */
1258	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1259	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1260
1261	if (ti_64bitslot_war(sc)) {
1262		printf("ti%d: bios thinks we're in a 64 bit slot, "
1263		    "but we aren't", sc->ti_unit);
1264		return(EINVAL);
1265	}
1266
1267	return(0);
1268}
1269
1270/*
1271 * Initialize the general information block and firmware, and
1272 * start the CPU(s) running.
1273 */
1274static int ti_gibinit(sc)
1275	struct ti_softc		*sc;
1276{
1277	struct ti_rcb		*rcb;
1278	int			i;
1279	struct ifnet		*ifp;
1280
1281	ifp = &sc->arpcom.ac_if;
1282
1283	/* Disable interrupts for now. */
1284	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1285
1286	/* Tell the chip where to find the general information block. */
1287	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1288	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1289
1290	/* Load the firmware into SRAM. */
1291	ti_loadfw(sc);
1292
1293	/* Set up the contents of the general info and ring control blocks. */
1294
1295	/* Set up the event ring and producer pointer. */
1296	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1297
1298	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1299	rcb->ti_flags = 0;
1300	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1301	    vtophys(&sc->ti_ev_prodidx);
1302	sc->ti_ev_prodidx.ti_idx = 0;
1303	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1304	sc->ti_ev_saved_considx = 0;
1305
1306	/* Set up the command ring and producer mailbox. */
1307	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1308
1309	sc->ti_rdata->ti_cmd_ring =
1310	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1311	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1312	rcb->ti_flags = 0;
1313	rcb->ti_max_len = 0;
1314	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1315		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1316	}
1317	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1318	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1319	sc->ti_cmd_saved_prodidx = 0;
1320
1321	/*
1322	 * Assign the address of the stats refresh buffer.
1323	 * We re-use the current stats buffer for this to
1324	 * conserve memory.
1325	 */
1326	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1327	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1328
1329	/* Set up the standard receive ring. */
1330	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1331	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1332	rcb->ti_max_len = TI_FRAMELEN;
1333	rcb->ti_flags = 0;
1334	if (sc->arpcom.ac_if.if_hwassist)
1335		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1336		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1337#if NVLAN > 0
1338	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1339#endif
1340
1341	/* Set up the jumbo receive ring. */
1342	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1343	TI_HOSTADDR(rcb->ti_hostaddr) =
1344	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1345	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1346	rcb->ti_flags = 0;
1347	if (sc->arpcom.ac_if.if_hwassist)
1348		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1349		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1350#if NVLAN > 0
1351	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1352#endif
1353
1354	/*
1355	 * Set up the mini ring. Only activated on the
1356	 * Tigon 2 but the slot in the config block is
1357	 * still there on the Tigon 1.
1358	 */
1359	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1360	TI_HOSTADDR(rcb->ti_hostaddr) =
1361	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1362	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1363	if (sc->ti_hwrev == TI_HWREV_TIGON)
1364		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1365	else
1366		rcb->ti_flags = 0;
1367	if (sc->arpcom.ac_if.if_hwassist)
1368		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1369		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1370#if NVLAN > 0
1371	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1372#endif
1373
1374	/*
1375	 * Set up the receive return ring.
1376	 */
1377	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1378	TI_HOSTADDR(rcb->ti_hostaddr) =
1379	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1380	rcb->ti_flags = 0;
1381	rcb->ti_max_len = TI_RETURN_RING_CNT;
1382	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1383	    vtophys(&sc->ti_return_prodidx);
1384
1385	/*
1386	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1387	 * of putting the transmit ring in the host's address space and
1388	 * letting the chip DMA it instead of leaving the ring in the NIC's
1389	 * memory and accessing it through the shared memory region. We
1390	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1391	 * so we have to revert to the shared memory scheme if we detect
1392	 * a Tigon 1 chip.
1393	 */
1394	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1395	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1396		sc->ti_rdata->ti_tx_ring_nic =
1397		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1398	}
1399	bzero((char *)sc->ti_rdata->ti_tx_ring,
1400	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1401	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1402	if (sc->ti_hwrev == TI_HWREV_TIGON)
1403		rcb->ti_flags = 0;
1404	else
1405		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1406#if NVLAN > 0
1407	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1408#endif
1409	if (sc->arpcom.ac_if.if_hwassist)
1410		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1411		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1412	rcb->ti_max_len = TI_TX_RING_CNT;
1413	if (sc->ti_hwrev == TI_HWREV_TIGON)
1414		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1415	else
1416		TI_HOSTADDR(rcb->ti_hostaddr) =
1417		    vtophys(&sc->ti_rdata->ti_tx_ring);
1418	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1419	    vtophys(&sc->ti_tx_considx);
1420
1421	/* Set up tuneables */
1422	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1423		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1424		    (sc->ti_rx_coal_ticks / 10));
1425	else
1426		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1427	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1428	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1429	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1430	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1431	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1432
1433	/* Turn interrupts on. */
1434	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1435	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1436
1437	/* Start CPU. */
1438	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1439
1440	return(0);
1441}
1442
1443/*
1444 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1445 * against our list and return its name if we find a match.
1446 */
1447static int ti_probe(dev)
1448	device_t		dev;
1449{
1450	struct ti_type		*t;
1451
1452	t = ti_devs;
1453
1454	while(t->ti_name != NULL) {
1455		if ((pci_get_vendor(dev) == t->ti_vid) &&
1456		    (pci_get_device(dev) == t->ti_did)) {
1457			device_set_desc(dev, t->ti_name);
1458			return(0);
1459		}
1460		t++;
1461	}
1462
1463	return(ENXIO);
1464}
1465
1466static int ti_attach(dev)
1467	device_t		dev;
1468{
1469	u_int32_t		command;
1470	struct ifnet		*ifp;
1471	struct ti_softc		*sc;
1472	int			unit, error = 0, rid;
1473
1474	sc = device_get_softc(dev);
1475	unit = device_get_unit(dev);
1476	bzero(sc, sizeof(struct ti_softc));
1477
1478	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
1479	TI_LOCK(sc);
1480
1481	/*
1482	 * Map control/status registers.
1483	 */
1484	pci_enable_busmaster(dev);
1485	pci_enable_io(dev, PCIM_CMD_MEMEN);
1486	command = pci_read_config(dev, PCIR_COMMAND, 4);
1487
1488	if (!(command & PCIM_CMD_MEMEN)) {
1489		printf("ti%d: failed to enable memory mapping!\n", unit);
1490		error = ENXIO;
1491		goto fail;
1492	}
1493
1494	rid = TI_PCI_LOMEM;
1495	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1496	    0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
1497
1498	if (sc->ti_res == NULL) {
1499		printf ("ti%d: couldn't map memory\n", unit);
1500		error = ENXIO;
1501		goto fail;
1502	}
1503
1504	sc->ti_btag = rman_get_bustag(sc->ti_res);
1505	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1506	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1507
1508	/* Allocate interrupt */
1509	rid = 0;
1510
1511	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1512	    RF_SHAREABLE | RF_ACTIVE);
1513
1514	if (sc->ti_irq == NULL) {
1515		printf("ti%d: couldn't map interrupt\n", unit);
1516		error = ENXIO;
1517		goto fail;
1518	}
1519
1520	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1521	   ti_intr, sc, &sc->ti_intrhand);
1522
1523	if (error) {
1524		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1525		bus_release_resource(dev, SYS_RES_MEMORY,
1526		    TI_PCI_LOMEM, sc->ti_res);
1527		printf("ti%d: couldn't set up irq\n", unit);
1528		goto fail;
1529	}
1530
1531	sc->ti_unit = unit;
1532
1533	if (ti_chipinit(sc)) {
1534		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1535		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1536		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1537		bus_release_resource(dev, SYS_RES_MEMORY,
1538		    TI_PCI_LOMEM, sc->ti_res);
1539		error = ENXIO;
1540		goto fail;
1541	}
1542
1543	/* Zero out the NIC's on-board SRAM. */
1544	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1545
1546	/* Init again -- zeroing memory may have clobbered some registers. */
1547	if (ti_chipinit(sc)) {
1548		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1549		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1550		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1551		bus_release_resource(dev, SYS_RES_MEMORY,
1552		    TI_PCI_LOMEM, sc->ti_res);
1553		error = ENXIO;
1554		goto fail;
1555	}
1556
1557	/*
1558	 * Get station address from the EEPROM. Note: the manual states
1559	 * that the MAC address is at offset 0x8c, however the data is
1560	 * stored as two longwords (since that's how it's loaded into
1561	 * the NIC). This means the MAC address is actually preceded
1562	 * by two zero bytes. We need to skip over those.
1563	 */
1564	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1565				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1566		printf("ti%d: failed to read station address\n", unit);
1567		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1568		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1569		bus_release_resource(dev, SYS_RES_MEMORY,
1570		    TI_PCI_LOMEM, sc->ti_res);
1571		error = ENXIO;
1572		goto fail;
1573	}
1574
1575	/*
1576	 * A Tigon chip was detected. Inform the world.
1577	 */
1578	printf("ti%d: Ethernet address: %6D\n", unit,
1579				sc->arpcom.ac_enaddr, ":");
1580
1581	/* Allocate the general information block and ring buffers. */
1582	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1583	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1584
1585	if (sc->ti_rdata == NULL) {
1586		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1587		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1588		bus_release_resource(dev, SYS_RES_MEMORY,
1589		    TI_PCI_LOMEM, sc->ti_res);
1590		error = ENXIO;
1591		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1592		goto fail;
1593	}
1594
1595	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1596
1597	/* Try to allocate memory for jumbo buffers. */
1598	if (ti_alloc_jumbo_mem(sc)) {
1599		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1600		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1601		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1602		bus_release_resource(dev, SYS_RES_MEMORY,
1603		    TI_PCI_LOMEM, sc->ti_res);
1604		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
1605		    M_DEVBUF);
1606		error = ENXIO;
1607		goto fail;
1608	}
1609
1610	/*
1611	 * We really need a better way to tell a 1000baseTX card
1612	 * from a 1000baseSX one, since in theory there could be
1613	 * OEMed 1000baseTX cards from lame vendors who aren't
1614	 * clever enough to change the PCI ID. For the moment
1615	 * though, the AceNIC is the only copper card available.
1616	 */
1617	if (pci_get_vendor(dev) == ALT_VENDORID &&
1618	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1619		sc->ti_copper = 1;
1620	/* Ok, it's not the only copper card available. */
1621	if (pci_get_vendor(dev) == NG_VENDORID &&
1622	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1623		sc->ti_copper = 1;
1624
1625	/* Set default tuneable values. */
1626	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1627	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1628	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1629	sc->ti_rx_max_coal_bds = 64;
1630	sc->ti_tx_max_coal_bds = 128;
1631	sc->ti_tx_buf_ratio = 21;
1632
1633	/* Set up ifnet structure */
1634	ifp = &sc->arpcom.ac_if;
1635	ifp->if_softc = sc;
1636	ifp->if_unit = sc->ti_unit;
1637	ifp->if_name = "ti";
1638	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1639	ifp->if_ioctl = ti_ioctl;
1640	ifp->if_output = ether_output;
1641	ifp->if_start = ti_start;
1642	ifp->if_watchdog = ti_watchdog;
1643	ifp->if_init = ti_init;
1644	ifp->if_mtu = ETHERMTU;
1645	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1646
1647	/* Set up ifmedia support. */
1648	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1649	if (sc->ti_copper) {
1650		/*
1651		 * Copper cards allow manual 10/100 mode selection,
1652		 * but not manual 1000baseTX mode selection. Why?
1653		 * Becuase currently there's no way to specify the
1654		 * master/slave setting through the firmware interface,
1655		 * so Alteon decided to just bag it and handle it
1656		 * via autonegotiation.
1657		 */
1658		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1659		ifmedia_add(&sc->ifmedia,
1660		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1661		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1662		ifmedia_add(&sc->ifmedia,
1663		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1664		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
1665		ifmedia_add(&sc->ifmedia,
1666		    IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
1667	} else {
1668		/* Fiber cards don't support 10/100 modes. */
1669		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1670		ifmedia_add(&sc->ifmedia,
1671		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1672	}
1673	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1674	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1675
1676	/*
1677	 * Call MI attach routine.
1678	 */
1679	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1680	TI_UNLOCK(sc);
1681	return(0);
1682
1683fail:
1684	TI_UNLOCK(sc);
1685	mtx_destroy(&sc->ti_mtx);
1686	return(error);
1687}
1688
1689static int ti_detach(dev)
1690	device_t		dev;
1691{
1692	struct ti_softc		*sc;
1693	struct ifnet		*ifp;
1694
1695
1696	sc = device_get_softc(dev);
1697	TI_LOCK(sc);
1698	ifp = &sc->arpcom.ac_if;
1699
1700	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1701	ti_stop(sc);
1702
1703	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1704	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1705	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1706
1707	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1708	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1709	ifmedia_removeall(&sc->ifmedia);
1710
1711	TI_UNLOCK(sc);
1712	mtx_destroy(&sc->ti_mtx);
1713
1714	return(0);
1715}
1716
1717/*
1718 * Frame reception handling. This is called if there's a frame
1719 * on the receive return list.
1720 *
1721 * Note: we have to be able to handle three possibilities here:
1722 * 1) the frame is from the mini receive ring (can only happen)
1723 *    on Tigon 2 boards)
1724 * 2) the frame is from the jumbo recieve ring
1725 * 3) the frame is from the standard receive ring
1726 */
1727
1728static void ti_rxeof(sc)
1729	struct ti_softc		*sc;
1730{
1731	struct ifnet		*ifp;
1732	struct ti_cmd_desc	cmd;
1733
1734	ifp = &sc->arpcom.ac_if;
1735
1736	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1737		struct ti_rx_desc	*cur_rx;
1738		u_int32_t		rxidx;
1739		struct ether_header	*eh;
1740		struct mbuf		*m = NULL;
1741#if NVLAN > 0
1742		u_int16_t		vlan_tag = 0;
1743		int			have_tag = 0;
1744#endif
1745
1746		cur_rx =
1747		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1748		rxidx = cur_rx->ti_idx;
1749		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1750
1751#if NVLAN > 0
1752		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1753			have_tag = 1;
1754			vlan_tag = cur_rx->ti_vlan_tag;
1755		}
1756#endif
1757
1758		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1759			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1760			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1761			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1762			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1763				ifp->if_ierrors++;
1764				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1765				continue;
1766			}
1767			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1768				ifp->if_ierrors++;
1769				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1770				continue;
1771			}
1772		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1773			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1774			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1775			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1776			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1777				ifp->if_ierrors++;
1778				ti_newbuf_mini(sc, sc->ti_mini, m);
1779				continue;
1780			}
1781			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1782				ifp->if_ierrors++;
1783				ti_newbuf_mini(sc, sc->ti_mini, m);
1784				continue;
1785			}
1786		} else {
1787			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1788			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1789			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1790			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1791				ifp->if_ierrors++;
1792				ti_newbuf_std(sc, sc->ti_std, m);
1793				continue;
1794			}
1795			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1796				ifp->if_ierrors++;
1797				ti_newbuf_std(sc, sc->ti_std, m);
1798				continue;
1799			}
1800		}
1801
1802		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1803		ifp->if_ipackets++;
1804		eh = mtod(m, struct ether_header *);
1805		m->m_pkthdr.rcvif = ifp;
1806
1807		/* Remove header from mbuf and pass it on. */
1808		m_adj(m, sizeof(struct ether_header));
1809
1810		if (ifp->if_hwassist) {
1811			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1812			    CSUM_DATA_VALID;
1813			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1814				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1815			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1816		}
1817
1818#if NVLAN > 0
1819		/*
1820		 * If we received a packet with a vlan tag, pass it
1821		 * to vlan_input() instead of ether_input().
1822		 */
1823		if (have_tag) {
1824			vlan_input_tag(eh, m, vlan_tag);
1825			have_tag = vlan_tag = 0;
1826			continue;
1827		}
1828#endif
1829		ether_input(ifp, eh, m);
1830	}
1831
1832	/* Only necessary on the Tigon 1. */
1833	if (sc->ti_hwrev == TI_HWREV_TIGON)
1834		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1835		    sc->ti_rx_saved_considx);
1836
1837	TI_UPDATE_STDPROD(sc, sc->ti_std);
1838	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1839	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1840
1841	return;
1842}
1843
1844static void ti_txeof(sc)
1845	struct ti_softc		*sc;
1846{
1847	struct ti_tx_desc	*cur_tx = NULL;
1848	struct ifnet		*ifp;
1849
1850	ifp = &sc->arpcom.ac_if;
1851
1852	/*
1853	 * Go through our tx ring and free mbufs for those
1854	 * frames that have been sent.
1855	 */
1856	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1857		u_int32_t		idx = 0;
1858
1859		idx = sc->ti_tx_saved_considx;
1860		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1861			if (idx > 383)
1862				CSR_WRITE_4(sc, TI_WINBASE,
1863				    TI_TX_RING_BASE + 6144);
1864			else if (idx > 255)
1865				CSR_WRITE_4(sc, TI_WINBASE,
1866				    TI_TX_RING_BASE + 4096);
1867			else if (idx > 127)
1868				CSR_WRITE_4(sc, TI_WINBASE,
1869				    TI_TX_RING_BASE + 2048);
1870			else
1871				CSR_WRITE_4(sc, TI_WINBASE,
1872				    TI_TX_RING_BASE);
1873			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1874		} else
1875			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1876		if (cur_tx->ti_flags & TI_BDFLAG_END)
1877			ifp->if_opackets++;
1878		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1879			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1880			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1881		}
1882		sc->ti_txcnt--;
1883		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1884		ifp->if_timer = 0;
1885	}
1886
1887	if (cur_tx != NULL)
1888		ifp->if_flags &= ~IFF_OACTIVE;
1889
1890	return;
1891}
1892
1893static void ti_intr(xsc)
1894	void			*xsc;
1895{
1896	struct ti_softc		*sc;
1897	struct ifnet		*ifp;
1898
1899	sc = xsc;
1900	TI_LOCK(sc);
1901	ifp = &sc->arpcom.ac_if;
1902
1903#ifdef notdef
1904	/* Avoid this for now -- checking this register is expensive. */
1905	/* Make sure this is really our interrupt. */
1906	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
1907		TI_UNLOCK(sc);
1908		return;
1909	}
1910#endif
1911
1912	/* Ack interrupt and stop others from occuring. */
1913	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1914
1915	if (ifp->if_flags & IFF_RUNNING) {
1916		/* Check RX return ring producer/consumer */
1917		ti_rxeof(sc);
1918
1919		/* Check TX ring producer/consumer */
1920		ti_txeof(sc);
1921	}
1922
1923	ti_handle_events(sc);
1924
1925	/* Re-enable interrupts. */
1926	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1927
1928	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1929		ti_start(ifp);
1930
1931	TI_UNLOCK(sc);
1932
1933	return;
1934}
1935
1936static void ti_stats_update(sc)
1937	struct ti_softc		*sc;
1938{
1939	struct ifnet		*ifp;
1940
1941	ifp = &sc->arpcom.ac_if;
1942
1943	ifp->if_collisions +=
1944	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1945	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
1946	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
1947	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
1948	   ifp->if_collisions;
1949
1950	return;
1951}
1952
1953/*
1954 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
1955 * pointers to descriptors.
1956 */
1957static int ti_encap(sc, m_head, txidx)
1958	struct ti_softc		*sc;
1959	struct mbuf		*m_head;
1960	u_int32_t		*txidx;
1961{
1962	struct ti_tx_desc	*f = NULL;
1963	struct mbuf		*m;
1964	u_int32_t		frag, cur, cnt = 0;
1965	u_int16_t		csum_flags = 0;
1966#if NVLAN > 0
1967	struct ifvlan		*ifv = NULL;
1968
1969	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1970	    m_head->m_pkthdr.rcvif != NULL &&
1971	    m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
1972		ifv = m_head->m_pkthdr.rcvif->if_softc;
1973#endif
1974
1975	m = m_head;
1976	cur = frag = *txidx;
1977
1978	if (m_head->m_pkthdr.csum_flags) {
1979		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1980			csum_flags |= TI_BDFLAG_IP_CKSUM;
1981		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1982			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
1983		if (m_head->m_flags & M_LASTFRAG)
1984			csum_flags |= TI_BDFLAG_IP_FRAG_END;
1985		else if (m_head->m_flags & M_FRAG)
1986			csum_flags |= TI_BDFLAG_IP_FRAG;
1987	}
1988	/*
1989 	 * Start packing the mbufs in this chain into
1990	 * the fragment pointers. Stop when we run out
1991 	 * of fragments or hit the end of the mbuf chain.
1992	 */
1993	for (m = m_head; m != NULL; m = m->m_next) {
1994		if (m->m_len != 0) {
1995			if (sc->ti_hwrev == TI_HWREV_TIGON) {
1996				if (frag > 383)
1997					CSR_WRITE_4(sc, TI_WINBASE,
1998					    TI_TX_RING_BASE + 6144);
1999				else if (frag > 255)
2000					CSR_WRITE_4(sc, TI_WINBASE,
2001					    TI_TX_RING_BASE + 4096);
2002				else if (frag > 127)
2003					CSR_WRITE_4(sc, TI_WINBASE,
2004					    TI_TX_RING_BASE + 2048);
2005				else
2006					CSR_WRITE_4(sc, TI_WINBASE,
2007					    TI_TX_RING_BASE);
2008				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2009			} else
2010				f = &sc->ti_rdata->ti_tx_ring[frag];
2011			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2012				break;
2013			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2014			f->ti_len = m->m_len;
2015			f->ti_flags = csum_flags;
2016#if NVLAN > 0
2017			if (ifv != NULL) {
2018				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2019				f->ti_vlan_tag = ifv->ifv_tag;
2020			} else {
2021				f->ti_vlan_tag = 0;
2022			}
2023#endif
2024			/*
2025			 * Sanity check: avoid coming within 16 descriptors
2026			 * of the end of the ring.
2027			 */
2028			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2029				return(ENOBUFS);
2030			cur = frag;
2031			TI_INC(frag, TI_TX_RING_CNT);
2032			cnt++;
2033		}
2034	}
2035
2036	if (m != NULL)
2037		return(ENOBUFS);
2038
2039	if (frag == sc->ti_tx_saved_considx)
2040		return(ENOBUFS);
2041
2042	if (sc->ti_hwrev == TI_HWREV_TIGON)
2043		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2044		    TI_BDFLAG_END;
2045	else
2046		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2047	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2048	sc->ti_txcnt += cnt;
2049
2050	*txidx = frag;
2051
2052	return(0);
2053}
2054
2055/*
2056 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2057 * to the mbuf data regions directly in the transmit descriptors.
2058 */
2059static void ti_start(ifp)
2060	struct ifnet		*ifp;
2061{
2062	struct ti_softc		*sc;
2063	struct mbuf		*m_head = NULL;
2064	u_int32_t		prodidx = 0;
2065
2066	sc = ifp->if_softc;
2067	TI_LOCK(sc);
2068
2069	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2070
2071	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2072		IF_DEQUEUE(&ifp->if_snd, m_head);
2073		if (m_head == NULL)
2074			break;
2075
2076		/*
2077		 * XXX
2078		 * safety overkill.  If this is a fragmented packet chain
2079		 * with delayed TCP/UDP checksums, then only encapsulate
2080		 * it if we have enough descriptors to handle the entire
2081		 * chain at once.
2082		 * (paranoia -- may not actually be needed)
2083		 */
2084		if (m_head->m_flags & M_FIRSTFRAG &&
2085		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2086			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2087			    m_head->m_pkthdr.csum_data + 16) {
2088				IF_PREPEND(&ifp->if_snd, m_head);
2089				ifp->if_flags |= IFF_OACTIVE;
2090				break;
2091			}
2092		}
2093
2094		/*
2095		 * Pack the data into the transmit ring. If we
2096		 * don't have room, set the OACTIVE flag and wait
2097		 * for the NIC to drain the ring.
2098		 */
2099		if (ti_encap(sc, m_head, &prodidx)) {
2100			IF_PREPEND(&ifp->if_snd, m_head);
2101			ifp->if_flags |= IFF_OACTIVE;
2102			break;
2103		}
2104
2105		/*
2106		 * If there's a BPF listener, bounce a copy of this frame
2107		 * to him.
2108		 */
2109		if (ifp->if_bpf)
2110			bpf_mtap(ifp, m_head);
2111	}
2112
2113	/* Transmit */
2114	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2115
2116	/*
2117	 * Set a timeout in case the chip goes out to lunch.
2118	 */
2119	ifp->if_timer = 5;
2120	TI_UNLOCK(sc);
2121
2122	return;
2123}
2124
2125static void ti_init(xsc)
2126	void			*xsc;
2127{
2128	struct ti_softc		*sc = xsc;
2129
2130	/* Cancel pending I/O and flush buffers. */
2131	ti_stop(sc);
2132
2133	TI_LOCK(sc);
2134	/* Init the gen info block, ring control blocks and firmware. */
2135	if (ti_gibinit(sc)) {
2136		printf("ti%d: initialization failure\n", sc->ti_unit);
2137		TI_UNLOCK(sc);
2138		return;
2139	}
2140
2141	TI_UNLOCK(sc);
2142
2143	return;
2144}
2145
2146static void ti_init2(sc)
2147	struct ti_softc		*sc;
2148{
2149	struct ti_cmd_desc	cmd;
2150	struct ifnet		*ifp;
2151	u_int16_t		*m;
2152	struct ifmedia		*ifm;
2153	int			tmp;
2154
2155	ifp = &sc->arpcom.ac_if;
2156
2157	/* Specify MTU and interface index. */
2158	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2159	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2160	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2161	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2162
2163	/* Load our MAC address. */
2164	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2165	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2166	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2167	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2168
2169	/* Enable or disable promiscuous mode as needed. */
2170	if (ifp->if_flags & IFF_PROMISC) {
2171		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2172	} else {
2173		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2174	}
2175
2176	/* Program multicast filter. */
2177	ti_setmulti(sc);
2178
2179	/*
2180	 * If this is a Tigon 1, we should tell the
2181	 * firmware to use software packet filtering.
2182	 */
2183	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2184		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2185	}
2186
2187	/* Init RX ring. */
2188	ti_init_rx_ring_std(sc);
2189
2190	/* Init jumbo RX ring. */
2191	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2192		ti_init_rx_ring_jumbo(sc);
2193
2194	/*
2195	 * If this is a Tigon 2, we can also configure the
2196	 * mini ring.
2197	 */
2198	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2199		ti_init_rx_ring_mini(sc);
2200
2201	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2202	sc->ti_rx_saved_considx = 0;
2203
2204	/* Init TX ring. */
2205	ti_init_tx_ring(sc);
2206
2207	/* Tell firmware we're alive. */
2208	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2209
2210	/* Enable host interrupts. */
2211	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2212
2213	ifp->if_flags |= IFF_RUNNING;
2214	ifp->if_flags &= ~IFF_OACTIVE;
2215
2216	/*
2217	 * Make sure to set media properly. We have to do this
2218	 * here since we have to issue commands in order to set
2219	 * the link negotiation and we can't issue commands until
2220	 * the firmware is running.
2221	 */
2222	ifm = &sc->ifmedia;
2223	tmp = ifm->ifm_media;
2224	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2225	ti_ifmedia_upd(ifp);
2226	ifm->ifm_media = tmp;
2227
2228	return;
2229}
2230
2231/*
2232 * Set media options.
2233 */
2234static int ti_ifmedia_upd(ifp)
2235	struct ifnet		*ifp;
2236{
2237	struct ti_softc		*sc;
2238	struct ifmedia		*ifm;
2239	struct ti_cmd_desc	cmd;
2240
2241	sc = ifp->if_softc;
2242	ifm = &sc->ifmedia;
2243
2244	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2245		return(EINVAL);
2246
2247	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2248	case IFM_AUTO:
2249		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2250		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2251		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2252		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2253		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2254		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2255		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2256		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2257		break;
2258	case IFM_1000_SX:
2259	case IFM_1000_TX:
2260		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2261		    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2262		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2263		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2264			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2265		}
2266		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2267		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2268		break;
2269	case IFM_100_FX:
2270	case IFM_10_FL:
2271	case IFM_100_TX:
2272	case IFM_10_T:
2273		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2274		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2275		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2276		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2277			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2278		} else {
2279			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2280		}
2281		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2282			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2283		} else {
2284			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2285		}
2286		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2287		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2288		break;
2289	}
2290
2291	return(0);
2292}
2293
2294/*
2295 * Report current media status.
2296 */
2297static void ti_ifmedia_sts(ifp, ifmr)
2298	struct ifnet		*ifp;
2299	struct ifmediareq	*ifmr;
2300{
2301	struct ti_softc		*sc;
2302	u_int32_t		media = 0;
2303
2304	sc = ifp->if_softc;
2305
2306	ifmr->ifm_status = IFM_AVALID;
2307	ifmr->ifm_active = IFM_ETHER;
2308
2309	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2310		return;
2311
2312	ifmr->ifm_status |= IFM_ACTIVE;
2313
2314	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2315		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2316		if (sc->ti_copper)
2317			ifmr->ifm_active |= IFM_1000_TX;
2318		else
2319			ifmr->ifm_active |= IFM_1000_SX;
2320		if (media & TI_GLNK_FULL_DUPLEX)
2321			ifmr->ifm_active |= IFM_FDX;
2322		else
2323			ifmr->ifm_active |= IFM_HDX;
2324	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2325		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2326		if (sc->ti_copper) {
2327			if (media & TI_LNK_100MB)
2328				ifmr->ifm_active |= IFM_100_TX;
2329			if (media & TI_LNK_10MB)
2330				ifmr->ifm_active |= IFM_10_T;
2331		} else {
2332			if (media & TI_LNK_100MB)
2333				ifmr->ifm_active |= IFM_100_FX;
2334			if (media & TI_LNK_10MB)
2335				ifmr->ifm_active |= IFM_10_FL;
2336		}
2337		if (media & TI_LNK_FULL_DUPLEX)
2338			ifmr->ifm_active |= IFM_FDX;
2339		if (media & TI_LNK_HALF_DUPLEX)
2340			ifmr->ifm_active |= IFM_HDX;
2341	}
2342
2343	return;
2344}
2345
2346static int ti_ioctl(ifp, command, data)
2347	struct ifnet		*ifp;
2348	u_long			command;
2349	caddr_t			data;
2350{
2351	struct ti_softc		*sc = ifp->if_softc;
2352	struct ifreq		*ifr = (struct ifreq *) data;
2353	int			error = 0;
2354	struct ti_cmd_desc	cmd;
2355
2356	TI_LOCK(sc);
2357
2358	switch(command) {
2359	case SIOCSIFADDR:
2360	case SIOCGIFADDR:
2361		error = ether_ioctl(ifp, command, data);
2362		break;
2363	case SIOCSIFMTU:
2364		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2365			error = EINVAL;
2366		else {
2367			ifp->if_mtu = ifr->ifr_mtu;
2368			ti_init(sc);
2369		}
2370		break;
2371	case SIOCSIFFLAGS:
2372		if (ifp->if_flags & IFF_UP) {
2373			/*
2374			 * If only the state of the PROMISC flag changed,
2375			 * then just use the 'set promisc mode' command
2376			 * instead of reinitializing the entire NIC. Doing
2377			 * a full re-init means reloading the firmware and
2378			 * waiting for it to start up, which may take a
2379			 * second or two.
2380			 */
2381			if (ifp->if_flags & IFF_RUNNING &&
2382			    ifp->if_flags & IFF_PROMISC &&
2383			    !(sc->ti_if_flags & IFF_PROMISC)) {
2384				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2385				    TI_CMD_CODE_PROMISC_ENB, 0);
2386			} else if (ifp->if_flags & IFF_RUNNING &&
2387			    !(ifp->if_flags & IFF_PROMISC) &&
2388			    sc->ti_if_flags & IFF_PROMISC) {
2389				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2390				    TI_CMD_CODE_PROMISC_DIS, 0);
2391			} else
2392				ti_init(sc);
2393		} else {
2394			if (ifp->if_flags & IFF_RUNNING) {
2395				ti_stop(sc);
2396			}
2397		}
2398		sc->ti_if_flags = ifp->if_flags;
2399		error = 0;
2400		break;
2401	case SIOCADDMULTI:
2402	case SIOCDELMULTI:
2403		if (ifp->if_flags & IFF_RUNNING) {
2404			ti_setmulti(sc);
2405			error = 0;
2406		}
2407		break;
2408	case SIOCSIFMEDIA:
2409	case SIOCGIFMEDIA:
2410		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2411		break;
2412	default:
2413		error = EINVAL;
2414		break;
2415	}
2416
2417	TI_UNLOCK(sc);
2418
2419	return(error);
2420}
2421
2422static void ti_watchdog(ifp)
2423	struct ifnet		*ifp;
2424{
2425	struct ti_softc		*sc;
2426
2427	sc = ifp->if_softc;
2428	TI_LOCK(sc);
2429
2430	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2431	ti_stop(sc);
2432	ti_init(sc);
2433
2434	ifp->if_oerrors++;
2435	TI_UNLOCK(sc);
2436
2437	return;
2438}
2439
2440/*
2441 * Stop the adapter and free any mbufs allocated to the
2442 * RX and TX lists.
2443 */
2444static void ti_stop(sc)
2445	struct ti_softc		*sc;
2446{
2447	struct ifnet		*ifp;
2448	struct ti_cmd_desc	cmd;
2449
2450	TI_LOCK(sc);
2451
2452	ifp = &sc->arpcom.ac_if;
2453
2454	/* Disable host interrupts. */
2455	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2456	/*
2457	 * Tell firmware we're shutting down.
2458	 */
2459	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2460
2461	/* Halt and reinitialize. */
2462	ti_chipinit(sc);
2463	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2464	ti_chipinit(sc);
2465
2466	/* Free the RX lists. */
2467	ti_free_rx_ring_std(sc);
2468
2469	/* Free jumbo RX list. */
2470	ti_free_rx_ring_jumbo(sc);
2471
2472	/* Free mini RX list. */
2473	ti_free_rx_ring_mini(sc);
2474
2475	/* Free TX buffers. */
2476	ti_free_tx_ring(sc);
2477
2478	sc->ti_ev_prodidx.ti_idx = 0;
2479	sc->ti_return_prodidx.ti_idx = 0;
2480	sc->ti_tx_considx.ti_idx = 0;
2481	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2482
2483	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2484	TI_UNLOCK(sc);
2485
2486	return;
2487}
2488
2489/*
2490 * Stop all chip I/O so that the kernel's probe routines don't
2491 * get confused by errant DMAs when rebooting.
2492 */
2493static void ti_shutdown(dev)
2494	device_t		dev;
2495{
2496	struct ti_softc		*sc;
2497
2498	sc = device_get_softc(dev);
2499	TI_LOCK(sc);
2500	ti_chipinit(sc);
2501	TI_UNLOCK(sc);
2502
2503	return;
2504}
2505