if_ti.c revision 51446
1169691Skan/*
2169691Skan * Copyright (c) 1997, 1998, 1999
3169691Skan *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4169691Skan *
5169691Skan * Redistribution and use in source and binary forms, with or without
6169691Skan * modification, are permitted provided that the following conditions
7169691Skan * are met:
8169691Skan * 1. Redistributions of source code must retain the above copyright
9169691Skan *    notice, this list of conditions and the following disclaimer.
10169691Skan * 2. Redistributions in binary form must reproduce the above copyright
11169691Skan *    notice, this list of conditions and the following disclaimer in the
12169691Skan *    documentation and/or other materials provided with the distribution.
13169691Skan * 3. All advertising materials mentioning features or use of this software
14169691Skan *    must display the following acknowledgement:
15169691Skan *	This product includes software developed by Bill Paul.
16169691Skan * 4. Neither the name of the author nor the names of any co-contributors
17169691Skan *    may be used to endorse or promote products derived from this software
18169691Skan *    without specific prior written permission.
19169691Skan *
20169691Skan * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21169691Skan * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22169691Skan * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23169691Skan * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24169691Skan * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25169691Skan * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26169691Skan * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27169691Skan * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28169691Skan * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29169691Skan * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30169691Skan * THE POSSIBILITY OF SUCH DAMAGE.
31169691Skan *
32169691Skan * $FreeBSD: head/sys/dev/ti/if_ti.c 51446 1999-09-20 06:50:52Z obrien $
33169691Skan */
34169691Skan
35169691Skan/*
36169691Skan * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37169691Skan * Manuals, sample driver and firmware source kits are available
38169691Skan * from http://www.alteon.com/support/openkits.
39169691Skan *
40169691Skan * Written by Bill Paul <wpaul@ctr.columbia.edu>
41169691Skan * Electrical Engineering Department
42169691Skan * Columbia University, New York City
43169691Skan */
44169691Skan
45169691Skan/*
46169691Skan * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47169691Skan * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48169691Skan * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49169691Skan * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50169691Skan * filtering and jumbo (9014 byte) frames. The hardware is largely
51169691Skan * controlled by firmware, which must be loaded into the NIC during
52169691Skan * initialization.
53169691Skan *
54169691Skan * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55169691Skan * revision, which supports new features such as extended commands,
56169691Skan * extended jumbo receive ring desciptors and a mini receive ring.
57169691Skan *
58169691Skan * Alteon Networks is to be commended for releasing such a vast amount
59169691Skan * of development material for the Tigon NIC without requiring an NDA
60169691Skan * (although they really should have done it a long time ago). With
61169691Skan * any luck, the other vendors will finally wise up and follow Alteon's
62169691Skan * stellar example.
63169691Skan *
64169691Skan * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65169691Skan * this driver by #including it as a C header file. This bloats the
66169691Skan * driver somewhat, but it's the easiest method considering that the
67169691Skan * driver code and firmware code need to be kept in sync. The source
68169691Skan * for the firmware is not provided with the FreeBSD distribution since
69169691Skan * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70169691Skan *
71169691Skan * The following people deserve special thanks:
72169691Skan * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73169691Skan *   for testing
74169691Skan * - Raymond Lee of Netgear, for providing a pair of Netgear
75169691Skan *   GA620 Tigon 2 boards for testing
76169691Skan * - Ulf Zimmermann, for bringing the GA260 to my attention and
77169691Skan *   convincing me to write this driver.
78169691Skan * - Andrew Gallatin for providing FreeBSD/Alpha support.
79169691Skan */
80169691Skan
81169691Skan#include "bpf.h"
82169691Skan#include "vlan.h"
83169691Skan
84169691Skan#include <sys/param.h>
85169691Skan#include <sys/systm.h>
86169691Skan#include <sys/sockio.h>
87169691Skan#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/socket.h>
91#include <sys/queue.h>
92
93#include <net/if.h>
94#include <net/if_arp.h>
95#include <net/ethernet.h>
96#include <net/if_dl.h>
97#include <net/if_media.h>
98
99#if NBPF > 0
100#include <net/bpf.h>
101#endif
102
103#if NVLAN > 0
104#include <net/if_types.h>
105#include <net/if_vlan_var.h>
106#endif
107
108#include <netinet/in_systm.h>
109#include <netinet/in.h>
110#include <netinet/ip.h>
111
112#include <vm/vm.h>              /* for vtophys */
113#include <vm/pmap.h>            /* for vtophys */
114#include <machine/clock.h>      /* for DELAY */
115#include <machine/bus_memio.h>
116#include <machine/bus.h>
117#include <machine/resource.h>
118#include <sys/bus.h>
119#include <sys/rman.h>
120
121#include <pci/pcireg.h>
122#include <pci/pcivar.h>
123
124#include <pci/if_tireg.h>
125#include <pci/ti_fw.h>
126#include <pci/ti_fw2.h>
127
128#ifdef M_HWCKSUM
129/*#define TI_CSUM_OFFLOAD*/
130#endif
131
132#if !defined(lint)
133static const char rcsid[] =
134  "$FreeBSD: head/sys/dev/ti/if_ti.c 51446 1999-09-20 06:50:52Z obrien $";
135#endif
136
137/*
138 * Various supported device vendors/types and their names.
139 */
140
141static struct ti_type ti_devs[] = {
142	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
143		"Alteon AceNIC Gigabit Ethernet" },
144	{ TC_VENDORID,	TC_DEVICEID_3C985,
145		"3Com 3c985-SX Gigabit Ethernet" },
146	{ NG_VENDORID, NG_DEVICEID_GA620,
147		"Netgear GA620 Gigabit Ethernet" },
148	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
149		"Silicon Graphics Gigabit Ethernet" },
150	{ 0, 0, NULL }
151};
152
153static int ti_probe		__P((device_t));
154static int ti_attach		__P((device_t));
155static int ti_detach		__P((device_t));
156static void ti_txeof		__P((struct ti_softc *));
157static void ti_rxeof		__P((struct ti_softc *));
158
159static void ti_stats_update	__P((struct ti_softc *));
160static int ti_encap		__P((struct ti_softc *, struct mbuf *,
161					u_int32_t *));
162
163static void ti_intr		__P((void *));
164static void ti_start		__P((struct ifnet *));
165static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
166static void ti_init		__P((void *));
167static void ti_init2		__P((struct ti_softc *));
168static void ti_stop		__P((struct ti_softc *));
169static void ti_watchdog		__P((struct ifnet *));
170static void ti_shutdown		__P((device_t));
171static int ti_ifmedia_upd	__P((struct ifnet *));
172static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
173
174static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
175static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
176						int, u_int8_t *));
177static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
178
179static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
180static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
181static void ti_setmulti		__P((struct ti_softc *));
182
183static void ti_mem		__P((struct ti_softc *, u_int32_t,
184					u_int32_t, caddr_t));
185static void ti_loadfw		__P((struct ti_softc *));
186static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
187static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
188					caddr_t, int));
189static void ti_handle_events	__P((struct ti_softc *));
190static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
191static void *ti_jalloc		__P((struct ti_softc *));
192static void ti_jfree		__P((caddr_t, u_int));
193static void ti_jref		__P((caddr_t, u_int));
194static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *));
195static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *));
196static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
197static int ti_init_rx_ring_std	__P((struct ti_softc *));
198static void ti_free_rx_ring_std	__P((struct ti_softc *));
199static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
200static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
201static int ti_init_rx_ring_mini	__P((struct ti_softc *));
202static void ti_free_rx_ring_mini	__P((struct ti_softc *));
203static void ti_free_tx_ring	__P((struct ti_softc *));
204static int ti_init_tx_ring	__P((struct ti_softc *));
205
206static int ti_64bitslot_war	__P((struct ti_softc *));
207static int ti_chipinit		__P((struct ti_softc *));
208static int ti_gibinit		__P((struct ti_softc *));
209
210static device_method_t ti_methods[] = {
211	/* Device interface */
212	DEVMETHOD(device_probe,		ti_probe),
213	DEVMETHOD(device_attach,	ti_attach),
214	DEVMETHOD(device_detach,	ti_detach),
215	DEVMETHOD(device_shutdown,	ti_shutdown),
216	{ 0, 0 }
217};
218
219static driver_t ti_driver = {
220	"ti",
221	ti_methods,
222	sizeof(struct ti_softc)
223};
224
225static devclass_t ti_devclass;
226
227DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
228
229/*
230 * Send an instruction or address to the EEPROM, check for ACK.
231 */
232static u_int32_t ti_eeprom_putbyte(sc, byte)
233	struct ti_softc		*sc;
234	int			byte;
235{
236	register int		i, ack = 0;
237
238	/*
239	 * Make sure we're in TX mode.
240	 */
241	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
242
243	/*
244	 * Feed in each bit and stobe the clock.
245	 */
246	for (i = 0x80; i; i >>= 1) {
247		if (byte & i) {
248			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
249		} else {
250			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
251		}
252		DELAY(1);
253		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
254		DELAY(1);
255		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
256	}
257
258	/*
259	 * Turn off TX mode.
260	 */
261	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
262
263	/*
264	 * Check for ack.
265	 */
266	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
267	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
268	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
269
270	return(ack);
271}
272
273/*
274 * Read a byte of data stored in the EEPROM at address 'addr.'
275 * We have to send two address bytes since the EEPROM can hold
276 * more than 256 bytes of data.
277 */
278static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
279	struct ti_softc		*sc;
280	int			addr;
281	u_int8_t		*dest;
282{
283	register int		i;
284	u_int8_t		byte = 0;
285
286	EEPROM_START;
287
288	/*
289	 * Send write control code to EEPROM.
290	 */
291	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
292		printf("ti%d: failed to send write command, status: %x\n",
293		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
294		return(1);
295	}
296
297	/*
298	 * Send first byte of address of byte we want to read.
299	 */
300	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
301		printf("ti%d: failed to send address, status: %x\n",
302		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
303		return(1);
304	}
305	/*
306	 * Send second byte address of byte we want to read.
307	 */
308	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
309		printf("ti%d: failed to send address, status: %x\n",
310		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
311		return(1);
312	}
313
314	EEPROM_STOP;
315	EEPROM_START;
316	/*
317	 * Send read control code to EEPROM.
318	 */
319	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
320		printf("ti%d: failed to send read command, status: %x\n",
321		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
322		return(1);
323	}
324
325	/*
326	 * Start reading bits from EEPROM.
327	 */
328	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
329	for (i = 0x80; i; i >>= 1) {
330		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
331		DELAY(1);
332		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
333			byte |= i;
334		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
335		DELAY(1);
336	}
337
338	EEPROM_STOP;
339
340	/*
341	 * No ACK generated for read, so just return byte.
342	 */
343
344	*dest = byte;
345
346	return(0);
347}
348
349/*
350 * Read a sequence of bytes from the EEPROM.
351 */
352static int ti_read_eeprom(sc, dest, off, cnt)
353	struct ti_softc		*sc;
354	caddr_t			dest;
355	int			off;
356	int			cnt;
357{
358	int			err = 0, i;
359	u_int8_t		byte = 0;
360
361	for (i = 0; i < cnt; i++) {
362		err = ti_eeprom_getbyte(sc, off + i, &byte);
363		if (err)
364			break;
365		*(dest + i) = byte;
366	}
367
368	return(err ? 1 : 0);
369}
370
371/*
372 * NIC memory access function. Can be used to either clear a section
373 * of NIC local memory or (if buf is non-NULL) copy data into it.
374 */
375static void ti_mem(sc, addr, len, buf)
376	struct ti_softc		*sc;
377	u_int32_t		addr, len;
378	caddr_t			buf;
379{
380	int			segptr, segsize, cnt;
381	caddr_t			ti_winbase, ptr;
382
383	segptr = addr;
384	cnt = len;
385	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
386	ptr = buf;
387
388	while(cnt) {
389		if (cnt < TI_WINLEN)
390			segsize = cnt;
391		else
392			segsize = TI_WINLEN - (segptr % TI_WINLEN);
393		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
394		if (buf == NULL)
395			bzero((char *)ti_winbase + (segptr &
396			    (TI_WINLEN - 1)), segsize);
397		else {
398			bcopy((char *)ptr, (char *)ti_winbase +
399			    (segptr & (TI_WINLEN - 1)), segsize);
400			ptr += segsize;
401		}
402		segptr += segsize;
403		cnt -= segsize;
404	}
405
406	return;
407}
408
409/*
410 * Load firmware image into the NIC. Check that the firmware revision
411 * is acceptable and see if we want the firmware for the Tigon 1 or
412 * Tigon 2.
413 */
414static void ti_loadfw(sc)
415	struct ti_softc		*sc;
416{
417	switch(sc->ti_hwrev) {
418	case TI_HWREV_TIGON:
419		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
420		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
421		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
422			printf("ti%d: firmware revision mismatch; want "
423			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
424			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
425			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
426			    tigonFwReleaseMinor, tigonFwReleaseFix);
427			return;
428		}
429		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
430		    (caddr_t)tigonFwText);
431		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
432		    (caddr_t)tigonFwData);
433		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
434		    (caddr_t)tigonFwRodata);
435		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
436		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
437		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
438		break;
439	case TI_HWREV_TIGON_II:
440		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
441		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
442		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
443			printf("ti%d: firmware revision mismatch; want "
444			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
445			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
446			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
447			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
448			return;
449		}
450		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
451		    (caddr_t)tigon2FwText);
452		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
453		    (caddr_t)tigon2FwData);
454		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
455		    (caddr_t)tigon2FwRodata);
456		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
457		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
458		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
459		break;
460	default:
461		printf("ti%d: can't load firmware: unknown hardware rev\n",
462		    sc->ti_unit);
463		break;
464	}
465
466	return;
467}
468
469/*
470 * Send the NIC a command via the command ring.
471 */
472static void ti_cmd(sc, cmd)
473	struct ti_softc		*sc;
474	struct ti_cmd_desc	*cmd;
475{
476	u_int32_t		index;
477
478	if (sc->ti_rdata->ti_cmd_ring == NULL)
479		return;
480
481	index = sc->ti_cmd_saved_prodidx;
482	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
483	TI_INC(index, TI_CMD_RING_CNT);
484	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
485	sc->ti_cmd_saved_prodidx = index;
486
487	return;
488}
489
490/*
491 * Send the NIC an extended command. The 'len' parameter specifies the
492 * number of command slots to include after the initial command.
493 */
494static void ti_cmd_ext(sc, cmd, arg, len)
495	struct ti_softc		*sc;
496	struct ti_cmd_desc	*cmd;
497	caddr_t			arg;
498	int			len;
499{
500	u_int32_t		index;
501	register int		i;
502
503	if (sc->ti_rdata->ti_cmd_ring == NULL)
504		return;
505
506	index = sc->ti_cmd_saved_prodidx;
507	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
508	TI_INC(index, TI_CMD_RING_CNT);
509	for (i = 0; i < len; i++) {
510		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
511		    *(u_int32_t *)(&arg[i * 4]));
512		TI_INC(index, TI_CMD_RING_CNT);
513	}
514	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
515	sc->ti_cmd_saved_prodidx = index;
516
517	return;
518}
519
520/*
521 * Handle events that have triggered interrupts.
522 */
523static void ti_handle_events(sc)
524	struct ti_softc		*sc;
525{
526	struct ti_event_desc	*e;
527
528	if (sc->ti_rdata->ti_event_ring == NULL)
529		return;
530
531	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
532		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
533		switch(e->ti_event) {
534		case TI_EV_LINKSTAT_CHANGED:
535			sc->ti_linkstat = e->ti_code;
536			if (e->ti_code == TI_EV_CODE_LINK_UP)
537				printf("ti%d: 10/100 link up\n", sc->ti_unit);
538			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
539				printf("ti%d: gigabit link up\n", sc->ti_unit);
540			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
541				printf("ti%d: link down\n", sc->ti_unit);
542			break;
543		case TI_EV_ERROR:
544			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
545				printf("ti%d: invalid command\n", sc->ti_unit);
546			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
547				printf("ti%d: unknown command\n", sc->ti_unit);
548			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
549				printf("ti%d: bad config data\n", sc->ti_unit);
550			break;
551		case TI_EV_FIRMWARE_UP:
552			ti_init2(sc);
553			break;
554		case TI_EV_STATS_UPDATED:
555			ti_stats_update(sc);
556			break;
557		case TI_EV_RESET_JUMBO_RING:
558		case TI_EV_MCAST_UPDATED:
559			/* Who cares. */
560			break;
561		default:
562			printf("ti%d: unknown event: %d\n",
563			    sc->ti_unit, e->ti_event);
564			break;
565		}
566		/* Advance the consumer index. */
567		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
568		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
569	}
570
571	return;
572}
573
574/*
575 * Memory management for the jumbo receive ring is a pain in the
576 * butt. We need to allocate at least 9018 bytes of space per frame,
577 * _and_ it has to be contiguous (unless you use the extended
578 * jumbo descriptor format). Using malloc() all the time won't
579 * work: malloc() allocates memory in powers of two, which means we
580 * would end up wasting a considerable amount of space by allocating
581 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
582 * to do our own memory management.
583 *
584 * The driver needs to allocate a contiguous chunk of memory at boot
585 * time. We then chop this up ourselves into 9K pieces and use them
586 * as external mbuf storage.
587 *
588 * One issue here is how much memory to allocate. The jumbo ring has
589 * 256 slots in it, but at 9K per slot than can consume over 2MB of
590 * RAM. This is a bit much, especially considering we also need
591 * RAM for the standard ring and mini ring (on the Tigon 2). To
592 * save space, we only actually allocate enough memory for 64 slots
593 * by default, which works out to between 500 and 600K. This can
594 * be tuned by changing a #define in if_tireg.h.
595 */
596
597static int ti_alloc_jumbo_mem(sc)
598	struct ti_softc		*sc;
599{
600	caddr_t			ptr;
601	register int		i;
602	struct ti_jpool_entry   *entry;
603
604	/* Grab a big chunk o' storage. */
605	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
606		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
607
608	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
609		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
610		return(ENOBUFS);
611	}
612
613	SLIST_INIT(&sc->ti_jfree_listhead);
614	SLIST_INIT(&sc->ti_jinuse_listhead);
615
616	/*
617	 * Now divide it up into 9K pieces and save the addresses
618	 * in an array. Note that we play an evil trick here by using
619	 * the first few bytes in the buffer to hold the the address
620	 * of the softc structure for this interface. This is because
621	 * ti_jfree() needs it, but it is called by the mbuf management
622	 * code which will not pass it to us explicitly.
623	 */
624	ptr = sc->ti_cdata.ti_jumbo_buf;
625	for (i = 0; i < TI_JSLOTS; i++) {
626		u_int64_t		**aptr;
627		aptr = (u_int64_t **)ptr;
628		aptr[0] = (u_int64_t *)sc;
629		ptr += sizeof(u_int64_t);
630		sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
631		sc->ti_cdata.ti_jslots[i].ti_inuse = 0;
632		ptr += (TI_JLEN - sizeof(u_int64_t));
633		entry = malloc(sizeof(struct ti_jpool_entry),
634			       M_DEVBUF, M_NOWAIT);
635		if (entry == NULL) {
636			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
637			sc->ti_cdata.ti_jumbo_buf = NULL;
638			printf("ti%d: no memory for jumbo "
639			    "buffer queue!\n", sc->ti_unit);
640			return(ENOBUFS);
641		}
642		entry->slot = i;
643		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
644	}
645
646	return(0);
647}
648
649/*
650 * Allocate a jumbo buffer.
651 */
652static void *ti_jalloc(sc)
653	struct ti_softc		*sc;
654{
655	struct ti_jpool_entry   *entry;
656
657	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
658
659	if (entry == NULL) {
660		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
661		return(NULL);
662	}
663
664	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
665	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
666	sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1;
667	return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
668}
669
670/*
671 * Adjust usage count on a jumbo buffer. In general this doesn't
672 * get used much because our jumbo buffers don't get passed around
673 * too much, but it's implemented for correctness.
674 */
675static void ti_jref(buf, size)
676	caddr_t			buf;
677	u_int			size;
678{
679	struct ti_softc		*sc;
680	u_int64_t		**aptr;
681	register int		i;
682
683	/* Extract the softc struct pointer. */
684	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
685	sc = (struct ti_softc *)(aptr[0]);
686
687	if (sc == NULL)
688		panic("ti_jref: can't find softc pointer!");
689
690	if (size != TI_JUMBO_FRAMELEN)
691		panic("ti_jref: adjusting refcount of buf of wrong size!");
692
693	/* calculate the slot this buffer belongs to */
694
695	i = ((vm_offset_t)aptr
696	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
697
698	if ((i < 0) || (i >= TI_JSLOTS))
699		panic("ti_jref: asked to reference buffer "
700		    "that we don't manage!");
701	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
702		panic("ti_jref: buffer already free!");
703	else
704		sc->ti_cdata.ti_jslots[i].ti_inuse++;
705
706	return;
707}
708
709/*
710 * Release a jumbo buffer.
711 */
712static void ti_jfree(buf, size)
713	caddr_t			buf;
714	u_int			size;
715{
716	struct ti_softc		*sc;
717	u_int64_t		**aptr;
718	int		        i;
719	struct ti_jpool_entry   *entry;
720
721	/* Extract the softc struct pointer. */
722	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
723	sc = (struct ti_softc *)(aptr[0]);
724
725	if (sc == NULL)
726		panic("ti_jfree: can't find softc pointer!");
727
728	if (size != TI_JUMBO_FRAMELEN)
729		panic("ti_jfree: freeing buffer of wrong size!");
730
731	/* calculate the slot this buffer belongs to */
732
733	i = ((vm_offset_t)aptr
734	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
735
736	if ((i < 0) || (i >= TI_JSLOTS))
737		panic("ti_jfree: asked to free buffer that we don't manage!");
738	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
739		panic("ti_jfree: buffer already free!");
740	else {
741		sc->ti_cdata.ti_jslots[i].ti_inuse--;
742		if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) {
743			entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
744			if (entry == NULL)
745				panic("ti_jfree: buffer not in use!");
746			entry->slot = i;
747			SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead,
748					  jpool_entries);
749			SLIST_INSERT_HEAD(&sc->ti_jfree_listhead,
750					  entry, jpool_entries);
751		}
752	}
753
754	return;
755}
756
757
758/*
759 * Intialize a standard receive ring descriptor.
760 */
761static int ti_newbuf_std(sc, i, m)
762	struct ti_softc		*sc;
763	int			i;
764	struct mbuf		*m;
765{
766	struct mbuf		*m_new = NULL;
767	struct ti_rx_desc	*r;
768
769	if (m == NULL) {
770		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
771		if (m_new == NULL) {
772			printf("ti%d: mbuf allocation failed "
773			    "-- packet dropped!\n", sc->ti_unit);
774			return(ENOBUFS);
775		}
776
777		MCLGET(m_new, M_DONTWAIT);
778		if (!(m_new->m_flags & M_EXT)) {
779			printf("ti%d: cluster allocation failed "
780			    "-- packet dropped!\n", sc->ti_unit);
781			m_freem(m_new);
782			return(ENOBUFS);
783		}
784		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
785	} else {
786		m_new = m;
787		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
788		m_new->m_data = m_new->m_ext.ext_buf;
789	}
790
791	m_adj(m_new, ETHER_ALIGN);
792	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
793	r = &sc->ti_rdata->ti_rx_std_ring[i];
794	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
795	r->ti_type = TI_BDTYPE_RECV_BD;
796#ifdef TI_CSUM_OFFLOAD
797	r->ti_flags = TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
798#else
799	r->ti_flags = 0;
800#endif
801	r->ti_len = m_new->m_len;
802	r->ti_idx = i;
803
804	return(0);
805}
806
807/*
808 * Intialize a mini receive ring descriptor. This only applies to
809 * the Tigon 2.
810 */
811static int ti_newbuf_mini(sc, i, m)
812	struct ti_softc		*sc;
813	int			i;
814	struct mbuf		*m;
815{
816	struct mbuf		*m_new = NULL;
817	struct ti_rx_desc	*r;
818
819	if (m == NULL) {
820		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
821		if (m_new == NULL) {
822			printf("ti%d: mbuf allocation failed "
823			    "-- packet dropped!\n", sc->ti_unit);
824			return(ENOBUFS);
825		}
826		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
827	} else {
828		m_new = m;
829		m_new->m_data = m_new->m_pktdat;
830		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
831	}
832
833	m_adj(m_new, ETHER_ALIGN);
834	r = &sc->ti_rdata->ti_rx_mini_ring[i];
835	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
836	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
837	r->ti_type = TI_BDTYPE_RECV_BD;
838	r->ti_flags = TI_BDFLAG_MINI_RING;
839#ifdef TI_CSUM_OFFLOAD
840	r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
841#endif
842	r->ti_len = m_new->m_len;
843	r->ti_idx = i;
844
845	return(0);
846}
847
848/*
849 * Initialize a jumbo receive ring descriptor. This allocates
850 * a jumbo buffer from the pool managed internally by the driver.
851 */
852static int ti_newbuf_jumbo(sc, i, m)
853	struct ti_softc		*sc;
854	int			i;
855	struct mbuf		*m;
856{
857	struct mbuf		*m_new = NULL;
858	struct ti_rx_desc	*r;
859
860	if (m == NULL) {
861		caddr_t			*buf = NULL;
862
863		/* Allocate the mbuf. */
864		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
865		if (m_new == NULL) {
866			printf("ti%d: mbuf allocation failed "
867			    "-- packet dropped!\n", sc->ti_unit);
868			return(ENOBUFS);
869		}
870
871		/* Allocate the jumbo buffer */
872		buf = ti_jalloc(sc);
873		if (buf == NULL) {
874			m_freem(m_new);
875			printf("ti%d: jumbo allocation failed "
876			    "-- packet dropped!\n", sc->ti_unit);
877			return(ENOBUFS);
878		}
879
880		/* Attach the buffer to the mbuf. */
881		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
882		m_new->m_flags |= M_EXT;
883		m_new->m_len = m_new->m_pkthdr.len =
884		    m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
885		m_new->m_ext.ext_free = ti_jfree;
886		m_new->m_ext.ext_ref = ti_jref;
887	} else {
888		m_new = m;
889		m_new->m_data = m_new->m_ext.ext_buf;
890		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
891	}
892
893	m_adj(m_new, ETHER_ALIGN);
894	/* Set up the descriptor. */
895	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
896	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
897	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
898	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
899	r->ti_flags = TI_BDFLAG_JUMBO_RING;
900#ifdef TI_CSUM_OFFLOAD
901	r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
902#endif
903	r->ti_len = m_new->m_len;
904	r->ti_idx = i;
905
906	return(0);
907}
908
909/*
910 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
911 * that's 1MB or memory, which is a lot. For now, we fill only the first
912 * 256 ring entries and hope that our CPU is fast enough to keep up with
913 * the NIC.
914 */
915static int ti_init_rx_ring_std(sc)
916	struct ti_softc		*sc;
917{
918	register int		i;
919	struct ti_cmd_desc	cmd;
920
921	for (i = 0; i < TI_SSLOTS; i++) {
922		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
923			return(ENOBUFS);
924	};
925
926	TI_UPDATE_STDPROD(sc, i - 1);
927	sc->ti_std = i - 1;
928
929	return(0);
930}
931
932static void ti_free_rx_ring_std(sc)
933	struct ti_softc		*sc;
934{
935	register int		i;
936
937	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
938		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
939			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
940			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
941		}
942		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
943		    sizeof(struct ti_rx_desc));
944	}
945
946	return;
947}
948
949static int ti_init_rx_ring_jumbo(sc)
950	struct ti_softc		*sc;
951{
952	register int		i;
953	struct ti_cmd_desc	cmd;
954
955	for (i = 0; i < (TI_JSLOTS - 20); i++) {
956		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
957			return(ENOBUFS);
958	};
959
960	TI_UPDATE_JUMBOPROD(sc, i - 1);
961	sc->ti_jumbo = i - 1;
962
963	return(0);
964}
965
966static void ti_free_rx_ring_jumbo(sc)
967	struct ti_softc		*sc;
968{
969	register int		i;
970
971	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
972		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
973			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
974			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
975		}
976		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
977		    sizeof(struct ti_rx_desc));
978	}
979
980	return;
981}
982
983static int ti_init_rx_ring_mini(sc)
984	struct ti_softc		*sc;
985{
986	register int		i;
987
988	for (i = 0; i < TI_MSLOTS; i++) {
989		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
990			return(ENOBUFS);
991	};
992
993	TI_UPDATE_MINIPROD(sc, i - 1);
994	sc->ti_mini = i - 1;
995
996	return(0);
997}
998
999static void ti_free_rx_ring_mini(sc)
1000	struct ti_softc		*sc;
1001{
1002	register int		i;
1003
1004	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1005		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1006			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1007			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1008		}
1009		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1010		    sizeof(struct ti_rx_desc));
1011	}
1012
1013	return;
1014}
1015
1016static void ti_free_tx_ring(sc)
1017	struct ti_softc		*sc;
1018{
1019	register int		i;
1020
1021	if (sc->ti_rdata->ti_tx_ring == NULL)
1022		return;
1023
1024	for (i = 0; i < TI_TX_RING_CNT; i++) {
1025		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1026			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1027			sc->ti_cdata.ti_tx_chain[i] = NULL;
1028		}
1029		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1030		    sizeof(struct ti_tx_desc));
1031	}
1032
1033	return;
1034}
1035
1036static int ti_init_tx_ring(sc)
1037	struct ti_softc		*sc;
1038{
1039	sc->ti_txcnt = 0;
1040	sc->ti_tx_saved_considx = 0;
1041	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1042	return(0);
1043}
1044
1045/*
1046 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1047 * but we have to support the old way too so that Tigon 1 cards will
1048 * work.
1049 */
1050void ti_add_mcast(sc, addr)
1051	struct ti_softc		*sc;
1052	struct ether_addr	*addr;
1053{
1054	struct ti_cmd_desc	cmd;
1055	u_int16_t		*m;
1056	u_int32_t		ext[2] = {0, 0};
1057
1058	m = (u_int16_t *)&addr->octet[0];
1059
1060	switch(sc->ti_hwrev) {
1061	case TI_HWREV_TIGON:
1062		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1063		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1064		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1065		break;
1066	case TI_HWREV_TIGON_II:
1067		ext[0] = htons(m[0]);
1068		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1069		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1070		break;
1071	default:
1072		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1073		break;
1074	}
1075
1076	return;
1077}
1078
1079void ti_del_mcast(sc, addr)
1080	struct ti_softc		*sc;
1081	struct ether_addr	*addr;
1082{
1083	struct ti_cmd_desc	cmd;
1084	u_int16_t		*m;
1085	u_int32_t		ext[2] = {0, 0};
1086
1087	m = (u_int16_t *)&addr->octet[0];
1088
1089	switch(sc->ti_hwrev) {
1090	case TI_HWREV_TIGON:
1091		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1092		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1093		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1094		break;
1095	case TI_HWREV_TIGON_II:
1096		ext[0] = htons(m[0]);
1097		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1098		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1099		break;
1100	default:
1101		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1102		break;
1103	}
1104
1105	return;
1106}
1107
1108/*
1109 * Configure the Tigon's multicast address filter.
1110 *
1111 * The actual multicast table management is a bit of a pain, thanks to
1112 * slight brain damage on the part of both Alteon and us. With our
1113 * multicast code, we are only alerted when the multicast address table
1114 * changes and at that point we only have the current list of addresses:
1115 * we only know the current state, not the previous state, so we don't
1116 * actually know what addresses were removed or added. The firmware has
1117 * state, but we can't get our grubby mits on it, and there is no 'delete
1118 * all multicast addresses' command. Hence, we have to maintain our own
1119 * state so we know what addresses have been programmed into the NIC at
1120 * any given time.
1121 */
1122static void ti_setmulti(sc)
1123	struct ti_softc		*sc;
1124{
1125	struct ifnet		*ifp;
1126	struct ifmultiaddr	*ifma;
1127	struct ti_cmd_desc	cmd;
1128	struct ti_mc_entry	*mc;
1129	u_int32_t		intrs;
1130
1131	ifp = &sc->arpcom.ac_if;
1132
1133	if (ifp->if_flags & IFF_ALLMULTI) {
1134		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1135		return;
1136	} else {
1137		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1138	}
1139
1140	/* Disable interrupts. */
1141	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1142	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1143
1144	/* First, zot all the existing filters. */
1145	while (sc->ti_mc_listhead.slh_first != NULL) {
1146		mc = sc->ti_mc_listhead.slh_first;
1147		ti_del_mcast(sc, &mc->mc_addr);
1148		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1149		free(mc, M_DEVBUF);
1150	}
1151
1152	/* Now program new ones. */
1153	for (ifma = ifp->if_multiaddrs.lh_first;
1154	    ifma != NULL; ifma = ifma->ifma_link.le_next) {
1155		if (ifma->ifma_addr->sa_family != AF_LINK)
1156			continue;
1157		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1158		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1159		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1160		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1161		ti_add_mcast(sc, &mc->mc_addr);
1162	}
1163
1164	/* Re-enable interrupts. */
1165	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1166
1167	return;
1168}
1169
1170/*
1171 * Check to see if the BIOS has configured us for a 64 bit slot when
1172 * we aren't actually in one. If we detect this condition, we can work
1173 * around it on the Tigon 2 by setting a bit in the PCI state register,
1174 * but for the Tigon 1 we must give up and abort the interface attach.
1175 */
1176static int ti_64bitslot_war(sc)
1177	struct ti_softc		*sc;
1178{
1179	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1180		CSR_WRITE_4(sc, 0x600, 0);
1181		CSR_WRITE_4(sc, 0x604, 0);
1182		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1183		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1184			if (sc->ti_hwrev == TI_HWREV_TIGON)
1185				return(EINVAL);
1186			else {
1187				TI_SETBIT(sc, TI_PCI_STATE,
1188				    TI_PCISTATE_32BIT_BUS);
1189				return(0);
1190			}
1191		}
1192	}
1193
1194	return(0);
1195}
1196
1197/*
1198 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1199 * self-test results.
1200 */
1201static int ti_chipinit(sc)
1202	struct ti_softc		*sc;
1203{
1204	u_int32_t		cacheline;
1205	u_int32_t		pci_writemax = 0;
1206
1207	/* Initialize link to down state. */
1208	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1209
1210	/* Set endianness before we access any non-PCI registers. */
1211#if BYTE_ORDER == BIG_ENDIAN
1212	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1213	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1214#else
1215	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1216	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1217#endif
1218
1219	/* Check the ROM failed bit to see if self-tests passed. */
1220	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1221		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1222		return(ENODEV);
1223	}
1224
1225	/* Halt the CPU. */
1226	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1227
1228	/* Figure out the hardware revision. */
1229	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1230	case TI_REV_TIGON_I:
1231		sc->ti_hwrev = TI_HWREV_TIGON;
1232		break;
1233	case TI_REV_TIGON_II:
1234		sc->ti_hwrev = TI_HWREV_TIGON_II;
1235		break;
1236	default:
1237		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1238		return(ENODEV);
1239	}
1240
1241	/* Do special setup for Tigon 2. */
1242	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1243		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1244		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1245		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1246	}
1247
1248	/* Set up the PCI state register. */
1249	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1250	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1251		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1252	}
1253
1254	/* Clear the read/write max DMA parameters. */
1255	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1256	    TI_PCISTATE_READ_MAXDMA));
1257
1258	/* Get cache line size. */
1259	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1260
1261	/*
1262	 * If the system has set enabled the PCI memory write
1263	 * and invalidate command in the command register, set
1264	 * the write max parameter accordingly. This is necessary
1265	 * to use MWI with the Tigon 2.
1266	 */
1267	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1268		switch(cacheline) {
1269		case 1:
1270		case 4:
1271		case 8:
1272		case 16:
1273		case 32:
1274		case 64:
1275			break;
1276		default:
1277		/* Disable PCI memory write and invalidate. */
1278			if (bootverbose)
1279				printf("ti%d: cache line size %d not "
1280				    "supported; disabling PCI MWI\n",
1281				    sc->ti_unit, cacheline);
1282			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1283			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1284			break;
1285		}
1286	}
1287
1288#ifdef __brokenalpha__
1289	/*
1290	 * From the Alteon sample driver:
1291	 * Must insure that we do not cross an 8K (bytes) boundary
1292	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1293	 * restriction on some ALPHA platforms with early revision
1294	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1295	 */
1296	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1297#else
1298	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1299#endif
1300
1301	/* This sets the min dma param all the way up (0xff). */
1302	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1303
1304	/* Configure DMA variables. */
1305#if BYTE_ORDER == BIG_ENDIAN
1306	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1307	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1308	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1309	    TI_OPMODE_DONT_FRAG_JUMBO);
1310#else
1311	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1312	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1313	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1314#endif
1315
1316	/*
1317	 * Only allow 1 DMA channel to be active at a time.
1318	 * I don't think this is a good idea, but without it
1319	 * the firmware racks up lots of nicDmaReadRingFull
1320	 * errors.
1321	 */
1322#ifndef TI_CSUM_OFFLOAD
1323	TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1324#endif
1325
1326	/* Recommended settings from Tigon manual. */
1327	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1328	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1329
1330	if (ti_64bitslot_war(sc)) {
1331		printf("ti%d: bios thinks we're in a 64 bit slot, "
1332		    "but we aren't", sc->ti_unit);
1333		return(EINVAL);
1334	}
1335
1336	return(0);
1337}
1338
1339/*
1340 * Initialize the general information block and firmware, and
1341 * start the CPU(s) running.
1342 */
1343static int ti_gibinit(sc)
1344	struct ti_softc		*sc;
1345{
1346	struct ti_rcb		*rcb;
1347	int			i;
1348	struct ifnet		*ifp;
1349
1350	ifp = &sc->arpcom.ac_if;
1351
1352	/* Disable interrupts for now. */
1353	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1354
1355	/* Tell the chip where to find the general information block. */
1356	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1357	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1358
1359	/* Load the firmware into SRAM. */
1360	ti_loadfw(sc);
1361
1362	/* Set up the contents of the general info and ring control blocks. */
1363
1364	/* Set up the event ring and producer pointer. */
1365	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1366
1367	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1368	rcb->ti_flags = 0;
1369	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1370	    vtophys(&sc->ti_ev_prodidx);
1371	sc->ti_ev_prodidx.ti_idx = 0;
1372	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1373	sc->ti_ev_saved_considx = 0;
1374
1375	/* Set up the command ring and producer mailbox. */
1376	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1377
1378	sc->ti_rdata->ti_cmd_ring =
1379	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1380	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1381	rcb->ti_flags = 0;
1382	rcb->ti_max_len = 0;
1383	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1384		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1385	}
1386	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1387	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1388	sc->ti_cmd_saved_prodidx = 0;
1389
1390	/*
1391	 * Assign the address of the stats refresh buffer.
1392	 * We re-use the current stats buffer for this to
1393	 * conserve memory.
1394	 */
1395	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1396	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1397
1398	/* Set up the standard receive ring. */
1399	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1400	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1401	rcb->ti_max_len = TI_FRAMELEN;
1402	rcb->ti_flags = 0;
1403#ifdef TI_CSUM_OFFLOAD
1404	rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1405#endif
1406#if NVLAN > 0
1407	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1408#endif
1409
1410	/* Set up the jumbo receive ring. */
1411	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1412	TI_HOSTADDR(rcb->ti_hostaddr) =
1413	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1414	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1415	rcb->ti_flags = 0;
1416#ifdef TI_CSUM_OFFLOAD
1417	rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1418#endif
1419#if NVLAN > 0
1420	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1421#endif
1422
1423	/*
1424	 * Set up the mini ring. Only activated on the
1425	 * Tigon 2 but the slot in the config block is
1426	 * still there on the Tigon 1.
1427	 */
1428	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1429	TI_HOSTADDR(rcb->ti_hostaddr) =
1430	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1431	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1432	if (sc->ti_hwrev == TI_HWREV_TIGON)
1433		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1434	else
1435		rcb->ti_flags = 0;
1436#ifdef TI_CSUM_OFFLOAD
1437	rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1438#endif
1439#if NVLAN > 0
1440	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1441#endif
1442
1443	/*
1444	 * Set up the receive return ring.
1445	 */
1446	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1447	TI_HOSTADDR(rcb->ti_hostaddr) =
1448	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1449	rcb->ti_flags = 0;
1450	rcb->ti_max_len = TI_RETURN_RING_CNT;
1451	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1452	    vtophys(&sc->ti_return_prodidx);
1453
1454	/*
1455	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1456	 * of putting the transmit ring in the host's address space and
1457	 * letting the chip DMA it instead of leaving the ring in the NIC's
1458	 * memory and accessing it through the shared memory region. We
1459	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1460	 * so we have to revert to the shared memory scheme if we detect
1461	 * a Tigon 1 chip.
1462	 */
1463	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1464	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1465		sc->ti_rdata->ti_tx_ring_nic =
1466		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1467	}
1468	bzero((char *)sc->ti_rdata->ti_tx_ring,
1469	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1470	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1471	if (sc->ti_hwrev == TI_HWREV_TIGON)
1472		rcb->ti_flags = 0;
1473	else
1474		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1475#if NVLAN > 0
1476	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1477#endif
1478	rcb->ti_max_len = TI_TX_RING_CNT;
1479	if (sc->ti_hwrev == TI_HWREV_TIGON)
1480		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1481	else
1482		TI_HOSTADDR(rcb->ti_hostaddr) =
1483		    vtophys(&sc->ti_rdata->ti_tx_ring);
1484	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1485	    vtophys(&sc->ti_tx_considx);
1486
1487	/* Set up tuneables */
1488	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1489		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1490		    (sc->ti_rx_coal_ticks / 10));
1491	else
1492		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1493	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1494	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1495	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1496	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1497	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1498
1499	/* Turn interrupts on. */
1500	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1501	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1502
1503	/* Start CPU. */
1504	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1505
1506	return(0);
1507}
1508
1509/*
1510 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1511 * against our list and return its name if we find a match.
1512 */
1513static int ti_probe(dev)
1514	device_t		dev;
1515{
1516	struct ti_type		*t;
1517
1518	t = ti_devs;
1519
1520	while(t->ti_name != NULL) {
1521		if ((pci_get_vendor(dev) == t->ti_vid) &&
1522		    (pci_get_device(dev) == t->ti_did)) {
1523			device_set_desc(dev, t->ti_name);
1524			return(0);
1525		}
1526		t++;
1527	}
1528
1529	return(ENXIO);
1530}
1531
1532static int ti_attach(dev)
1533	device_t		dev;
1534{
1535	int			s;
1536	u_int32_t		command;
1537	struct ifnet		*ifp;
1538	struct ti_softc		*sc;
1539	int			unit, error = 0, rid;
1540
1541	s = splimp();
1542
1543	sc = device_get_softc(dev);
1544	unit = device_get_unit(dev);
1545	bzero(sc, sizeof(struct ti_softc));
1546
1547	/*
1548	 * Map control/status registers.
1549	 */
1550	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
1551	command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1552	pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
1553	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
1554
1555	if (!(command & PCIM_CMD_MEMEN)) {
1556		printf("ti%d: failed to enable memory mapping!\n", unit);
1557		error = ENXIO;
1558		goto fail;
1559	}
1560
1561	rid = TI_PCI_LOMEM;
1562	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1563	    0, ~0, 1, RF_ACTIVE);
1564
1565	if (sc->ti_res == NULL) {
1566		printf ("ti%d: couldn't map memory\n", unit);
1567		error = ENXIO;
1568		goto fail;
1569	}
1570
1571	sc->ti_btag = rman_get_bustag(sc->ti_res);
1572	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1573	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1574
1575	/*
1576	 * XXX FIXME: rman_get_virtual() on the alpha is currently
1577	 * broken and returns a physical address instead of a kernel
1578	 * virtual address. Consequently, we need to do a little
1579	 * extra mangling of the vhandle on the alpha. This should
1580	 * eventually be fixed! The whole idea here is to get rid
1581	 * of platform dependencies.
1582	 */
1583#ifdef __alpha__
1584	if (pci_cvt_to_bwx(sc->ti_vhandle))
1585		sc->ti_vhandle = pci_cvt_to_bwx(sc->ti_vhandle);
1586	else
1587		sc->ti_vhandle = pci_cvt_to_dense(sc->ti_vhandle);
1588	sc->ti_vhandle = ALPHA_PHYS_TO_K0SEG(sc->ti_vhandle);
1589#endif
1590
1591	/* Allocate interrupt */
1592	rid = 0;
1593
1594	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1595	    RF_SHAREABLE | RF_ACTIVE);
1596
1597	if (sc->ti_irq == NULL) {
1598		printf("ti%d: couldn't map interrupt\n", unit);
1599		error = ENXIO;
1600		goto fail;
1601	}
1602
1603	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1604	   ti_intr, sc, &sc->ti_intrhand);
1605
1606	if (error) {
1607		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1608		bus_release_resource(dev, SYS_RES_MEMORY,
1609		    TI_PCI_LOMEM, sc->ti_res);
1610		printf("ti%d: couldn't set up irq\n", unit);
1611		goto fail;
1612	}
1613
1614	sc->ti_unit = unit;
1615
1616	if (ti_chipinit(sc)) {
1617		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1618		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1619		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1620		bus_release_resource(dev, SYS_RES_MEMORY,
1621		    TI_PCI_LOMEM, sc->ti_res);
1622		error = ENXIO;
1623		goto fail;
1624	}
1625
1626	/* Zero out the NIC's on-board SRAM. */
1627	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1628
1629	/* Init again -- zeroing memory may have clobbered some registers. */
1630	if (ti_chipinit(sc)) {
1631		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1632		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1633		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1634		bus_release_resource(dev, SYS_RES_MEMORY,
1635		    TI_PCI_LOMEM, sc->ti_res);
1636		error = ENXIO;
1637		goto fail;
1638	}
1639
1640	/*
1641	 * Get station address from the EEPROM. Note: the manual states
1642	 * that the MAC address is at offset 0x8c, however the data is
1643	 * stored as two longwords (since that's how it's loaded into
1644	 * the NIC). This means the MAC address is actually preceeded
1645	 * by two zero bytes. We need to skip over those.
1646	 */
1647	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1648				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1649		printf("ti%d: failed to read station address\n", unit);
1650		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1651		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1652		bus_release_resource(dev, SYS_RES_MEMORY,
1653		    TI_PCI_LOMEM, sc->ti_res);
1654		error = ENXIO;
1655		goto fail;
1656	}
1657
1658	/*
1659	 * A Tigon chip was detected. Inform the world.
1660	 */
1661	printf("ti%d: Ethernet address: %6D\n", unit,
1662				sc->arpcom.ac_enaddr, ":");
1663
1664	/* Allocate the general information block and ring buffers. */
1665	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1666	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1667
1668	if (sc->ti_rdata == NULL) {
1669		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1670		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1671		bus_release_resource(dev, SYS_RES_MEMORY,
1672		    TI_PCI_LOMEM, sc->ti_res);
1673		error = ENXIO;
1674		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1675		goto fail;
1676	}
1677
1678	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1679
1680	/* Try to allocate memory for jumbo buffers. */
1681	if (ti_alloc_jumbo_mem(sc)) {
1682		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1683		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1684		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1685		bus_release_resource(dev, SYS_RES_MEMORY,
1686		    TI_PCI_LOMEM, sc->ti_res);
1687		free(sc->ti_rdata, M_DEVBUF);
1688		error = ENXIO;
1689		goto fail;
1690	}
1691
1692	/* Set default tuneable values. */
1693	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1694	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1695	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1696	sc->ti_rx_max_coal_bds = 64;
1697	sc->ti_tx_max_coal_bds = 128;
1698	sc->ti_tx_buf_ratio = 21;
1699
1700	/* Set up ifnet structure */
1701	ifp = &sc->arpcom.ac_if;
1702	ifp->if_softc = sc;
1703	ifp->if_unit = sc->ti_unit;
1704	ifp->if_name = "ti";
1705	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1706	ifp->if_ioctl = ti_ioctl;
1707	ifp->if_output = ether_output;
1708	ifp->if_start = ti_start;
1709	ifp->if_watchdog = ti_watchdog;
1710	ifp->if_init = ti_init;
1711	ifp->if_mtu = ETHERMTU;
1712	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1713
1714	/* Set up ifmedia support. */
1715	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1716	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL);
1717	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
1718	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
1719	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX|IFM_FDX, 0, NULL);
1720	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1721	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1722	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1723	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1724
1725	/*
1726	 * Call MI attach routines.
1727	 */
1728	if_attach(ifp);
1729	ether_ifattach(ifp);
1730
1731#if NBPF > 0
1732	bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1733#endif
1734
1735fail:
1736	splx(s);
1737
1738	return(error);
1739}
1740
1741static int ti_detach(dev)
1742	device_t		dev;
1743{
1744	struct ti_softc		*sc;
1745	struct ifnet		*ifp;
1746	int			s;
1747
1748	s = splimp();
1749
1750	sc = device_get_softc(dev);
1751	ifp = &sc->arpcom.ac_if;
1752
1753	if_detach(ifp);
1754	ti_stop(sc);
1755
1756	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1757	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1758	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1759
1760	free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
1761	free(sc->ti_rdata, M_DEVBUF);
1762	ifmedia_removeall(&sc->ifmedia);
1763
1764	splx(s);
1765
1766	return(0);
1767}
1768
1769/*
1770 * Frame reception handling. This is called if there's a frame
1771 * on the receive return list.
1772 *
1773 * Note: we have to be able to handle three possibilities here:
1774 * 1) the frame is from the mini receive ring (can only happen)
1775 *    on Tigon 2 boards)
1776 * 2) the frame is from the jumbo recieve ring
1777 * 3) the frame is from the standard receive ring
1778 */
1779
1780static void ti_rxeof(sc)
1781	struct ti_softc		*sc;
1782{
1783	struct ifnet		*ifp;
1784	struct ti_cmd_desc	cmd;
1785
1786	ifp = &sc->arpcom.ac_if;
1787
1788	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1789		struct ti_rx_desc	*cur_rx;
1790		u_int32_t		rxidx;
1791		struct ether_header	*eh;
1792		struct mbuf		*m = NULL;
1793#if NVLAN > 0
1794		u_int16_t		vlan_tag = 0;
1795		int			have_tag = 0;
1796#endif
1797#ifdef TI_CSUM_OFFLOAD
1798		struct ip		*ip;
1799#endif
1800
1801		cur_rx =
1802		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1803		rxidx = cur_rx->ti_idx;
1804		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1805
1806#if NVLAN > 0
1807		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1808			have_tag = 1;
1809			vlan_tag = cur_rx->ti_vlan_tag;
1810		}
1811#endif
1812
1813		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1814			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1815			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1816			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1817			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1818				ifp->if_ierrors++;
1819				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1820				continue;
1821			}
1822			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1823				ifp->if_ierrors++;
1824				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1825				continue;
1826			}
1827		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1828			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1829			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1830			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1831			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1832				ifp->if_ierrors++;
1833				ti_newbuf_mini(sc, sc->ti_mini, m);
1834				continue;
1835			}
1836			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1837				ifp->if_ierrors++;
1838				ti_newbuf_mini(sc, sc->ti_mini, m);
1839				continue;
1840			}
1841		} else {
1842			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1843			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1844			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1845			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1846				ifp->if_ierrors++;
1847				ti_newbuf_std(sc, sc->ti_std, m);
1848				continue;
1849			}
1850			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1851				ifp->if_ierrors++;
1852				ti_newbuf_std(sc, sc->ti_std, m);
1853				continue;
1854			}
1855		}
1856
1857		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1858		ifp->if_ipackets++;
1859		eh = mtod(m, struct ether_header *);
1860		m->m_pkthdr.rcvif = ifp;
1861
1862#if NBPF > 0
1863		/*
1864	 	 * Handle BPF listeners. Let the BPF user see the packet, but
1865	 	 * don't pass it up to the ether_input() layer unless it's
1866	 	 * a broadcast packet, multicast packet, matches our ethernet
1867	 	 * address or the interface is in promiscuous mode.
1868	 	 */
1869		if (ifp->if_bpf) {
1870			bpf_mtap(ifp, m);
1871			if (ifp->if_flags & IFF_PROMISC &&
1872				(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
1873		 			ETHER_ADDR_LEN) &&
1874					(eh->ether_dhost[0] & 1) == 0)) {
1875				m_freem(m);
1876				continue;
1877			}
1878		}
1879#endif
1880
1881		/* Remove header from mbuf and pass it on. */
1882		m_adj(m, sizeof(struct ether_header));
1883
1884#ifdef TI_CSUM_OFFLOAD
1885		ip = mtod(m, struct ip *);
1886		if (!(cur_rx->ti_tcp_udp_cksum ^ 0xFFFF) &&
1887		    !(ip->ip_off & htons(IP_MF | IP_OFFMASK | IP_RF)))
1888			m->m_flags |= M_HWCKSUM;
1889#endif
1890
1891#if NVLAN > 0
1892		/*
1893		 * If we received a packet with a vlan tag, pass it
1894		 * to vlan_input() instead of ether_input().
1895		 */
1896		if (have_tag) {
1897			vlan_input_tag(eh, m, vlan_tag);
1898			have_tag = vlan_tag = 0;
1899			continue;
1900		}
1901#endif
1902		ether_input(ifp, eh, m);
1903	}
1904
1905	/* Only necessary on the Tigon 1. */
1906	if (sc->ti_hwrev == TI_HWREV_TIGON)
1907		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1908		    sc->ti_rx_saved_considx);
1909
1910	TI_UPDATE_STDPROD(sc, sc->ti_std);
1911	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1912	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1913
1914	return;
1915}
1916
1917static void ti_txeof(sc)
1918	struct ti_softc		*sc;
1919{
1920	struct ti_tx_desc	*cur_tx = NULL;
1921	struct ifnet		*ifp;
1922
1923	ifp = &sc->arpcom.ac_if;
1924
1925	/*
1926	 * Go through our tx ring and free mbufs for those
1927	 * frames that have been sent.
1928	 */
1929	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1930		u_int32_t		idx = 0;
1931
1932		idx = sc->ti_tx_saved_considx;
1933		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1934			if (idx > 383)
1935				CSR_WRITE_4(sc, TI_WINBASE,
1936				    TI_TX_RING_BASE + 6144);
1937			else if (idx > 255)
1938				CSR_WRITE_4(sc, TI_WINBASE,
1939				    TI_TX_RING_BASE + 4096);
1940			else if (idx > 127)
1941				CSR_WRITE_4(sc, TI_WINBASE,
1942				    TI_TX_RING_BASE + 2048);
1943			else
1944				CSR_WRITE_4(sc, TI_WINBASE,
1945				    TI_TX_RING_BASE);
1946			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1947		} else
1948			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1949		if (cur_tx->ti_flags & TI_BDFLAG_END)
1950			ifp->if_opackets++;
1951		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1952			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1953			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1954		}
1955		sc->ti_txcnt--;
1956		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1957		ifp->if_timer = 0;
1958	}
1959
1960	if (cur_tx != NULL)
1961		ifp->if_flags &= ~IFF_OACTIVE;
1962
1963	return;
1964}
1965
1966static void ti_intr(xsc)
1967	void			*xsc;
1968{
1969	struct ti_softc		*sc;
1970	struct ifnet		*ifp;
1971
1972	sc = xsc;
1973	ifp = &sc->arpcom.ac_if;
1974
1975#ifdef notdef
1976	/* Avoid this for now -- checking this register is expensive. */
1977	/* Make sure this is really our interrupt. */
1978	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
1979		return;
1980#endif
1981
1982	/* Ack interrupt and stop others from occuring. */
1983	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1984
1985	if (ifp->if_flags & IFF_RUNNING) {
1986		/* Check RX return ring producer/consumer */
1987		ti_rxeof(sc);
1988
1989		/* Check TX ring producer/consumer */
1990		ti_txeof(sc);
1991	}
1992
1993	ti_handle_events(sc);
1994
1995	/* Re-enable interrupts. */
1996	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1997
1998	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1999		ti_start(ifp);
2000
2001	return;
2002}
2003
2004static void ti_stats_update(sc)
2005	struct ti_softc		*sc;
2006{
2007	struct ifnet		*ifp;
2008
2009	ifp = &sc->arpcom.ac_if;
2010
2011	ifp->if_collisions +=
2012	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2013	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2014	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2015	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2016	   ifp->if_collisions;
2017
2018	return;
2019}
2020
2021/*
2022 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2023 * pointers to descriptors.
2024 */
2025static int ti_encap(sc, m_head, txidx)
2026	struct ti_softc		*sc;
2027	struct mbuf		*m_head;
2028	u_int32_t		*txidx;
2029{
2030	struct ti_tx_desc	*f = NULL;
2031	struct mbuf		*m;
2032	u_int32_t		frag, cur, cnt = 0;
2033#if NVLAN > 0
2034	struct ifvlan		*ifv = NULL;
2035
2036	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2037	    m_head->m_pkthdr.rcvif != NULL &&
2038	    m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
2039		ifv = m_head->m_pkthdr.rcvif->if_softc;
2040#endif
2041
2042	m = m_head;
2043	cur = frag = *txidx;
2044
2045	/*
2046 	 * Start packing the mbufs in this chain into
2047	 * the fragment pointers. Stop when we run out
2048 	 * of fragments or hit the end of the mbuf chain.
2049	 */
2050	for (m = m_head; m != NULL; m = m->m_next) {
2051		if (m->m_len != 0) {
2052			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2053				if (frag > 383)
2054					CSR_WRITE_4(sc, TI_WINBASE,
2055					    TI_TX_RING_BASE + 6144);
2056				else if (frag > 255)
2057					CSR_WRITE_4(sc, TI_WINBASE,
2058					    TI_TX_RING_BASE + 4096);
2059				else if (frag > 127)
2060					CSR_WRITE_4(sc, TI_WINBASE,
2061					    TI_TX_RING_BASE + 2048);
2062				else
2063					CSR_WRITE_4(sc, TI_WINBASE,
2064					    TI_TX_RING_BASE);
2065				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2066			} else
2067				f = &sc->ti_rdata->ti_tx_ring[frag];
2068			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2069				break;
2070			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2071			f->ti_len = m->m_len;
2072			f->ti_flags = 0;
2073#if NVLAN > 0
2074			if (ifv != NULL) {
2075				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2076				f->ti_vlan_tag = ifv->ifv_tag;
2077			} else {
2078				f->ti_vlan_tag = 0;
2079			}
2080#endif
2081			/*
2082			 * Sanity check: avoid coming within 16 descriptors
2083			 * of the end of the ring.
2084			 */
2085			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2086				return(ENOBUFS);
2087			cur = frag;
2088			TI_INC(frag, TI_TX_RING_CNT);
2089			cnt++;
2090		}
2091	}
2092
2093	if (m != NULL)
2094		return(ENOBUFS);
2095
2096	if (frag == sc->ti_tx_saved_considx)
2097		return(ENOBUFS);
2098
2099	if (sc->ti_hwrev == TI_HWREV_TIGON)
2100		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2101		    TI_BDFLAG_END;
2102	else
2103		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2104	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2105	sc->ti_txcnt += cnt;
2106
2107	*txidx = frag;
2108
2109	return(0);
2110}
2111
2112/*
2113 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2114 * to the mbuf data regions directly in the transmit descriptors.
2115 */
2116static void ti_start(ifp)
2117	struct ifnet		*ifp;
2118{
2119	struct ti_softc		*sc;
2120	struct mbuf		*m_head = NULL;
2121	u_int32_t		prodidx = 0;
2122
2123	sc = ifp->if_softc;
2124
2125	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2126
2127	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2128		IF_DEQUEUE(&ifp->if_snd, m_head);
2129		if (m_head == NULL)
2130			break;
2131
2132		/*
2133		 * Pack the data into the transmit ring. If we
2134		 * don't have room, set the OACTIVE flag and wait
2135		 * for the NIC to drain the ring.
2136		 */
2137		if (ti_encap(sc, m_head, &prodidx)) {
2138			IF_PREPEND(&ifp->if_snd, m_head);
2139			ifp->if_flags |= IFF_OACTIVE;
2140			break;
2141		}
2142
2143		/*
2144		 * If there's a BPF listener, bounce a copy of this frame
2145		 * to him.
2146		 */
2147#if NBPF > 0
2148		if (ifp->if_bpf)
2149			bpf_mtap(ifp, m_head);
2150#endif
2151	}
2152
2153	/* Transmit */
2154	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2155
2156	/*
2157	 * Set a timeout in case the chip goes out to lunch.
2158	 */
2159	ifp->if_timer = 5;
2160
2161	return;
2162}
2163
2164static void ti_init(xsc)
2165	void			*xsc;
2166{
2167	struct ti_softc		*sc = xsc;
2168        int			s;
2169
2170	s = splimp();
2171
2172	/* Cancel pending I/O and flush buffers. */
2173	ti_stop(sc);
2174
2175	/* Init the gen info block, ring control blocks and firmware. */
2176	if (ti_gibinit(sc)) {
2177		printf("ti%d: initialization failure\n", sc->ti_unit);
2178		splx(s);
2179		return;
2180	}
2181
2182	splx(s);
2183
2184	return;
2185}
2186
2187static void ti_init2(sc)
2188	struct ti_softc		*sc;
2189{
2190	struct ti_cmd_desc	cmd;
2191	struct ifnet		*ifp;
2192	u_int16_t		*m;
2193	struct ifmedia		*ifm;
2194	int			tmp;
2195
2196	ifp = &sc->arpcom.ac_if;
2197
2198	/* Specify MTU and interface index. */
2199	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2200	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2201	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2202	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2203
2204	/* Load our MAC address. */
2205	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2206	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2207	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2208	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2209
2210	/* Enable or disable promiscuous mode as needed. */
2211	if (ifp->if_flags & IFF_PROMISC) {
2212		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2213	} else {
2214		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2215	}
2216
2217	/* Program multicast filter. */
2218	ti_setmulti(sc);
2219
2220	/*
2221	 * If this is a Tigon 1, we should tell the
2222	 * firmware to use software packet filtering.
2223	 */
2224	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2225		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2226	}
2227
2228	/* Init RX ring. */
2229	ti_init_rx_ring_std(sc);
2230
2231	/* Init jumbo RX ring. */
2232	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2233		ti_init_rx_ring_jumbo(sc);
2234
2235	/*
2236	 * If this is a Tigon 2, we can also configure the
2237	 * mini ring.
2238	 */
2239	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2240		ti_init_rx_ring_mini(sc);
2241
2242	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2243	sc->ti_rx_saved_considx = 0;
2244
2245	/* Init TX ring. */
2246	ti_init_tx_ring(sc);
2247
2248	/* Tell firmware we're alive. */
2249	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2250
2251	/* Enable host interrupts. */
2252	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2253
2254	ifp->if_flags |= IFF_RUNNING;
2255	ifp->if_flags &= ~IFF_OACTIVE;
2256
2257	/*
2258	 * Make sure to set media properly. We have to do this
2259	 * here since we have to issue commands in order to set
2260	 * the link negotiation and we can't issue commands until
2261	 * the firmware is running.
2262	 */
2263	ifm = &sc->ifmedia;
2264	tmp = ifm->ifm_media;
2265	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2266	ti_ifmedia_upd(ifp);
2267	ifm->ifm_media = tmp;
2268
2269	return;
2270}
2271
2272/*
2273 * Set media options.
2274 */
2275static int ti_ifmedia_upd(ifp)
2276	struct ifnet		*ifp;
2277{
2278	struct ti_softc		*sc;
2279	struct ifmedia		*ifm;
2280	struct ti_cmd_desc	cmd;
2281
2282	sc = ifp->if_softc;
2283	ifm = &sc->ifmedia;
2284
2285	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2286		return(EINVAL);
2287
2288	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2289	case IFM_AUTO:
2290		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2291		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2292		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2293		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2294		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2295		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2296		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2297		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2298		break;
2299	case IFM_1000_SX:
2300		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2301		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2302		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2303		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2304		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2305		break;
2306	case IFM_100_FX:
2307	case IFM_10_FL:
2308		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2309		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2310		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX) {
2311			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2312		} else {
2313			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2314		}
2315		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2316			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2317		} else {
2318			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2319		}
2320		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2321		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2322		break;
2323	}
2324
2325	return(0);
2326}
2327
2328/*
2329 * Report current media status.
2330 */
2331static void ti_ifmedia_sts(ifp, ifmr)
2332	struct ifnet		*ifp;
2333	struct ifmediareq	*ifmr;
2334{
2335	struct ti_softc		*sc;
2336
2337	sc = ifp->if_softc;
2338
2339	ifmr->ifm_status = IFM_AVALID;
2340	ifmr->ifm_active = IFM_ETHER;
2341
2342	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2343		return;
2344
2345	ifmr->ifm_status |= IFM_ACTIVE;
2346
2347	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
2348		ifmr->ifm_active |= IFM_1000_SX|IFM_FDX;
2349	else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2350		u_int32_t		media;
2351		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2352		if (media & TI_LNK_100MB)
2353			ifmr->ifm_active |= IFM_100_FX;
2354		if (media & TI_LNK_10MB)
2355			ifmr->ifm_active |= IFM_10_FL;
2356		if (media & TI_LNK_FULL_DUPLEX)
2357			ifmr->ifm_active |= IFM_FDX;
2358		if (media & TI_LNK_HALF_DUPLEX)
2359			ifmr->ifm_active |= IFM_HDX;
2360	}
2361
2362	return;
2363}
2364
2365static int ti_ioctl(ifp, command, data)
2366	struct ifnet		*ifp;
2367	u_long			command;
2368	caddr_t			data;
2369{
2370	struct ti_softc		*sc = ifp->if_softc;
2371	struct ifreq		*ifr = (struct ifreq *) data;
2372	int			s, error = 0;
2373	struct ti_cmd_desc	cmd;
2374
2375	s = splimp();
2376
2377	switch(command) {
2378	case SIOCSIFADDR:
2379	case SIOCGIFADDR:
2380		error = ether_ioctl(ifp, command, data);
2381		break;
2382	case SIOCSIFMTU:
2383		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2384			error = EINVAL;
2385		else {
2386			ifp->if_mtu = ifr->ifr_mtu;
2387			ti_init(sc);
2388		}
2389		break;
2390	case SIOCSIFFLAGS:
2391		if (ifp->if_flags & IFF_UP) {
2392			/*
2393			 * If only the state of the PROMISC flag changed,
2394			 * then just use the 'set promisc mode' command
2395			 * instead of reinitializing the entire NIC. Doing
2396			 * a full re-init means reloading the firmware and
2397			 * waiting for it to start up, which may take a
2398			 * second or two.
2399			 */
2400			if (ifp->if_flags & IFF_RUNNING &&
2401			    ifp->if_flags & IFF_PROMISC &&
2402			    !(sc->ti_if_flags & IFF_PROMISC)) {
2403				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2404				    TI_CMD_CODE_PROMISC_ENB, 0);
2405			} else if (ifp->if_flags & IFF_RUNNING &&
2406			    !(ifp->if_flags & IFF_PROMISC) &&
2407			    sc->ti_if_flags & IFF_PROMISC) {
2408				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2409				    TI_CMD_CODE_PROMISC_DIS, 0);
2410			} else
2411				ti_init(sc);
2412		} else {
2413			if (ifp->if_flags & IFF_RUNNING) {
2414				ti_stop(sc);
2415			}
2416		}
2417		sc->ti_if_flags = ifp->if_flags;
2418		error = 0;
2419		break;
2420	case SIOCADDMULTI:
2421	case SIOCDELMULTI:
2422		if (ifp->if_flags & IFF_RUNNING) {
2423			ti_setmulti(sc);
2424			error = 0;
2425		}
2426		break;
2427	case SIOCSIFMEDIA:
2428	case SIOCGIFMEDIA:
2429		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2430		break;
2431	default:
2432		error = EINVAL;
2433		break;
2434	}
2435
2436	(void)splx(s);
2437
2438	return(error);
2439}
2440
2441static void ti_watchdog(ifp)
2442	struct ifnet		*ifp;
2443{
2444	struct ti_softc		*sc;
2445
2446	sc = ifp->if_softc;
2447
2448	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2449	ti_stop(sc);
2450	ti_init(sc);
2451
2452	ifp->if_oerrors++;
2453
2454	return;
2455}
2456
2457/*
2458 * Stop the adapter and free any mbufs allocated to the
2459 * RX and TX lists.
2460 */
2461static void ti_stop(sc)
2462	struct ti_softc		*sc;
2463{
2464	struct ifnet		*ifp;
2465	struct ti_cmd_desc	cmd;
2466
2467	ifp = &sc->arpcom.ac_if;
2468
2469	/* Disable host interrupts. */
2470	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2471	/*
2472	 * Tell firmware we're shutting down.
2473	 */
2474	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2475
2476	/* Halt and reinitialize. */
2477	ti_chipinit(sc);
2478	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2479	ti_chipinit(sc);
2480
2481	/* Free the RX lists. */
2482	ti_free_rx_ring_std(sc);
2483
2484	/* Free jumbo RX list. */
2485	ti_free_rx_ring_jumbo(sc);
2486
2487	/* Free mini RX list. */
2488	ti_free_rx_ring_mini(sc);
2489
2490	/* Free TX buffers. */
2491	ti_free_tx_ring(sc);
2492
2493	sc->ti_ev_prodidx.ti_idx = 0;
2494	sc->ti_return_prodidx.ti_idx = 0;
2495	sc->ti_tx_considx.ti_idx = 0;
2496	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2497
2498	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2499
2500	return;
2501}
2502
2503/*
2504 * Stop all chip I/O so that the kernel's probe routines don't
2505 * get confused by errant DMAs when rebooting.
2506 */
2507static void ti_shutdown(dev)
2508	device_t		dev;
2509{
2510	struct ti_softc		*sc;
2511
2512	sc = device_get_softc(dev);
2513
2514	ti_chipinit(sc);
2515
2516	return;
2517}
2518