if_ti.c revision 242425
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35 * Manuals, sample driver and firmware source kits are available
36 * from http://www.alteon.com/support/openkits.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48 * filtering and jumbo (9014 byte) frames. The hardware is largely
49 * controlled by firmware, which must be loaded into the NIC during
50 * initialization.
51 *
52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53 * revision, which supports new features such as extended commands,
54 * extended jumbo receive ring desciptors and a mini receive ring.
55 *
56 * Alteon Networks is to be commended for releasing such a vast amount
57 * of development material for the Tigon NIC without requiring an NDA
58 * (although they really should have done it a long time ago). With
59 * any luck, the other vendors will finally wise up and follow Alteon's
60 * stellar example.
61 *
62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63 * this driver by #including it as a C header file. This bloats the
64 * driver somewhat, but it's the easiest method considering that the
65 * driver code and firmware code need to be kept in sync. The source
66 * for the firmware is not provided with the FreeBSD distribution since
67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68 *
69 * The following people deserve special thanks:
70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71 *   for testing
72 * - Raymond Lee of Netgear, for providing a pair of Netgear
73 *   GA620 Tigon 2 boards for testing
74 * - Ulf Zimmermann, for bringing the GA260 to my attention and
75 *   convincing me to write this driver.
76 * - Andrew Gallatin for providing FreeBSD/Alpha support.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/dev/ti/if_ti.c 242425 2012-11-01 05:39:21Z yongari $");
81
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/module.h>
91#include <sys/socket.h>
92#include <sys/queue.h>
93#include <sys/conf.h>
94#include <sys/sf_buf.h>
95
96#include <net/if.h>
97#include <net/if_arp.h>
98#include <net/ethernet.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101#include <net/if_types.h>
102#include <net/if_vlan_var.h>
103
104#include <net/bpf.h>
105
106#include <netinet/in_systm.h>
107#include <netinet/in.h>
108#include <netinet/ip.h>
109
110#include <machine/bus.h>
111#include <machine/resource.h>
112#include <sys/bus.h>
113#include <sys/rman.h>
114
115#ifdef TI_SF_BUF_JUMBO
116#include <vm/vm.h>
117#include <vm/vm_page.h>
118#endif
119
120#include <dev/pci/pcireg.h>
121#include <dev/pci/pcivar.h>
122
123#include <sys/tiio.h>
124#include <dev/ti/if_tireg.h>
125#include <dev/ti/ti_fw.h>
126#include <dev/ti/ti_fw2.h>
127
128#include <sys/sysctl.h>
129
130#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
131/*
132 * We can only turn on header splitting if we're using extended receive
133 * BDs.
134 */
135#if defined(TI_JUMBO_HDRSPLIT) && !defined(TI_SF_BUF_JUMBO)
136#error "options TI_JUMBO_HDRSPLIT requires TI_SF_BUF_JUMBO"
137#endif /* TI_JUMBO_HDRSPLIT && !TI_SF_BUF_JUMBO */
138
139typedef enum {
140	TI_SWAP_HTON,
141	TI_SWAP_NTOH
142} ti_swap_type;
143
144/*
145 * Various supported device vendors/types and their names.
146 */
147
148static const struct ti_type const ti_devs[] = {
149	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
150		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
151	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
152		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
153	{ TC_VENDORID,	TC_DEVICEID_3C985,
154		"3Com 3c985-SX Gigabit Ethernet" },
155	{ NG_VENDORID, NG_DEVICEID_GA620,
156		"Netgear GA620 1000baseSX Gigabit Ethernet" },
157	{ NG_VENDORID, NG_DEVICEID_GA620T,
158		"Netgear GA620 1000baseT Gigabit Ethernet" },
159	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
160		"Silicon Graphics Gigabit Ethernet" },
161	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
162		"Farallon PN9000SX Gigabit Ethernet" },
163	{ 0, 0, NULL }
164};
165
166
167static	d_open_t	ti_open;
168static	d_close_t	ti_close;
169static	d_ioctl_t	ti_ioctl2;
170
171static struct cdevsw ti_cdevsw = {
172	.d_version =	D_VERSION,
173	.d_flags =	0,
174	.d_open =	ti_open,
175	.d_close =	ti_close,
176	.d_ioctl =	ti_ioctl2,
177	.d_name =	"ti",
178};
179
180static int ti_probe(device_t);
181static int ti_attach(device_t);
182static int ti_detach(device_t);
183static void ti_txeof(struct ti_softc *);
184static void ti_rxeof(struct ti_softc *);
185
186static void ti_stats_update(struct ti_softc *);
187static int ti_encap(struct ti_softc *, struct mbuf **);
188
189static void ti_intr(void *);
190static void ti_start(struct ifnet *);
191static void ti_start_locked(struct ifnet *);
192static int ti_ioctl(struct ifnet *, u_long, caddr_t);
193static void ti_init(void *);
194static void ti_init_locked(void *);
195static void ti_init2(struct ti_softc *);
196static void ti_stop(struct ti_softc *);
197static void ti_watchdog(void *);
198static int ti_shutdown(device_t);
199static int ti_ifmedia_upd(struct ifnet *);
200static int ti_ifmedia_upd_locked(struct ti_softc *);
201static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
202
203static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
204static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
205static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
206
207static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
208static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
209static void ti_setmulti(struct ti_softc *);
210
211static void ti_mem_read(struct ti_softc *, uint32_t, uint32_t, void *);
212static void ti_mem_write(struct ti_softc *, uint32_t, uint32_t, void *);
213static void ti_mem_zero(struct ti_softc *, uint32_t, uint32_t);
214static int ti_copy_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t, int,
215    int);
216static int ti_copy_scratch(struct ti_softc *, uint32_t, uint32_t, caddr_t,
217    int, int, int);
218static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
219static void ti_loadfw(struct ti_softc *);
220static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
221static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
222static void ti_handle_events(struct ti_softc *);
223static void ti_dma_map_addr(void *, bus_dma_segment_t *, int, int);
224static int ti_dma_alloc(struct ti_softc *);
225static void ti_dma_free(struct ti_softc *);
226static int ti_dma_ring_alloc(struct ti_softc *, bus_size_t, bus_size_t,
227    bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
228static void ti_dma_ring_free(struct ti_softc *, bus_dma_tag_t *, uint8_t **,
229    bus_dmamap_t *);
230static int ti_newbuf_std(struct ti_softc *, int);
231static int ti_newbuf_mini(struct ti_softc *, int);
232static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
233static int ti_init_rx_ring_std(struct ti_softc *);
234static void ti_free_rx_ring_std(struct ti_softc *);
235static int ti_init_rx_ring_jumbo(struct ti_softc *);
236static void ti_free_rx_ring_jumbo(struct ti_softc *);
237static int ti_init_rx_ring_mini(struct ti_softc *);
238static void ti_free_rx_ring_mini(struct ti_softc *);
239static void ti_free_tx_ring(struct ti_softc *);
240static int ti_init_tx_ring(struct ti_softc *);
241static void ti_discard_std(struct ti_softc *, int);
242#ifndef TI_SF_BUF_JUMBO
243static void ti_discard_jumbo(struct ti_softc *, int);
244#endif
245static void ti_discard_mini(struct ti_softc *, int);
246
247static int ti_64bitslot_war(struct ti_softc *);
248static int ti_chipinit(struct ti_softc *);
249static int ti_gibinit(struct ti_softc *);
250
251#ifdef TI_JUMBO_HDRSPLIT
252static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len,
253    int idx);
254#endif /* TI_JUMBO_HDRSPLIT */
255
256static void ti_sysctl_node(struct ti_softc *);
257
258static device_method_t ti_methods[] = {
259	/* Device interface */
260	DEVMETHOD(device_probe,		ti_probe),
261	DEVMETHOD(device_attach,	ti_attach),
262	DEVMETHOD(device_detach,	ti_detach),
263	DEVMETHOD(device_shutdown,	ti_shutdown),
264	{ 0, 0 }
265};
266
267static driver_t ti_driver = {
268	"ti",
269	ti_methods,
270	sizeof(struct ti_softc)
271};
272
273static devclass_t ti_devclass;
274
275DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
276MODULE_DEPEND(ti, pci, 1, 1, 1);
277MODULE_DEPEND(ti, ether, 1, 1, 1);
278
279/*
280 * Send an instruction or address to the EEPROM, check for ACK.
281 */
282static uint32_t
283ti_eeprom_putbyte(struct ti_softc *sc, int byte)
284{
285	int i, ack = 0;
286
287	/*
288	 * Make sure we're in TX mode.
289	 */
290	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
291
292	/*
293	 * Feed in each bit and stobe the clock.
294	 */
295	for (i = 0x80; i; i >>= 1) {
296		if (byte & i) {
297			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
298		} else {
299			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
300		}
301		DELAY(1);
302		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
303		DELAY(1);
304		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
305	}
306
307	/*
308	 * Turn off TX mode.
309	 */
310	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
311
312	/*
313	 * Check for ack.
314	 */
315	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
316	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
317	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
318
319	return (ack);
320}
321
322/*
323 * Read a byte of data stored in the EEPROM at address 'addr.'
324 * We have to send two address bytes since the EEPROM can hold
325 * more than 256 bytes of data.
326 */
327static uint8_t
328ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
329{
330	int i;
331	uint8_t byte = 0;
332
333	EEPROM_START;
334
335	/*
336	 * Send write control code to EEPROM.
337	 */
338	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
339		device_printf(sc->ti_dev,
340		    "failed to send write command, status: %x\n",
341		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
342		return (1);
343	}
344
345	/*
346	 * Send first byte of address of byte we want to read.
347	 */
348	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
349		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
350		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
351		return (1);
352	}
353	/*
354	 * Send second byte address of byte we want to read.
355	 */
356	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
357		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
358		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
359		return (1);
360	}
361
362	EEPROM_STOP;
363	EEPROM_START;
364	/*
365	 * Send read control code to EEPROM.
366	 */
367	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
368		device_printf(sc->ti_dev,
369		    "failed to send read command, status: %x\n",
370		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
371		return (1);
372	}
373
374	/*
375	 * Start reading bits from EEPROM.
376	 */
377	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
378	for (i = 0x80; i; i >>= 1) {
379		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
380		DELAY(1);
381		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
382			byte |= i;
383		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
384		DELAY(1);
385	}
386
387	EEPROM_STOP;
388
389	/*
390	 * No ACK generated for read, so just return byte.
391	 */
392
393	*dest = byte;
394
395	return (0);
396}
397
398/*
399 * Read a sequence of bytes from the EEPROM.
400 */
401static int
402ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
403{
404	int err = 0, i;
405	uint8_t byte = 0;
406
407	for (i = 0; i < cnt; i++) {
408		err = ti_eeprom_getbyte(sc, off + i, &byte);
409		if (err)
410			break;
411		*(dest + i) = byte;
412	}
413
414	return (err ? 1 : 0);
415}
416
417/*
418 * NIC memory read function.
419 * Can be used to copy data from NIC local memory.
420 */
421static void
422ti_mem_read(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
423{
424	int segptr, segsize, cnt;
425	char *ptr;
426
427	segptr = addr;
428	cnt = len;
429	ptr = buf;
430
431	while (cnt) {
432		if (cnt < TI_WINLEN)
433			segsize = cnt;
434		else
435			segsize = TI_WINLEN - (segptr % TI_WINLEN);
436		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
437		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
438		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
439		    segsize / 4);
440		ptr += segsize;
441		segptr += segsize;
442		cnt -= segsize;
443	}
444}
445
446
447/*
448 * NIC memory write function.
449 * Can be used to copy data into NIC local memory.
450 */
451static void
452ti_mem_write(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
453{
454	int segptr, segsize, cnt;
455	char *ptr;
456
457	segptr = addr;
458	cnt = len;
459	ptr = buf;
460
461	while (cnt) {
462		if (cnt < TI_WINLEN)
463			segsize = cnt;
464		else
465			segsize = TI_WINLEN - (segptr % TI_WINLEN);
466		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
467		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
468		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
469		    segsize / 4);
470		ptr += segsize;
471		segptr += segsize;
472		cnt -= segsize;
473	}
474}
475
476/*
477 * NIC memory read function.
478 * Can be used to clear a section of NIC local memory.
479 */
480static void
481ti_mem_zero(struct ti_softc *sc, uint32_t addr, uint32_t len)
482{
483	int segptr, segsize, cnt;
484
485	segptr = addr;
486	cnt = len;
487
488	while (cnt) {
489		if (cnt < TI_WINLEN)
490			segsize = cnt;
491		else
492			segsize = TI_WINLEN - (segptr % TI_WINLEN);
493		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
494		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
495		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
496		segptr += segsize;
497		cnt -= segsize;
498	}
499}
500
501static int
502ti_copy_mem(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
503    caddr_t buf, int useraddr, int readdata)
504{
505	int segptr, segsize, cnt;
506	caddr_t ptr;
507	uint32_t origwin;
508	int resid, segresid;
509	int first_pass;
510
511	TI_LOCK_ASSERT(sc);
512
513	/*
514	 * At the moment, we don't handle non-aligned cases, we just bail.
515	 * If this proves to be a problem, it will be fixed.
516	 */
517	if (readdata == 0 && (tigon_addr & 0x3) != 0) {
518		device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
519		    "word-aligned\n", __func__, tigon_addr);
520		device_printf(sc->ti_dev, "%s: unaligned writes aren't "
521		    "yet supported\n", __func__);
522		return (EINVAL);
523	}
524
525	segptr = tigon_addr & ~0x3;
526	segresid = tigon_addr - segptr;
527
528	/*
529	 * This is the non-aligned amount left over that we'll need to
530	 * copy.
531	 */
532	resid = len & 0x3;
533
534	/* Add in the left over amount at the front of the buffer */
535	resid += segresid;
536
537	cnt = len & ~0x3;
538	/*
539	 * If resid + segresid is >= 4, add multiples of 4 to the count and
540	 * decrease the residual by that much.
541	 */
542	cnt += resid & ~0x3;
543	resid -= resid & ~0x3;
544
545	ptr = buf;
546
547	first_pass = 1;
548
549	/*
550	 * Save the old window base value.
551	 */
552	origwin = CSR_READ_4(sc, TI_WINBASE);
553
554	while (cnt) {
555		bus_size_t ti_offset;
556
557		if (cnt < TI_WINLEN)
558			segsize = cnt;
559		else
560			segsize = TI_WINLEN - (segptr % TI_WINLEN);
561		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
562
563		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
564
565		if (readdata) {
566			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
567			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
568			if (useraddr) {
569				/*
570				 * Yeah, this is a little on the kludgy
571				 * side, but at least this code is only
572				 * used for debugging.
573				 */
574				ti_bcopy_swap(sc->ti_membuf, sc->ti_membuf2,
575				    segsize, TI_SWAP_NTOH);
576
577				TI_UNLOCK(sc);
578				if (first_pass) {
579					copyout(&sc->ti_membuf2[segresid], ptr,
580					    segsize - segresid);
581					first_pass = 0;
582				} else
583					copyout(sc->ti_membuf2, ptr, segsize);
584				TI_LOCK(sc);
585			} else {
586				if (first_pass) {
587
588					ti_bcopy_swap(sc->ti_membuf,
589					    sc->ti_membuf2, segsize,
590					    TI_SWAP_NTOH);
591					TI_UNLOCK(sc);
592					bcopy(&sc->ti_membuf2[segresid], ptr,
593					    segsize - segresid);
594					TI_LOCK(sc);
595					first_pass = 0;
596				} else
597					ti_bcopy_swap(sc->ti_membuf, ptr,
598					    segsize, TI_SWAP_NTOH);
599			}
600
601		} else {
602			if (useraddr) {
603				TI_UNLOCK(sc);
604				copyin(ptr, sc->ti_membuf2, segsize);
605				TI_LOCK(sc);
606				ti_bcopy_swap(sc->ti_membuf2, sc->ti_membuf,
607				    segsize, TI_SWAP_HTON);
608			} else
609				ti_bcopy_swap(ptr, sc->ti_membuf, segsize,
610				    TI_SWAP_HTON);
611
612			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
613			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
614		}
615		segptr += segsize;
616		ptr += segsize;
617		cnt -= segsize;
618	}
619
620	/*
621	 * Handle leftover, non-word-aligned bytes.
622	 */
623	if (resid != 0) {
624		uint32_t tmpval, tmpval2;
625		bus_size_t ti_offset;
626
627		/*
628		 * Set the segment pointer.
629		 */
630		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
631
632		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
633
634		/*
635		 * First, grab whatever is in our source/destination.
636		 * We'll obviously need this for reads, but also for
637		 * writes, since we'll be doing read/modify/write.
638		 */
639		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
640		    ti_offset, &tmpval, 1);
641
642		/*
643		 * Next, translate this from little-endian to big-endian
644		 * (at least on i386 boxes).
645		 */
646		tmpval2 = ntohl(tmpval);
647
648		if (readdata) {
649			/*
650			 * If we're reading, just copy the leftover number
651			 * of bytes from the host byte order buffer to
652			 * the user's buffer.
653			 */
654			if (useraddr) {
655				TI_UNLOCK(sc);
656				copyout(&tmpval2, ptr, resid);
657				TI_LOCK(sc);
658			} else
659				bcopy(&tmpval2, ptr, resid);
660		} else {
661			/*
662			 * If we're writing, first copy the bytes to be
663			 * written into the network byte order buffer,
664			 * leaving the rest of the buffer with whatever was
665			 * originally in there.  Then, swap the bytes
666			 * around into host order and write them out.
667			 *
668			 * XXX KDM the read side of this has been verified
669			 * to work, but the write side of it has not been
670			 * verified.  So user beware.
671			 */
672			if (useraddr) {
673				TI_UNLOCK(sc);
674				copyin(ptr, &tmpval2, resid);
675				TI_LOCK(sc);
676			} else
677				bcopy(ptr, &tmpval2, resid);
678
679			tmpval = htonl(tmpval2);
680
681			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
682			    ti_offset, &tmpval, 1);
683		}
684	}
685
686	CSR_WRITE_4(sc, TI_WINBASE, origwin);
687
688	return (0);
689}
690
691static int
692ti_copy_scratch(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
693    caddr_t buf, int useraddr, int readdata, int cpu)
694{
695	uint32_t segptr;
696	int cnt;
697	uint32_t tmpval, tmpval2;
698	caddr_t ptr;
699
700	TI_LOCK_ASSERT(sc);
701
702	/*
703	 * At the moment, we don't handle non-aligned cases, we just bail.
704	 * If this proves to be a problem, it will be fixed.
705	 */
706	if (tigon_addr & 0x3) {
707		device_printf(sc->ti_dev, "%s: tigon address %#x "
708		    "isn't word-aligned\n", __func__, tigon_addr);
709		return (EINVAL);
710	}
711
712	if (len & 0x3) {
713		device_printf(sc->ti_dev, "%s: transfer length %d "
714		    "isn't word-aligned\n", __func__, len);
715		return (EINVAL);
716	}
717
718	segptr = tigon_addr;
719	cnt = len;
720	ptr = buf;
721
722	while (cnt) {
723		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
724
725		if (readdata) {
726			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
727
728			tmpval = ntohl(tmpval2);
729
730			/*
731			 * Note:  I've used this debugging interface
732			 * extensively with Alteon's 12.3.15 firmware,
733			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
734			 *
735			 * When you compile the firmware without
736			 * optimization, which is necessary sometimes in
737			 * order to properly step through it, you sometimes
738			 * read out a bogus value of 0xc0017c instead of
739			 * whatever was supposed to be in that scratchpad
740			 * location.  That value is on the stack somewhere,
741			 * but I've never been able to figure out what was
742			 * causing the problem.
743			 *
744			 * The address seems to pop up in random places,
745			 * often not in the same place on two subsequent
746			 * reads.
747			 *
748			 * In any case, the underlying data doesn't seem
749			 * to be affected, just the value read out.
750			 *
751			 * KDM, 3/7/2000
752			 */
753
754			if (tmpval2 == 0xc0017c)
755				device_printf(sc->ti_dev, "found 0xc0017c at "
756				    "%#x (tmpval2)\n", segptr);
757
758			if (tmpval == 0xc0017c)
759				device_printf(sc->ti_dev, "found 0xc0017c at "
760				    "%#x (tmpval)\n", segptr);
761
762			if (useraddr)
763				copyout(&tmpval, ptr, 4);
764			else
765				bcopy(&tmpval, ptr, 4);
766		} else {
767			if (useraddr)
768				copyin(ptr, &tmpval2, 4);
769			else
770				bcopy(ptr, &tmpval2, 4);
771
772			tmpval = htonl(tmpval2);
773
774			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
775		}
776
777		cnt -= 4;
778		segptr += 4;
779		ptr += 4;
780	}
781
782	return (0);
783}
784
785static int
786ti_bcopy_swap(const void *src, void *dst, size_t len, ti_swap_type swap_type)
787{
788	const uint8_t *tmpsrc;
789	uint8_t *tmpdst;
790	size_t tmplen;
791
792	if (len & 0x3) {
793		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n", len);
794		return (-1);
795	}
796
797	tmpsrc = src;
798	tmpdst = dst;
799	tmplen = len;
800
801	while (tmplen) {
802		if (swap_type == TI_SWAP_NTOH)
803			*(uint32_t *)tmpdst = ntohl(*(const uint32_t *)tmpsrc);
804		else
805			*(uint32_t *)tmpdst = htonl(*(const uint32_t *)tmpsrc);
806		tmpsrc += 4;
807		tmpdst += 4;
808		tmplen -= 4;
809	}
810
811	return (0);
812}
813
814/*
815 * Load firmware image into the NIC. Check that the firmware revision
816 * is acceptable and see if we want the firmware for the Tigon 1 or
817 * Tigon 2.
818 */
819static void
820ti_loadfw(struct ti_softc *sc)
821{
822
823	TI_LOCK_ASSERT(sc);
824
825	switch (sc->ti_hwrev) {
826	case TI_HWREV_TIGON:
827		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
828		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
829		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
830			device_printf(sc->ti_dev, "firmware revision mismatch; "
831			    "want %d.%d.%d, got %d.%d.%d\n",
832			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
833			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
834			    tigonFwReleaseMinor, tigonFwReleaseFix);
835			return;
836		}
837		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
838		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
839		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
840		    tigonFwRodata);
841		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
842		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
843		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
844		break;
845	case TI_HWREV_TIGON_II:
846		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
847		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
848		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
849			device_printf(sc->ti_dev, "firmware revision mismatch; "
850			    "want %d.%d.%d, got %d.%d.%d\n",
851			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
852			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
853			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
854			return;
855		}
856		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
857		    tigon2FwText);
858		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
859		    tigon2FwData);
860		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
861		    tigon2FwRodata);
862		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
863		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
864		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
865		break;
866	default:
867		device_printf(sc->ti_dev,
868		    "can't load firmware: unknown hardware rev\n");
869		break;
870	}
871}
872
873/*
874 * Send the NIC a command via the command ring.
875 */
876static void
877ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
878{
879	int index;
880
881	index = sc->ti_cmd_saved_prodidx;
882	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
883	TI_INC(index, TI_CMD_RING_CNT);
884	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
885	sc->ti_cmd_saved_prodidx = index;
886}
887
888/*
889 * Send the NIC an extended command. The 'len' parameter specifies the
890 * number of command slots to include after the initial command.
891 */
892static void
893ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
894{
895	int index;
896	int i;
897
898	index = sc->ti_cmd_saved_prodidx;
899	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
900	TI_INC(index, TI_CMD_RING_CNT);
901	for (i = 0; i < len; i++) {
902		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
903		    *(uint32_t *)(&arg[i * 4]));
904		TI_INC(index, TI_CMD_RING_CNT);
905	}
906	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
907	sc->ti_cmd_saved_prodidx = index;
908}
909
910/*
911 * Handle events that have triggered interrupts.
912 */
913static void
914ti_handle_events(struct ti_softc *sc)
915{
916	struct ti_event_desc *e;
917
918	if (sc->ti_rdata.ti_event_ring == NULL)
919		return;
920
921	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
922	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_POSTREAD);
923	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
924		e = &sc->ti_rdata.ti_event_ring[sc->ti_ev_saved_considx];
925		switch (TI_EVENT_EVENT(e)) {
926		case TI_EV_LINKSTAT_CHANGED:
927			sc->ti_linkstat = TI_EVENT_CODE(e);
928			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
929				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
930				sc->ti_ifp->if_baudrate = IF_Mbps(100);
931				if (bootverbose)
932					device_printf(sc->ti_dev,
933					    "10/100 link up\n");
934			} else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
935				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
936				sc->ti_ifp->if_baudrate = IF_Gbps(1UL);
937				if (bootverbose)
938					device_printf(sc->ti_dev,
939					    "gigabit link up\n");
940			} else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
941				if_link_state_change(sc->ti_ifp,
942				    LINK_STATE_DOWN);
943				sc->ti_ifp->if_baudrate = 0;
944				if (bootverbose)
945					device_printf(sc->ti_dev,
946					    "link down\n");
947			}
948			break;
949		case TI_EV_ERROR:
950			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
951				device_printf(sc->ti_dev, "invalid command\n");
952			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
953				device_printf(sc->ti_dev, "unknown command\n");
954			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
955				device_printf(sc->ti_dev, "bad config data\n");
956			break;
957		case TI_EV_FIRMWARE_UP:
958			ti_init2(sc);
959			break;
960		case TI_EV_STATS_UPDATED:
961			ti_stats_update(sc);
962			break;
963		case TI_EV_RESET_JUMBO_RING:
964		case TI_EV_MCAST_UPDATED:
965			/* Who cares. */
966			break;
967		default:
968			device_printf(sc->ti_dev, "unknown event: %d\n",
969			    TI_EVENT_EVENT(e));
970			break;
971		}
972		/* Advance the consumer index. */
973		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
974		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
975	}
976	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
977	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_PREREAD);
978}
979
980struct ti_dmamap_arg {
981	bus_addr_t	ti_busaddr;
982};
983
984static void
985ti_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
986{
987	struct ti_dmamap_arg *ctx;
988
989	if (error)
990		return;
991
992	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
993
994	ctx = arg;
995	ctx->ti_busaddr = segs->ds_addr;
996}
997
998static int
999ti_dma_ring_alloc(struct ti_softc *sc, bus_size_t alignment, bus_size_t maxsize,
1000    bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, bus_addr_t *paddr,
1001    const char *msg)
1002{
1003	struct ti_dmamap_arg ctx;
1004	int error;
1005
1006	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag,
1007	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1008	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
1009	if (error != 0) {
1010		device_printf(sc->ti_dev,
1011		    "could not create %s dma tag\n", msg);
1012		return (error);
1013	}
1014	/* Allocate DMA'able memory for ring. */
1015	error = bus_dmamem_alloc(*tag, (void **)ring,
1016	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1017	if (error != 0) {
1018		device_printf(sc->ti_dev,
1019		    "could not allocate DMA'able memory for %s\n", msg);
1020		return (error);
1021	}
1022	/* Load the address of the ring. */
1023	ctx.ti_busaddr = 0;
1024	error = bus_dmamap_load(*tag, *map, *ring, maxsize, ti_dma_map_addr,
1025	    &ctx, BUS_DMA_NOWAIT);
1026	if (error != 0) {
1027		device_printf(sc->ti_dev,
1028		    "could not load DMA'able memory for %s\n", msg);
1029		return (error);
1030	}
1031	*paddr = ctx.ti_busaddr;
1032	return (0);
1033}
1034
1035static void
1036ti_dma_ring_free(struct ti_softc *sc, bus_dma_tag_t *tag, uint8_t **ring,
1037    bus_dmamap_t *map)
1038{
1039
1040	if (*map != NULL)
1041		bus_dmamap_unload(*tag, *map);
1042	if (*map != NULL && *ring != NULL) {
1043		bus_dmamem_free(*tag, *ring, *map);
1044		*ring = NULL;
1045		*map = NULL;
1046	}
1047	if (*tag) {
1048		bus_dma_tag_destroy(*tag);
1049		*tag = NULL;
1050	}
1051}
1052
1053static int
1054ti_dma_alloc(struct ti_softc *sc)
1055{
1056	bus_addr_t lowaddr;
1057	int i, error;
1058
1059	lowaddr = BUS_SPACE_MAXADDR;
1060	if (sc->ti_dac == 0)
1061		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1062
1063	error = bus_dma_tag_create(bus_get_dma_tag(sc->ti_dev), 1, 0, lowaddr,
1064	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1065	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1066	    &sc->ti_cdata.ti_parent_tag);
1067	if (error != 0) {
1068		device_printf(sc->ti_dev,
1069		    "could not allocate parent dma tag\n");
1070		return (ENOMEM);
1071	}
1072
1073	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_gib),
1074	    &sc->ti_cdata.ti_gib_tag, (uint8_t **)&sc->ti_rdata.ti_info,
1075	    &sc->ti_cdata.ti_gib_map, &sc->ti_rdata.ti_info_paddr, "GIB");
1076	if (error)
1077		return (error);
1078
1079	/* Producer/consumer status */
1080	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_status),
1081	    &sc->ti_cdata.ti_status_tag, (uint8_t **)&sc->ti_rdata.ti_status,
1082	    &sc->ti_cdata.ti_status_map, &sc->ti_rdata.ti_status_paddr,
1083	    "event ring");
1084	if (error)
1085		return (error);
1086
1087	/* Event ring */
1088	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_EVENT_RING_SZ,
1089	    &sc->ti_cdata.ti_event_ring_tag,
1090	    (uint8_t **)&sc->ti_rdata.ti_event_ring,
1091	    &sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr,
1092	    "event ring");
1093	if (error)
1094		return (error);
1095
1096	/* Command ring lives in shared memory so no need to create DMA area. */
1097
1098	/* Standard RX ring */
1099	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_STD_RX_RING_SZ,
1100	    &sc->ti_cdata.ti_rx_std_ring_tag,
1101	    (uint8_t **)&sc->ti_rdata.ti_rx_std_ring,
1102	    &sc->ti_cdata.ti_rx_std_ring_map,
1103	    &sc->ti_rdata.ti_rx_std_ring_paddr, "RX ring");
1104	if (error)
1105		return (error);
1106
1107	/* Jumbo RX ring */
1108	error = ti_dma_ring_alloc(sc, TI_JUMBO_RING_ALIGN, TI_JUMBO_RX_RING_SZ,
1109	    &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1110	    (uint8_t **)&sc->ti_rdata.ti_rx_jumbo_ring,
1111	    &sc->ti_cdata.ti_rx_jumbo_ring_map,
1112	    &sc->ti_rdata.ti_rx_jumbo_ring_paddr, "jumbo RX ring");
1113	if (error)
1114		return (error);
1115
1116	/* RX return ring */
1117	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_RX_RETURN_RING_SZ,
1118	    &sc->ti_cdata.ti_rx_return_ring_tag,
1119	    (uint8_t **)&sc->ti_rdata.ti_rx_return_ring,
1120	    &sc->ti_cdata.ti_rx_return_ring_map,
1121	    &sc->ti_rdata.ti_rx_return_ring_paddr, "RX return ring");
1122	if (error)
1123		return (error);
1124
1125	/* Create DMA tag for standard RX mbufs. */
1126	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1127	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1128	    MCLBYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_std_tag);
1129	if (error) {
1130		device_printf(sc->ti_dev, "could not allocate RX dma tag\n");
1131		return (error);
1132	}
1133
1134	/* Create DMA tag for jumbo RX mbufs. */
1135#ifdef TI_SF_BUF_JUMBO
1136	/*
1137	 * The VM system will take care of providing aligned pages.  Alignment
1138	 * is set to 1 here so that busdma resources won't be wasted.
1139	 */
1140	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1141	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE * 4, 4,
1142	    PAGE_SIZE, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1143#else
1144	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1145	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MJUM9BYTES, 1,
1146	    MJUM9BYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1147#endif
1148	if (error) {
1149		device_printf(sc->ti_dev,
1150		    "could not allocate jumbo RX dma tag\n");
1151		return (error);
1152	}
1153
1154	/* Create DMA tag for TX mbufs. */
1155	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1,
1156	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1157	    MCLBYTES * TI_MAXTXSEGS, TI_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1158	    &sc->ti_cdata.ti_tx_tag);
1159	if (error) {
1160		device_printf(sc->ti_dev, "could not allocate TX dma tag\n");
1161		return (ENOMEM);
1162	}
1163
1164	/* Create DMA maps for RX buffers. */
1165	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1166		error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1167		    &sc->ti_cdata.ti_rx_std_maps[i]);
1168		if (error) {
1169			device_printf(sc->ti_dev,
1170			    "could not create DMA map for RX\n");
1171			return (error);
1172		}
1173	}
1174	error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1175	    &sc->ti_cdata.ti_rx_std_sparemap);
1176	if (error) {
1177		device_printf(sc->ti_dev,
1178		    "could not create spare DMA map for RX\n");
1179		return (error);
1180	}
1181
1182	/* Create DMA maps for jumbo RX buffers. */
1183	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1184		error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1185		    &sc->ti_cdata.ti_rx_jumbo_maps[i]);
1186		if (error) {
1187			device_printf(sc->ti_dev,
1188			    "could not create DMA map for jumbo RX\n");
1189			return (error);
1190		}
1191	}
1192	error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1193	    &sc->ti_cdata.ti_rx_jumbo_sparemap);
1194	if (error) {
1195		device_printf(sc->ti_dev,
1196		    "could not create spare DMA map for jumbo RX\n");
1197		return (error);
1198	}
1199
1200	/* Create DMA maps for TX buffers. */
1201	for (i = 0; i < TI_TX_RING_CNT; i++) {
1202		error = bus_dmamap_create(sc->ti_cdata.ti_tx_tag, 0,
1203		    &sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1204		if (error) {
1205			device_printf(sc->ti_dev,
1206			    "could not create DMA map for TX\n");
1207			return (ENOMEM);
1208		}
1209	}
1210
1211	/* Mini ring and TX ring is not available on Tigon 1. */
1212	if (sc->ti_hwrev == TI_HWREV_TIGON)
1213		return (0);
1214
1215	/* TX ring */
1216	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_TX_RING_SZ,
1217	    &sc->ti_cdata.ti_tx_ring_tag, (uint8_t **)&sc->ti_rdata.ti_tx_ring,
1218	    &sc->ti_cdata.ti_tx_ring_map, &sc->ti_rdata.ti_tx_ring_paddr,
1219	    "TX ring");
1220	if (error)
1221		return (error);
1222
1223	/* Mini RX ring */
1224	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_MINI_RX_RING_SZ,
1225	    &sc->ti_cdata.ti_rx_mini_ring_tag,
1226	    (uint8_t **)&sc->ti_rdata.ti_rx_mini_ring,
1227	    &sc->ti_cdata.ti_rx_mini_ring_map,
1228	    &sc->ti_rdata.ti_rx_mini_ring_paddr, "mini RX ring");
1229	if (error)
1230		return (error);
1231
1232	/* Create DMA tag for mini RX mbufs. */
1233	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1234	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MHLEN, 1,
1235	    MHLEN, 0, NULL, NULL, &sc->ti_cdata.ti_rx_mini_tag);
1236	if (error) {
1237		device_printf(sc->ti_dev,
1238		    "could not allocate mini RX dma tag\n");
1239		return (error);
1240	}
1241
1242	/* Create DMA maps for mini RX buffers. */
1243	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1244		error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1245		    &sc->ti_cdata.ti_rx_mini_maps[i]);
1246		if (error) {
1247			device_printf(sc->ti_dev,
1248			    "could not create DMA map for mini RX\n");
1249			return (error);
1250		}
1251	}
1252	error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1253	    &sc->ti_cdata.ti_rx_mini_sparemap);
1254	if (error) {
1255		device_printf(sc->ti_dev,
1256		    "could not create spare DMA map for mini RX\n");
1257		return (error);
1258	}
1259
1260	return (0);
1261}
1262
1263static void
1264ti_dma_free(struct ti_softc *sc)
1265{
1266	int i;
1267
1268	/* Destroy DMA maps for RX buffers. */
1269	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1270		if (sc->ti_cdata.ti_rx_std_maps[i]) {
1271			bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1272			    sc->ti_cdata.ti_rx_std_maps[i]);
1273			sc->ti_cdata.ti_rx_std_maps[i] = NULL;
1274		}
1275	}
1276	if (sc->ti_cdata.ti_rx_std_sparemap) {
1277		bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1278		    sc->ti_cdata.ti_rx_std_sparemap);
1279		sc->ti_cdata.ti_rx_std_sparemap = NULL;
1280	}
1281	if (sc->ti_cdata.ti_rx_std_tag) {
1282		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_std_tag);
1283		sc->ti_cdata.ti_rx_std_tag = NULL;
1284	}
1285
1286	/* Destroy DMA maps for jumbo RX buffers. */
1287	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1288		if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1289			bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1290			    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1291			sc->ti_cdata.ti_rx_jumbo_maps[i] = NULL;
1292		}
1293	}
1294	if (sc->ti_cdata.ti_rx_jumbo_sparemap) {
1295		bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1296		    sc->ti_cdata.ti_rx_jumbo_sparemap);
1297		sc->ti_cdata.ti_rx_jumbo_sparemap = NULL;
1298	}
1299	if (sc->ti_cdata.ti_rx_jumbo_tag) {
1300		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_jumbo_tag);
1301		sc->ti_cdata.ti_rx_jumbo_tag = NULL;
1302	}
1303
1304	/* Destroy DMA maps for mini RX buffers. */
1305	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1306		if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1307			bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1308			    sc->ti_cdata.ti_rx_mini_maps[i]);
1309			sc->ti_cdata.ti_rx_mini_maps[i] = NULL;
1310		}
1311	}
1312	if (sc->ti_cdata.ti_rx_mini_sparemap) {
1313		bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1314		    sc->ti_cdata.ti_rx_mini_sparemap);
1315		sc->ti_cdata.ti_rx_mini_sparemap = NULL;
1316	}
1317	if (sc->ti_cdata.ti_rx_mini_tag) {
1318		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_mini_tag);
1319		sc->ti_cdata.ti_rx_mini_tag = NULL;
1320	}
1321
1322	/* Destroy DMA maps for TX buffers. */
1323	for (i = 0; i < TI_TX_RING_CNT; i++) {
1324		if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1325			bus_dmamap_destroy(sc->ti_cdata.ti_tx_tag,
1326			    sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1327			sc->ti_cdata.ti_txdesc[i].tx_dmamap = NULL;
1328		}
1329	}
1330	if (sc->ti_cdata.ti_tx_tag) {
1331		bus_dma_tag_destroy(sc->ti_cdata.ti_tx_tag);
1332		sc->ti_cdata.ti_tx_tag = NULL;
1333	}
1334
1335	/* Destroy standard RX ring. */
1336	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_std_ring_tag,
1337	    (void *)&sc->ti_rdata.ti_rx_std_ring,
1338	    &sc->ti_cdata.ti_rx_std_ring_map);
1339	/* Destroy jumbo RX ring. */
1340	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1341	    (void *)&sc->ti_rdata.ti_rx_jumbo_ring,
1342	    &sc->ti_cdata.ti_rx_jumbo_ring_map);
1343	/* Destroy mini RX ring. */
1344	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_mini_ring_tag,
1345	    (void *)&sc->ti_rdata.ti_rx_mini_ring,
1346	    &sc->ti_cdata.ti_rx_mini_ring_map);
1347	/* Destroy RX return ring. */
1348	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_return_ring_tag,
1349	    (void *)&sc->ti_rdata.ti_rx_return_ring,
1350	    &sc->ti_cdata.ti_rx_return_ring_map);
1351	/* Destroy TX ring. */
1352	ti_dma_ring_free(sc, &sc->ti_cdata.ti_tx_ring_tag,
1353	    (void *)&sc->ti_rdata.ti_tx_ring, &sc->ti_cdata.ti_tx_ring_map);
1354	/* Destroy status block. */
1355	ti_dma_ring_free(sc, &sc->ti_cdata.ti_status_tag,
1356	    (void *)&sc->ti_rdata.ti_status, &sc->ti_cdata.ti_status_map);
1357	/* Destroy event ring. */
1358	ti_dma_ring_free(sc, &sc->ti_cdata.ti_event_ring_tag,
1359	    (void *)&sc->ti_rdata.ti_event_ring,
1360	    &sc->ti_cdata.ti_event_ring_map);
1361	/* Destroy GIB */
1362	ti_dma_ring_free(sc, &sc->ti_cdata.ti_gib_tag,
1363	    (void *)&sc->ti_rdata.ti_info, &sc->ti_cdata.ti_gib_map);
1364
1365	/* Destroy the parent tag. */
1366	if (sc->ti_cdata.ti_parent_tag) {
1367		bus_dma_tag_destroy(sc->ti_cdata.ti_parent_tag);
1368		sc->ti_cdata.ti_parent_tag = NULL;
1369	}
1370}
1371
1372/*
1373 * Intialize a standard receive ring descriptor.
1374 */
1375static int
1376ti_newbuf_std(struct ti_softc *sc, int i)
1377{
1378	bus_dmamap_t map;
1379	bus_dma_segment_t segs[1];
1380	struct mbuf *m;
1381	struct ti_rx_desc *r;
1382	int error, nsegs;
1383
1384	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1385	if (m == NULL)
1386		return (ENOBUFS);
1387	m->m_len = m->m_pkthdr.len = MCLBYTES;
1388	m_adj(m, ETHER_ALIGN);
1389
1390	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_std_tag,
1391	    sc->ti_cdata.ti_rx_std_sparemap, m, segs, &nsegs, 0);
1392	if (error != 0) {
1393		m_freem(m);
1394		return (error);
1395        }
1396	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1397
1398	if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1399		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1400		    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_POSTREAD);
1401		bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag,
1402		    sc->ti_cdata.ti_rx_std_maps[i]);
1403	}
1404
1405	map = sc->ti_cdata.ti_rx_std_maps[i];
1406	sc->ti_cdata.ti_rx_std_maps[i] = sc->ti_cdata.ti_rx_std_sparemap;
1407	sc->ti_cdata.ti_rx_std_sparemap = map;
1408	sc->ti_cdata.ti_rx_std_chain[i] = m;
1409
1410	r = &sc->ti_rdata.ti_rx_std_ring[i];
1411	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1412	r->ti_len = segs[0].ds_len;
1413	r->ti_type = TI_BDTYPE_RECV_BD;
1414	r->ti_flags = 0;
1415	r->ti_vlan_tag = 0;
1416	r->ti_tcp_udp_cksum = 0;
1417	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1418		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1419	r->ti_idx = i;
1420
1421	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1422	    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_PREREAD);
1423	return (0);
1424}
1425
1426/*
1427 * Intialize a mini receive ring descriptor. This only applies to
1428 * the Tigon 2.
1429 */
1430static int
1431ti_newbuf_mini(struct ti_softc *sc, int i)
1432{
1433	bus_dmamap_t map;
1434	bus_dma_segment_t segs[1];
1435	struct mbuf *m;
1436	struct ti_rx_desc *r;
1437	int error, nsegs;
1438
1439	MGETHDR(m, M_DONTWAIT, MT_DATA);
1440	if (m == NULL)
1441		return (ENOBUFS);
1442	m->m_len = m->m_pkthdr.len = MHLEN;
1443	m_adj(m, ETHER_ALIGN);
1444
1445	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_mini_tag,
1446	    sc->ti_cdata.ti_rx_mini_sparemap, m, segs, &nsegs, 0);
1447	if (error != 0) {
1448		m_freem(m);
1449		return (error);
1450        }
1451	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1452
1453	if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1454		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1455		    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_POSTREAD);
1456		bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag,
1457		    sc->ti_cdata.ti_rx_mini_maps[i]);
1458	}
1459
1460	map = sc->ti_cdata.ti_rx_mini_maps[i];
1461	sc->ti_cdata.ti_rx_mini_maps[i] = sc->ti_cdata.ti_rx_mini_sparemap;
1462	sc->ti_cdata.ti_rx_mini_sparemap = map;
1463	sc->ti_cdata.ti_rx_mini_chain[i] = m;
1464
1465	r = &sc->ti_rdata.ti_rx_mini_ring[i];
1466	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1467	r->ti_len = segs[0].ds_len;
1468	r->ti_type = TI_BDTYPE_RECV_BD;
1469	r->ti_flags = TI_BDFLAG_MINI_RING;
1470	r->ti_vlan_tag = 0;
1471	r->ti_tcp_udp_cksum = 0;
1472	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1473		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1474	r->ti_idx = i;
1475
1476	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1477	    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_PREREAD);
1478	return (0);
1479}
1480
1481#ifndef TI_SF_BUF_JUMBO
1482
1483/*
1484 * Initialize a jumbo receive ring descriptor. This allocates
1485 * a jumbo buffer from the pool managed internally by the driver.
1486 */
1487static int
1488ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *dummy)
1489{
1490	bus_dmamap_t map;
1491	bus_dma_segment_t segs[1];
1492	struct mbuf *m;
1493	struct ti_rx_desc *r;
1494	int error, nsegs;
1495
1496	(void)dummy;
1497
1498	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1499	if (m == NULL)
1500		return (ENOBUFS);
1501	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1502	m_adj(m, ETHER_ALIGN);
1503
1504	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag,
1505	    sc->ti_cdata.ti_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1506	if (error != 0) {
1507		m_freem(m);
1508		return (error);
1509        }
1510	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1511
1512	if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1513		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1514		    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_POSTREAD);
1515		bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag,
1516		    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1517	}
1518
1519	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1520	sc->ti_cdata.ti_rx_jumbo_maps[i] = sc->ti_cdata.ti_rx_jumbo_sparemap;
1521	sc->ti_cdata.ti_rx_jumbo_sparemap = map;
1522	sc->ti_cdata.ti_rx_jumbo_chain[i] = m;
1523
1524	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
1525	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1526	r->ti_len = segs[0].ds_len;
1527	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1528	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1529	r->ti_vlan_tag = 0;
1530	r->ti_tcp_udp_cksum = 0;
1531	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1532		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1533	r->ti_idx = i;
1534
1535	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1536	    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_PREREAD);
1537	return (0);
1538}
1539
1540#else
1541
1542#if (PAGE_SIZE == 4096)
1543#define NPAYLOAD 2
1544#else
1545#define NPAYLOAD 1
1546#endif
1547
1548#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1549#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1550#define NFS_HDR_LEN (UDP_HDR_LEN)
1551static int HDR_LEN = TCP_HDR_LEN;
1552
1553/*
1554 * Initialize a jumbo receive ring descriptor. This allocates
1555 * a jumbo buffer from the pool managed internally by the driver.
1556 */
1557static int
1558ti_newbuf_jumbo(struct ti_softc *sc, int idx, struct mbuf *m_old)
1559{
1560	bus_dmamap_t map;
1561	struct mbuf *cur, *m_new = NULL;
1562	struct mbuf *m[3] = {NULL, NULL, NULL};
1563	struct ti_rx_desc_ext *r;
1564	vm_page_t frame;
1565	/* 1 extra buf to make nobufs easy*/
1566	struct sf_buf *sf[3] = {NULL, NULL, NULL};
1567	int i;
1568	bus_dma_segment_t segs[4];
1569	int nsegs;
1570
1571	if (m_old != NULL) {
1572		m_new = m_old;
1573		cur = m_old->m_next;
1574		for (i = 0; i <= NPAYLOAD; i++){
1575			m[i] = cur;
1576			cur = cur->m_next;
1577		}
1578	} else {
1579		/* Allocate the mbufs. */
1580		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1581		if (m_new == NULL) {
1582			device_printf(sc->ti_dev, "mbuf allocation failed "
1583			    "-- packet dropped!\n");
1584			goto nobufs;
1585		}
1586		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1587		if (m[NPAYLOAD] == NULL) {
1588			device_printf(sc->ti_dev, "cluster mbuf allocation "
1589			    "failed -- packet dropped!\n");
1590			goto nobufs;
1591		}
1592		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1593		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1594			device_printf(sc->ti_dev, "mbuf allocation failed "
1595			    "-- packet dropped!\n");
1596			goto nobufs;
1597		}
1598		m[NPAYLOAD]->m_len = MCLBYTES;
1599
1600		for (i = 0; i < NPAYLOAD; i++){
1601			MGET(m[i], M_DONTWAIT, MT_DATA);
1602			if (m[i] == NULL) {
1603				device_printf(sc->ti_dev, "mbuf allocation "
1604				    "failed -- packet dropped!\n");
1605				goto nobufs;
1606			}
1607			frame = vm_page_alloc(NULL, 0,
1608			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1609			    VM_ALLOC_WIRED);
1610			if (frame == NULL) {
1611				device_printf(sc->ti_dev, "buffer allocation "
1612				    "failed -- packet dropped!\n");
1613				printf("      index %d page %d\n", idx, i);
1614				goto nobufs;
1615			}
1616			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1617			if (sf[i] == NULL) {
1618				vm_page_unwire(frame, 0);
1619				vm_page_free(frame);
1620				device_printf(sc->ti_dev, "buffer allocation "
1621				    "failed -- packet dropped!\n");
1622				printf("      index %d page %d\n", idx, i);
1623				goto nobufs;
1624			}
1625		}
1626		for (i = 0; i < NPAYLOAD; i++){
1627		/* Attach the buffer to the mbuf. */
1628			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1629			m[i]->m_len = PAGE_SIZE;
1630			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1631			    sf_buf_mext, (void*)sf_buf_kva(sf[i]), sf[i],
1632			    0, EXT_DISPOSABLE);
1633			m[i]->m_next = m[i+1];
1634		}
1635		/* link the buffers to the header */
1636		m_new->m_next = m[0];
1637		m_new->m_data += ETHER_ALIGN;
1638		if (sc->ti_hdrsplit)
1639			m_new->m_len = MHLEN - ETHER_ALIGN;
1640		else
1641			m_new->m_len = HDR_LEN;
1642		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1643	}
1644
1645	/* Set up the descriptor. */
1646	r = &sc->ti_rdata.ti_rx_jumbo_ring[idx];
1647	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1648	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1649	if (bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag, map, m_new,
1650	    segs, &nsegs, 0))
1651		return (ENOBUFS);
1652	if ((nsegs < 1) || (nsegs > 4))
1653		return (ENOBUFS);
1654	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1655	r->ti_len0 = m_new->m_len;
1656
1657	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1658	r->ti_len1 = PAGE_SIZE;
1659
1660	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1661	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1662
1663	if (PAGE_SIZE == 4096) {
1664		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1665		r->ti_len3 = MCLBYTES;
1666	} else {
1667		r->ti_len3 = 0;
1668	}
1669	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1670
1671	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1672
1673	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1674		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1675
1676	r->ti_idx = idx;
1677
1678	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map, BUS_DMASYNC_PREREAD);
1679	return (0);
1680
1681nobufs:
1682
1683	/*
1684	 * Warning! :
1685	 * This can only be called before the mbufs are strung together.
1686	 * If the mbufs are strung together, m_freem() will free the chain,
1687	 * so that the later mbufs will be freed multiple times.
1688	 */
1689	if (m_new)
1690		m_freem(m_new);
1691
1692	for (i = 0; i < 3; i++) {
1693		if (m[i])
1694			m_freem(m[i]);
1695		if (sf[i])
1696			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1697	}
1698	return (ENOBUFS);
1699}
1700#endif
1701
1702/*
1703 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1704 * that's 1MB or memory, which is a lot. For now, we fill only the first
1705 * 256 ring entries and hope that our CPU is fast enough to keep up with
1706 * the NIC.
1707 */
1708static int
1709ti_init_rx_ring_std(struct ti_softc *sc)
1710{
1711	int i;
1712	struct ti_cmd_desc cmd;
1713
1714	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1715		if (ti_newbuf_std(sc, i) != 0)
1716			return (ENOBUFS);
1717	};
1718
1719	sc->ti_std = TI_STD_RX_RING_CNT - 1;
1720	TI_UPDATE_STDPROD(sc, TI_STD_RX_RING_CNT - 1);
1721
1722	return (0);
1723}
1724
1725static void
1726ti_free_rx_ring_std(struct ti_softc *sc)
1727{
1728	bus_dmamap_t map;
1729	int i;
1730
1731	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1732		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1733			map = sc->ti_cdata.ti_rx_std_maps[i];
1734			bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag, map,
1735			    BUS_DMASYNC_POSTREAD);
1736			bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag, map);
1737			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1738			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1739		}
1740	}
1741	bzero(sc->ti_rdata.ti_rx_std_ring, TI_STD_RX_RING_SZ);
1742	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
1743	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1744}
1745
1746static int
1747ti_init_rx_ring_jumbo(struct ti_softc *sc)
1748{
1749	struct ti_cmd_desc cmd;
1750	int i;
1751
1752	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1753		if (ti_newbuf_jumbo(sc, i, NULL) != 0)
1754			return (ENOBUFS);
1755	};
1756
1757	sc->ti_jumbo = TI_JUMBO_RX_RING_CNT - 1;
1758	TI_UPDATE_JUMBOPROD(sc, TI_JUMBO_RX_RING_CNT - 1);
1759
1760	return (0);
1761}
1762
1763static void
1764ti_free_rx_ring_jumbo(struct ti_softc *sc)
1765{
1766	bus_dmamap_t map;
1767	int i;
1768
1769	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1770		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1771			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1772			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
1773			    BUS_DMASYNC_POSTREAD);
1774			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
1775			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1776			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1777		}
1778	}
1779	bzero(sc->ti_rdata.ti_rx_jumbo_ring, TI_JUMBO_RX_RING_SZ);
1780	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
1781	    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1782}
1783
1784static int
1785ti_init_rx_ring_mini(struct ti_softc *sc)
1786{
1787	int i;
1788
1789	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1790		if (ti_newbuf_mini(sc, i) != 0)
1791			return (ENOBUFS);
1792	};
1793
1794	sc->ti_mini = TI_MINI_RX_RING_CNT - 1;
1795	TI_UPDATE_MINIPROD(sc, TI_MINI_RX_RING_CNT - 1);
1796
1797	return (0);
1798}
1799
1800static void
1801ti_free_rx_ring_mini(struct ti_softc *sc)
1802{
1803	bus_dmamap_t map;
1804	int i;
1805
1806	if (sc->ti_rdata.ti_rx_mini_ring == NULL)
1807		return;
1808
1809	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1810		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1811			map = sc->ti_cdata.ti_rx_mini_maps[i];
1812			bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag, map,
1813			    BUS_DMASYNC_POSTREAD);
1814			bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag, map);
1815			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1816			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1817		}
1818	}
1819	bzero(sc->ti_rdata.ti_rx_mini_ring, TI_MINI_RX_RING_SZ);
1820	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
1821	    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
1822}
1823
1824static void
1825ti_free_tx_ring(struct ti_softc *sc)
1826{
1827	struct ti_txdesc *txd;
1828	int i;
1829
1830	if (sc->ti_rdata.ti_tx_ring == NULL)
1831		return;
1832
1833	for (i = 0; i < TI_TX_RING_CNT; i++) {
1834		txd = &sc->ti_cdata.ti_txdesc[i];
1835		if (txd->tx_m != NULL) {
1836			bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
1837			    BUS_DMASYNC_POSTWRITE);
1838			bus_dmamap_unload(sc->ti_cdata.ti_tx_tag,
1839			    txd->tx_dmamap);
1840			m_freem(txd->tx_m);
1841			txd->tx_m = NULL;
1842		}
1843	}
1844	bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
1845	bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
1846	    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
1847}
1848
1849static int
1850ti_init_tx_ring(struct ti_softc *sc)
1851{
1852	struct ti_txdesc *txd;
1853	int i;
1854
1855	STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1856	STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1857	for (i = 0; i < TI_TX_RING_CNT; i++) {
1858		txd = &sc->ti_cdata.ti_txdesc[i];
1859		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1860	}
1861	sc->ti_txcnt = 0;
1862	sc->ti_tx_saved_considx = 0;
1863	sc->ti_tx_saved_prodidx = 0;
1864	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1865	return (0);
1866}
1867
1868/*
1869 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1870 * but we have to support the old way too so that Tigon 1 cards will
1871 * work.
1872 */
1873static void
1874ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1875{
1876	struct ti_cmd_desc cmd;
1877	uint16_t *m;
1878	uint32_t ext[2] = {0, 0};
1879
1880	m = (uint16_t *)&addr->octet[0];
1881
1882	switch (sc->ti_hwrev) {
1883	case TI_HWREV_TIGON:
1884		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1885		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1886		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1887		break;
1888	case TI_HWREV_TIGON_II:
1889		ext[0] = htons(m[0]);
1890		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1891		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1892		break;
1893	default:
1894		device_printf(sc->ti_dev, "unknown hwrev\n");
1895		break;
1896	}
1897}
1898
1899static void
1900ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1901{
1902	struct ti_cmd_desc cmd;
1903	uint16_t *m;
1904	uint32_t ext[2] = {0, 0};
1905
1906	m = (uint16_t *)&addr->octet[0];
1907
1908	switch (sc->ti_hwrev) {
1909	case TI_HWREV_TIGON:
1910		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1911		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1912		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1913		break;
1914	case TI_HWREV_TIGON_II:
1915		ext[0] = htons(m[0]);
1916		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1917		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1918		break;
1919	default:
1920		device_printf(sc->ti_dev, "unknown hwrev\n");
1921		break;
1922	}
1923}
1924
1925/*
1926 * Configure the Tigon's multicast address filter.
1927 *
1928 * The actual multicast table management is a bit of a pain, thanks to
1929 * slight brain damage on the part of both Alteon and us. With our
1930 * multicast code, we are only alerted when the multicast address table
1931 * changes and at that point we only have the current list of addresses:
1932 * we only know the current state, not the previous state, so we don't
1933 * actually know what addresses were removed or added. The firmware has
1934 * state, but we can't get our grubby mits on it, and there is no 'delete
1935 * all multicast addresses' command. Hence, we have to maintain our own
1936 * state so we know what addresses have been programmed into the NIC at
1937 * any given time.
1938 */
1939static void
1940ti_setmulti(struct ti_softc *sc)
1941{
1942	struct ifnet *ifp;
1943	struct ifmultiaddr *ifma;
1944	struct ti_cmd_desc cmd;
1945	struct ti_mc_entry *mc;
1946	uint32_t intrs;
1947
1948	TI_LOCK_ASSERT(sc);
1949
1950	ifp = sc->ti_ifp;
1951
1952	if (ifp->if_flags & IFF_ALLMULTI) {
1953		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1954		return;
1955	} else {
1956		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1957	}
1958
1959	/* Disable interrupts. */
1960	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1961	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1962
1963	/* First, zot all the existing filters. */
1964	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1965		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1966		ti_del_mcast(sc, &mc->mc_addr);
1967		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1968		free(mc, M_DEVBUF);
1969	}
1970
1971	/* Now program new ones. */
1972	if_maddr_rlock(ifp);
1973	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1974		if (ifma->ifma_addr->sa_family != AF_LINK)
1975			continue;
1976		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1977		if (mc == NULL) {
1978			device_printf(sc->ti_dev,
1979			    "no memory for mcast filter entry\n");
1980			continue;
1981		}
1982		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1983		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1984		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1985		ti_add_mcast(sc, &mc->mc_addr);
1986	}
1987	if_maddr_runlock(ifp);
1988
1989	/* Re-enable interrupts. */
1990	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1991}
1992
1993/*
1994 * Check to see if the BIOS has configured us for a 64 bit slot when
1995 * we aren't actually in one. If we detect this condition, we can work
1996 * around it on the Tigon 2 by setting a bit in the PCI state register,
1997 * but for the Tigon 1 we must give up and abort the interface attach.
1998 */
1999static int
2000ti_64bitslot_war(struct ti_softc *sc)
2001{
2002
2003	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
2004		CSR_WRITE_4(sc, 0x600, 0);
2005		CSR_WRITE_4(sc, 0x604, 0);
2006		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
2007		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
2008			if (sc->ti_hwrev == TI_HWREV_TIGON)
2009				return (EINVAL);
2010			else {
2011				TI_SETBIT(sc, TI_PCI_STATE,
2012				    TI_PCISTATE_32BIT_BUS);
2013				return (0);
2014			}
2015		}
2016	}
2017
2018	return (0);
2019}
2020
2021/*
2022 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2023 * self-test results.
2024 */
2025static int
2026ti_chipinit(struct ti_softc *sc)
2027{
2028	uint32_t cacheline;
2029	uint32_t pci_writemax = 0;
2030	uint32_t hdrsplit;
2031
2032	/* Initialize link to down state. */
2033	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
2034
2035	/* Set endianness before we access any non-PCI registers. */
2036#if 0 && BYTE_ORDER == BIG_ENDIAN
2037	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2038	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
2039#else
2040	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2041	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
2042#endif
2043
2044	/* Check the ROM failed bit to see if self-tests passed. */
2045	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
2046		device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
2047		return (ENODEV);
2048	}
2049
2050	/* Halt the CPU. */
2051	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
2052
2053	/* Figure out the hardware revision. */
2054	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
2055	case TI_REV_TIGON_I:
2056		sc->ti_hwrev = TI_HWREV_TIGON;
2057		break;
2058	case TI_REV_TIGON_II:
2059		sc->ti_hwrev = TI_HWREV_TIGON_II;
2060		break;
2061	default:
2062		device_printf(sc->ti_dev, "unsupported chip revision\n");
2063		return (ENODEV);
2064	}
2065
2066	/* Do special setup for Tigon 2. */
2067	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2068		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
2069		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
2070		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
2071	}
2072
2073	/*
2074	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
2075	 * can't do header splitting.
2076	 */
2077#ifdef TI_JUMBO_HDRSPLIT
2078	if (sc->ti_hwrev != TI_HWREV_TIGON)
2079		sc->ti_hdrsplit = 1;
2080	else
2081		device_printf(sc->ti_dev,
2082		    "can't do header splitting on a Tigon I board\n");
2083#endif /* TI_JUMBO_HDRSPLIT */
2084
2085	/* Set up the PCI state register. */
2086	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
2087	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2088		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
2089	}
2090
2091	/* Clear the read/write max DMA parameters. */
2092	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
2093	    TI_PCISTATE_READ_MAXDMA));
2094
2095	/* Get cache line size. */
2096	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
2097
2098	/*
2099	 * If the system has set enabled the PCI memory write
2100	 * and invalidate command in the command register, set
2101	 * the write max parameter accordingly. This is necessary
2102	 * to use MWI with the Tigon 2.
2103	 */
2104	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
2105		switch (cacheline) {
2106		case 1:
2107		case 4:
2108		case 8:
2109		case 16:
2110		case 32:
2111		case 64:
2112			break;
2113		default:
2114		/* Disable PCI memory write and invalidate. */
2115			if (bootverbose)
2116				device_printf(sc->ti_dev, "cache line size %d"
2117				    " not supported; disabling PCI MWI\n",
2118				    cacheline);
2119			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
2120			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
2121			break;
2122		}
2123	}
2124
2125	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2126
2127	/* This sets the min dma param all the way up (0xff). */
2128	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2129
2130	if (sc->ti_hdrsplit)
2131		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2132	else
2133		hdrsplit = 0;
2134
2135	/* Configure DMA variables. */
2136#if BYTE_ORDER == BIG_ENDIAN
2137	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2138	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2139	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2140	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2141#else /* BYTE_ORDER */
2142	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2143	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2144	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2145#endif /* BYTE_ORDER */
2146
2147	/*
2148	 * Only allow 1 DMA channel to be active at a time.
2149	 * I don't think this is a good idea, but without it
2150	 * the firmware racks up lots of nicDmaReadRingFull
2151	 * errors.  This is not compatible with hardware checksums.
2152	 */
2153	if ((sc->ti_ifp->if_capenable & (IFCAP_TXCSUM | IFCAP_RXCSUM)) == 0)
2154		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2155
2156	/* Recommended settings from Tigon manual. */
2157	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2158	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2159
2160	if (ti_64bitslot_war(sc)) {
2161		device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
2162		    "but we aren't");
2163		return (EINVAL);
2164	}
2165
2166	return (0);
2167}
2168
2169/*
2170 * Initialize the general information block and firmware, and
2171 * start the CPU(s) running.
2172 */
2173static int
2174ti_gibinit(struct ti_softc *sc)
2175{
2176	struct ifnet *ifp;
2177	struct ti_rcb *rcb;
2178	int i;
2179
2180	TI_LOCK_ASSERT(sc);
2181
2182	ifp = sc->ti_ifp;
2183
2184	/* Disable interrupts for now. */
2185	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2186
2187	/* Tell the chip where to find the general information block. */
2188	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI,
2189	    (uint64_t)sc->ti_rdata.ti_info_paddr >> 32);
2190	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO,
2191	    sc->ti_rdata.ti_info_paddr & 0xFFFFFFFF);
2192
2193	/* Load the firmware into SRAM. */
2194	ti_loadfw(sc);
2195
2196	/* Set up the contents of the general info and ring control blocks. */
2197
2198	/* Set up the event ring and producer pointer. */
2199	bzero(sc->ti_rdata.ti_event_ring, TI_EVENT_RING_SZ);
2200	rcb = &sc->ti_rdata.ti_info->ti_ev_rcb;
2201	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_event_ring_paddr);
2202	rcb->ti_flags = 0;
2203	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_ev_prodidx_ptr,
2204	    sc->ti_rdata.ti_status_paddr +
2205	    offsetof(struct ti_status, ti_ev_prodidx_r));
2206	sc->ti_ev_prodidx.ti_idx = 0;
2207	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2208	sc->ti_ev_saved_considx = 0;
2209
2210	/* Set up the command ring and producer mailbox. */
2211	rcb = &sc->ti_rdata.ti_info->ti_cmd_rcb;
2212	ti_hostaddr64(&rcb->ti_hostaddr, TI_GCR_NIC_ADDR(TI_GCR_CMDRING));
2213	rcb->ti_flags = 0;
2214	rcb->ti_max_len = 0;
2215	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2216		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2217	}
2218	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2219	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2220	sc->ti_cmd_saved_prodidx = 0;
2221
2222	/*
2223	 * Assign the address of the stats refresh buffer.
2224	 * We re-use the current stats buffer for this to
2225	 * conserve memory.
2226	 */
2227	bzero(&sc->ti_rdata.ti_info->ti_stats, sizeof(struct ti_stats));
2228	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_refresh_stats_ptr,
2229	    sc->ti_rdata.ti_info_paddr + offsetof(struct ti_gib, ti_stats));
2230
2231	/* Set up the standard receive ring. */
2232	rcb = &sc->ti_rdata.ti_info->ti_std_rx_rcb;
2233	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_std_ring_paddr);
2234	rcb->ti_max_len = TI_FRAMELEN;
2235	rcb->ti_flags = 0;
2236	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2237		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2238		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2239	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2240		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2241
2242	/* Set up the jumbo receive ring. */
2243	rcb = &sc->ti_rdata.ti_info->ti_jumbo_rx_rcb;
2244	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_jumbo_ring_paddr);
2245
2246#ifndef TI_SF_BUF_JUMBO
2247	rcb->ti_max_len = MJUM9BYTES - ETHER_ALIGN;
2248	rcb->ti_flags = 0;
2249#else
2250	rcb->ti_max_len = PAGE_SIZE;
2251	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2252#endif
2253	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2254		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2255		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2256	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2257		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2258
2259	/*
2260	 * Set up the mini ring. Only activated on the
2261	 * Tigon 2 but the slot in the config block is
2262	 * still there on the Tigon 1.
2263	 */
2264	rcb = &sc->ti_rdata.ti_info->ti_mini_rx_rcb;
2265	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_mini_ring_paddr);
2266	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2267	if (sc->ti_hwrev == TI_HWREV_TIGON)
2268		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2269	else
2270		rcb->ti_flags = 0;
2271	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2272		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2273		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2274	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2275		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2276
2277	/*
2278	 * Set up the receive return ring.
2279	 */
2280	rcb = &sc->ti_rdata.ti_info->ti_return_rcb;
2281	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_return_ring_paddr);
2282	rcb->ti_flags = 0;
2283	rcb->ti_max_len = TI_RETURN_RING_CNT;
2284	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_return_prodidx_ptr,
2285	    sc->ti_rdata.ti_status_paddr +
2286	    offsetof(struct ti_status, ti_return_prodidx_r));
2287
2288	/*
2289	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2290	 * of putting the transmit ring in the host's address space and
2291	 * letting the chip DMA it instead of leaving the ring in the NIC's
2292	 * memory and accessing it through the shared memory region. We
2293	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2294	 * so we have to revert to the shared memory scheme if we detect
2295	 * a Tigon 1 chip.
2296	 */
2297	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2298	if (sc->ti_rdata.ti_tx_ring != NULL)
2299		bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
2300	rcb = &sc->ti_rdata.ti_info->ti_tx_rcb;
2301	if (sc->ti_hwrev == TI_HWREV_TIGON)
2302		rcb->ti_flags = 0;
2303	else
2304		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2305	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2306		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2307	if (sc->ti_ifp->if_capenable & IFCAP_TXCSUM)
2308		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2309		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2310	rcb->ti_max_len = TI_TX_RING_CNT;
2311	if (sc->ti_hwrev == TI_HWREV_TIGON)
2312		ti_hostaddr64(&rcb->ti_hostaddr, TI_TX_RING_BASE);
2313	else
2314		ti_hostaddr64(&rcb->ti_hostaddr,
2315		    sc->ti_rdata.ti_tx_ring_paddr);
2316	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_tx_considx_ptr,
2317	    sc->ti_rdata.ti_status_paddr +
2318	    offsetof(struct ti_status, ti_tx_considx_r));
2319
2320	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
2321	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2322	bus_dmamap_sync(sc->ti_cdata.ti_status_tag, sc->ti_cdata.ti_status_map,
2323	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2324	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
2325	    sc->ti_cdata.ti_event_ring_map,
2326	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2327	if (sc->ti_rdata.ti_tx_ring != NULL)
2328		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2329		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
2330
2331	/* Set up tunables */
2332#if 0
2333	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2334		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2335		    (sc->ti_rx_coal_ticks / 10));
2336	else
2337#endif
2338		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2339	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2340	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2341	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2342	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2343	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2344
2345	/* Turn interrupts on. */
2346	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2347	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2348
2349	/* Start CPU. */
2350	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2351
2352	return (0);
2353}
2354
2355/*
2356 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2357 * against our list and return its name if we find a match.
2358 */
2359static int
2360ti_probe(device_t dev)
2361{
2362	const struct ti_type *t;
2363
2364	t = ti_devs;
2365
2366	while (t->ti_name != NULL) {
2367		if ((pci_get_vendor(dev) == t->ti_vid) &&
2368		    (pci_get_device(dev) == t->ti_did)) {
2369			device_set_desc(dev, t->ti_name);
2370			return (BUS_PROBE_DEFAULT);
2371		}
2372		t++;
2373	}
2374
2375	return (ENXIO);
2376}
2377
2378static int
2379ti_attach(device_t dev)
2380{
2381	struct ifnet *ifp;
2382	struct ti_softc *sc;
2383	int error = 0, rid;
2384	u_char eaddr[6];
2385
2386	sc = device_get_softc(dev);
2387	sc->ti_dev = dev;
2388
2389	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2390	    MTX_DEF);
2391	callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2392	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2393	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2394	if (ifp == NULL) {
2395		device_printf(dev, "can not if_alloc()\n");
2396		error = ENOSPC;
2397		goto fail;
2398	}
2399	sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
2400	sc->ti_ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
2401	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2402
2403	/*
2404	 * Map control/status registers.
2405	 */
2406	pci_enable_busmaster(dev);
2407
2408	rid = PCIR_BAR(0);
2409	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2410	    RF_ACTIVE);
2411
2412	if (sc->ti_res == NULL) {
2413		device_printf(dev, "couldn't map memory\n");
2414		error = ENXIO;
2415		goto fail;
2416	}
2417
2418	sc->ti_btag = rman_get_bustag(sc->ti_res);
2419	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2420
2421	/* Allocate interrupt */
2422	rid = 0;
2423
2424	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2425	    RF_SHAREABLE | RF_ACTIVE);
2426
2427	if (sc->ti_irq == NULL) {
2428		device_printf(dev, "couldn't map interrupt\n");
2429		error = ENXIO;
2430		goto fail;
2431	}
2432
2433	if (ti_chipinit(sc)) {
2434		device_printf(dev, "chip initialization failed\n");
2435		error = ENXIO;
2436		goto fail;
2437	}
2438
2439	/* Zero out the NIC's on-board SRAM. */
2440	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2441
2442	/* Init again -- zeroing memory may have clobbered some registers. */
2443	if (ti_chipinit(sc)) {
2444		device_printf(dev, "chip initialization failed\n");
2445		error = ENXIO;
2446		goto fail;
2447	}
2448
2449	/*
2450	 * Get station address from the EEPROM. Note: the manual states
2451	 * that the MAC address is at offset 0x8c, however the data is
2452	 * stored as two longwords (since that's how it's loaded into
2453	 * the NIC). This means the MAC address is actually preceded
2454	 * by two zero bytes. We need to skip over those.
2455	 */
2456	if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2457		device_printf(dev, "failed to read station address\n");
2458		error = ENXIO;
2459		goto fail;
2460	}
2461
2462	/* Allocate working area for memory dump. */
2463	sc->ti_membuf = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF, M_NOWAIT);
2464	sc->ti_membuf2 = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF,
2465	    M_NOWAIT);
2466	if (sc->ti_membuf == NULL || sc->ti_membuf2 == NULL) {
2467		device_printf(dev, "cannot allocate memory buffer\n");
2468		error = ENOMEM;
2469		goto fail;
2470	}
2471	if ((error = ti_dma_alloc(sc)) != 0)
2472		goto fail;
2473
2474	/*
2475	 * We really need a better way to tell a 1000baseTX card
2476	 * from a 1000baseSX one, since in theory there could be
2477	 * OEMed 1000baseTX cards from lame vendors who aren't
2478	 * clever enough to change the PCI ID. For the moment
2479	 * though, the AceNIC is the only copper card available.
2480	 */
2481	if (pci_get_vendor(dev) == ALT_VENDORID &&
2482	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2483		sc->ti_copper = 1;
2484	/* Ok, it's not the only copper card available. */
2485	if (pci_get_vendor(dev) == NG_VENDORID &&
2486	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2487		sc->ti_copper = 1;
2488
2489	/* Set default tunable values. */
2490	ti_sysctl_node(sc);
2491
2492	/* Set up ifnet structure */
2493	ifp->if_softc = sc;
2494	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2495	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2496	ifp->if_ioctl = ti_ioctl;
2497	ifp->if_start = ti_start;
2498	ifp->if_init = ti_init;
2499	ifp->if_baudrate = IF_Gbps(1UL);
2500	ifp->if_snd.ifq_drv_maxlen = TI_TX_RING_CNT - 1;
2501	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2502	IFQ_SET_READY(&ifp->if_snd);
2503
2504	/* Set up ifmedia support. */
2505	if (sc->ti_copper) {
2506		/*
2507		 * Copper cards allow manual 10/100 mode selection,
2508		 * but not manual 1000baseTX mode selection. Why?
2509		 * Becuase currently there's no way to specify the
2510		 * master/slave setting through the firmware interface,
2511		 * so Alteon decided to just bag it and handle it
2512		 * via autonegotiation.
2513		 */
2514		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2515		ifmedia_add(&sc->ifmedia,
2516		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2517		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2518		ifmedia_add(&sc->ifmedia,
2519		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2520		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2521		ifmedia_add(&sc->ifmedia,
2522		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2523	} else {
2524		/* Fiber cards don't support 10/100 modes. */
2525		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2526		ifmedia_add(&sc->ifmedia,
2527		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2528	}
2529	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2530	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2531
2532	/*
2533	 * We're assuming here that card initialization is a sequential
2534	 * thing.  If it isn't, multiple cards probing at the same time
2535	 * could stomp on the list of softcs here.
2536	 */
2537
2538	/* Register the device */
2539	sc->dev = make_dev(&ti_cdevsw, device_get_unit(dev), UID_ROOT,
2540	    GID_OPERATOR, 0600, "ti%d", device_get_unit(dev));
2541	sc->dev->si_drv1 = sc;
2542
2543	/*
2544	 * Call MI attach routine.
2545	 */
2546	ether_ifattach(ifp, eaddr);
2547
2548	/* VLAN capability setup. */
2549	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM |
2550	    IFCAP_VLAN_HWTAGGING;
2551	ifp->if_capenable = ifp->if_capabilities;
2552	/* Tell the upper layer we support VLAN over-sized frames. */
2553	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
2554
2555	/* Driver supports link state tracking. */
2556	ifp->if_capabilities |= IFCAP_LINKSTATE;
2557	ifp->if_capenable |= IFCAP_LINKSTATE;
2558
2559	/* Hook interrupt last to avoid having to lock softc */
2560	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2561	   NULL, ti_intr, sc, &sc->ti_intrhand);
2562
2563	if (error) {
2564		device_printf(dev, "couldn't set up irq\n");
2565		goto fail;
2566	}
2567
2568fail:
2569	if (error)
2570		ti_detach(dev);
2571
2572	return (error);
2573}
2574
2575/*
2576 * Shutdown hardware and free up resources. This can be called any
2577 * time after the mutex has been initialized. It is called in both
2578 * the error case in attach and the normal detach case so it needs
2579 * to be careful about only freeing resources that have actually been
2580 * allocated.
2581 */
2582static int
2583ti_detach(device_t dev)
2584{
2585	struct ti_softc *sc;
2586	struct ifnet *ifp;
2587
2588	sc = device_get_softc(dev);
2589	if (sc->dev)
2590		destroy_dev(sc->dev);
2591	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2592	ifp = sc->ti_ifp;
2593	if (device_is_attached(dev)) {
2594		ether_ifdetach(ifp);
2595		TI_LOCK(sc);
2596		ti_stop(sc);
2597		TI_UNLOCK(sc);
2598	}
2599
2600	/* These should only be active if attach succeeded */
2601	callout_drain(&sc->ti_watchdog);
2602	bus_generic_detach(dev);
2603	ti_dma_free(sc);
2604	ifmedia_removeall(&sc->ifmedia);
2605
2606	if (sc->ti_intrhand)
2607		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2608	if (sc->ti_irq)
2609		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2610	if (sc->ti_res) {
2611		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
2612		    sc->ti_res);
2613	}
2614	if (ifp)
2615		if_free(ifp);
2616	if (sc->ti_membuf)
2617		free(sc->ti_membuf, M_DEVBUF);
2618	if (sc->ti_membuf2)
2619		free(sc->ti_membuf2, M_DEVBUF);
2620
2621	mtx_destroy(&sc->ti_mtx);
2622
2623	return (0);
2624}
2625
2626#ifdef TI_JUMBO_HDRSPLIT
2627/*
2628 * If hdr_len is 0, that means that header splitting wasn't done on
2629 * this packet for some reason.  The two most likely reasons are that
2630 * the protocol isn't a supported protocol for splitting, or this
2631 * packet had a fragment offset that wasn't 0.
2632 *
2633 * The header length, if it is non-zero, will always be the length of
2634 * the headers on the packet, but that length could be longer than the
2635 * first mbuf.  So we take the minimum of the two as the actual
2636 * length.
2637 */
2638static __inline void
2639ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2640{
2641	int i = 0;
2642	int lengths[4] = {0, 0, 0, 0};
2643	struct mbuf *m, *mp;
2644
2645	if (hdr_len != 0)
2646		top->m_len = min(hdr_len, top->m_len);
2647	pkt_len -= top->m_len;
2648	lengths[i++] = top->m_len;
2649
2650	mp = top;
2651	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2652		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2653		pkt_len -= m->m_len;
2654		lengths[i++] = m->m_len;
2655		mp = m;
2656	}
2657
2658#if 0
2659	if (hdr_len != 0)
2660		printf("got split packet: ");
2661	else
2662		printf("got non-split packet: ");
2663
2664	printf("%d,%d,%d,%d = %d\n", lengths[0],
2665	    lengths[1], lengths[2], lengths[3],
2666	    lengths[0] + lengths[1] + lengths[2] +
2667	    lengths[3]);
2668#endif
2669
2670	if (pkt_len)
2671		panic("header splitting didn't");
2672
2673	if (m) {
2674		m_freem(m);
2675		mp->m_next = NULL;
2676
2677	}
2678	if (mp->m_next != NULL)
2679		panic("ti_hdr_split: last mbuf in chain should be null");
2680}
2681#endif /* TI_JUMBO_HDRSPLIT */
2682
2683static void
2684ti_discard_std(struct ti_softc *sc, int i)
2685{
2686
2687	struct ti_rx_desc *r;
2688
2689	r = &sc->ti_rdata.ti_rx_std_ring[i];
2690	r->ti_len = MCLBYTES - ETHER_ALIGN;
2691	r->ti_type = TI_BDTYPE_RECV_BD;
2692	r->ti_flags = 0;
2693	r->ti_vlan_tag = 0;
2694	r->ti_tcp_udp_cksum = 0;
2695	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2696		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2697	r->ti_idx = i;
2698}
2699
2700static void
2701ti_discard_mini(struct ti_softc *sc, int i)
2702{
2703
2704	struct ti_rx_desc *r;
2705
2706	r = &sc->ti_rdata.ti_rx_mini_ring[i];
2707	r->ti_len = MHLEN - ETHER_ALIGN;
2708	r->ti_type = TI_BDTYPE_RECV_BD;
2709	r->ti_flags = TI_BDFLAG_MINI_RING;
2710	r->ti_vlan_tag = 0;
2711	r->ti_tcp_udp_cksum = 0;
2712	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2713		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2714	r->ti_idx = i;
2715}
2716
2717#ifndef TI_SF_BUF_JUMBO
2718static void
2719ti_discard_jumbo(struct ti_softc *sc, int i)
2720{
2721
2722	struct ti_rx_desc *r;
2723
2724	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
2725	r->ti_len = MJUM9BYTES - ETHER_ALIGN;
2726	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
2727	r->ti_flags = TI_BDFLAG_JUMBO_RING;
2728	r->ti_vlan_tag = 0;
2729	r->ti_tcp_udp_cksum = 0;
2730	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2731		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2732	r->ti_idx = i;
2733}
2734#endif
2735
2736/*
2737 * Frame reception handling. This is called if there's a frame
2738 * on the receive return list.
2739 *
2740 * Note: we have to be able to handle three possibilities here:
2741 * 1) the frame is from the mini receive ring (can only happen)
2742 *    on Tigon 2 boards)
2743 * 2) the frame is from the jumbo recieve ring
2744 * 3) the frame is from the standard receive ring
2745 */
2746
2747static void
2748ti_rxeof(struct ti_softc *sc)
2749{
2750	struct ifnet *ifp;
2751#ifdef TI_SF_BUF_JUMBO
2752	bus_dmamap_t map;
2753#endif
2754	struct ti_cmd_desc cmd;
2755	int jumbocnt, minicnt, stdcnt, ti_len;
2756
2757	TI_LOCK_ASSERT(sc);
2758
2759	ifp = sc->ti_ifp;
2760
2761	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2762	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
2763	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2764		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2765		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
2766	if (sc->ti_rdata.ti_rx_mini_ring != NULL)
2767		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2768		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_POSTWRITE);
2769	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2770	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
2771
2772	jumbocnt = minicnt = stdcnt = 0;
2773	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2774		struct ti_rx_desc *cur_rx;
2775		uint32_t rxidx;
2776		struct mbuf *m = NULL;
2777		uint16_t vlan_tag = 0;
2778		int have_tag = 0;
2779
2780		cur_rx =
2781		    &sc->ti_rdata.ti_rx_return_ring[sc->ti_rx_saved_considx];
2782		rxidx = cur_rx->ti_idx;
2783		ti_len = cur_rx->ti_len;
2784		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2785
2786		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2787			have_tag = 1;
2788			vlan_tag = cur_rx->ti_vlan_tag;
2789		}
2790
2791		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2792			jumbocnt++;
2793			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2794			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2795#ifndef TI_SF_BUF_JUMBO
2796			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2797				ifp->if_ierrors++;
2798				ti_discard_jumbo(sc, rxidx);
2799				continue;
2800			}
2801			if (ti_newbuf_jumbo(sc, rxidx, NULL) != 0) {
2802				ifp->if_iqdrops++;
2803				ti_discard_jumbo(sc, rxidx);
2804				continue;
2805			}
2806			m->m_len = ti_len;
2807#else /* !TI_SF_BUF_JUMBO */
2808			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2809			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2810			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
2811			    BUS_DMASYNC_POSTREAD);
2812			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
2813			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2814				ifp->if_ierrors++;
2815				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2816				continue;
2817			}
2818			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2819				ifp->if_iqdrops++;
2820				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2821				continue;
2822			}
2823#ifdef TI_JUMBO_HDRSPLIT
2824			if (sc->ti_hdrsplit)
2825				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2826					     ti_len, rxidx);
2827			else
2828#endif /* TI_JUMBO_HDRSPLIT */
2829			m_adj(m, ti_len - m->m_pkthdr.len);
2830#endif /* TI_SF_BUF_JUMBO */
2831		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2832			minicnt++;
2833			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2834			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2835			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2836				ifp->if_ierrors++;
2837				ti_discard_mini(sc, rxidx);
2838				continue;
2839			}
2840			if (ti_newbuf_mini(sc, rxidx) != 0) {
2841				ifp->if_iqdrops++;
2842				ti_discard_mini(sc, rxidx);
2843				continue;
2844			}
2845			m->m_len = ti_len;
2846		} else {
2847			stdcnt++;
2848			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2849			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2850			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2851				ifp->if_ierrors++;
2852				ti_discard_std(sc, rxidx);
2853				continue;
2854			}
2855			if (ti_newbuf_std(sc, rxidx) != 0) {
2856				ifp->if_iqdrops++;
2857				ti_discard_std(sc, rxidx);
2858				continue;
2859			}
2860			m->m_len = ti_len;
2861		}
2862
2863		m->m_pkthdr.len = ti_len;
2864		ifp->if_ipackets++;
2865		m->m_pkthdr.rcvif = ifp;
2866
2867		if (ifp->if_capenable & IFCAP_RXCSUM) {
2868			if (cur_rx->ti_flags & TI_BDFLAG_IP_CKSUM) {
2869				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2870				if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2871					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2872			}
2873			if (cur_rx->ti_flags & TI_BDFLAG_TCP_UDP_CKSUM) {
2874				m->m_pkthdr.csum_data =
2875				    cur_rx->ti_tcp_udp_cksum;
2876				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2877			}
2878		}
2879
2880		/*
2881		 * If we received a packet with a vlan tag,
2882		 * tag it before passing the packet upward.
2883		 */
2884		if (have_tag) {
2885			m->m_pkthdr.ether_vtag = vlan_tag;
2886			m->m_flags |= M_VLANTAG;
2887		}
2888		TI_UNLOCK(sc);
2889		(*ifp->if_input)(ifp, m);
2890		TI_LOCK(sc);
2891	}
2892
2893	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2894	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_PREREAD);
2895	/* Only necessary on the Tigon 1. */
2896	if (sc->ti_hwrev == TI_HWREV_TIGON)
2897		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2898		    sc->ti_rx_saved_considx);
2899
2900	if (stdcnt > 0) {
2901		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2902		    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
2903		TI_UPDATE_STDPROD(sc, sc->ti_std);
2904	}
2905	if (minicnt > 0) {
2906		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2907		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
2908		TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2909	}
2910	if (jumbocnt > 0) {
2911		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2912		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
2913		TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2914	}
2915}
2916
2917static void
2918ti_txeof(struct ti_softc *sc)
2919{
2920	struct ti_txdesc *txd;
2921	struct ti_tx_desc txdesc;
2922	struct ti_tx_desc *cur_tx = NULL;
2923	struct ifnet *ifp;
2924	int idx;
2925
2926	ifp = sc->ti_ifp;
2927
2928	txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2929	if (txd == NULL)
2930		return;
2931
2932	if (sc->ti_rdata.ti_tx_ring != NULL)
2933		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2934		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2935	/*
2936	 * Go through our tx ring and free mbufs for those
2937	 * frames that have been sent.
2938	 */
2939	for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2940	    TI_INC(idx, TI_TX_RING_CNT)) {
2941		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2942			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2943			    sizeof(txdesc), &txdesc);
2944			cur_tx = &txdesc;
2945		} else
2946			cur_tx = &sc->ti_rdata.ti_tx_ring[idx];
2947		sc->ti_txcnt--;
2948		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2949		if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2950			continue;
2951		bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
2952		    BUS_DMASYNC_POSTWRITE);
2953		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
2954
2955		ifp->if_opackets++;
2956		m_freem(txd->tx_m);
2957		txd->tx_m = NULL;
2958		STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2959		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2960		txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2961	}
2962	sc->ti_tx_saved_considx = idx;
2963	if (sc->ti_txcnt == 0)
2964		sc->ti_timer = 0;
2965}
2966
2967static void
2968ti_intr(void *xsc)
2969{
2970	struct ti_softc *sc;
2971	struct ifnet *ifp;
2972
2973	sc = xsc;
2974	TI_LOCK(sc);
2975	ifp = sc->ti_ifp;
2976
2977	/* Make sure this is really our interrupt. */
2978	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2979		TI_UNLOCK(sc);
2980		return;
2981	}
2982
2983	/* Ack interrupt and stop others from occuring. */
2984	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2985
2986	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2987		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
2988		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_POSTREAD);
2989		/* Check RX return ring producer/consumer */
2990		ti_rxeof(sc);
2991
2992		/* Check TX ring producer/consumer */
2993		ti_txeof(sc);
2994		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
2995		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_PREREAD);
2996	}
2997
2998	ti_handle_events(sc);
2999
3000	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3001		/* Re-enable interrupts. */
3002		CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3003		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3004			ti_start_locked(ifp);
3005	}
3006
3007	TI_UNLOCK(sc);
3008}
3009
3010static void
3011ti_stats_update(struct ti_softc *sc)
3012{
3013	struct ifnet *ifp;
3014	struct ti_stats *s;
3015
3016	ifp = sc->ti_ifp;
3017
3018	if (sc->ti_stat_ticks == 0)
3019		return;
3020	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
3021	    BUS_DMASYNC_POSTREAD);
3022
3023	s = &sc->ti_rdata.ti_info->ti_stats;
3024	ifp->if_collisions += (s->dot3StatsSingleCollisionFrames +
3025	   s->dot3StatsMultipleCollisionFrames +
3026	   s->dot3StatsExcessiveCollisions + s->dot3StatsLateCollisions) -
3027	    ifp->if_collisions;
3028
3029	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
3030	    BUS_DMASYNC_PREREAD);
3031}
3032
3033/*
3034 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3035 * pointers to descriptors.
3036 */
3037static int
3038ti_encap(struct ti_softc *sc, struct mbuf **m_head)
3039{
3040	struct ti_txdesc *txd;
3041	struct ti_tx_desc *f;
3042	struct ti_tx_desc txdesc;
3043	struct mbuf *m;
3044	bus_dma_segment_t txsegs[TI_MAXTXSEGS];
3045	uint16_t csum_flags;
3046	int error, frag, i, nseg;
3047
3048	if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
3049		return (ENOBUFS);
3050
3051	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3052	    *m_head, txsegs, &nseg, 0);
3053	if (error == EFBIG) {
3054		m = m_defrag(*m_head, M_DONTWAIT);
3055		if (m == NULL) {
3056			m_freem(*m_head);
3057			*m_head = NULL;
3058			return (ENOMEM);
3059		}
3060		*m_head = m;
3061		error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag,
3062		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
3063		if (error) {
3064			m_freem(*m_head);
3065			*m_head = NULL;
3066			return (error);
3067		}
3068	} else if (error != 0)
3069		return (error);
3070	if (nseg == 0) {
3071		m_freem(*m_head);
3072		*m_head = NULL;
3073		return (EIO);
3074	}
3075
3076	if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
3077		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
3078		return (ENOBUFS);
3079	}
3080	bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3081	    BUS_DMASYNC_PREWRITE);
3082
3083	m = *m_head;
3084	csum_flags = 0;
3085	if (m->m_pkthdr.csum_flags & CSUM_IP)
3086		csum_flags |= TI_BDFLAG_IP_CKSUM;
3087	if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3088		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
3089
3090	frag = sc->ti_tx_saved_prodidx;
3091	for (i = 0; i < nseg; i++) {
3092		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3093			bzero(&txdesc, sizeof(txdesc));
3094			f = &txdesc;
3095		} else
3096			f = &sc->ti_rdata.ti_tx_ring[frag];
3097		ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
3098		f->ti_len = txsegs[i].ds_len;
3099		f->ti_flags = csum_flags;
3100		if (m->m_flags & M_VLANTAG) {
3101			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
3102			f->ti_vlan_tag = m->m_pkthdr.ether_vtag;
3103		} else {
3104			f->ti_vlan_tag = 0;
3105		}
3106
3107		if (sc->ti_hwrev == TI_HWREV_TIGON)
3108			ti_mem_write(sc, TI_TX_RING_BASE + frag *
3109			    sizeof(txdesc), sizeof(txdesc), &txdesc);
3110		TI_INC(frag, TI_TX_RING_CNT);
3111	}
3112
3113	sc->ti_tx_saved_prodidx = frag;
3114	/* set TI_BDFLAG_END on the last descriptor */
3115	frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
3116	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3117		txdesc.ti_flags |= TI_BDFLAG_END;
3118		ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
3119		    sizeof(txdesc), &txdesc);
3120	} else
3121		sc->ti_rdata.ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3122
3123	STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3124	STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3125	txd->tx_m = m;
3126	sc->ti_txcnt += nseg;
3127
3128	return (0);
3129}
3130
3131static void
3132ti_start(struct ifnet *ifp)
3133{
3134	struct ti_softc *sc;
3135
3136	sc = ifp->if_softc;
3137	TI_LOCK(sc);
3138	ti_start_locked(ifp);
3139	TI_UNLOCK(sc);
3140}
3141
3142/*
3143 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3144 * to the mbuf data regions directly in the transmit descriptors.
3145 */
3146static void
3147ti_start_locked(struct ifnet *ifp)
3148{
3149	struct ti_softc *sc;
3150	struct mbuf *m_head = NULL;
3151	int enq = 0;
3152
3153	sc = ifp->if_softc;
3154
3155	for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
3156	    sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3157		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3158		if (m_head == NULL)
3159			break;
3160
3161		/*
3162		 * XXX
3163		 * safety overkill.  If this is a fragmented packet chain
3164		 * with delayed TCP/UDP checksums, then only encapsulate
3165		 * it if we have enough descriptors to handle the entire
3166		 * chain at once.
3167		 * (paranoia -- may not actually be needed)
3168		 */
3169		if (m_head->m_flags & M_FIRSTFRAG &&
3170		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3171			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
3172			    m_head->m_pkthdr.csum_data + 16) {
3173				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3174				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3175				break;
3176			}
3177		}
3178
3179		/*
3180		 * Pack the data into the transmit ring. If we
3181		 * don't have room, set the OACTIVE flag and wait
3182		 * for the NIC to drain the ring.
3183		 */
3184		if (ti_encap(sc, &m_head)) {
3185			if (m_head == NULL)
3186				break;
3187			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3188			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3189			break;
3190		}
3191
3192		enq++;
3193		/*
3194		 * If there's a BPF listener, bounce a copy of this frame
3195		 * to him.
3196		 */
3197		ETHER_BPF_MTAP(ifp, m_head);
3198	}
3199
3200	if (enq > 0) {
3201		if (sc->ti_rdata.ti_tx_ring != NULL)
3202			bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
3203			    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
3204		/* Transmit */
3205		CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3206
3207		/*
3208		 * Set a timeout in case the chip goes out to lunch.
3209		 */
3210		sc->ti_timer = 5;
3211	}
3212}
3213
3214static void
3215ti_init(void *xsc)
3216{
3217	struct ti_softc *sc;
3218
3219	sc = xsc;
3220	TI_LOCK(sc);
3221	ti_init_locked(sc);
3222	TI_UNLOCK(sc);
3223}
3224
3225static void
3226ti_init_locked(void *xsc)
3227{
3228	struct ti_softc *sc = xsc;
3229
3230	if (sc->ti_ifp->if_drv_flags & IFF_DRV_RUNNING)
3231		return;
3232
3233	/* Cancel pending I/O and flush buffers. */
3234	ti_stop(sc);
3235
3236	/* Init the gen info block, ring control blocks and firmware. */
3237	if (ti_gibinit(sc)) {
3238		device_printf(sc->ti_dev, "initialization failure\n");
3239		return;
3240	}
3241}
3242
3243static void ti_init2(struct ti_softc *sc)
3244{
3245	struct ti_cmd_desc cmd;
3246	struct ifnet *ifp;
3247	uint8_t *ea;
3248	struct ifmedia *ifm;
3249	int tmp;
3250
3251	TI_LOCK_ASSERT(sc);
3252
3253	ifp = sc->ti_ifp;
3254
3255	/* Specify MTU and interface index. */
3256	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_get_unit(sc->ti_dev));
3257	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3258	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3259	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3260
3261	/* Load our MAC address. */
3262	ea = IF_LLADDR(sc->ti_ifp);
3263	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3264	CSR_WRITE_4(sc, TI_GCR_PAR1,
3265	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3266	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3267
3268	/* Enable or disable promiscuous mode as needed. */
3269	if (ifp->if_flags & IFF_PROMISC) {
3270		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3271	} else {
3272		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3273	}
3274
3275	/* Program multicast filter. */
3276	ti_setmulti(sc);
3277
3278	/*
3279	 * If this is a Tigon 1, we should tell the
3280	 * firmware to use software packet filtering.
3281	 */
3282	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3283		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3284	}
3285
3286	/* Init RX ring. */
3287	if (ti_init_rx_ring_std(sc) != 0) {
3288		/* XXX */
3289		device_printf(sc->ti_dev, "no memory for std Rx buffers.\n");
3290		return;
3291	}
3292
3293	/* Init jumbo RX ring. */
3294	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) {
3295		if (ti_init_rx_ring_jumbo(sc) != 0) {
3296			/* XXX */
3297			device_printf(sc->ti_dev,
3298			    "no memory for jumbo Rx buffers.\n");
3299			return;
3300		}
3301	}
3302
3303	/*
3304	 * If this is a Tigon 2, we can also configure the
3305	 * mini ring.
3306	 */
3307	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
3308		if (ti_init_rx_ring_mini(sc) != 0) {
3309			/* XXX */
3310			device_printf(sc->ti_dev,
3311			    "no memory for mini Rx buffers.\n");
3312			return;
3313		}
3314	}
3315
3316	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3317	sc->ti_rx_saved_considx = 0;
3318
3319	/* Init TX ring. */
3320	ti_init_tx_ring(sc);
3321
3322	/* Tell firmware we're alive. */
3323	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3324
3325	/* Enable host interrupts. */
3326	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3327
3328	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3329	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3330	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3331
3332	/*
3333	 * Make sure to set media properly. We have to do this
3334	 * here since we have to issue commands in order to set
3335	 * the link negotiation and we can't issue commands until
3336	 * the firmware is running.
3337	 */
3338	ifm = &sc->ifmedia;
3339	tmp = ifm->ifm_media;
3340	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3341	ti_ifmedia_upd_locked(sc);
3342	ifm->ifm_media = tmp;
3343}
3344
3345/*
3346 * Set media options.
3347 */
3348static int
3349ti_ifmedia_upd(struct ifnet *ifp)
3350{
3351	struct ti_softc *sc;
3352	int error;
3353
3354	sc = ifp->if_softc;
3355	TI_LOCK(sc);
3356	error = ti_ifmedia_upd(ifp);
3357	TI_UNLOCK(sc);
3358
3359	return (error);
3360}
3361
3362static int
3363ti_ifmedia_upd_locked(struct ti_softc *sc)
3364{
3365	struct ifmedia *ifm;
3366	struct ti_cmd_desc cmd;
3367	uint32_t flowctl;
3368
3369	ifm = &sc->ifmedia;
3370
3371	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3372		return (EINVAL);
3373
3374	flowctl = 0;
3375
3376	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3377	case IFM_AUTO:
3378		/*
3379		 * Transmit flow control doesn't work on the Tigon 1.
3380		 */
3381		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3382
3383		/*
3384		 * Transmit flow control can also cause problems on the
3385		 * Tigon 2, apparantly with both the copper and fiber
3386		 * boards.  The symptom is that the interface will just
3387		 * hang.  This was reproduced with Alteon 180 switches.
3388		 */
3389#if 0
3390		if (sc->ti_hwrev != TI_HWREV_TIGON)
3391			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3392#endif
3393
3394		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3395		    TI_GLNK_FULL_DUPLEX| flowctl |
3396		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3397
3398		flowctl = TI_LNK_RX_FLOWCTL_Y;
3399#if 0
3400		if (sc->ti_hwrev != TI_HWREV_TIGON)
3401			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3402#endif
3403
3404		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3405		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3406		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3407		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3408		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3409		break;
3410	case IFM_1000_SX:
3411	case IFM_1000_T:
3412		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3413#if 0
3414		if (sc->ti_hwrev != TI_HWREV_TIGON)
3415			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3416#endif
3417
3418		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3419		    flowctl |TI_GLNK_ENB);
3420		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3421		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3422			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3423		}
3424		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3425		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3426		break;
3427	case IFM_100_FX:
3428	case IFM_10_FL:
3429	case IFM_100_TX:
3430	case IFM_10_T:
3431		flowctl = TI_LNK_RX_FLOWCTL_Y;
3432#if 0
3433		if (sc->ti_hwrev != TI_HWREV_TIGON)
3434			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3435#endif
3436
3437		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3438		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3439		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3440		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3441			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3442		} else {
3443			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3444		}
3445		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3446			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3447		} else {
3448			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3449		}
3450		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3451		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3452		break;
3453	}
3454
3455	return (0);
3456}
3457
3458/*
3459 * Report current media status.
3460 */
3461static void
3462ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3463{
3464	struct ti_softc *sc;
3465	uint32_t media = 0;
3466
3467	sc = ifp->if_softc;
3468
3469	TI_LOCK(sc);
3470
3471	ifmr->ifm_status = IFM_AVALID;
3472	ifmr->ifm_active = IFM_ETHER;
3473
3474	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
3475		TI_UNLOCK(sc);
3476		return;
3477	}
3478
3479	ifmr->ifm_status |= IFM_ACTIVE;
3480
3481	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3482		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3483		if (sc->ti_copper)
3484			ifmr->ifm_active |= IFM_1000_T;
3485		else
3486			ifmr->ifm_active |= IFM_1000_SX;
3487		if (media & TI_GLNK_FULL_DUPLEX)
3488			ifmr->ifm_active |= IFM_FDX;
3489		else
3490			ifmr->ifm_active |= IFM_HDX;
3491	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3492		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3493		if (sc->ti_copper) {
3494			if (media & TI_LNK_100MB)
3495				ifmr->ifm_active |= IFM_100_TX;
3496			if (media & TI_LNK_10MB)
3497				ifmr->ifm_active |= IFM_10_T;
3498		} else {
3499			if (media & TI_LNK_100MB)
3500				ifmr->ifm_active |= IFM_100_FX;
3501			if (media & TI_LNK_10MB)
3502				ifmr->ifm_active |= IFM_10_FL;
3503		}
3504		if (media & TI_LNK_FULL_DUPLEX)
3505			ifmr->ifm_active |= IFM_FDX;
3506		if (media & TI_LNK_HALF_DUPLEX)
3507			ifmr->ifm_active |= IFM_HDX;
3508	}
3509	TI_UNLOCK(sc);
3510}
3511
3512static int
3513ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3514{
3515	struct ti_softc *sc = ifp->if_softc;
3516	struct ifreq *ifr = (struct ifreq *) data;
3517	struct ti_cmd_desc cmd;
3518	int mask, error = 0;
3519
3520	switch (command) {
3521	case SIOCSIFMTU:
3522		TI_LOCK(sc);
3523		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > TI_JUMBO_MTU)
3524			error = EINVAL;
3525		else {
3526			ifp->if_mtu = ifr->ifr_mtu;
3527			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3528				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3529				ti_init_locked(sc);
3530			}
3531		}
3532		TI_UNLOCK(sc);
3533		break;
3534	case SIOCSIFFLAGS:
3535		TI_LOCK(sc);
3536		if (ifp->if_flags & IFF_UP) {
3537			/*
3538			 * If only the state of the PROMISC flag changed,
3539			 * then just use the 'set promisc mode' command
3540			 * instead of reinitializing the entire NIC. Doing
3541			 * a full re-init means reloading the firmware and
3542			 * waiting for it to start up, which may take a
3543			 * second or two.
3544			 */
3545			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3546			    ifp->if_flags & IFF_PROMISC &&
3547			    !(sc->ti_if_flags & IFF_PROMISC)) {
3548				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3549				    TI_CMD_CODE_PROMISC_ENB, 0);
3550			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3551			    !(ifp->if_flags & IFF_PROMISC) &&
3552			    sc->ti_if_flags & IFF_PROMISC) {
3553				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3554				    TI_CMD_CODE_PROMISC_DIS, 0);
3555			} else
3556				ti_init_locked(sc);
3557		} else {
3558			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3559				ti_stop(sc);
3560			}
3561		}
3562		sc->ti_if_flags = ifp->if_flags;
3563		TI_UNLOCK(sc);
3564		break;
3565	case SIOCADDMULTI:
3566	case SIOCDELMULTI:
3567		TI_LOCK(sc);
3568		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3569			ti_setmulti(sc);
3570		TI_UNLOCK(sc);
3571		break;
3572	case SIOCSIFMEDIA:
3573	case SIOCGIFMEDIA:
3574		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3575		break;
3576	case SIOCSIFCAP:
3577		TI_LOCK(sc);
3578		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3579		if ((mask & IFCAP_TXCSUM) != 0 &&
3580		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3581			ifp->if_capenable ^= IFCAP_TXCSUM;
3582			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
3583				ifp->if_hwassist |= TI_CSUM_FEATURES;
3584                        else
3585				ifp->if_hwassist &= ~TI_CSUM_FEATURES;
3586                }
3587		if ((mask & IFCAP_RXCSUM) != 0 &&
3588		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
3589			ifp->if_capenable ^= IFCAP_RXCSUM;
3590		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3591		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0)
3592                        ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3593		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
3594		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
3595			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
3596		if ((mask & (IFCAP_TXCSUM | IFCAP_RXCSUM |
3597		    IFCAP_VLAN_HWTAGGING)) != 0) {
3598			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3599				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3600				ti_init_locked(sc);
3601			}
3602		}
3603		TI_UNLOCK(sc);
3604		VLAN_CAPABILITIES(ifp);
3605		break;
3606	default:
3607		error = ether_ioctl(ifp, command, data);
3608		break;
3609	}
3610
3611	return (error);
3612}
3613
3614static int
3615ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3616{
3617	struct ti_softc *sc;
3618
3619	sc = dev->si_drv1;
3620	if (sc == NULL)
3621		return (ENODEV);
3622
3623	TI_LOCK(sc);
3624	sc->ti_flags |= TI_FLAG_DEBUGING;
3625	TI_UNLOCK(sc);
3626
3627	return (0);
3628}
3629
3630static int
3631ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3632{
3633	struct ti_softc *sc;
3634
3635	sc = dev->si_drv1;
3636	if (sc == NULL)
3637		return (ENODEV);
3638
3639	TI_LOCK(sc);
3640	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3641	TI_UNLOCK(sc);
3642
3643	return (0);
3644}
3645
3646/*
3647 * This ioctl routine goes along with the Tigon character device.
3648 */
3649static int
3650ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3651    struct thread *td)
3652{
3653	struct ti_softc *sc;
3654	int error;
3655
3656	sc = dev->si_drv1;
3657	if (sc == NULL)
3658		return (ENODEV);
3659
3660	error = 0;
3661
3662	switch (cmd) {
3663	case TIIOCGETSTATS:
3664	{
3665		struct ti_stats *outstats;
3666
3667		outstats = (struct ti_stats *)addr;
3668
3669		TI_LOCK(sc);
3670		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3671		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
3672		bcopy(&sc->ti_rdata.ti_info->ti_stats, outstats,
3673		    sizeof(struct ti_stats));
3674		TI_UNLOCK(sc);
3675		break;
3676	}
3677	case TIIOCGETPARAMS:
3678	{
3679		struct ti_params *params;
3680
3681		params = (struct ti_params *)addr;
3682
3683		TI_LOCK(sc);
3684		params->ti_stat_ticks = sc->ti_stat_ticks;
3685		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3686		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3687		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3688		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3689		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3690		params->param_mask = TI_PARAM_ALL;
3691		TI_UNLOCK(sc);
3692		break;
3693	}
3694	case TIIOCSETPARAMS:
3695	{
3696		struct ti_params *params;
3697
3698		params = (struct ti_params *)addr;
3699
3700		TI_LOCK(sc);
3701		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3702			sc->ti_stat_ticks = params->ti_stat_ticks;
3703			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3704		}
3705
3706		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3707			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3708			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3709				    sc->ti_rx_coal_ticks);
3710		}
3711
3712		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3713			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3714			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3715				    sc->ti_tx_coal_ticks);
3716		}
3717
3718		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3719			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3720			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3721				    sc->ti_rx_max_coal_bds);
3722		}
3723
3724		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3725			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3726			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3727				    sc->ti_tx_max_coal_bds);
3728		}
3729
3730		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3731			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3732			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3733				    sc->ti_tx_buf_ratio);
3734		}
3735		TI_UNLOCK(sc);
3736		break;
3737	}
3738	case TIIOCSETTRACE: {
3739		ti_trace_type trace_type;
3740
3741		trace_type = *(ti_trace_type *)addr;
3742
3743		/*
3744		 * Set tracing to whatever the user asked for.  Setting
3745		 * this register to 0 should have the effect of disabling
3746		 * tracing.
3747		 */
3748		TI_LOCK(sc);
3749		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3750		TI_UNLOCK(sc);
3751		break;
3752	}
3753	case TIIOCGETTRACE: {
3754		struct ti_trace_buf *trace_buf;
3755		uint32_t trace_start, cur_trace_ptr, trace_len;
3756
3757		trace_buf = (struct ti_trace_buf *)addr;
3758
3759		TI_LOCK(sc);
3760		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3761		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3762		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3763#if 0
3764		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3765		       "trace_len = %d\n", trace_start,
3766		       cur_trace_ptr, trace_len);
3767		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3768		       trace_buf->buf_len);
3769#endif
3770		error = ti_copy_mem(sc, trace_start, min(trace_len,
3771		    trace_buf->buf_len), (caddr_t)trace_buf->buf, 1, 1);
3772		if (error == 0) {
3773			trace_buf->fill_len = min(trace_len,
3774			    trace_buf->buf_len);
3775			if (cur_trace_ptr < trace_start)
3776				trace_buf->cur_trace_ptr =
3777				    trace_start - cur_trace_ptr;
3778			else
3779				trace_buf->cur_trace_ptr =
3780				    cur_trace_ptr - trace_start;
3781		} else
3782			trace_buf->fill_len = 0;
3783		TI_UNLOCK(sc);
3784		break;
3785	}
3786
3787	/*
3788	 * For debugging, five ioctls are needed:
3789	 * ALT_ATTACH
3790	 * ALT_READ_TG_REG
3791	 * ALT_WRITE_TG_REG
3792	 * ALT_READ_TG_MEM
3793	 * ALT_WRITE_TG_MEM
3794	 */
3795	case ALT_ATTACH:
3796		/*
3797		 * From what I can tell, Alteon's Solaris Tigon driver
3798		 * only has one character device, so you have to attach
3799		 * to the Tigon board you're interested in.  This seems
3800		 * like a not-so-good way to do things, since unless you
3801		 * subsequently specify the unit number of the device
3802		 * you're interested in every ioctl, you'll only be
3803		 * able to debug one board at a time.
3804		 */
3805		break;
3806	case ALT_READ_TG_MEM:
3807	case ALT_WRITE_TG_MEM:
3808	{
3809		struct tg_mem *mem_param;
3810		uint32_t sram_end, scratch_end;
3811
3812		mem_param = (struct tg_mem *)addr;
3813
3814		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3815			sram_end = TI_END_SRAM_I;
3816			scratch_end = TI_END_SCRATCH_I;
3817		} else {
3818			sram_end = TI_END_SRAM_II;
3819			scratch_end = TI_END_SCRATCH_II;
3820		}
3821
3822		/*
3823		 * For now, we'll only handle accessing regular SRAM,
3824		 * nothing else.
3825		 */
3826		TI_LOCK(sc);
3827		if (mem_param->tgAddr >= TI_BEG_SRAM &&
3828		    mem_param->tgAddr + mem_param->len <= sram_end) {
3829			/*
3830			 * In this instance, we always copy to/from user
3831			 * space, so the user space argument is set to 1.
3832			 */
3833			error = ti_copy_mem(sc, mem_param->tgAddr,
3834			    mem_param->len, mem_param->userAddr, 1,
3835			    cmd == ALT_READ_TG_MEM ? 1 : 0);
3836		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH &&
3837		    mem_param->tgAddr <= scratch_end) {
3838			error = ti_copy_scratch(sc, mem_param->tgAddr,
3839			    mem_param->len, mem_param->userAddr, 1,
3840			    cmd == ALT_READ_TG_MEM ?  1 : 0, TI_PROCESSOR_A);
3841		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG &&
3842		    mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG) {
3843			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3844				if_printf(sc->ti_ifp,
3845				    "invalid memory range for Tigon I\n");
3846				error = EINVAL;
3847				break;
3848			}
3849			error = ti_copy_scratch(sc, mem_param->tgAddr -
3850			    TI_SCRATCH_DEBUG_OFF, mem_param->len,
3851			    mem_param->userAddr, 1,
3852			    cmd == ALT_READ_TG_MEM ? 1 : 0, TI_PROCESSOR_B);
3853		} else {
3854			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3855			        "out of supported range\n",
3856			        mem_param->tgAddr, mem_param->len);
3857			error = EINVAL;
3858		}
3859		TI_UNLOCK(sc);
3860		break;
3861	}
3862	case ALT_READ_TG_REG:
3863	case ALT_WRITE_TG_REG:
3864	{
3865		struct tg_reg *regs;
3866		uint32_t tmpval;
3867
3868		regs = (struct tg_reg *)addr;
3869
3870		/*
3871		 * Make sure the address in question isn't out of range.
3872		 */
3873		if (regs->addr > TI_REG_MAX) {
3874			error = EINVAL;
3875			break;
3876		}
3877		TI_LOCK(sc);
3878		if (cmd == ALT_READ_TG_REG) {
3879			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3880			    regs->addr, &tmpval, 1);
3881			regs->data = ntohl(tmpval);
3882#if 0
3883			if ((regs->addr == TI_CPU_STATE)
3884			 || (regs->addr == TI_CPU_CTL_B)) {
3885				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3886				       regs->addr, tmpval);
3887			}
3888#endif
3889		} else {
3890			tmpval = htonl(regs->data);
3891			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3892			    regs->addr, &tmpval, 1);
3893		}
3894		TI_UNLOCK(sc);
3895		break;
3896	}
3897	default:
3898		error = ENOTTY;
3899		break;
3900	}
3901	return (error);
3902}
3903
3904static void
3905ti_watchdog(void *arg)
3906{
3907	struct ti_softc *sc;
3908	struct ifnet *ifp;
3909
3910	sc = arg;
3911	TI_LOCK_ASSERT(sc);
3912	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3913	if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3914		return;
3915
3916	/*
3917	 * When we're debugging, the chip is often stopped for long periods
3918	 * of time, and that would normally cause the watchdog timer to fire.
3919	 * Since that impedes debugging, we don't want to do that.
3920	 */
3921	if (sc->ti_flags & TI_FLAG_DEBUGING)
3922		return;
3923
3924	ifp = sc->ti_ifp;
3925	if_printf(ifp, "watchdog timeout -- resetting\n");
3926	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3927	ti_init_locked(sc);
3928
3929	ifp->if_oerrors++;
3930}
3931
3932/*
3933 * Stop the adapter and free any mbufs allocated to the
3934 * RX and TX lists.
3935 */
3936static void
3937ti_stop(struct ti_softc *sc)
3938{
3939	struct ifnet *ifp;
3940	struct ti_cmd_desc cmd;
3941
3942	TI_LOCK_ASSERT(sc);
3943
3944	ifp = sc->ti_ifp;
3945
3946	/* Disable host interrupts. */
3947	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3948	/*
3949	 * Tell firmware we're shutting down.
3950	 */
3951	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3952
3953	/* Halt and reinitialize. */
3954	if (ti_chipinit(sc) == 0) {
3955		ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3956		/* XXX ignore init errors. */
3957		ti_chipinit(sc);
3958	}
3959
3960	/* Free the RX lists. */
3961	ti_free_rx_ring_std(sc);
3962
3963	/* Free jumbo RX list. */
3964	ti_free_rx_ring_jumbo(sc);
3965
3966	/* Free mini RX list. */
3967	ti_free_rx_ring_mini(sc);
3968
3969	/* Free TX buffers. */
3970	ti_free_tx_ring(sc);
3971
3972	sc->ti_ev_prodidx.ti_idx = 0;
3973	sc->ti_return_prodidx.ti_idx = 0;
3974	sc->ti_tx_considx.ti_idx = 0;
3975	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3976
3977	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3978	callout_stop(&sc->ti_watchdog);
3979}
3980
3981/*
3982 * Stop all chip I/O so that the kernel's probe routines don't
3983 * get confused by errant DMAs when rebooting.
3984 */
3985static int
3986ti_shutdown(device_t dev)
3987{
3988	struct ti_softc *sc;
3989
3990	sc = device_get_softc(dev);
3991	TI_LOCK(sc);
3992	ti_chipinit(sc);
3993	TI_UNLOCK(sc);
3994
3995	return (0);
3996}
3997
3998static void
3999ti_sysctl_node(struct ti_softc *sc)
4000{
4001	struct sysctl_ctx_list *ctx;
4002	struct sysctl_oid_list *child;
4003	char tname[32];
4004
4005	ctx = device_get_sysctl_ctx(sc->ti_dev);
4006	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ti_dev));
4007
4008	/* Use DAC */
4009	sc->ti_dac = 1;
4010	snprintf(tname, sizeof(tname), "dev.ti.%d.dac",
4011	    device_get_unit(sc->ti_dev));
4012	TUNABLE_INT_FETCH(tname, &sc->ti_dac);
4013
4014	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_coal_ticks", CTLFLAG_RW,
4015	    &sc->ti_rx_coal_ticks, 0, "Receive coalcesced ticks");
4016	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_max_coal_bds", CTLFLAG_RW,
4017	    &sc->ti_rx_max_coal_bds, 0, "Receive max coalcesced BDs");
4018
4019	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_coal_ticks", CTLFLAG_RW,
4020	    &sc->ti_tx_coal_ticks, 0, "Send coalcesced ticks");
4021	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_max_coal_bds", CTLFLAG_RW,
4022	    &sc->ti_tx_max_coal_bds, 0, "Send max coalcesced BDs");
4023	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_buf_ratio", CTLFLAG_RW,
4024	    &sc->ti_tx_buf_ratio, 0,
4025	    "Ratio of NIC memory devoted to TX buffer");
4026
4027	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "stat_ticks", CTLFLAG_RW,
4028	    &sc->ti_stat_ticks, 0,
4029	    "Number of clock ticks for statistics update interval");
4030
4031	/* Pull in device tunables. */
4032	sc->ti_rx_coal_ticks = 170;
4033	resource_int_value(device_get_name(sc->ti_dev),
4034	    device_get_unit(sc->ti_dev), "rx_coal_ticks",
4035	    &sc->ti_rx_coal_ticks);
4036	sc->ti_rx_max_coal_bds = 64;
4037	resource_int_value(device_get_name(sc->ti_dev),
4038	    device_get_unit(sc->ti_dev), "rx_max_coal_bds",
4039	    &sc->ti_rx_max_coal_bds);
4040
4041	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
4042	resource_int_value(device_get_name(sc->ti_dev),
4043	    device_get_unit(sc->ti_dev), "tx_coal_ticks",
4044	    &sc->ti_tx_coal_ticks);
4045	sc->ti_tx_max_coal_bds = 32;
4046	resource_int_value(device_get_name(sc->ti_dev),
4047	    device_get_unit(sc->ti_dev), "tx_max_coal_bds",
4048	    &sc->ti_tx_max_coal_bds);
4049	sc->ti_tx_buf_ratio = 21;
4050	resource_int_value(device_get_name(sc->ti_dev),
4051	    device_get_unit(sc->ti_dev), "tx_buf_ratio",
4052	    &sc->ti_tx_buf_ratio);
4053
4054	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
4055	resource_int_value(device_get_name(sc->ti_dev),
4056	    device_get_unit(sc->ti_dev), "stat_ticks",
4057	    &sc->ti_stat_ticks);
4058}
4059