if_ti.c revision 227322
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35 * Manuals, sample driver and firmware source kits are available
36 * from http://www.alteon.com/support/openkits.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48 * filtering and jumbo (9014 byte) frames. The hardware is largely
49 * controlled by firmware, which must be loaded into the NIC during
50 * initialization.
51 *
52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53 * revision, which supports new features such as extended commands,
54 * extended jumbo receive ring desciptors and a mini receive ring.
55 *
56 * Alteon Networks is to be commended for releasing such a vast amount
57 * of development material for the Tigon NIC without requiring an NDA
58 * (although they really should have done it a long time ago). With
59 * any luck, the other vendors will finally wise up and follow Alteon's
60 * stellar example.
61 *
62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63 * this driver by #including it as a C header file. This bloats the
64 * driver somewhat, but it's the easiest method considering that the
65 * driver code and firmware code need to be kept in sync. The source
66 * for the firmware is not provided with the FreeBSD distribution since
67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68 *
69 * The following people deserve special thanks:
70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71 *   for testing
72 * - Raymond Lee of Netgear, for providing a pair of Netgear
73 *   GA620 Tigon 2 boards for testing
74 * - Ulf Zimmermann, for bringing the GA260 to my attention and
75 *   convincing me to write this driver.
76 * - Andrew Gallatin for providing FreeBSD/Alpha support.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/dev/ti/if_ti.c 227322 2011-11-07 22:47:25Z yongari $");
81
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/module.h>
91#include <sys/socket.h>
92#include <sys/queue.h>
93#include <sys/conf.h>
94#include <sys/sf_buf.h>
95
96#include <net/if.h>
97#include <net/if_arp.h>
98#include <net/ethernet.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101#include <net/if_types.h>
102#include <net/if_vlan_var.h>
103
104#include <net/bpf.h>
105
106#include <netinet/in_systm.h>
107#include <netinet/in.h>
108#include <netinet/ip.h>
109
110#include <machine/bus.h>
111#include <machine/resource.h>
112#include <sys/bus.h>
113#include <sys/rman.h>
114
115/* #define TI_PRIVATE_JUMBOS */
116#ifndef TI_PRIVATE_JUMBOS
117#include <vm/vm.h>
118#include <vm/vm_page.h>
119#endif
120
121#include <dev/pci/pcireg.h>
122#include <dev/pci/pcivar.h>
123
124#include <sys/tiio.h>
125#include <dev/ti/if_tireg.h>
126#include <dev/ti/ti_fw.h>
127#include <dev/ti/ti_fw2.h>
128
129#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
130/*
131 * We can only turn on header splitting if we're using extended receive
132 * BDs.
133 */
134#if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
135#error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
136#endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
137
138typedef enum {
139	TI_SWAP_HTON,
140	TI_SWAP_NTOH
141} ti_swap_type;
142
143/*
144 * Various supported device vendors/types and their names.
145 */
146
147static const struct ti_type const ti_devs[] = {
148	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
149		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
150	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
151		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
152	{ TC_VENDORID,	TC_DEVICEID_3C985,
153		"3Com 3c985-SX Gigabit Ethernet" },
154	{ NG_VENDORID, NG_DEVICEID_GA620,
155		"Netgear GA620 1000baseSX Gigabit Ethernet" },
156	{ NG_VENDORID, NG_DEVICEID_GA620T,
157		"Netgear GA620 1000baseT Gigabit Ethernet" },
158	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
159		"Silicon Graphics Gigabit Ethernet" },
160	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
161		"Farallon PN9000SX Gigabit Ethernet" },
162	{ 0, 0, NULL }
163};
164
165
166static	d_open_t	ti_open;
167static	d_close_t	ti_close;
168static	d_ioctl_t	ti_ioctl2;
169
170static struct cdevsw ti_cdevsw = {
171	.d_version =	D_VERSION,
172	.d_flags =	0,
173	.d_open =	ti_open,
174	.d_close =	ti_close,
175	.d_ioctl =	ti_ioctl2,
176	.d_name =	"ti",
177};
178
179static int ti_probe(device_t);
180static int ti_attach(device_t);
181static int ti_detach(device_t);
182static void ti_txeof(struct ti_softc *);
183static void ti_rxeof(struct ti_softc *);
184
185static void ti_stats_update(struct ti_softc *);
186static int ti_encap(struct ti_softc *, struct mbuf **);
187
188static void ti_intr(void *);
189static void ti_start(struct ifnet *);
190static void ti_start_locked(struct ifnet *);
191static int ti_ioctl(struct ifnet *, u_long, caddr_t);
192static void ti_init(void *);
193static void ti_init_locked(void *);
194static void ti_init2(struct ti_softc *);
195static void ti_stop(struct ti_softc *);
196static void ti_watchdog(void *);
197static int ti_shutdown(device_t);
198static int ti_ifmedia_upd(struct ifnet *);
199static int ti_ifmedia_upd_locked(struct ti_softc *);
200static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
201
202static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
203static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
204static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
205
206static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
207static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
208static void ti_setmulti(struct ti_softc *);
209
210static void ti_mem_read(struct ti_softc *, uint32_t, uint32_t, void *);
211static void ti_mem_write(struct ti_softc *, uint32_t, uint32_t, void *);
212static void ti_mem_zero(struct ti_softc *, uint32_t, uint32_t);
213static int ti_copy_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t, int,
214    int);
215static int ti_copy_scratch(struct ti_softc *, uint32_t, uint32_t, caddr_t,
216    int, int, int);
217static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
218static void ti_loadfw(struct ti_softc *);
219static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
220static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
221static void ti_handle_events(struct ti_softc *);
222static int ti_alloc_dmamaps(struct ti_softc *);
223static void ti_free_dmamaps(struct ti_softc *);
224static int ti_alloc_jumbo_mem(struct ti_softc *);
225#ifdef TI_PRIVATE_JUMBOS
226static void *ti_jalloc(struct ti_softc *);
227static void ti_jfree(void *, void *);
228#endif /* TI_PRIVATE_JUMBOS */
229static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
230static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
231static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
232static int ti_init_rx_ring_std(struct ti_softc *);
233static void ti_free_rx_ring_std(struct ti_softc *);
234static int ti_init_rx_ring_jumbo(struct ti_softc *);
235static void ti_free_rx_ring_jumbo(struct ti_softc *);
236static int ti_init_rx_ring_mini(struct ti_softc *);
237static void ti_free_rx_ring_mini(struct ti_softc *);
238static void ti_free_tx_ring(struct ti_softc *);
239static int ti_init_tx_ring(struct ti_softc *);
240
241static int ti_64bitslot_war(struct ti_softc *);
242static int ti_chipinit(struct ti_softc *);
243static int ti_gibinit(struct ti_softc *);
244
245#ifdef TI_JUMBO_HDRSPLIT
246static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len,
247    int idx);
248#endif /* TI_JUMBO_HDRSPLIT */
249
250static device_method_t ti_methods[] = {
251	/* Device interface */
252	DEVMETHOD(device_probe,		ti_probe),
253	DEVMETHOD(device_attach,	ti_attach),
254	DEVMETHOD(device_detach,	ti_detach),
255	DEVMETHOD(device_shutdown,	ti_shutdown),
256	{ 0, 0 }
257};
258
259static driver_t ti_driver = {
260	"ti",
261	ti_methods,
262	sizeof(struct ti_softc)
263};
264
265static devclass_t ti_devclass;
266
267DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
268MODULE_DEPEND(ti, pci, 1, 1, 1);
269MODULE_DEPEND(ti, ether, 1, 1, 1);
270
271/*
272 * Send an instruction or address to the EEPROM, check for ACK.
273 */
274static uint32_t
275ti_eeprom_putbyte(struct ti_softc *sc, int byte)
276{
277	int i, ack = 0;
278
279	/*
280	 * Make sure we're in TX mode.
281	 */
282	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
283
284	/*
285	 * Feed in each bit and stobe the clock.
286	 */
287	for (i = 0x80; i; i >>= 1) {
288		if (byte & i) {
289			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
290		} else {
291			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
292		}
293		DELAY(1);
294		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
295		DELAY(1);
296		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
297	}
298
299	/*
300	 * Turn off TX mode.
301	 */
302	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
303
304	/*
305	 * Check for ack.
306	 */
307	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
308	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
309	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
310
311	return (ack);
312}
313
314/*
315 * Read a byte of data stored in the EEPROM at address 'addr.'
316 * We have to send two address bytes since the EEPROM can hold
317 * more than 256 bytes of data.
318 */
319static uint8_t
320ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
321{
322	int i;
323	uint8_t byte = 0;
324
325	EEPROM_START;
326
327	/*
328	 * Send write control code to EEPROM.
329	 */
330	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
331		device_printf(sc->ti_dev,
332		    "failed to send write command, status: %x\n",
333		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
334		return (1);
335	}
336
337	/*
338	 * Send first byte of address of byte we want to read.
339	 */
340	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
341		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
342		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
343		return (1);
344	}
345	/*
346	 * Send second byte address of byte we want to read.
347	 */
348	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
349		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
350		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
351		return (1);
352	}
353
354	EEPROM_STOP;
355	EEPROM_START;
356	/*
357	 * Send read control code to EEPROM.
358	 */
359	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
360		device_printf(sc->ti_dev,
361		    "failed to send read command, status: %x\n",
362		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
363		return (1);
364	}
365
366	/*
367	 * Start reading bits from EEPROM.
368	 */
369	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
370	for (i = 0x80; i; i >>= 1) {
371		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
372		DELAY(1);
373		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
374			byte |= i;
375		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
376		DELAY(1);
377	}
378
379	EEPROM_STOP;
380
381	/*
382	 * No ACK generated for read, so just return byte.
383	 */
384
385	*dest = byte;
386
387	return (0);
388}
389
390/*
391 * Read a sequence of bytes from the EEPROM.
392 */
393static int
394ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
395{
396	int err = 0, i;
397	uint8_t byte = 0;
398
399	for (i = 0; i < cnt; i++) {
400		err = ti_eeprom_getbyte(sc, off + i, &byte);
401		if (err)
402			break;
403		*(dest + i) = byte;
404	}
405
406	return (err ? 1 : 0);
407}
408
409/*
410 * NIC memory read function.
411 * Can be used to copy data from NIC local memory.
412 */
413static void
414ti_mem_read(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
415{
416	int segptr, segsize, cnt;
417	char *ptr;
418
419	segptr = addr;
420	cnt = len;
421	ptr = buf;
422
423	while (cnt) {
424		if (cnt < TI_WINLEN)
425			segsize = cnt;
426		else
427			segsize = TI_WINLEN - (segptr % TI_WINLEN);
428		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
429		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
430		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
431		    segsize / 4);
432		ptr += segsize;
433		segptr += segsize;
434		cnt -= segsize;
435	}
436}
437
438
439/*
440 * NIC memory write function.
441 * Can be used to copy data into NIC local memory.
442 */
443static void
444ti_mem_write(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
445{
446	int segptr, segsize, cnt;
447	char *ptr;
448
449	segptr = addr;
450	cnt = len;
451	ptr = buf;
452
453	while (cnt) {
454		if (cnt < TI_WINLEN)
455			segsize = cnt;
456		else
457			segsize = TI_WINLEN - (segptr % TI_WINLEN);
458		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
459		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
460		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
461		    segsize / 4);
462		ptr += segsize;
463		segptr += segsize;
464		cnt -= segsize;
465	}
466}
467
468/*
469 * NIC memory read function.
470 * Can be used to clear a section of NIC local memory.
471 */
472static void
473ti_mem_zero(struct ti_softc *sc, uint32_t addr, uint32_t len)
474{
475	int segptr, segsize, cnt;
476
477	segptr = addr;
478	cnt = len;
479
480	while (cnt) {
481		if (cnt < TI_WINLEN)
482			segsize = cnt;
483		else
484			segsize = TI_WINLEN - (segptr % TI_WINLEN);
485		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
486		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
487		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
488		segptr += segsize;
489		cnt -= segsize;
490	}
491}
492
493static int
494ti_copy_mem(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
495    caddr_t buf, int useraddr, int readdata)
496{
497	int segptr, segsize, cnt;
498	caddr_t ptr;
499	uint32_t origwin;
500	uint8_t tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
501	int resid, segresid;
502	int first_pass;
503
504	TI_LOCK_ASSERT(sc);
505
506	/*
507	 * At the moment, we don't handle non-aligned cases, we just bail.
508	 * If this proves to be a problem, it will be fixed.
509	 */
510	if ((readdata == 0)
511	 && (tigon_addr & 0x3)) {
512		device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
513		    "word-aligned\n", __func__, tigon_addr);
514		device_printf(sc->ti_dev, "%s: unaligned writes aren't "
515		    "yet supported\n", __func__);
516		return (EINVAL);
517	}
518
519	segptr = tigon_addr & ~0x3;
520	segresid = tigon_addr - segptr;
521
522	/*
523	 * This is the non-aligned amount left over that we'll need to
524	 * copy.
525	 */
526	resid = len & 0x3;
527
528	/* Add in the left over amount at the front of the buffer */
529	resid += segresid;
530
531	cnt = len & ~0x3;
532	/*
533	 * If resid + segresid is >= 4, add multiples of 4 to the count and
534	 * decrease the residual by that much.
535	 */
536	cnt += resid & ~0x3;
537	resid -= resid & ~0x3;
538
539	ptr = buf;
540
541	first_pass = 1;
542
543	/*
544	 * Save the old window base value.
545	 */
546	origwin = CSR_READ_4(sc, TI_WINBASE);
547
548	while (cnt) {
549		bus_size_t ti_offset;
550
551		if (cnt < TI_WINLEN)
552			segsize = cnt;
553		else
554			segsize = TI_WINLEN - (segptr % TI_WINLEN);
555		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
556
557		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
558
559		if (readdata) {
560
561			bus_space_read_region_4(sc->ti_btag,
562						sc->ti_bhandle, ti_offset,
563						(uint32_t *)tmparray,
564						segsize >> 2);
565			if (useraddr) {
566				/*
567				 * Yeah, this is a little on the kludgy
568				 * side, but at least this code is only
569				 * used for debugging.
570				 */
571				ti_bcopy_swap(tmparray, tmparray2, segsize,
572					      TI_SWAP_NTOH);
573
574				TI_UNLOCK(sc);
575				if (first_pass) {
576					copyout(&tmparray2[segresid], ptr,
577						segsize - segresid);
578					first_pass = 0;
579				} else
580					copyout(tmparray2, ptr, segsize);
581				TI_LOCK(sc);
582			} else {
583				if (first_pass) {
584
585					ti_bcopy_swap(tmparray, tmparray2,
586						      segsize, TI_SWAP_NTOH);
587					TI_UNLOCK(sc);
588					bcopy(&tmparray2[segresid], ptr,
589					      segsize - segresid);
590					TI_LOCK(sc);
591					first_pass = 0;
592				} else
593					ti_bcopy_swap(tmparray, ptr, segsize,
594						      TI_SWAP_NTOH);
595			}
596
597		} else {
598			if (useraddr) {
599				TI_UNLOCK(sc);
600				copyin(ptr, tmparray2, segsize);
601				TI_LOCK(sc);
602				ti_bcopy_swap(tmparray2, tmparray, segsize,
603					      TI_SWAP_HTON);
604			} else
605				ti_bcopy_swap(ptr, tmparray, segsize,
606					      TI_SWAP_HTON);
607
608			bus_space_write_region_4(sc->ti_btag,
609						 sc->ti_bhandle, ti_offset,
610						 (uint32_t *)tmparray,
611						 segsize >> 2);
612		}
613		segptr += segsize;
614		ptr += segsize;
615		cnt -= segsize;
616	}
617
618	/*
619	 * Handle leftover, non-word-aligned bytes.
620	 */
621	if (resid != 0) {
622		uint32_t	tmpval, tmpval2;
623		bus_size_t	ti_offset;
624
625		/*
626		 * Set the segment pointer.
627		 */
628		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
629
630		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
631
632		/*
633		 * First, grab whatever is in our source/destination.
634		 * We'll obviously need this for reads, but also for
635		 * writes, since we'll be doing read/modify/write.
636		 */
637		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
638					ti_offset, &tmpval, 1);
639
640		/*
641		 * Next, translate this from little-endian to big-endian
642		 * (at least on i386 boxes).
643		 */
644		tmpval2 = ntohl(tmpval);
645
646		if (readdata) {
647			/*
648			 * If we're reading, just copy the leftover number
649			 * of bytes from the host byte order buffer to
650			 * the user's buffer.
651			 */
652			if (useraddr) {
653				TI_UNLOCK(sc);
654				copyout(&tmpval2, ptr, resid);
655				TI_LOCK(sc);
656			} else
657				bcopy(&tmpval2, ptr, resid);
658		} else {
659			/*
660			 * If we're writing, first copy the bytes to be
661			 * written into the network byte order buffer,
662			 * leaving the rest of the buffer with whatever was
663			 * originally in there.  Then, swap the bytes
664			 * around into host order and write them out.
665			 *
666			 * XXX KDM the read side of this has been verified
667			 * to work, but the write side of it has not been
668			 * verified.  So user beware.
669			 */
670			if (useraddr) {
671				TI_UNLOCK(sc);
672				copyin(ptr, &tmpval2, resid);
673				TI_LOCK(sc);
674			} else
675				bcopy(ptr, &tmpval2, resid);
676
677			tmpval = htonl(tmpval2);
678
679			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
680						 ti_offset, &tmpval, 1);
681		}
682	}
683
684	CSR_WRITE_4(sc, TI_WINBASE, origwin);
685
686	return (0);
687}
688
689static int
690ti_copy_scratch(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
691    caddr_t buf, int useraddr, int readdata, int cpu)
692{
693	uint32_t segptr;
694	int cnt;
695	uint32_t tmpval, tmpval2;
696	caddr_t ptr;
697
698	TI_LOCK_ASSERT(sc);
699
700	/*
701	 * At the moment, we don't handle non-aligned cases, we just bail.
702	 * If this proves to be a problem, it will be fixed.
703	 */
704	if (tigon_addr & 0x3) {
705		device_printf(sc->ti_dev, "%s: tigon address %#x "
706		    "isn't word-aligned\n", __func__, tigon_addr);
707		return (EINVAL);
708	}
709
710	if (len & 0x3) {
711		device_printf(sc->ti_dev, "%s: transfer length %d "
712		    "isn't word-aligned\n", __func__, len);
713		return (EINVAL);
714	}
715
716	segptr = tigon_addr;
717	cnt = len;
718	ptr = buf;
719
720	while (cnt) {
721		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
722
723		if (readdata) {
724			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
725
726			tmpval = ntohl(tmpval2);
727
728			/*
729			 * Note:  I've used this debugging interface
730			 * extensively with Alteon's 12.3.15 firmware,
731			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
732			 *
733			 * When you compile the firmware without
734			 * optimization, which is necessary sometimes in
735			 * order to properly step through it, you sometimes
736			 * read out a bogus value of 0xc0017c instead of
737			 * whatever was supposed to be in that scratchpad
738			 * location.  That value is on the stack somewhere,
739			 * but I've never been able to figure out what was
740			 * causing the problem.
741			 *
742			 * The address seems to pop up in random places,
743			 * often not in the same place on two subsequent
744			 * reads.
745			 *
746			 * In any case, the underlying data doesn't seem
747			 * to be affected, just the value read out.
748			 *
749			 * KDM, 3/7/2000
750			 */
751
752			if (tmpval2 == 0xc0017c)
753				device_printf(sc->ti_dev, "found 0xc0017c at "
754				    "%#x (tmpval2)\n", segptr);
755
756			if (tmpval == 0xc0017c)
757				device_printf(sc->ti_dev, "found 0xc0017c at "
758				    "%#x (tmpval)\n", segptr);
759
760			if (useraddr)
761				copyout(&tmpval, ptr, 4);
762			else
763				bcopy(&tmpval, ptr, 4);
764		} else {
765			if (useraddr)
766				copyin(ptr, &tmpval2, 4);
767			else
768				bcopy(ptr, &tmpval2, 4);
769
770			tmpval = htonl(tmpval2);
771
772			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
773		}
774
775		cnt -= 4;
776		segptr += 4;
777		ptr += 4;
778	}
779
780	return (0);
781}
782
783static int
784ti_bcopy_swap(const void *src, void *dst, size_t len, ti_swap_type swap_type)
785{
786	const uint8_t *tmpsrc;
787	uint8_t *tmpdst;
788	size_t tmplen;
789
790	if (len & 0x3) {
791		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
792		       len);
793		return (-1);
794	}
795
796	tmpsrc = src;
797	tmpdst = dst;
798	tmplen = len;
799
800	while (tmplen) {
801		if (swap_type == TI_SWAP_NTOH)
802			*(uint32_t *)tmpdst =
803				ntohl(*(const uint32_t *)tmpsrc);
804		else
805			*(uint32_t *)tmpdst =
806				htonl(*(const uint32_t *)tmpsrc);
807
808		tmpsrc += 4;
809		tmpdst += 4;
810		tmplen -= 4;
811	}
812
813	return (0);
814}
815
816/*
817 * Load firmware image into the NIC. Check that the firmware revision
818 * is acceptable and see if we want the firmware for the Tigon 1 or
819 * Tigon 2.
820 */
821static void
822ti_loadfw(struct ti_softc *sc)
823{
824
825	TI_LOCK_ASSERT(sc);
826
827	switch (sc->ti_hwrev) {
828	case TI_HWREV_TIGON:
829		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
830		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
831		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
832			device_printf(sc->ti_dev, "firmware revision mismatch; "
833			    "want %d.%d.%d, got %d.%d.%d\n",
834			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
835			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
836			    tigonFwReleaseMinor, tigonFwReleaseFix);
837			return;
838		}
839		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
840		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
841		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
842		    tigonFwRodata);
843		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
844		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
845		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
846		break;
847	case TI_HWREV_TIGON_II:
848		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
849		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
850		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
851			device_printf(sc->ti_dev, "firmware revision mismatch; "
852			    "want %d.%d.%d, got %d.%d.%d\n",
853			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
854			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
855			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
856			return;
857		}
858		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
859		    tigon2FwText);
860		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
861		    tigon2FwData);
862		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
863		    tigon2FwRodata);
864		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
865		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
866		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
867		break;
868	default:
869		device_printf(sc->ti_dev,
870		    "can't load firmware: unknown hardware rev\n");
871		break;
872	}
873}
874
875/*
876 * Send the NIC a command via the command ring.
877 */
878static void
879ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
880{
881	int index;
882
883	index = sc->ti_cmd_saved_prodidx;
884	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
885	TI_INC(index, TI_CMD_RING_CNT);
886	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
887	sc->ti_cmd_saved_prodidx = index;
888}
889
890/*
891 * Send the NIC an extended command. The 'len' parameter specifies the
892 * number of command slots to include after the initial command.
893 */
894static void
895ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
896{
897	int index;
898	int i;
899
900	index = sc->ti_cmd_saved_prodidx;
901	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
902	TI_INC(index, TI_CMD_RING_CNT);
903	for (i = 0; i < len; i++) {
904		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
905		    *(uint32_t *)(&arg[i * 4]));
906		TI_INC(index, TI_CMD_RING_CNT);
907	}
908	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
909	sc->ti_cmd_saved_prodidx = index;
910}
911
912/*
913 * Handle events that have triggered interrupts.
914 */
915static void
916ti_handle_events(struct ti_softc *sc)
917{
918	struct ti_event_desc *e;
919
920	if (sc->ti_rdata->ti_event_ring == NULL)
921		return;
922
923	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
924		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
925		switch (TI_EVENT_EVENT(e)) {
926		case TI_EV_LINKSTAT_CHANGED:
927			sc->ti_linkstat = TI_EVENT_CODE(e);
928			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
929				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
930				sc->ti_ifp->if_baudrate = IF_Mbps(100);
931				if (bootverbose)
932					device_printf(sc->ti_dev,
933					    "10/100 link up\n");
934			} else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
935				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
936				sc->ti_ifp->if_baudrate = IF_Gbps(1UL);
937				if (bootverbose)
938					device_printf(sc->ti_dev,
939					    "gigabit link up\n");
940			} else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
941				if_link_state_change(sc->ti_ifp,
942				    LINK_STATE_DOWN);
943				sc->ti_ifp->if_baudrate = 0;
944				if (bootverbose)
945					device_printf(sc->ti_dev,
946					    "link down\n");
947			}
948			break;
949		case TI_EV_ERROR:
950			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
951				device_printf(sc->ti_dev, "invalid command\n");
952			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
953				device_printf(sc->ti_dev, "unknown command\n");
954			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
955				device_printf(sc->ti_dev, "bad config data\n");
956			break;
957		case TI_EV_FIRMWARE_UP:
958			ti_init2(sc);
959			break;
960		case TI_EV_STATS_UPDATED:
961			ti_stats_update(sc);
962			break;
963		case TI_EV_RESET_JUMBO_RING:
964		case TI_EV_MCAST_UPDATED:
965			/* Who cares. */
966			break;
967		default:
968			device_printf(sc->ti_dev, "unknown event: %d\n",
969			    TI_EVENT_EVENT(e));
970			break;
971		}
972		/* Advance the consumer index. */
973		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
974		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
975	}
976}
977
978static int
979ti_alloc_dmamaps(struct ti_softc *sc)
980{
981	int i;
982
983	for (i = 0; i < TI_TX_RING_CNT; i++) {
984		sc->ti_cdata.ti_txdesc[i].tx_m = NULL;
985		sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
986		if (bus_dmamap_create(sc->ti_mbuftx_dmat, 0,
987				      &sc->ti_cdata.ti_txdesc[i].tx_dmamap))
988			return (ENOBUFS);
989	}
990	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
991		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
992				      &sc->ti_cdata.ti_rx_std_maps[i]))
993			return (ENOBUFS);
994	}
995
996	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
997		if (bus_dmamap_create(sc->ti_jumbo_dmat, 0,
998				      &sc->ti_cdata.ti_rx_jumbo_maps[i]))
999			return (ENOBUFS);
1000	}
1001
1002	/* Mini ring is not available on Tigon 1. */
1003	if (sc->ti_hwrev == TI_HWREV_TIGON)
1004		return (0);
1005
1006	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1007		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1008				      &sc->ti_cdata.ti_rx_mini_maps[i]))
1009			return (ENOBUFS);
1010	}
1011
1012	return (0);
1013}
1014
1015static void
1016ti_free_dmamaps(struct ti_softc *sc)
1017{
1018	int i;
1019
1020	if (sc->ti_mbuftx_dmat)
1021		for (i = 0; i < TI_TX_RING_CNT; i++)
1022			if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1023				bus_dmamap_destroy(sc->ti_mbuftx_dmat,
1024				    sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1025				sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
1026			}
1027
1028	if (sc->ti_mbufrx_dmat)
1029		for (i = 0; i < TI_STD_RX_RING_CNT; i++)
1030			if (sc->ti_cdata.ti_rx_std_maps[i]) {
1031				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1032				    sc->ti_cdata.ti_rx_std_maps[i]);
1033				sc->ti_cdata.ti_rx_std_maps[i] = 0;
1034			}
1035
1036	if (sc->ti_jumbo_dmat)
1037		for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++)
1038			if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1039				bus_dmamap_destroy(sc->ti_jumbo_dmat,
1040				    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1041				sc->ti_cdata.ti_rx_jumbo_maps[i] = 0;
1042			}
1043	if (sc->ti_mbufrx_dmat)
1044		for (i = 0; i < TI_MINI_RX_RING_CNT; i++)
1045			if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1046				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1047				    sc->ti_cdata.ti_rx_mini_maps[i]);
1048				sc->ti_cdata.ti_rx_mini_maps[i] = 0;
1049			}
1050}
1051
1052#ifdef TI_PRIVATE_JUMBOS
1053
1054/*
1055 * Memory management for the jumbo receive ring is a pain in the
1056 * butt. We need to allocate at least 9018 bytes of space per frame,
1057 * _and_ it has to be contiguous (unless you use the extended
1058 * jumbo descriptor format). Using malloc() all the time won't
1059 * work: malloc() allocates memory in powers of two, which means we
1060 * would end up wasting a considerable amount of space by allocating
1061 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
1062 * to do our own memory management.
1063 *
1064 * The driver needs to allocate a contiguous chunk of memory at boot
1065 * time. We then chop this up ourselves into 9K pieces and use them
1066 * as external mbuf storage.
1067 *
1068 * One issue here is how much memory to allocate. The jumbo ring has
1069 * 256 slots in it, but at 9K per slot than can consume over 2MB of
1070 * RAM. This is a bit much, especially considering we also need
1071 * RAM for the standard ring and mini ring (on the Tigon 2). To
1072 * save space, we only actually allocate enough memory for 64 slots
1073 * by default, which works out to between 500 and 600K. This can
1074 * be tuned by changing a #define in if_tireg.h.
1075 */
1076
1077static int
1078ti_alloc_jumbo_mem(struct ti_softc *sc)
1079{
1080	struct ti_jpool_entry *entry;
1081	caddr_t ptr;
1082	int i;
1083
1084	/*
1085	 * Grab a big chunk o' storage.  Since we are chopping this pool up
1086	 * into ~9k chunks, there doesn't appear to be a need to use page
1087	 * alignment.
1088	 */
1089	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1090				1, 0,			/* algnmnt, boundary */
1091				BUS_SPACE_MAXADDR,	/* lowaddr */
1092				BUS_SPACE_MAXADDR,	/* highaddr */
1093				NULL, NULL,		/* filter, filterarg */
1094				TI_JMEM,		/* maxsize */
1095				1,			/* nsegments */
1096				TI_JMEM,		/* maxsegsize */
1097				0,			/* flags */
1098				NULL, NULL,		/* lockfunc, lockarg */
1099				&sc->ti_jumbo_dmat) != 0) {
1100		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1101		return (ENOBUFS);
1102	}
1103
1104	if (bus_dmamem_alloc(sc->ti_jumbo_dmat,
1105			     (void**)&sc->ti_cdata.ti_jumbo_buf,
1106			     BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
1107			     &sc->ti_jumbo_dmamap) != 0) {
1108		device_printf(sc->ti_dev, "Failed to allocate jumbo memory\n");
1109		return (ENOBUFS);
1110	}
1111
1112	SLIST_INIT(&sc->ti_jfree_listhead);
1113	SLIST_INIT(&sc->ti_jinuse_listhead);
1114
1115	/*
1116	 * Now divide it up into 9K pieces and save the addresses
1117	 * in an array.
1118	 */
1119	ptr = sc->ti_cdata.ti_jumbo_buf;
1120	for (i = 0; i < TI_JSLOTS; i++) {
1121		sc->ti_cdata.ti_jslots[i] = ptr;
1122		ptr += TI_JLEN;
1123		entry = malloc(sizeof(struct ti_jpool_entry),
1124			       M_DEVBUF, M_NOWAIT);
1125		if (entry == NULL) {
1126			device_printf(sc->ti_dev, "no memory for jumbo "
1127			    "buffer queue!\n");
1128			return (ENOBUFS);
1129		}
1130		entry->slot = i;
1131		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1132	}
1133
1134	return (0);
1135}
1136
1137/*
1138 * Allocate a jumbo buffer.
1139 */
1140static void *ti_jalloc(struct ti_softc *sc)
1141{
1142	struct ti_jpool_entry *entry;
1143
1144	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1145
1146	if (entry == NULL) {
1147		device_printf(sc->ti_dev, "no free jumbo buffers\n");
1148		return (NULL);
1149	}
1150
1151	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1152	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1153	return (sc->ti_cdata.ti_jslots[entry->slot]);
1154}
1155
1156/*
1157 * Release a jumbo buffer.
1158 */
1159static void
1160ti_jfree(void *buf, void *args)
1161{
1162	struct ti_softc *sc;
1163	int i;
1164	struct ti_jpool_entry *entry;
1165
1166	/* Extract the softc struct pointer. */
1167	sc = (struct ti_softc *)args;
1168
1169	if (sc == NULL)
1170		panic("ti_jfree: didn't get softc pointer!");
1171
1172	/* calculate the slot this buffer belongs to */
1173	i = ((vm_offset_t)buf
1174	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1175
1176	if ((i < 0) || (i >= TI_JSLOTS))
1177		panic("ti_jfree: asked to free buffer that we don't manage!");
1178
1179	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1180	if (entry == NULL)
1181		panic("ti_jfree: buffer not in use!");
1182	entry->slot = i;
1183	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1184	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1185}
1186
1187#else
1188
1189static int
1190ti_alloc_jumbo_mem(struct ti_softc *sc)
1191{
1192
1193	/*
1194	 * The VM system will take care of providing aligned pages.  Alignment
1195	 * is set to 1 here so that busdma resources won't be wasted.
1196	 */
1197	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1198				1, 0,			/* algnmnt, boundary */
1199				BUS_SPACE_MAXADDR,	/* lowaddr */
1200				BUS_SPACE_MAXADDR,	/* highaddr */
1201				NULL, NULL,		/* filter, filterarg */
1202				PAGE_SIZE * 4 /*XXX*/,	/* maxsize */
1203				4,			/* nsegments */
1204				PAGE_SIZE,		/* maxsegsize */
1205				0,			/* flags */
1206				NULL, NULL,		/* lockfunc, lockarg */
1207				&sc->ti_jumbo_dmat) != 0) {
1208		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1209		return (ENOBUFS);
1210	}
1211
1212	return (0);
1213}
1214
1215#endif /* TI_PRIVATE_JUMBOS */
1216
1217/*
1218 * Intialize a standard receive ring descriptor.
1219 */
1220static int
1221ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m)
1222{
1223	bus_dmamap_t map;
1224	bus_dma_segment_t segs;
1225	struct mbuf *m_new = NULL;
1226	struct ti_rx_desc *r;
1227	int nsegs;
1228
1229	nsegs = 0;
1230	if (m == NULL) {
1231		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1232		if (m_new == NULL)
1233			return (ENOBUFS);
1234
1235		MCLGET(m_new, M_DONTWAIT);
1236		if (!(m_new->m_flags & M_EXT)) {
1237			m_freem(m_new);
1238			return (ENOBUFS);
1239		}
1240		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1241	} else {
1242		m_new = m;
1243		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1244		m_new->m_data = m_new->m_ext.ext_buf;
1245	}
1246
1247	m_adj(m_new, ETHER_ALIGN);
1248	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1249	r = &sc->ti_rdata->ti_rx_std_ring[i];
1250	map = sc->ti_cdata.ti_rx_std_maps[i];
1251	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1252				    &nsegs, 0))
1253		return (ENOBUFS);
1254	if (nsegs != 1)
1255		return (ENOBUFS);
1256	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1257	r->ti_len = segs.ds_len;
1258	r->ti_type = TI_BDTYPE_RECV_BD;
1259	r->ti_flags = 0;
1260	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1261		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1262	r->ti_idx = i;
1263
1264	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1265	return (0);
1266}
1267
1268/*
1269 * Intialize a mini receive ring descriptor. This only applies to
1270 * the Tigon 2.
1271 */
1272static int
1273ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m)
1274{
1275	bus_dma_segment_t segs;
1276	bus_dmamap_t map;
1277	struct mbuf *m_new = NULL;
1278	struct ti_rx_desc *r;
1279	int nsegs;
1280
1281	nsegs = 0;
1282	if (m == NULL) {
1283		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1284		if (m_new == NULL) {
1285			return (ENOBUFS);
1286		}
1287		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1288	} else {
1289		m_new = m;
1290		m_new->m_data = m_new->m_pktdat;
1291		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1292	}
1293
1294	m_adj(m_new, ETHER_ALIGN);
1295	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1296	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1297	map = sc->ti_cdata.ti_rx_mini_maps[i];
1298	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1299				    &nsegs, 0))
1300		return (ENOBUFS);
1301	if (nsegs != 1)
1302		return (ENOBUFS);
1303	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1304	r->ti_len = segs.ds_len;
1305	r->ti_type = TI_BDTYPE_RECV_BD;
1306	r->ti_flags = TI_BDFLAG_MINI_RING;
1307	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1308		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1309	r->ti_idx = i;
1310
1311	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1312	return (0);
1313}
1314
1315#ifdef TI_PRIVATE_JUMBOS
1316
1317/*
1318 * Initialize a jumbo receive ring descriptor. This allocates
1319 * a jumbo buffer from the pool managed internally by the driver.
1320 */
1321static int
1322ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
1323{
1324	bus_dmamap_t map;
1325	struct mbuf *m_new = NULL;
1326	struct ti_rx_desc *r;
1327	int nsegs;
1328	bus_dma_segment_t segs;
1329
1330	if (m == NULL) {
1331		caddr_t *buf = NULL;
1332
1333		/* Allocate the mbuf. */
1334		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1335		if (m_new == NULL) {
1336			return (ENOBUFS);
1337		}
1338
1339		/* Allocate the jumbo buffer */
1340		buf = ti_jalloc(sc);
1341		if (buf == NULL) {
1342			m_freem(m_new);
1343			device_printf(sc->ti_dev, "jumbo allocation failed "
1344			    "-- packet dropped!\n");
1345			return (ENOBUFS);
1346		}
1347
1348		/* Attach the buffer to the mbuf. */
1349		m_new->m_data = (void *) buf;
1350		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1351		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree, buf,
1352		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1353	} else {
1354		m_new = m;
1355		m_new->m_data = m_new->m_ext.ext_buf;
1356		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1357	}
1358
1359	m_adj(m_new, ETHER_ALIGN);
1360	/* Set up the descriptor. */
1361	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1362	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1363	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1364	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, &segs,
1365				    &nsegs, 0))
1366		return (ENOBUFS);
1367	if (nsegs != 1)
1368		return (ENOBUFS);
1369	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1370	r->ti_len = segs.ds_len;
1371	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1372	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1373	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1374		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1375	r->ti_idx = i;
1376
1377	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1378	return (0);
1379}
1380
1381#else
1382
1383#if (PAGE_SIZE == 4096)
1384#define NPAYLOAD 2
1385#else
1386#define NPAYLOAD 1
1387#endif
1388
1389#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1390#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1391#define NFS_HDR_LEN (UDP_HDR_LEN)
1392static int HDR_LEN = TCP_HDR_LEN;
1393
1394/*
1395 * Initialize a jumbo receive ring descriptor. This allocates
1396 * a jumbo buffer from the pool managed internally by the driver.
1397 */
1398static int
1399ti_newbuf_jumbo(struct ti_softc *sc, int idx, struct mbuf *m_old)
1400{
1401	bus_dmamap_t map;
1402	struct mbuf *cur, *m_new = NULL;
1403	struct mbuf *m[3] = {NULL, NULL, NULL};
1404	struct ti_rx_desc_ext *r;
1405	vm_page_t frame;
1406	static int color;
1407	/* 1 extra buf to make nobufs easy*/
1408	struct sf_buf *sf[3] = {NULL, NULL, NULL};
1409	int i;
1410	bus_dma_segment_t segs[4];
1411	int nsegs;
1412
1413	if (m_old != NULL) {
1414		m_new = m_old;
1415		cur = m_old->m_next;
1416		for (i = 0; i <= NPAYLOAD; i++){
1417			m[i] = cur;
1418			cur = cur->m_next;
1419		}
1420	} else {
1421		/* Allocate the mbufs. */
1422		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1423		if (m_new == NULL) {
1424			device_printf(sc->ti_dev, "mbuf allocation failed "
1425			    "-- packet dropped!\n");
1426			goto nobufs;
1427		}
1428		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1429		if (m[NPAYLOAD] == NULL) {
1430			device_printf(sc->ti_dev, "cluster mbuf allocation "
1431			    "failed -- packet dropped!\n");
1432			goto nobufs;
1433		}
1434		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1435		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1436			device_printf(sc->ti_dev, "mbuf allocation failed "
1437			    "-- packet dropped!\n");
1438			goto nobufs;
1439		}
1440		m[NPAYLOAD]->m_len = MCLBYTES;
1441
1442		for (i = 0; i < NPAYLOAD; i++){
1443			MGET(m[i], M_DONTWAIT, MT_DATA);
1444			if (m[i] == NULL) {
1445				device_printf(sc->ti_dev, "mbuf allocation "
1446				    "failed -- packet dropped!\n");
1447				goto nobufs;
1448			}
1449			frame = vm_page_alloc(NULL, color++,
1450			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1451			    VM_ALLOC_WIRED);
1452			if (frame == NULL) {
1453				device_printf(sc->ti_dev, "buffer allocation "
1454				    "failed -- packet dropped!\n");
1455				printf("      index %d page %d\n", idx, i);
1456				goto nobufs;
1457			}
1458			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1459			if (sf[i] == NULL) {
1460				vm_page_unwire(frame, 0);
1461				vm_page_free(frame);
1462				device_printf(sc->ti_dev, "buffer allocation "
1463				    "failed -- packet dropped!\n");
1464				printf("      index %d page %d\n", idx, i);
1465				goto nobufs;
1466			}
1467		}
1468		for (i = 0; i < NPAYLOAD; i++){
1469		/* Attach the buffer to the mbuf. */
1470			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1471			m[i]->m_len = PAGE_SIZE;
1472			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1473			    sf_buf_mext, (void*)sf_buf_kva(sf[i]), sf[i],
1474			    0, EXT_DISPOSABLE);
1475			m[i]->m_next = m[i+1];
1476		}
1477		/* link the buffers to the header */
1478		m_new->m_next = m[0];
1479		m_new->m_data += ETHER_ALIGN;
1480		if (sc->ti_hdrsplit)
1481			m_new->m_len = MHLEN - ETHER_ALIGN;
1482		else
1483			m_new->m_len = HDR_LEN;
1484		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1485	}
1486
1487	/* Set up the descriptor. */
1488	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1489	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1490	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1491	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, segs,
1492				    &nsegs, 0))
1493		return (ENOBUFS);
1494	if ((nsegs < 1) || (nsegs > 4))
1495		return (ENOBUFS);
1496	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1497	r->ti_len0 = m_new->m_len;
1498
1499	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1500	r->ti_len1 = PAGE_SIZE;
1501
1502	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1503	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1504
1505	if (PAGE_SIZE == 4096) {
1506		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1507		r->ti_len3 = MCLBYTES;
1508	} else {
1509		r->ti_len3 = 0;
1510	}
1511	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1512
1513	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1514
1515	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1516		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1517
1518	r->ti_idx = idx;
1519
1520	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1521	return (0);
1522
1523nobufs:
1524
1525	/*
1526	 * Warning! :
1527	 * This can only be called before the mbufs are strung together.
1528	 * If the mbufs are strung together, m_freem() will free the chain,
1529	 * so that the later mbufs will be freed multiple times.
1530	 */
1531	if (m_new)
1532		m_freem(m_new);
1533
1534	for (i = 0; i < 3; i++) {
1535		if (m[i])
1536			m_freem(m[i]);
1537		if (sf[i])
1538			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1539	}
1540	return (ENOBUFS);
1541}
1542#endif
1543
1544/*
1545 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1546 * that's 1MB or memory, which is a lot. For now, we fill only the first
1547 * 256 ring entries and hope that our CPU is fast enough to keep up with
1548 * the NIC.
1549 */
1550static int
1551ti_init_rx_ring_std(struct ti_softc *sc)
1552{
1553	int i;
1554	struct ti_cmd_desc cmd;
1555
1556	for (i = 0; i < TI_SSLOTS; i++) {
1557		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1558			return (ENOBUFS);
1559	};
1560
1561	TI_UPDATE_STDPROD(sc, i - 1);
1562	sc->ti_std = i - 1;
1563
1564	return (0);
1565}
1566
1567static void
1568ti_free_rx_ring_std(struct ti_softc *sc)
1569{
1570	bus_dmamap_t map;
1571	int i;
1572
1573	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1574		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1575			map = sc->ti_cdata.ti_rx_std_maps[i];
1576			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1577			    BUS_DMASYNC_POSTREAD);
1578			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1579			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1580			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1581		}
1582		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1583		    sizeof(struct ti_rx_desc));
1584	}
1585}
1586
1587static int
1588ti_init_rx_ring_jumbo(struct ti_softc *sc)
1589{
1590	struct ti_cmd_desc cmd;
1591	int i;
1592
1593	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1594		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1595			return (ENOBUFS);
1596	};
1597
1598	TI_UPDATE_JUMBOPROD(sc, i - 1);
1599	sc->ti_jumbo = i - 1;
1600
1601	return (0);
1602}
1603
1604static void
1605ti_free_rx_ring_jumbo(struct ti_softc *sc)
1606{
1607	bus_dmamap_t map;
1608	int i;
1609
1610	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1611		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1612			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1613			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
1614			    BUS_DMASYNC_POSTREAD);
1615			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
1616			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1617			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1618		}
1619		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1620		    sizeof(struct ti_rx_desc));
1621	}
1622}
1623
1624static int
1625ti_init_rx_ring_mini(struct ti_softc *sc)
1626{
1627	int i;
1628
1629	for (i = 0; i < TI_MSLOTS; i++) {
1630		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1631			return (ENOBUFS);
1632	};
1633
1634	TI_UPDATE_MINIPROD(sc, i - 1);
1635	sc->ti_mini = i - 1;
1636
1637	return (0);
1638}
1639
1640static void
1641ti_free_rx_ring_mini(struct ti_softc *sc)
1642{
1643	bus_dmamap_t map;
1644	int i;
1645
1646	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1647		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1648			map = sc->ti_cdata.ti_rx_mini_maps[i];
1649			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1650			    BUS_DMASYNC_POSTREAD);
1651			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1652			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1653			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1654		}
1655		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1656		    sizeof(struct ti_rx_desc));
1657	}
1658}
1659
1660static void
1661ti_free_tx_ring(struct ti_softc *sc)
1662{
1663	struct ti_txdesc *txd;
1664	int i;
1665
1666	if (sc->ti_rdata->ti_tx_ring == NULL)
1667		return;
1668
1669	for (i = 0; i < TI_TX_RING_CNT; i++) {
1670		txd = &sc->ti_cdata.ti_txdesc[i];
1671		if (txd->tx_m != NULL) {
1672			bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
1673			    BUS_DMASYNC_POSTWRITE);
1674			bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
1675			m_freem(txd->tx_m);
1676			txd->tx_m = NULL;
1677		}
1678		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1679		    sizeof(struct ti_tx_desc));
1680	}
1681}
1682
1683static int
1684ti_init_tx_ring(struct ti_softc *sc)
1685{
1686	struct ti_txdesc *txd;
1687	int i;
1688
1689	STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1690	STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1691	for (i = 0; i < TI_TX_RING_CNT; i++) {
1692		txd = &sc->ti_cdata.ti_txdesc[i];
1693		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1694	}
1695	sc->ti_txcnt = 0;
1696	sc->ti_tx_saved_considx = 0;
1697	sc->ti_tx_saved_prodidx = 0;
1698	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1699	return (0);
1700}
1701
1702/*
1703 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1704 * but we have to support the old way too so that Tigon 1 cards will
1705 * work.
1706 */
1707static void
1708ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1709{
1710	struct ti_cmd_desc cmd;
1711	uint16_t *m;
1712	uint32_t ext[2] = {0, 0};
1713
1714	m = (uint16_t *)&addr->octet[0];
1715
1716	switch (sc->ti_hwrev) {
1717	case TI_HWREV_TIGON:
1718		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1719		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1720		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1721		break;
1722	case TI_HWREV_TIGON_II:
1723		ext[0] = htons(m[0]);
1724		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1725		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1726		break;
1727	default:
1728		device_printf(sc->ti_dev, "unknown hwrev\n");
1729		break;
1730	}
1731}
1732
1733static void
1734ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1735{
1736	struct ti_cmd_desc cmd;
1737	uint16_t *m;
1738	uint32_t ext[2] = {0, 0};
1739
1740	m = (uint16_t *)&addr->octet[0];
1741
1742	switch (sc->ti_hwrev) {
1743	case TI_HWREV_TIGON:
1744		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1745		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1746		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1747		break;
1748	case TI_HWREV_TIGON_II:
1749		ext[0] = htons(m[0]);
1750		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1751		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1752		break;
1753	default:
1754		device_printf(sc->ti_dev, "unknown hwrev\n");
1755		break;
1756	}
1757}
1758
1759/*
1760 * Configure the Tigon's multicast address filter.
1761 *
1762 * The actual multicast table management is a bit of a pain, thanks to
1763 * slight brain damage on the part of both Alteon and us. With our
1764 * multicast code, we are only alerted when the multicast address table
1765 * changes and at that point we only have the current list of addresses:
1766 * we only know the current state, not the previous state, so we don't
1767 * actually know what addresses were removed or added. The firmware has
1768 * state, but we can't get our grubby mits on it, and there is no 'delete
1769 * all multicast addresses' command. Hence, we have to maintain our own
1770 * state so we know what addresses have been programmed into the NIC at
1771 * any given time.
1772 */
1773static void
1774ti_setmulti(struct ti_softc *sc)
1775{
1776	struct ifnet *ifp;
1777	struct ifmultiaddr *ifma;
1778	struct ti_cmd_desc cmd;
1779	struct ti_mc_entry *mc;
1780	uint32_t intrs;
1781
1782	TI_LOCK_ASSERT(sc);
1783
1784	ifp = sc->ti_ifp;
1785
1786	if (ifp->if_flags & IFF_ALLMULTI) {
1787		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1788		return;
1789	} else {
1790		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1791	}
1792
1793	/* Disable interrupts. */
1794	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1795	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1796
1797	/* First, zot all the existing filters. */
1798	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1799		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1800		ti_del_mcast(sc, &mc->mc_addr);
1801		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1802		free(mc, M_DEVBUF);
1803	}
1804
1805	/* Now program new ones. */
1806	if_maddr_rlock(ifp);
1807	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1808		if (ifma->ifma_addr->sa_family != AF_LINK)
1809			continue;
1810		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1811		if (mc == NULL) {
1812			device_printf(sc->ti_dev,
1813			    "no memory for mcast filter entry\n");
1814			continue;
1815		}
1816		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1817		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1818		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1819		ti_add_mcast(sc, &mc->mc_addr);
1820	}
1821	if_maddr_runlock(ifp);
1822
1823	/* Re-enable interrupts. */
1824	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1825}
1826
1827/*
1828 * Check to see if the BIOS has configured us for a 64 bit slot when
1829 * we aren't actually in one. If we detect this condition, we can work
1830 * around it on the Tigon 2 by setting a bit in the PCI state register,
1831 * but for the Tigon 1 we must give up and abort the interface attach.
1832 */
1833static int ti_64bitslot_war(struct ti_softc *sc)
1834{
1835
1836	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1837		CSR_WRITE_4(sc, 0x600, 0);
1838		CSR_WRITE_4(sc, 0x604, 0);
1839		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1840		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1841			if (sc->ti_hwrev == TI_HWREV_TIGON)
1842				return (EINVAL);
1843			else {
1844				TI_SETBIT(sc, TI_PCI_STATE,
1845				    TI_PCISTATE_32BIT_BUS);
1846				return (0);
1847			}
1848		}
1849	}
1850
1851	return (0);
1852}
1853
1854/*
1855 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1856 * self-test results.
1857 */
1858static int
1859ti_chipinit(struct ti_softc *sc)
1860{
1861	uint32_t cacheline;
1862	uint32_t pci_writemax = 0;
1863	uint32_t hdrsplit;
1864
1865	/* Initialize link to down state. */
1866	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1867
1868	/* Set endianness before we access any non-PCI registers. */
1869#if 0 && BYTE_ORDER == BIG_ENDIAN
1870	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1871	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1872#else
1873	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1874	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1875#endif
1876
1877	/* Check the ROM failed bit to see if self-tests passed. */
1878	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1879		device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
1880		return (ENODEV);
1881	}
1882
1883	/* Halt the CPU. */
1884	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1885
1886	/* Figure out the hardware revision. */
1887	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1888	case TI_REV_TIGON_I:
1889		sc->ti_hwrev = TI_HWREV_TIGON;
1890		break;
1891	case TI_REV_TIGON_II:
1892		sc->ti_hwrev = TI_HWREV_TIGON_II;
1893		break;
1894	default:
1895		device_printf(sc->ti_dev, "unsupported chip revision\n");
1896		return (ENODEV);
1897	}
1898
1899	/* Do special setup for Tigon 2. */
1900	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1901		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1902		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1903		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1904	}
1905
1906	/*
1907	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1908	 * can't do header splitting.
1909	 */
1910#ifdef TI_JUMBO_HDRSPLIT
1911	if (sc->ti_hwrev != TI_HWREV_TIGON)
1912		sc->ti_hdrsplit = 1;
1913	else
1914		device_printf(sc->ti_dev,
1915		    "can't do header splitting on a Tigon I board\n");
1916#endif /* TI_JUMBO_HDRSPLIT */
1917
1918	/* Set up the PCI state register. */
1919	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1920	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1921		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1922	}
1923
1924	/* Clear the read/write max DMA parameters. */
1925	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1926	    TI_PCISTATE_READ_MAXDMA));
1927
1928	/* Get cache line size. */
1929	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1930
1931	/*
1932	 * If the system has set enabled the PCI memory write
1933	 * and invalidate command in the command register, set
1934	 * the write max parameter accordingly. This is necessary
1935	 * to use MWI with the Tigon 2.
1936	 */
1937	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1938		switch (cacheline) {
1939		case 1:
1940		case 4:
1941		case 8:
1942		case 16:
1943		case 32:
1944		case 64:
1945			break;
1946		default:
1947		/* Disable PCI memory write and invalidate. */
1948			if (bootverbose)
1949				device_printf(sc->ti_dev, "cache line size %d"
1950				    " not supported; disabling PCI MWI\n",
1951				    cacheline);
1952			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1953			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1954			break;
1955		}
1956	}
1957
1958	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1959
1960	/* This sets the min dma param all the way up (0xff). */
1961	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1962
1963	if (sc->ti_hdrsplit)
1964		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1965	else
1966		hdrsplit = 0;
1967
1968	/* Configure DMA variables. */
1969#if BYTE_ORDER == BIG_ENDIAN
1970	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1971	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1972	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1973	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1974#else /* BYTE_ORDER */
1975	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1976	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1977	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1978#endif /* BYTE_ORDER */
1979
1980	/*
1981	 * Only allow 1 DMA channel to be active at a time.
1982	 * I don't think this is a good idea, but without it
1983	 * the firmware racks up lots of nicDmaReadRingFull
1984	 * errors.  This is not compatible with hardware checksums.
1985	 */
1986	if ((sc->ti_ifp->if_capenable & (IFCAP_TXCSUM | IFCAP_RXCSUM)) == 0)
1987		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1988
1989	/* Recommended settings from Tigon manual. */
1990	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1991	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1992
1993	if (ti_64bitslot_war(sc)) {
1994		device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
1995		    "but we aren't");
1996		return (EINVAL);
1997	}
1998
1999	return (0);
2000}
2001
2002/*
2003 * Initialize the general information block and firmware, and
2004 * start the CPU(s) running.
2005 */
2006static int
2007ti_gibinit(struct ti_softc *sc)
2008{
2009	struct ifnet *ifp;
2010	struct ti_rcb *rcb;
2011	uint32_t rdphys;
2012	int i;
2013
2014	TI_LOCK_ASSERT(sc);
2015
2016	ifp = sc->ti_ifp;
2017	rdphys = sc->ti_rdata_phys;
2018
2019	/* Disable interrupts for now. */
2020	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2021
2022	/*
2023	 * Tell the chip where to find the general information block.
2024	 * While this struct could go into >4GB memory, we allocate it in a
2025	 * single slab with the other descriptors, and those don't seem to
2026	 * support being located in a 64-bit region.
2027	 */
2028	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
2029	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
2030
2031	/* Load the firmware into SRAM. */
2032	ti_loadfw(sc);
2033
2034	/* Set up the contents of the general info and ring control blocks. */
2035
2036	/* Set up the event ring and producer pointer. */
2037	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
2038
2039	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
2040	rcb->ti_flags = 0;
2041	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
2042	    rdphys + TI_RD_OFF(ti_ev_prodidx_r);
2043	sc->ti_ev_prodidx.ti_idx = 0;
2044	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2045	sc->ti_ev_saved_considx = 0;
2046
2047	/* Set up the command ring and producer mailbox. */
2048	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
2049
2050	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
2051	rcb->ti_flags = 0;
2052	rcb->ti_max_len = 0;
2053	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2054		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2055	}
2056	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2057	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2058	sc->ti_cmd_saved_prodidx = 0;
2059
2060	/*
2061	 * Assign the address of the stats refresh buffer.
2062	 * We re-use the current stats buffer for this to
2063	 * conserve memory.
2064	 */
2065	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
2066	    rdphys + TI_RD_OFF(ti_info.ti_stats);
2067
2068	/* Set up the standard receive ring. */
2069	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
2070	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
2071	rcb->ti_max_len = TI_FRAMELEN;
2072	rcb->ti_flags = 0;
2073	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2074		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2075		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2076	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2077		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2078
2079	/* Set up the jumbo receive ring. */
2080	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
2081	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
2082
2083#ifdef TI_PRIVATE_JUMBOS
2084	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
2085	rcb->ti_flags = 0;
2086#else
2087	rcb->ti_max_len = PAGE_SIZE;
2088	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2089#endif
2090	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2091		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2092		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2093	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2094		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2095
2096	/*
2097	 * Set up the mini ring. Only activated on the
2098	 * Tigon 2 but the slot in the config block is
2099	 * still there on the Tigon 1.
2100	 */
2101	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
2102	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
2103	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2104	if (sc->ti_hwrev == TI_HWREV_TIGON)
2105		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2106	else
2107		rcb->ti_flags = 0;
2108	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2109		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2110		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2111	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2112		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2113
2114	/*
2115	 * Set up the receive return ring.
2116	 */
2117	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
2118	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
2119	rcb->ti_flags = 0;
2120	rcb->ti_max_len = TI_RETURN_RING_CNT;
2121	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
2122	    rdphys + TI_RD_OFF(ti_return_prodidx_r);
2123
2124	/*
2125	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2126	 * of putting the transmit ring in the host's address space and
2127	 * letting the chip DMA it instead of leaving the ring in the NIC's
2128	 * memory and accessing it through the shared memory region. We
2129	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2130	 * so we have to revert to the shared memory scheme if we detect
2131	 * a Tigon 1 chip.
2132	 */
2133	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2134	bzero((char *)sc->ti_rdata->ti_tx_ring,
2135	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
2136	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
2137	if (sc->ti_hwrev == TI_HWREV_TIGON)
2138		rcb->ti_flags = 0;
2139	else
2140		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2141	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2142		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2143	if (sc->ti_ifp->if_capenable & IFCAP_TXCSUM)
2144		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2145		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2146	rcb->ti_max_len = TI_TX_RING_CNT;
2147	if (sc->ti_hwrev == TI_HWREV_TIGON)
2148		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
2149	else
2150		TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
2151	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
2152	    rdphys + TI_RD_OFF(ti_tx_considx_r);
2153
2154	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2155	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2156
2157	/* Set up tuneables */
2158#if 0
2159	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2160		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2161		    (sc->ti_rx_coal_ticks / 10));
2162	else
2163#endif
2164		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2165	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2166	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2167	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2168	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2169	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2170
2171	/* Turn interrupts on. */
2172	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2173	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2174
2175	/* Start CPU. */
2176	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2177
2178	return (0);
2179}
2180
2181static void
2182ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2183{
2184	struct ti_softc *sc;
2185
2186	sc = arg;
2187	if (error || nseg != 1)
2188		return;
2189
2190	/*
2191	 * All of the Tigon data structures need to live at <4GB.  This
2192	 * cast is fine since busdma was told about this constraint.
2193	 */
2194	sc->ti_rdata_phys = segs[0].ds_addr;
2195	return;
2196}
2197
2198/*
2199 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2200 * against our list and return its name if we find a match.
2201 */
2202static int
2203ti_probe(device_t dev)
2204{
2205	const struct ti_type *t;
2206
2207	t = ti_devs;
2208
2209	while (t->ti_name != NULL) {
2210		if ((pci_get_vendor(dev) == t->ti_vid) &&
2211		    (pci_get_device(dev) == t->ti_did)) {
2212			device_set_desc(dev, t->ti_name);
2213			return (BUS_PROBE_DEFAULT);
2214		}
2215		t++;
2216	}
2217
2218	return (ENXIO);
2219}
2220
2221static int
2222ti_attach(device_t dev)
2223{
2224	struct ifnet *ifp;
2225	struct ti_softc *sc;
2226	int error = 0, rid;
2227	u_char eaddr[6];
2228
2229	sc = device_get_softc(dev);
2230	sc->ti_dev = dev;
2231
2232	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2233	    MTX_DEF);
2234	callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2235	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2236	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2237	if (ifp == NULL) {
2238		device_printf(dev, "can not if_alloc()\n");
2239		error = ENOSPC;
2240		goto fail;
2241	}
2242	sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
2243	sc->ti_ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
2244	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2245
2246	/*
2247	 * Map control/status registers.
2248	 */
2249	pci_enable_busmaster(dev);
2250
2251	rid = PCIR_BAR(0);
2252	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2253	    RF_ACTIVE);
2254
2255	if (sc->ti_res == NULL) {
2256		device_printf(dev, "couldn't map memory\n");
2257		error = ENXIO;
2258		goto fail;
2259	}
2260
2261	sc->ti_btag = rman_get_bustag(sc->ti_res);
2262	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2263
2264	/* Allocate interrupt */
2265	rid = 0;
2266
2267	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2268	    RF_SHAREABLE | RF_ACTIVE);
2269
2270	if (sc->ti_irq == NULL) {
2271		device_printf(dev, "couldn't map interrupt\n");
2272		error = ENXIO;
2273		goto fail;
2274	}
2275
2276	if (ti_chipinit(sc)) {
2277		device_printf(dev, "chip initialization failed\n");
2278		error = ENXIO;
2279		goto fail;
2280	}
2281
2282	/* Zero out the NIC's on-board SRAM. */
2283	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2284
2285	/* Init again -- zeroing memory may have clobbered some registers. */
2286	if (ti_chipinit(sc)) {
2287		device_printf(dev, "chip initialization failed\n");
2288		error = ENXIO;
2289		goto fail;
2290	}
2291
2292	/*
2293	 * Get station address from the EEPROM. Note: the manual states
2294	 * that the MAC address is at offset 0x8c, however the data is
2295	 * stored as two longwords (since that's how it's loaded into
2296	 * the NIC). This means the MAC address is actually preceded
2297	 * by two zero bytes. We need to skip over those.
2298	 */
2299	if (ti_read_eeprom(sc, eaddr,
2300				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2301		device_printf(dev, "failed to read station address\n");
2302		error = ENXIO;
2303		goto fail;
2304	}
2305
2306	/* Allocate the general information block and ring buffers. */
2307	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
2308				1, 0,			/* algnmnt, boundary */
2309				BUS_SPACE_MAXADDR,	/* lowaddr */
2310				BUS_SPACE_MAXADDR,	/* highaddr */
2311				NULL, NULL,		/* filter, filterarg */
2312				BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2313				0,			/* nsegments */
2314				BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2315				0,			/* flags */
2316				NULL, NULL,		/* lockfunc, lockarg */
2317				&sc->ti_parent_dmat) != 0) {
2318		device_printf(dev, "Failed to allocate parent dmat\n");
2319		error = ENOMEM;
2320		goto fail;
2321	}
2322
2323	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2324				PAGE_SIZE, 0,		/* algnmnt, boundary */
2325				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2326				BUS_SPACE_MAXADDR,	/* highaddr */
2327				NULL, NULL,		/* filter, filterarg */
2328				sizeof(struct ti_ring_data),	/* maxsize */
2329				1,			/* nsegments */
2330				sizeof(struct ti_ring_data),	/* maxsegsize */
2331				0,			/* flags */
2332				NULL, NULL,		/* lockfunc, lockarg */
2333				&sc->ti_rdata_dmat) != 0) {
2334		device_printf(dev, "Failed to allocate rdata dmat\n");
2335		error = ENOMEM;
2336		goto fail;
2337	}
2338
2339	if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2340			     BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2341			     &sc->ti_rdata_dmamap) != 0) {
2342		device_printf(dev, "Failed to allocate rdata memory\n");
2343		error = ENOMEM;
2344		goto fail;
2345	}
2346
2347	if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2348			    sc->ti_rdata, sizeof(struct ti_ring_data),
2349			    ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2350		device_printf(dev, "Failed to load rdata segments\n");
2351		error = ENOMEM;
2352		goto fail;
2353	}
2354
2355	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2356
2357	/* Try to allocate memory for jumbo buffers. */
2358	if (ti_alloc_jumbo_mem(sc)) {
2359		device_printf(dev, "jumbo buffer allocation failed\n");
2360		error = ENXIO;
2361		goto fail;
2362	}
2363
2364	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2365				1, 0,			/* algnmnt, boundary */
2366				BUS_SPACE_MAXADDR,	/* lowaddr */
2367				BUS_SPACE_MAXADDR,	/* highaddr */
2368				NULL, NULL,		/* filter, filterarg */
2369				MCLBYTES * TI_MAXTXSEGS,/* maxsize */
2370				TI_MAXTXSEGS,		/* nsegments */
2371				MCLBYTES,		/* maxsegsize */
2372				0,			/* flags */
2373				NULL, NULL,		/* lockfunc, lockarg */
2374				&sc->ti_mbuftx_dmat) != 0) {
2375		device_printf(dev, "Failed to allocate rdata dmat\n");
2376		error = ENOMEM;
2377		goto fail;
2378	}
2379
2380	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2381				1, 0,			/* algnmnt, boundary */
2382				BUS_SPACE_MAXADDR,	/* lowaddr */
2383				BUS_SPACE_MAXADDR,	/* highaddr */
2384				NULL, NULL,		/* filter, filterarg */
2385				MCLBYTES,		/* maxsize */
2386				1,			/* nsegments */
2387				MCLBYTES,		/* maxsegsize */
2388				0,			/* flags */
2389				NULL, NULL,		/* lockfunc, lockarg */
2390				&sc->ti_mbufrx_dmat) != 0) {
2391		device_printf(dev, "Failed to allocate rdata dmat\n");
2392		error = ENOMEM;
2393		goto fail;
2394	}
2395
2396	if (ti_alloc_dmamaps(sc)) {
2397		device_printf(dev, "dma map creation failed\n");
2398		error = ENXIO;
2399		goto fail;
2400	}
2401
2402	/*
2403	 * We really need a better way to tell a 1000baseTX card
2404	 * from a 1000baseSX one, since in theory there could be
2405	 * OEMed 1000baseTX cards from lame vendors who aren't
2406	 * clever enough to change the PCI ID. For the moment
2407	 * though, the AceNIC is the only copper card available.
2408	 */
2409	if (pci_get_vendor(dev) == ALT_VENDORID &&
2410	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2411		sc->ti_copper = 1;
2412	/* Ok, it's not the only copper card available. */
2413	if (pci_get_vendor(dev) == NG_VENDORID &&
2414	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2415		sc->ti_copper = 1;
2416
2417	/* Set default tuneable values. */
2418	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2419#if 0
2420	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2421#endif
2422	sc->ti_rx_coal_ticks = 170;
2423	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2424	sc->ti_rx_max_coal_bds = 64;
2425#if 0
2426	sc->ti_tx_max_coal_bds = 128;
2427#endif
2428	sc->ti_tx_max_coal_bds = 32;
2429	sc->ti_tx_buf_ratio = 21;
2430
2431	/* Set up ifnet structure */
2432	ifp->if_softc = sc;
2433	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2434	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2435	ifp->if_ioctl = ti_ioctl;
2436	ifp->if_start = ti_start;
2437	ifp->if_init = ti_init;
2438	ifp->if_baudrate = IF_Gbps(1UL);
2439	ifp->if_snd.ifq_drv_maxlen = TI_TX_RING_CNT - 1;
2440	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2441	IFQ_SET_READY(&ifp->if_snd);
2442
2443	/* Set up ifmedia support. */
2444	if (sc->ti_copper) {
2445		/*
2446		 * Copper cards allow manual 10/100 mode selection,
2447		 * but not manual 1000baseTX mode selection. Why?
2448		 * Becuase currently there's no way to specify the
2449		 * master/slave setting through the firmware interface,
2450		 * so Alteon decided to just bag it and handle it
2451		 * via autonegotiation.
2452		 */
2453		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2454		ifmedia_add(&sc->ifmedia,
2455		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2456		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2457		ifmedia_add(&sc->ifmedia,
2458		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2459		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2460		ifmedia_add(&sc->ifmedia,
2461		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2462	} else {
2463		/* Fiber cards don't support 10/100 modes. */
2464		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2465		ifmedia_add(&sc->ifmedia,
2466		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2467	}
2468	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2469	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2470
2471	/*
2472	 * We're assuming here that card initialization is a sequential
2473	 * thing.  If it isn't, multiple cards probing at the same time
2474	 * could stomp on the list of softcs here.
2475	 */
2476
2477	/* Register the device */
2478	sc->dev = make_dev(&ti_cdevsw, device_get_unit(dev), UID_ROOT,
2479	    GID_OPERATOR, 0600, "ti%d", device_get_unit(dev));
2480	sc->dev->si_drv1 = sc;
2481
2482	/*
2483	 * Call MI attach routine.
2484	 */
2485	ether_ifattach(ifp, eaddr);
2486
2487	/* VLAN capability setup. */
2488	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM |
2489	    IFCAP_VLAN_HWTAGGING;
2490	ifp->if_capenable = ifp->if_capabilities;
2491	/* Tell the upper layer we support VLAN over-sized frames. */
2492	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
2493
2494	/* Driver supports link state tracking. */
2495	ifp->if_capabilities |= IFCAP_LINKSTATE;
2496	ifp->if_capenable |= IFCAP_LINKSTATE;
2497
2498	/* Hook interrupt last to avoid having to lock softc */
2499	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2500	   NULL, ti_intr, sc, &sc->ti_intrhand);
2501
2502	if (error) {
2503		device_printf(dev, "couldn't set up irq\n");
2504		goto fail;
2505	}
2506
2507fail:
2508	if (error)
2509		ti_detach(dev);
2510
2511	return (error);
2512}
2513
2514/*
2515 * Shutdown hardware and free up resources. This can be called any
2516 * time after the mutex has been initialized. It is called in both
2517 * the error case in attach and the normal detach case so it needs
2518 * to be careful about only freeing resources that have actually been
2519 * allocated.
2520 */
2521static int
2522ti_detach(device_t dev)
2523{
2524	struct ti_softc *sc;
2525	struct ifnet *ifp;
2526
2527	sc = device_get_softc(dev);
2528	if (sc->dev)
2529		destroy_dev(sc->dev);
2530	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2531	ifp = sc->ti_ifp;
2532	if (device_is_attached(dev)) {
2533		ether_ifdetach(ifp);
2534		TI_LOCK(sc);
2535		ti_stop(sc);
2536		TI_UNLOCK(sc);
2537	}
2538
2539	/* These should only be active if attach succeeded */
2540	callout_drain(&sc->ti_watchdog);
2541	bus_generic_detach(dev);
2542	ti_free_dmamaps(sc);
2543	ifmedia_removeall(&sc->ifmedia);
2544
2545#ifdef TI_PRIVATE_JUMBOS
2546	if (sc->ti_cdata.ti_jumbo_buf)
2547		bus_dmamem_free(sc->ti_jumbo_dmat, sc->ti_cdata.ti_jumbo_buf,
2548		    sc->ti_jumbo_dmamap);
2549#endif
2550	if (sc->ti_jumbo_dmat)
2551		bus_dma_tag_destroy(sc->ti_jumbo_dmat);
2552	if (sc->ti_mbuftx_dmat)
2553		bus_dma_tag_destroy(sc->ti_mbuftx_dmat);
2554	if (sc->ti_mbufrx_dmat)
2555		bus_dma_tag_destroy(sc->ti_mbufrx_dmat);
2556	if (sc->ti_rdata && sc->ti_rdata_dmamap)
2557		bus_dmamap_unload(sc->ti_rdata_dmat, sc->ti_rdata_dmamap);
2558	if (sc->ti_rdata)
2559		bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2560				sc->ti_rdata_dmamap);
2561	if (sc->ti_rdata_dmat)
2562		bus_dma_tag_destroy(sc->ti_rdata_dmat);
2563	if (sc->ti_parent_dmat)
2564		bus_dma_tag_destroy(sc->ti_parent_dmat);
2565	if (sc->ti_intrhand)
2566		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2567	if (sc->ti_irq)
2568		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2569	if (sc->ti_res) {
2570		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
2571		    sc->ti_res);
2572	}
2573	if (ifp)
2574		if_free(ifp);
2575
2576	mtx_destroy(&sc->ti_mtx);
2577
2578	return (0);
2579}
2580
2581#ifdef TI_JUMBO_HDRSPLIT
2582/*
2583 * If hdr_len is 0, that means that header splitting wasn't done on
2584 * this packet for some reason.  The two most likely reasons are that
2585 * the protocol isn't a supported protocol for splitting, or this
2586 * packet had a fragment offset that wasn't 0.
2587 *
2588 * The header length, if it is non-zero, will always be the length of
2589 * the headers on the packet, but that length could be longer than the
2590 * first mbuf.  So we take the minimum of the two as the actual
2591 * length.
2592 */
2593static __inline void
2594ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2595{
2596	int i = 0;
2597	int lengths[4] = {0, 0, 0, 0};
2598	struct mbuf *m, *mp;
2599
2600	if (hdr_len != 0)
2601		top->m_len = min(hdr_len, top->m_len);
2602	pkt_len -= top->m_len;
2603	lengths[i++] = top->m_len;
2604
2605	mp = top;
2606	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2607		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2608		pkt_len -= m->m_len;
2609		lengths[i++] = m->m_len;
2610		mp = m;
2611	}
2612
2613#if 0
2614	if (hdr_len != 0)
2615		printf("got split packet: ");
2616	else
2617		printf("got non-split packet: ");
2618
2619	printf("%d,%d,%d,%d = %d\n", lengths[0],
2620	    lengths[1], lengths[2], lengths[3],
2621	    lengths[0] + lengths[1] + lengths[2] +
2622	    lengths[3]);
2623#endif
2624
2625	if (pkt_len)
2626		panic("header splitting didn't");
2627
2628	if (m) {
2629		m_freem(m);
2630		mp->m_next = NULL;
2631
2632	}
2633	if (mp->m_next != NULL)
2634		panic("ti_hdr_split: last mbuf in chain should be null");
2635}
2636#endif /* TI_JUMBO_HDRSPLIT */
2637
2638/*
2639 * Frame reception handling. This is called if there's a frame
2640 * on the receive return list.
2641 *
2642 * Note: we have to be able to handle three possibilities here:
2643 * 1) the frame is from the mini receive ring (can only happen)
2644 *    on Tigon 2 boards)
2645 * 2) the frame is from the jumbo recieve ring
2646 * 3) the frame is from the standard receive ring
2647 */
2648
2649static void
2650ti_rxeof(struct ti_softc *sc)
2651{
2652	struct ifnet *ifp;
2653	bus_dmamap_t map;
2654	struct ti_cmd_desc cmd;
2655	int jumbocnt, minicnt, stdcnt;
2656
2657	TI_LOCK_ASSERT(sc);
2658
2659	ifp = sc->ti_ifp;
2660
2661	jumbocnt = minicnt = stdcnt = 0;
2662	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2663		struct ti_rx_desc *cur_rx;
2664		uint32_t rxidx;
2665		struct mbuf *m = NULL;
2666		uint16_t vlan_tag = 0;
2667		int have_tag = 0;
2668
2669		cur_rx =
2670		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2671		rxidx = cur_rx->ti_idx;
2672		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2673
2674		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2675			have_tag = 1;
2676			vlan_tag = cur_rx->ti_vlan_tag;
2677		}
2678
2679		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2680			jumbocnt++;
2681			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2682			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2683			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2684			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2685			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
2686			    BUS_DMASYNC_POSTREAD);
2687			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
2688			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2689				ifp->if_ierrors++;
2690				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2691				continue;
2692			}
2693			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2694				ifp->if_ierrors++;
2695				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2696				continue;
2697			}
2698#ifdef TI_PRIVATE_JUMBOS
2699			m->m_len = cur_rx->ti_len;
2700#else /* TI_PRIVATE_JUMBOS */
2701#ifdef TI_JUMBO_HDRSPLIT
2702			if (sc->ti_hdrsplit)
2703				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2704					     cur_rx->ti_len, rxidx);
2705			else
2706#endif /* TI_JUMBO_HDRSPLIT */
2707			m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2708#endif /* TI_PRIVATE_JUMBOS */
2709		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2710			minicnt++;
2711			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2712			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2713			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2714			map = sc->ti_cdata.ti_rx_mini_maps[rxidx];
2715			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2716			    BUS_DMASYNC_POSTREAD);
2717			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2718			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2719				ifp->if_ierrors++;
2720				ti_newbuf_mini(sc, sc->ti_mini, m);
2721				continue;
2722			}
2723			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2724				ifp->if_ierrors++;
2725				ti_newbuf_mini(sc, sc->ti_mini, m);
2726				continue;
2727			}
2728			m->m_len = cur_rx->ti_len;
2729		} else {
2730			stdcnt++;
2731			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2732			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2733			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2734			map = sc->ti_cdata.ti_rx_std_maps[rxidx];
2735			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2736			    BUS_DMASYNC_POSTREAD);
2737			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2738			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2739				ifp->if_ierrors++;
2740				ti_newbuf_std(sc, sc->ti_std, m);
2741				continue;
2742			}
2743			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2744				ifp->if_ierrors++;
2745				ti_newbuf_std(sc, sc->ti_std, m);
2746				continue;
2747			}
2748			m->m_len = cur_rx->ti_len;
2749		}
2750
2751		m->m_pkthdr.len = cur_rx->ti_len;
2752		ifp->if_ipackets++;
2753		m->m_pkthdr.rcvif = ifp;
2754
2755		if (ifp->if_capenable & IFCAP_RXCSUM) {
2756			if (cur_rx->ti_flags & TI_BDFLAG_IP_CKSUM) {
2757				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2758				if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2759					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2760			}
2761			if (cur_rx->ti_flags & TI_BDFLAG_TCP_UDP_CKSUM) {
2762				m->m_pkthdr.csum_data =
2763				    cur_rx->ti_tcp_udp_cksum;
2764				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2765			}
2766		}
2767
2768		/*
2769		 * If we received a packet with a vlan tag,
2770		 * tag it before passing the packet upward.
2771		 */
2772		if (have_tag) {
2773			m->m_pkthdr.ether_vtag = vlan_tag;
2774			m->m_flags |= M_VLANTAG;
2775		}
2776		TI_UNLOCK(sc);
2777		(*ifp->if_input)(ifp, m);
2778		TI_LOCK(sc);
2779	}
2780
2781	/* Only necessary on the Tigon 1. */
2782	if (sc->ti_hwrev == TI_HWREV_TIGON)
2783		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2784		    sc->ti_rx_saved_considx);
2785
2786	if (stdcnt > 0)
2787		TI_UPDATE_STDPROD(sc, sc->ti_std);
2788	if (minicnt > 0)
2789		TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2790	if (jumbocnt > 0)
2791		TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2792}
2793
2794static void
2795ti_txeof(struct ti_softc *sc)
2796{
2797	struct ti_txdesc *txd;
2798	struct ti_tx_desc txdesc;
2799	struct ti_tx_desc *cur_tx = NULL;
2800	struct ifnet *ifp;
2801	int idx;
2802
2803	ifp = sc->ti_ifp;
2804
2805	txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2806	if (txd == NULL)
2807		return;
2808	/*
2809	 * Go through our tx ring and free mbufs for those
2810	 * frames that have been sent.
2811	 */
2812	for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2813	    TI_INC(idx, TI_TX_RING_CNT)) {
2814		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2815			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2816			    sizeof(txdesc), &txdesc);
2817			cur_tx = &txdesc;
2818		} else
2819			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2820		sc->ti_txcnt--;
2821		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2822		if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2823			continue;
2824		bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2825		    BUS_DMASYNC_POSTWRITE);
2826		bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2827
2828		ifp->if_opackets++;
2829		m_freem(txd->tx_m);
2830		txd->tx_m = NULL;
2831		STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2832		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2833		txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2834	}
2835	sc->ti_tx_saved_considx = idx;
2836
2837	sc->ti_timer = sc->ti_txcnt > 0 ? 5 : 0;
2838}
2839
2840static void
2841ti_intr(void *xsc)
2842{
2843	struct ti_softc *sc;
2844	struct ifnet *ifp;
2845
2846	sc = xsc;
2847	TI_LOCK(sc);
2848	ifp = sc->ti_ifp;
2849
2850/*#ifdef notdef*/
2851	/* Avoid this for now -- checking this register is expensive. */
2852	/* Make sure this is really our interrupt. */
2853	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2854		TI_UNLOCK(sc);
2855		return;
2856	}
2857/*#endif*/
2858
2859	/* Ack interrupt and stop others from occuring. */
2860	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2861
2862	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2863		/* Check RX return ring producer/consumer */
2864		ti_rxeof(sc);
2865
2866		/* Check TX ring producer/consumer */
2867		ti_txeof(sc);
2868	}
2869
2870	ti_handle_events(sc);
2871
2872	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2873		/* Re-enable interrupts. */
2874		CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2875		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2876			ti_start_locked(ifp);
2877	}
2878
2879	TI_UNLOCK(sc);
2880}
2881
2882static void
2883ti_stats_update(struct ti_softc *sc)
2884{
2885	struct ifnet *ifp;
2886
2887	ifp = sc->ti_ifp;
2888
2889	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2890	    BUS_DMASYNC_POSTREAD);
2891
2892	ifp->if_collisions +=
2893	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2894	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2895	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2896	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2897	   ifp->if_collisions;
2898
2899	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2900	    BUS_DMASYNC_PREREAD);
2901}
2902
2903/*
2904 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2905 * pointers to descriptors.
2906 */
2907static int
2908ti_encap(struct ti_softc *sc, struct mbuf **m_head)
2909{
2910	struct ti_txdesc *txd;
2911	struct ti_tx_desc *f;
2912	struct ti_tx_desc txdesc;
2913	struct mbuf *m;
2914	bus_dma_segment_t txsegs[TI_MAXTXSEGS];
2915	uint16_t csum_flags;
2916	int error, frag, i, nseg;
2917
2918	if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
2919		return (ENOBUFS);
2920
2921	error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2922	    *m_head, txsegs, &nseg, 0);
2923	if (error == EFBIG) {
2924		m = m_defrag(*m_head, M_DONTWAIT);
2925		if (m == NULL) {
2926			m_freem(*m_head);
2927			*m_head = NULL;
2928			return (ENOMEM);
2929		}
2930		*m_head = m;
2931		error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat,
2932		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2933		if (error) {
2934			m_freem(*m_head);
2935			*m_head = NULL;
2936			return (error);
2937		}
2938	} else if (error != 0)
2939		return (error);
2940	if (nseg == 0) {
2941		m_freem(*m_head);
2942		*m_head = NULL;
2943		return (EIO);
2944	}
2945
2946	if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
2947		bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2948		return (ENOBUFS);
2949	}
2950
2951	m = *m_head;
2952	csum_flags = 0;
2953	if (m->m_pkthdr.csum_flags) {
2954		if (m->m_pkthdr.csum_flags & CSUM_IP)
2955			csum_flags |= TI_BDFLAG_IP_CKSUM;
2956		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2957			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2958		if (m->m_flags & M_LASTFRAG)
2959			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2960		else if (m->m_flags & M_FRAG)
2961			csum_flags |= TI_BDFLAG_IP_FRAG;
2962	}
2963
2964	bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2965	    BUS_DMASYNC_PREWRITE);
2966	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2967	    BUS_DMASYNC_PREWRITE);
2968
2969	frag = sc->ti_tx_saved_prodidx;
2970	for (i = 0; i < nseg; i++) {
2971		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2972			bzero(&txdesc, sizeof(txdesc));
2973			f = &txdesc;
2974		} else
2975			f = &sc->ti_rdata->ti_tx_ring[frag];
2976		ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
2977		f->ti_len = txsegs[i].ds_len;
2978		f->ti_flags = csum_flags;
2979		if (m->m_flags & M_VLANTAG) {
2980			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2981			f->ti_vlan_tag = m->m_pkthdr.ether_vtag;
2982		} else {
2983			f->ti_vlan_tag = 0;
2984		}
2985
2986		if (sc->ti_hwrev == TI_HWREV_TIGON)
2987			ti_mem_write(sc, TI_TX_RING_BASE + frag *
2988			    sizeof(txdesc), sizeof(txdesc), &txdesc);
2989		TI_INC(frag, TI_TX_RING_CNT);
2990	}
2991
2992	sc->ti_tx_saved_prodidx = frag;
2993	/* set TI_BDFLAG_END on the last descriptor */
2994	frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
2995	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2996		txdesc.ti_flags |= TI_BDFLAG_END;
2997		ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
2998		    sizeof(txdesc), &txdesc);
2999	} else
3000		sc->ti_rdata->ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3001
3002	STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3003	STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3004	txd->tx_m = m;
3005	sc->ti_txcnt += nseg;
3006
3007	return (0);
3008}
3009
3010static void
3011ti_start(struct ifnet *ifp)
3012{
3013	struct ti_softc *sc;
3014
3015	sc = ifp->if_softc;
3016	TI_LOCK(sc);
3017	ti_start_locked(ifp);
3018	TI_UNLOCK(sc);
3019}
3020
3021/*
3022 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3023 * to the mbuf data regions directly in the transmit descriptors.
3024 */
3025static void
3026ti_start_locked(struct ifnet *ifp)
3027{
3028	struct ti_softc *sc;
3029	struct mbuf *m_head = NULL;
3030	int enq = 0;
3031
3032	sc = ifp->if_softc;
3033
3034	for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
3035	    sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3036		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3037		if (m_head == NULL)
3038			break;
3039
3040		/*
3041		 * XXX
3042		 * safety overkill.  If this is a fragmented packet chain
3043		 * with delayed TCP/UDP checksums, then only encapsulate
3044		 * it if we have enough descriptors to handle the entire
3045		 * chain at once.
3046		 * (paranoia -- may not actually be needed)
3047		 */
3048		if (m_head->m_flags & M_FIRSTFRAG &&
3049		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3050			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
3051			    m_head->m_pkthdr.csum_data + 16) {
3052				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3053				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3054				break;
3055			}
3056		}
3057
3058		/*
3059		 * Pack the data into the transmit ring. If we
3060		 * don't have room, set the OACTIVE flag and wait
3061		 * for the NIC to drain the ring.
3062		 */
3063		if (ti_encap(sc, &m_head)) {
3064			if (m_head == NULL)
3065				break;
3066			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3067			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3068			break;
3069		}
3070
3071		enq++;
3072		/*
3073		 * If there's a BPF listener, bounce a copy of this frame
3074		 * to him.
3075		 */
3076		ETHER_BPF_MTAP(ifp, m_head);
3077	}
3078
3079	if (enq > 0) {
3080		/* Transmit */
3081		CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3082
3083		/*
3084		 * Set a timeout in case the chip goes out to lunch.
3085		 */
3086		sc->ti_timer = 5;
3087	}
3088}
3089
3090static void
3091ti_init(void *xsc)
3092{
3093	struct ti_softc *sc;
3094
3095	sc = xsc;
3096	TI_LOCK(sc);
3097	ti_init_locked(sc);
3098	TI_UNLOCK(sc);
3099}
3100
3101static void
3102ti_init_locked(void *xsc)
3103{
3104	struct ti_softc *sc = xsc;
3105
3106	if (sc->ti_ifp->if_drv_flags & IFF_DRV_RUNNING)
3107		return;
3108
3109	/* Cancel pending I/O and flush buffers. */
3110	ti_stop(sc);
3111
3112	/* Init the gen info block, ring control blocks and firmware. */
3113	if (ti_gibinit(sc)) {
3114		device_printf(sc->ti_dev, "initialization failure\n");
3115		return;
3116	}
3117}
3118
3119static void ti_init2(struct ti_softc *sc)
3120{
3121	struct ti_cmd_desc cmd;
3122	struct ifnet *ifp;
3123	uint8_t *ea;
3124	struct ifmedia *ifm;
3125	int tmp;
3126
3127	TI_LOCK_ASSERT(sc);
3128
3129	ifp = sc->ti_ifp;
3130
3131	/* Specify MTU and interface index. */
3132	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_get_unit(sc->ti_dev));
3133	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3134	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3135	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3136
3137	/* Load our MAC address. */
3138	ea = IF_LLADDR(sc->ti_ifp);
3139	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3140	CSR_WRITE_4(sc, TI_GCR_PAR1,
3141	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3142	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3143
3144	/* Enable or disable promiscuous mode as needed. */
3145	if (ifp->if_flags & IFF_PROMISC) {
3146		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3147	} else {
3148		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3149	}
3150
3151	/* Program multicast filter. */
3152	ti_setmulti(sc);
3153
3154	/*
3155	 * If this is a Tigon 1, we should tell the
3156	 * firmware to use software packet filtering.
3157	 */
3158	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3159		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3160	}
3161
3162	/* Init RX ring. */
3163	if (ti_init_rx_ring_std(sc) != 0) {
3164		/* XXX */
3165		device_printf(sc->ti_dev, "no memory for std Rx buffers.\n");
3166		return;
3167	}
3168
3169	/* Init jumbo RX ring. */
3170	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3171		if (ti_init_rx_ring_jumbo(sc) != 0) {
3172			/* XXX */
3173			device_printf(sc->ti_dev,
3174			    "no memory for jumbo Rx buffers.\n");
3175			return;
3176		}
3177	}
3178
3179	/*
3180	 * If this is a Tigon 2, we can also configure the
3181	 * mini ring.
3182	 */
3183	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
3184		if (ti_init_rx_ring_mini(sc) != 0) {
3185			/* XXX */
3186			device_printf(sc->ti_dev,
3187			    "no memory for mini Rx buffers.\n");
3188			return;
3189		}
3190	}
3191
3192	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3193	sc->ti_rx_saved_considx = 0;
3194
3195	/* Init TX ring. */
3196	ti_init_tx_ring(sc);
3197
3198	/* Tell firmware we're alive. */
3199	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3200
3201	/* Enable host interrupts. */
3202	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3203
3204	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3205	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3206	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3207
3208	/*
3209	 * Make sure to set media properly. We have to do this
3210	 * here since we have to issue commands in order to set
3211	 * the link negotiation and we can't issue commands until
3212	 * the firmware is running.
3213	 */
3214	ifm = &sc->ifmedia;
3215	tmp = ifm->ifm_media;
3216	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3217	ti_ifmedia_upd_locked(sc);
3218	ifm->ifm_media = tmp;
3219}
3220
3221/*
3222 * Set media options.
3223 */
3224static int
3225ti_ifmedia_upd(struct ifnet *ifp)
3226{
3227	struct ti_softc *sc;
3228	int error;
3229
3230	sc = ifp->if_softc;
3231	TI_LOCK(sc);
3232	error = ti_ifmedia_upd(ifp);
3233	TI_UNLOCK(sc);
3234
3235	return (error);
3236}
3237
3238static int
3239ti_ifmedia_upd_locked(struct ti_softc *sc)
3240{
3241	struct ifmedia *ifm;
3242	struct ti_cmd_desc cmd;
3243	uint32_t flowctl;
3244
3245	ifm = &sc->ifmedia;
3246
3247	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3248		return (EINVAL);
3249
3250	flowctl = 0;
3251
3252	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3253	case IFM_AUTO:
3254		/*
3255		 * Transmit flow control doesn't work on the Tigon 1.
3256		 */
3257		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3258
3259		/*
3260		 * Transmit flow control can also cause problems on the
3261		 * Tigon 2, apparantly with both the copper and fiber
3262		 * boards.  The symptom is that the interface will just
3263		 * hang.  This was reproduced with Alteon 180 switches.
3264		 */
3265#if 0
3266		if (sc->ti_hwrev != TI_HWREV_TIGON)
3267			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3268#endif
3269
3270		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3271		    TI_GLNK_FULL_DUPLEX| flowctl |
3272		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3273
3274		flowctl = TI_LNK_RX_FLOWCTL_Y;
3275#if 0
3276		if (sc->ti_hwrev != TI_HWREV_TIGON)
3277			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3278#endif
3279
3280		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3281		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3282		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3283		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3284		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3285		break;
3286	case IFM_1000_SX:
3287	case IFM_1000_T:
3288		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3289#if 0
3290		if (sc->ti_hwrev != TI_HWREV_TIGON)
3291			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3292#endif
3293
3294		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3295		    flowctl |TI_GLNK_ENB);
3296		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3297		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3298			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3299		}
3300		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3301		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3302		break;
3303	case IFM_100_FX:
3304	case IFM_10_FL:
3305	case IFM_100_TX:
3306	case IFM_10_T:
3307		flowctl = TI_LNK_RX_FLOWCTL_Y;
3308#if 0
3309		if (sc->ti_hwrev != TI_HWREV_TIGON)
3310			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3311#endif
3312
3313		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3314		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3315		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3316		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3317			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3318		} else {
3319			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3320		}
3321		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3322			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3323		} else {
3324			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3325		}
3326		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3327		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3328		break;
3329	}
3330
3331	return (0);
3332}
3333
3334/*
3335 * Report current media status.
3336 */
3337static void
3338ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3339{
3340	struct ti_softc *sc;
3341	uint32_t media = 0;
3342
3343	sc = ifp->if_softc;
3344
3345	TI_LOCK(sc);
3346
3347	ifmr->ifm_status = IFM_AVALID;
3348	ifmr->ifm_active = IFM_ETHER;
3349
3350	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
3351		TI_UNLOCK(sc);
3352		return;
3353	}
3354
3355	ifmr->ifm_status |= IFM_ACTIVE;
3356
3357	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3358		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3359		if (sc->ti_copper)
3360			ifmr->ifm_active |= IFM_1000_T;
3361		else
3362			ifmr->ifm_active |= IFM_1000_SX;
3363		if (media & TI_GLNK_FULL_DUPLEX)
3364			ifmr->ifm_active |= IFM_FDX;
3365		else
3366			ifmr->ifm_active |= IFM_HDX;
3367	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3368		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3369		if (sc->ti_copper) {
3370			if (media & TI_LNK_100MB)
3371				ifmr->ifm_active |= IFM_100_TX;
3372			if (media & TI_LNK_10MB)
3373				ifmr->ifm_active |= IFM_10_T;
3374		} else {
3375			if (media & TI_LNK_100MB)
3376				ifmr->ifm_active |= IFM_100_FX;
3377			if (media & TI_LNK_10MB)
3378				ifmr->ifm_active |= IFM_10_FL;
3379		}
3380		if (media & TI_LNK_FULL_DUPLEX)
3381			ifmr->ifm_active |= IFM_FDX;
3382		if (media & TI_LNK_HALF_DUPLEX)
3383			ifmr->ifm_active |= IFM_HDX;
3384	}
3385	TI_UNLOCK(sc);
3386}
3387
3388static int
3389ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3390{
3391	struct ti_softc *sc = ifp->if_softc;
3392	struct ifreq *ifr = (struct ifreq *) data;
3393	struct ti_cmd_desc cmd;
3394	int mask, error = 0;
3395
3396	switch (command) {
3397	case SIOCSIFMTU:
3398		TI_LOCK(sc);
3399		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3400			error = EINVAL;
3401		else {
3402			ifp->if_mtu = ifr->ifr_mtu;
3403			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3404				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3405				ti_init_locked(sc);
3406			}
3407		}
3408		TI_UNLOCK(sc);
3409		break;
3410	case SIOCSIFFLAGS:
3411		TI_LOCK(sc);
3412		if (ifp->if_flags & IFF_UP) {
3413			/*
3414			 * If only the state of the PROMISC flag changed,
3415			 * then just use the 'set promisc mode' command
3416			 * instead of reinitializing the entire NIC. Doing
3417			 * a full re-init means reloading the firmware and
3418			 * waiting for it to start up, which may take a
3419			 * second or two.
3420			 */
3421			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3422			    ifp->if_flags & IFF_PROMISC &&
3423			    !(sc->ti_if_flags & IFF_PROMISC)) {
3424				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3425				    TI_CMD_CODE_PROMISC_ENB, 0);
3426			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3427			    !(ifp->if_flags & IFF_PROMISC) &&
3428			    sc->ti_if_flags & IFF_PROMISC) {
3429				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3430				    TI_CMD_CODE_PROMISC_DIS, 0);
3431			} else
3432				ti_init_locked(sc);
3433		} else {
3434			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3435				ti_stop(sc);
3436			}
3437		}
3438		sc->ti_if_flags = ifp->if_flags;
3439		TI_UNLOCK(sc);
3440		break;
3441	case SIOCADDMULTI:
3442	case SIOCDELMULTI:
3443		TI_LOCK(sc);
3444		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3445			ti_setmulti(sc);
3446		TI_UNLOCK(sc);
3447		break;
3448	case SIOCSIFMEDIA:
3449	case SIOCGIFMEDIA:
3450		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3451		break;
3452	case SIOCSIFCAP:
3453		TI_LOCK(sc);
3454		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3455		if ((mask & IFCAP_TXCSUM) != 0 &&
3456		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3457			ifp->if_capenable ^= IFCAP_TXCSUM;
3458			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
3459				ifp->if_hwassist |= TI_CSUM_FEATURES;
3460                        else
3461				ifp->if_hwassist &= ~TI_CSUM_FEATURES;
3462                }
3463		if ((mask & IFCAP_RXCSUM) != 0 &&
3464		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
3465			ifp->if_capenable ^= IFCAP_RXCSUM;
3466		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3467		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0)
3468                        ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3469		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
3470		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
3471			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
3472		if ((mask & (IFCAP_TXCSUM | IFCAP_RXCSUM |
3473		    IFCAP_VLAN_HWTAGGING)) != 0) {
3474			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3475				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3476				ti_init_locked(sc);
3477			}
3478		}
3479		TI_UNLOCK(sc);
3480		VLAN_CAPABILITIES(ifp);
3481		break;
3482	default:
3483		error = ether_ioctl(ifp, command, data);
3484		break;
3485	}
3486
3487	return (error);
3488}
3489
3490static int
3491ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3492{
3493	struct ti_softc *sc;
3494
3495	sc = dev->si_drv1;
3496	if (sc == NULL)
3497		return (ENODEV);
3498
3499	TI_LOCK(sc);
3500	sc->ti_flags |= TI_FLAG_DEBUGING;
3501	TI_UNLOCK(sc);
3502
3503	return (0);
3504}
3505
3506static int
3507ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3508{
3509	struct ti_softc *sc;
3510
3511	sc = dev->si_drv1;
3512	if (sc == NULL)
3513		return (ENODEV);
3514
3515	TI_LOCK(sc);
3516	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3517	TI_UNLOCK(sc);
3518
3519	return (0);
3520}
3521
3522/*
3523 * This ioctl routine goes along with the Tigon character device.
3524 */
3525static int
3526ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3527    struct thread *td)
3528{
3529	struct ti_softc *sc;
3530	int error;
3531
3532	sc = dev->si_drv1;
3533	if (sc == NULL)
3534		return (ENODEV);
3535
3536	error = 0;
3537
3538	switch (cmd) {
3539	case TIIOCGETSTATS:
3540	{
3541		struct ti_stats *outstats;
3542
3543		outstats = (struct ti_stats *)addr;
3544
3545		TI_LOCK(sc);
3546		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3547		      sizeof(struct ti_stats));
3548		TI_UNLOCK(sc);
3549		break;
3550	}
3551	case TIIOCGETPARAMS:
3552	{
3553		struct ti_params *params;
3554
3555		params = (struct ti_params *)addr;
3556
3557		TI_LOCK(sc);
3558		params->ti_stat_ticks = sc->ti_stat_ticks;
3559		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3560		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3561		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3562		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3563		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3564		params->param_mask = TI_PARAM_ALL;
3565		TI_UNLOCK(sc);
3566
3567		error = 0;
3568
3569		break;
3570	}
3571	case TIIOCSETPARAMS:
3572	{
3573		struct ti_params *params;
3574
3575		params = (struct ti_params *)addr;
3576
3577		TI_LOCK(sc);
3578		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3579			sc->ti_stat_ticks = params->ti_stat_ticks;
3580			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3581		}
3582
3583		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3584			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3585			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3586				    sc->ti_rx_coal_ticks);
3587		}
3588
3589		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3590			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3591			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3592				    sc->ti_tx_coal_ticks);
3593		}
3594
3595		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3596			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3597			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3598				    sc->ti_rx_max_coal_bds);
3599		}
3600
3601		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3602			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3603			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3604				    sc->ti_tx_max_coal_bds);
3605		}
3606
3607		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3608			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3609			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3610				    sc->ti_tx_buf_ratio);
3611		}
3612		TI_UNLOCK(sc);
3613
3614		error = 0;
3615
3616		break;
3617	}
3618	case TIIOCSETTRACE: {
3619		ti_trace_type	trace_type;
3620
3621		trace_type = *(ti_trace_type *)addr;
3622
3623		/*
3624		 * Set tracing to whatever the user asked for.  Setting
3625		 * this register to 0 should have the effect of disabling
3626		 * tracing.
3627		 */
3628		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3629
3630		error = 0;
3631
3632		break;
3633	}
3634	case TIIOCGETTRACE: {
3635		struct ti_trace_buf *trace_buf;
3636		uint32_t trace_start, cur_trace_ptr, trace_len;
3637
3638		trace_buf = (struct ti_trace_buf *)addr;
3639
3640		TI_LOCK(sc);
3641		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3642		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3643		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3644
3645#if 0
3646		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3647		       "trace_len = %d\n", trace_start,
3648		       cur_trace_ptr, trace_len);
3649		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3650		       trace_buf->buf_len);
3651#endif
3652
3653		error = ti_copy_mem(sc, trace_start, min(trace_len,
3654				    trace_buf->buf_len),
3655				    (caddr_t)trace_buf->buf, 1, 1);
3656
3657		if (error == 0) {
3658			trace_buf->fill_len = min(trace_len,
3659						  trace_buf->buf_len);
3660			if (cur_trace_ptr < trace_start)
3661				trace_buf->cur_trace_ptr =
3662					trace_start - cur_trace_ptr;
3663			else
3664				trace_buf->cur_trace_ptr =
3665					cur_trace_ptr - trace_start;
3666		} else
3667			trace_buf->fill_len = 0;
3668		TI_UNLOCK(sc);
3669
3670		break;
3671	}
3672
3673	/*
3674	 * For debugging, five ioctls are needed:
3675	 * ALT_ATTACH
3676	 * ALT_READ_TG_REG
3677	 * ALT_WRITE_TG_REG
3678	 * ALT_READ_TG_MEM
3679	 * ALT_WRITE_TG_MEM
3680	 */
3681	case ALT_ATTACH:
3682		/*
3683		 * From what I can tell, Alteon's Solaris Tigon driver
3684		 * only has one character device, so you have to attach
3685		 * to the Tigon board you're interested in.  This seems
3686		 * like a not-so-good way to do things, since unless you
3687		 * subsequently specify the unit number of the device
3688		 * you're interested in every ioctl, you'll only be
3689		 * able to debug one board at a time.
3690		 */
3691		error = 0;
3692		break;
3693	case ALT_READ_TG_MEM:
3694	case ALT_WRITE_TG_MEM:
3695	{
3696		struct tg_mem *mem_param;
3697		uint32_t sram_end, scratch_end;
3698
3699		mem_param = (struct tg_mem *)addr;
3700
3701		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3702			sram_end = TI_END_SRAM_I;
3703			scratch_end = TI_END_SCRATCH_I;
3704		} else {
3705			sram_end = TI_END_SRAM_II;
3706			scratch_end = TI_END_SCRATCH_II;
3707		}
3708
3709		/*
3710		 * For now, we'll only handle accessing regular SRAM,
3711		 * nothing else.
3712		 */
3713		TI_LOCK(sc);
3714		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3715		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3716			/*
3717			 * In this instance, we always copy to/from user
3718			 * space, so the user space argument is set to 1.
3719			 */
3720			error = ti_copy_mem(sc, mem_param->tgAddr,
3721					    mem_param->len,
3722					    mem_param->userAddr, 1,
3723					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3724		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3725			&& (mem_param->tgAddr <= scratch_end)) {
3726			error = ti_copy_scratch(sc, mem_param->tgAddr,
3727						mem_param->len,
3728						mem_param->userAddr, 1,
3729						(cmd == ALT_READ_TG_MEM) ?
3730						1 : 0, TI_PROCESSOR_A);
3731		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3732			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3733			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3734				if_printf(sc->ti_ifp,
3735				    "invalid memory range for Tigon I\n");
3736				error = EINVAL;
3737				break;
3738			}
3739			error = ti_copy_scratch(sc, mem_param->tgAddr -
3740						TI_SCRATCH_DEBUG_OFF,
3741						mem_param->len,
3742						mem_param->userAddr, 1,
3743						(cmd == ALT_READ_TG_MEM) ?
3744						1 : 0, TI_PROCESSOR_B);
3745		} else {
3746			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3747			        "out of supported range\n",
3748			        mem_param->tgAddr, mem_param->len);
3749			error = EINVAL;
3750		}
3751		TI_UNLOCK(sc);
3752
3753		break;
3754	}
3755	case ALT_READ_TG_REG:
3756	case ALT_WRITE_TG_REG:
3757	{
3758		struct tg_reg	*regs;
3759		uint32_t	tmpval;
3760
3761		regs = (struct tg_reg *)addr;
3762
3763		/*
3764		 * Make sure the address in question isn't out of range.
3765		 */
3766		if (regs->addr > TI_REG_MAX) {
3767			error = EINVAL;
3768			break;
3769		}
3770		TI_LOCK(sc);
3771		if (cmd == ALT_READ_TG_REG) {
3772			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3773						regs->addr, &tmpval, 1);
3774			regs->data = ntohl(tmpval);
3775#if 0
3776			if ((regs->addr == TI_CPU_STATE)
3777			 || (regs->addr == TI_CPU_CTL_B)) {
3778				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3779				       regs->addr, tmpval);
3780			}
3781#endif
3782		} else {
3783			tmpval = htonl(regs->data);
3784			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3785						 regs->addr, &tmpval, 1);
3786		}
3787		TI_UNLOCK(sc);
3788
3789		break;
3790	}
3791	default:
3792		error = ENOTTY;
3793		break;
3794	}
3795	return (error);
3796}
3797
3798static void
3799ti_watchdog(void *arg)
3800{
3801	struct ti_softc *sc;
3802	struct ifnet *ifp;
3803
3804	sc = arg;
3805	TI_LOCK_ASSERT(sc);
3806	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3807	if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3808		return;
3809
3810	/*
3811	 * When we're debugging, the chip is often stopped for long periods
3812	 * of time, and that would normally cause the watchdog timer to fire.
3813	 * Since that impedes debugging, we don't want to do that.
3814	 */
3815	if (sc->ti_flags & TI_FLAG_DEBUGING)
3816		return;
3817
3818	ifp = sc->ti_ifp;
3819	if_printf(ifp, "watchdog timeout -- resetting\n");
3820	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3821	ti_init_locked(sc);
3822
3823	ifp->if_oerrors++;
3824}
3825
3826/*
3827 * Stop the adapter and free any mbufs allocated to the
3828 * RX and TX lists.
3829 */
3830static void
3831ti_stop(struct ti_softc *sc)
3832{
3833	struct ifnet *ifp;
3834	struct ti_cmd_desc cmd;
3835
3836	TI_LOCK_ASSERT(sc);
3837
3838	ifp = sc->ti_ifp;
3839
3840	/* Disable host interrupts. */
3841	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3842	/*
3843	 * Tell firmware we're shutting down.
3844	 */
3845	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3846
3847	/* Halt and reinitialize. */
3848	if (ti_chipinit(sc) != 0)
3849		return;
3850	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3851	if (ti_chipinit(sc) != 0)
3852		return;
3853
3854	/* Free the RX lists. */
3855	ti_free_rx_ring_std(sc);
3856
3857	/* Free jumbo RX list. */
3858	ti_free_rx_ring_jumbo(sc);
3859
3860	/* Free mini RX list. */
3861	ti_free_rx_ring_mini(sc);
3862
3863	/* Free TX buffers. */
3864	ti_free_tx_ring(sc);
3865
3866	sc->ti_ev_prodidx.ti_idx = 0;
3867	sc->ti_return_prodidx.ti_idx = 0;
3868	sc->ti_tx_considx.ti_idx = 0;
3869	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3870
3871	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3872	callout_stop(&sc->ti_watchdog);
3873}
3874
3875/*
3876 * Stop all chip I/O so that the kernel's probe routines don't
3877 * get confused by errant DMAs when rebooting.
3878 */
3879static int
3880ti_shutdown(device_t dev)
3881{
3882	struct ti_softc *sc;
3883
3884	sc = device_get_softc(dev);
3885	TI_LOCK(sc);
3886	ti_chipinit(sc);
3887	TI_UNLOCK(sc);
3888
3889	return (0);
3890}
3891