if_ti.c revision 227091
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35 * Manuals, sample driver and firmware source kits are available
36 * from http://www.alteon.com/support/openkits.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48 * filtering and jumbo (9014 byte) frames. The hardware is largely
49 * controlled by firmware, which must be loaded into the NIC during
50 * initialization.
51 *
52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53 * revision, which supports new features such as extended commands,
54 * extended jumbo receive ring desciptors and a mini receive ring.
55 *
56 * Alteon Networks is to be commended for releasing such a vast amount
57 * of development material for the Tigon NIC without requiring an NDA
58 * (although they really should have done it a long time ago). With
59 * any luck, the other vendors will finally wise up and follow Alteon's
60 * stellar example.
61 *
62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63 * this driver by #including it as a C header file. This bloats the
64 * driver somewhat, but it's the easiest method considering that the
65 * driver code and firmware code need to be kept in sync. The source
66 * for the firmware is not provided with the FreeBSD distribution since
67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68 *
69 * The following people deserve special thanks:
70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71 *   for testing
72 * - Raymond Lee of Netgear, for providing a pair of Netgear
73 *   GA620 Tigon 2 boards for testing
74 * - Ulf Zimmermann, for bringing the GA260 to my attention and
75 *   convincing me to write this driver.
76 * - Andrew Gallatin for providing FreeBSD/Alpha support.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/dev/ti/if_ti.c 227091 2011-11-04 20:25:30Z yongari $");
81
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/module.h>
91#include <sys/socket.h>
92#include <sys/queue.h>
93#include <sys/conf.h>
94#include <sys/sf_buf.h>
95
96#include <net/if.h>
97#include <net/if_arp.h>
98#include <net/ethernet.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101#include <net/if_types.h>
102#include <net/if_vlan_var.h>
103
104#include <net/bpf.h>
105
106#include <netinet/in_systm.h>
107#include <netinet/in.h>
108#include <netinet/ip.h>
109
110#include <machine/bus.h>
111#include <machine/resource.h>
112#include <sys/bus.h>
113#include <sys/rman.h>
114
115/* #define TI_PRIVATE_JUMBOS */
116#ifndef TI_PRIVATE_JUMBOS
117#include <vm/vm.h>
118#include <vm/vm_page.h>
119#endif
120
121#include <dev/pci/pcireg.h>
122#include <dev/pci/pcivar.h>
123
124#include <sys/tiio.h>
125#include <dev/ti/if_tireg.h>
126#include <dev/ti/ti_fw.h>
127#include <dev/ti/ti_fw2.h>
128
129#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
130/*
131 * We can only turn on header splitting if we're using extended receive
132 * BDs.
133 */
134#if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
135#error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
136#endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
137
138typedef enum {
139	TI_SWAP_HTON,
140	TI_SWAP_NTOH
141} ti_swap_type;
142
143/*
144 * Various supported device vendors/types and their names.
145 */
146
147static const struct ti_type const ti_devs[] = {
148	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
149		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
150	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
151		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
152	{ TC_VENDORID,	TC_DEVICEID_3C985,
153		"3Com 3c985-SX Gigabit Ethernet" },
154	{ NG_VENDORID, NG_DEVICEID_GA620,
155		"Netgear GA620 1000baseSX Gigabit Ethernet" },
156	{ NG_VENDORID, NG_DEVICEID_GA620T,
157		"Netgear GA620 1000baseT Gigabit Ethernet" },
158	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
159		"Silicon Graphics Gigabit Ethernet" },
160	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
161		"Farallon PN9000SX Gigabit Ethernet" },
162	{ 0, 0, NULL }
163};
164
165
166static	d_open_t	ti_open;
167static	d_close_t	ti_close;
168static	d_ioctl_t	ti_ioctl2;
169
170static struct cdevsw ti_cdevsw = {
171	.d_version =	D_VERSION,
172	.d_flags =	0,
173	.d_open =	ti_open,
174	.d_close =	ti_close,
175	.d_ioctl =	ti_ioctl2,
176	.d_name =	"ti",
177};
178
179static int ti_probe(device_t);
180static int ti_attach(device_t);
181static int ti_detach(device_t);
182static void ti_txeof(struct ti_softc *);
183static void ti_rxeof(struct ti_softc *);
184
185static void ti_stats_update(struct ti_softc *);
186static int ti_encap(struct ti_softc *, struct mbuf **);
187
188static void ti_intr(void *);
189static void ti_start(struct ifnet *);
190static void ti_start_locked(struct ifnet *);
191static int ti_ioctl(struct ifnet *, u_long, caddr_t);
192static void ti_init(void *);
193static void ti_init_locked(void *);
194static void ti_init2(struct ti_softc *);
195static void ti_stop(struct ti_softc *);
196static void ti_watchdog(void *);
197static int ti_shutdown(device_t);
198static int ti_ifmedia_upd(struct ifnet *);
199static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
200
201static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
202static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
203static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
204
205static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
206static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
207static void ti_setmulti(struct ti_softc *);
208
209static void ti_mem_read(struct ti_softc *, uint32_t, uint32_t, void *);
210static void ti_mem_write(struct ti_softc *, uint32_t, uint32_t, void *);
211static void ti_mem_zero(struct ti_softc *, uint32_t, uint32_t);
212static int ti_copy_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t, int,
213    int);
214static int ti_copy_scratch(struct ti_softc *, uint32_t, uint32_t, caddr_t,
215    int, int, int);
216static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
217static void ti_loadfw(struct ti_softc *);
218static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
219static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
220static void ti_handle_events(struct ti_softc *);
221static int ti_alloc_dmamaps(struct ti_softc *);
222static void ti_free_dmamaps(struct ti_softc *);
223static int ti_alloc_jumbo_mem(struct ti_softc *);
224#ifdef TI_PRIVATE_JUMBOS
225static void *ti_jalloc(struct ti_softc *);
226static void ti_jfree(void *, void *);
227#endif /* TI_PRIVATE_JUMBOS */
228static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
229static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
230static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
231static int ti_init_rx_ring_std(struct ti_softc *);
232static void ti_free_rx_ring_std(struct ti_softc *);
233static int ti_init_rx_ring_jumbo(struct ti_softc *);
234static void ti_free_rx_ring_jumbo(struct ti_softc *);
235static int ti_init_rx_ring_mini(struct ti_softc *);
236static void ti_free_rx_ring_mini(struct ti_softc *);
237static void ti_free_tx_ring(struct ti_softc *);
238static int ti_init_tx_ring(struct ti_softc *);
239
240static int ti_64bitslot_war(struct ti_softc *);
241static int ti_chipinit(struct ti_softc *);
242static int ti_gibinit(struct ti_softc *);
243
244#ifdef TI_JUMBO_HDRSPLIT
245static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len,
246    int idx);
247#endif /* TI_JUMBO_HDRSPLIT */
248
249static device_method_t ti_methods[] = {
250	/* Device interface */
251	DEVMETHOD(device_probe,		ti_probe),
252	DEVMETHOD(device_attach,	ti_attach),
253	DEVMETHOD(device_detach,	ti_detach),
254	DEVMETHOD(device_shutdown,	ti_shutdown),
255	{ 0, 0 }
256};
257
258static driver_t ti_driver = {
259	"ti",
260	ti_methods,
261	sizeof(struct ti_softc)
262};
263
264static devclass_t ti_devclass;
265
266DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
267MODULE_DEPEND(ti, pci, 1, 1, 1);
268MODULE_DEPEND(ti, ether, 1, 1, 1);
269
270/*
271 * Send an instruction or address to the EEPROM, check for ACK.
272 */
273static uint32_t
274ti_eeprom_putbyte(struct ti_softc *sc, int byte)
275{
276	int i, ack = 0;
277
278	/*
279	 * Make sure we're in TX mode.
280	 */
281	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
282
283	/*
284	 * Feed in each bit and stobe the clock.
285	 */
286	for (i = 0x80; i; i >>= 1) {
287		if (byte & i) {
288			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
289		} else {
290			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
291		}
292		DELAY(1);
293		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
294		DELAY(1);
295		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
296	}
297
298	/*
299	 * Turn off TX mode.
300	 */
301	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
302
303	/*
304	 * Check for ack.
305	 */
306	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
307	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
308	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
309
310	return (ack);
311}
312
313/*
314 * Read a byte of data stored in the EEPROM at address 'addr.'
315 * We have to send two address bytes since the EEPROM can hold
316 * more than 256 bytes of data.
317 */
318static uint8_t
319ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
320{
321	int i;
322	uint8_t byte = 0;
323
324	EEPROM_START;
325
326	/*
327	 * Send write control code to EEPROM.
328	 */
329	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
330		device_printf(sc->ti_dev,
331		    "failed to send write command, status: %x\n",
332		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
333		return (1);
334	}
335
336	/*
337	 * Send first byte of address of byte we want to read.
338	 */
339	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
340		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
341		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
342		return (1);
343	}
344	/*
345	 * Send second byte address of byte we want to read.
346	 */
347	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
348		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
349		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
350		return (1);
351	}
352
353	EEPROM_STOP;
354	EEPROM_START;
355	/*
356	 * Send read control code to EEPROM.
357	 */
358	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
359		device_printf(sc->ti_dev,
360		    "failed to send read command, status: %x\n",
361		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
362		return (1);
363	}
364
365	/*
366	 * Start reading bits from EEPROM.
367	 */
368	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
369	for (i = 0x80; i; i >>= 1) {
370		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
371		DELAY(1);
372		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
373			byte |= i;
374		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
375		DELAY(1);
376	}
377
378	EEPROM_STOP;
379
380	/*
381	 * No ACK generated for read, so just return byte.
382	 */
383
384	*dest = byte;
385
386	return (0);
387}
388
389/*
390 * Read a sequence of bytes from the EEPROM.
391 */
392static int
393ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
394{
395	int err = 0, i;
396	uint8_t byte = 0;
397
398	for (i = 0; i < cnt; i++) {
399		err = ti_eeprom_getbyte(sc, off + i, &byte);
400		if (err)
401			break;
402		*(dest + i) = byte;
403	}
404
405	return (err ? 1 : 0);
406}
407
408/*
409 * NIC memory read function.
410 * Can be used to copy data from NIC local memory.
411 */
412static void
413ti_mem_read(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
414{
415	int segptr, segsize, cnt;
416	char *ptr;
417
418	segptr = addr;
419	cnt = len;
420	ptr = buf;
421
422	while (cnt) {
423		if (cnt < TI_WINLEN)
424			segsize = cnt;
425		else
426			segsize = TI_WINLEN - (segptr % TI_WINLEN);
427		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
428		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
429		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
430		    segsize / 4);
431		ptr += segsize;
432		segptr += segsize;
433		cnt -= segsize;
434	}
435}
436
437
438/*
439 * NIC memory write function.
440 * Can be used to copy data into NIC local memory.
441 */
442static void
443ti_mem_write(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
444{
445	int segptr, segsize, cnt;
446	char *ptr;
447
448	segptr = addr;
449	cnt = len;
450	ptr = buf;
451
452	while (cnt) {
453		if (cnt < TI_WINLEN)
454			segsize = cnt;
455		else
456			segsize = TI_WINLEN - (segptr % TI_WINLEN);
457		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
458		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
459		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
460		    segsize / 4);
461		ptr += segsize;
462		segptr += segsize;
463		cnt -= segsize;
464	}
465}
466
467/*
468 * NIC memory read function.
469 * Can be used to clear a section of NIC local memory.
470 */
471static void
472ti_mem_zero(struct ti_softc *sc, uint32_t addr, uint32_t len)
473{
474	int segptr, segsize, cnt;
475
476	segptr = addr;
477	cnt = len;
478
479	while (cnt) {
480		if (cnt < TI_WINLEN)
481			segsize = cnt;
482		else
483			segsize = TI_WINLEN - (segptr % TI_WINLEN);
484		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
485		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
486		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
487		segptr += segsize;
488		cnt -= segsize;
489	}
490}
491
492static int
493ti_copy_mem(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
494    caddr_t buf, int useraddr, int readdata)
495{
496	int segptr, segsize, cnt;
497	caddr_t ptr;
498	uint32_t origwin;
499	uint8_t tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
500	int resid, segresid;
501	int first_pass;
502
503	TI_LOCK_ASSERT(sc);
504
505	/*
506	 * At the moment, we don't handle non-aligned cases, we just bail.
507	 * If this proves to be a problem, it will be fixed.
508	 */
509	if ((readdata == 0)
510	 && (tigon_addr & 0x3)) {
511		device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
512		    "word-aligned\n", __func__, tigon_addr);
513		device_printf(sc->ti_dev, "%s: unaligned writes aren't "
514		    "yet supported\n", __func__);
515		return (EINVAL);
516	}
517
518	segptr = tigon_addr & ~0x3;
519	segresid = tigon_addr - segptr;
520
521	/*
522	 * This is the non-aligned amount left over that we'll need to
523	 * copy.
524	 */
525	resid = len & 0x3;
526
527	/* Add in the left over amount at the front of the buffer */
528	resid += segresid;
529
530	cnt = len & ~0x3;
531	/*
532	 * If resid + segresid is >= 4, add multiples of 4 to the count and
533	 * decrease the residual by that much.
534	 */
535	cnt += resid & ~0x3;
536	resid -= resid & ~0x3;
537
538	ptr = buf;
539
540	first_pass = 1;
541
542	/*
543	 * Save the old window base value.
544	 */
545	origwin = CSR_READ_4(sc, TI_WINBASE);
546
547	while (cnt) {
548		bus_size_t ti_offset;
549
550		if (cnt < TI_WINLEN)
551			segsize = cnt;
552		else
553			segsize = TI_WINLEN - (segptr % TI_WINLEN);
554		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
555
556		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
557
558		if (readdata) {
559
560			bus_space_read_region_4(sc->ti_btag,
561						sc->ti_bhandle, ti_offset,
562						(uint32_t *)tmparray,
563						segsize >> 2);
564			if (useraddr) {
565				/*
566				 * Yeah, this is a little on the kludgy
567				 * side, but at least this code is only
568				 * used for debugging.
569				 */
570				ti_bcopy_swap(tmparray, tmparray2, segsize,
571					      TI_SWAP_NTOH);
572
573				TI_UNLOCK(sc);
574				if (first_pass) {
575					copyout(&tmparray2[segresid], ptr,
576						segsize - segresid);
577					first_pass = 0;
578				} else
579					copyout(tmparray2, ptr, segsize);
580				TI_LOCK(sc);
581			} else {
582				if (first_pass) {
583
584					ti_bcopy_swap(tmparray, tmparray2,
585						      segsize, TI_SWAP_NTOH);
586					TI_UNLOCK(sc);
587					bcopy(&tmparray2[segresid], ptr,
588					      segsize - segresid);
589					TI_LOCK(sc);
590					first_pass = 0;
591				} else
592					ti_bcopy_swap(tmparray, ptr, segsize,
593						      TI_SWAP_NTOH);
594			}
595
596		} else {
597			if (useraddr) {
598				TI_UNLOCK(sc);
599				copyin(ptr, tmparray2, segsize);
600				TI_LOCK(sc);
601				ti_bcopy_swap(tmparray2, tmparray, segsize,
602					      TI_SWAP_HTON);
603			} else
604				ti_bcopy_swap(ptr, tmparray, segsize,
605					      TI_SWAP_HTON);
606
607			bus_space_write_region_4(sc->ti_btag,
608						 sc->ti_bhandle, ti_offset,
609						 (uint32_t *)tmparray,
610						 segsize >> 2);
611		}
612		segptr += segsize;
613		ptr += segsize;
614		cnt -= segsize;
615	}
616
617	/*
618	 * Handle leftover, non-word-aligned bytes.
619	 */
620	if (resid != 0) {
621		uint32_t	tmpval, tmpval2;
622		bus_size_t	ti_offset;
623
624		/*
625		 * Set the segment pointer.
626		 */
627		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
628
629		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
630
631		/*
632		 * First, grab whatever is in our source/destination.
633		 * We'll obviously need this for reads, but also for
634		 * writes, since we'll be doing read/modify/write.
635		 */
636		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
637					ti_offset, &tmpval, 1);
638
639		/*
640		 * Next, translate this from little-endian to big-endian
641		 * (at least on i386 boxes).
642		 */
643		tmpval2 = ntohl(tmpval);
644
645		if (readdata) {
646			/*
647			 * If we're reading, just copy the leftover number
648			 * of bytes from the host byte order buffer to
649			 * the user's buffer.
650			 */
651			if (useraddr) {
652				TI_UNLOCK(sc);
653				copyout(&tmpval2, ptr, resid);
654				TI_LOCK(sc);
655			} else
656				bcopy(&tmpval2, ptr, resid);
657		} else {
658			/*
659			 * If we're writing, first copy the bytes to be
660			 * written into the network byte order buffer,
661			 * leaving the rest of the buffer with whatever was
662			 * originally in there.  Then, swap the bytes
663			 * around into host order and write them out.
664			 *
665			 * XXX KDM the read side of this has been verified
666			 * to work, but the write side of it has not been
667			 * verified.  So user beware.
668			 */
669			if (useraddr) {
670				TI_UNLOCK(sc);
671				copyin(ptr, &tmpval2, resid);
672				TI_LOCK(sc);
673			} else
674				bcopy(ptr, &tmpval2, resid);
675
676			tmpval = htonl(tmpval2);
677
678			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
679						 ti_offset, &tmpval, 1);
680		}
681	}
682
683	CSR_WRITE_4(sc, TI_WINBASE, origwin);
684
685	return (0);
686}
687
688static int
689ti_copy_scratch(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
690    caddr_t buf, int useraddr, int readdata, int cpu)
691{
692	uint32_t segptr;
693	int cnt;
694	uint32_t tmpval, tmpval2;
695	caddr_t ptr;
696
697	TI_LOCK_ASSERT(sc);
698
699	/*
700	 * At the moment, we don't handle non-aligned cases, we just bail.
701	 * If this proves to be a problem, it will be fixed.
702	 */
703	if (tigon_addr & 0x3) {
704		device_printf(sc->ti_dev, "%s: tigon address %#x "
705		    "isn't word-aligned\n", __func__, tigon_addr);
706		return (EINVAL);
707	}
708
709	if (len & 0x3) {
710		device_printf(sc->ti_dev, "%s: transfer length %d "
711		    "isn't word-aligned\n", __func__, len);
712		return (EINVAL);
713	}
714
715	segptr = tigon_addr;
716	cnt = len;
717	ptr = buf;
718
719	while (cnt) {
720		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
721
722		if (readdata) {
723			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
724
725			tmpval = ntohl(tmpval2);
726
727			/*
728			 * Note:  I've used this debugging interface
729			 * extensively with Alteon's 12.3.15 firmware,
730			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
731			 *
732			 * When you compile the firmware without
733			 * optimization, which is necessary sometimes in
734			 * order to properly step through it, you sometimes
735			 * read out a bogus value of 0xc0017c instead of
736			 * whatever was supposed to be in that scratchpad
737			 * location.  That value is on the stack somewhere,
738			 * but I've never been able to figure out what was
739			 * causing the problem.
740			 *
741			 * The address seems to pop up in random places,
742			 * often not in the same place on two subsequent
743			 * reads.
744			 *
745			 * In any case, the underlying data doesn't seem
746			 * to be affected, just the value read out.
747			 *
748			 * KDM, 3/7/2000
749			 */
750
751			if (tmpval2 == 0xc0017c)
752				device_printf(sc->ti_dev, "found 0xc0017c at "
753				    "%#x (tmpval2)\n", segptr);
754
755			if (tmpval == 0xc0017c)
756				device_printf(sc->ti_dev, "found 0xc0017c at "
757				    "%#x (tmpval)\n", segptr);
758
759			if (useraddr)
760				copyout(&tmpval, ptr, 4);
761			else
762				bcopy(&tmpval, ptr, 4);
763		} else {
764			if (useraddr)
765				copyin(ptr, &tmpval2, 4);
766			else
767				bcopy(ptr, &tmpval2, 4);
768
769			tmpval = htonl(tmpval2);
770
771			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
772		}
773
774		cnt -= 4;
775		segptr += 4;
776		ptr += 4;
777	}
778
779	return (0);
780}
781
782static int
783ti_bcopy_swap(const void *src, void *dst, size_t len, ti_swap_type swap_type)
784{
785	const uint8_t *tmpsrc;
786	uint8_t *tmpdst;
787	size_t tmplen;
788
789	if (len & 0x3) {
790		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
791		       len);
792		return (-1);
793	}
794
795	tmpsrc = src;
796	tmpdst = dst;
797	tmplen = len;
798
799	while (tmplen) {
800		if (swap_type == TI_SWAP_NTOH)
801			*(uint32_t *)tmpdst =
802				ntohl(*(const uint32_t *)tmpsrc);
803		else
804			*(uint32_t *)tmpdst =
805				htonl(*(const uint32_t *)tmpsrc);
806
807		tmpsrc += 4;
808		tmpdst += 4;
809		tmplen -= 4;
810	}
811
812	return (0);
813}
814
815/*
816 * Load firmware image into the NIC. Check that the firmware revision
817 * is acceptable and see if we want the firmware for the Tigon 1 or
818 * Tigon 2.
819 */
820static void
821ti_loadfw(struct ti_softc *sc)
822{
823
824	TI_LOCK_ASSERT(sc);
825
826	switch (sc->ti_hwrev) {
827	case TI_HWREV_TIGON:
828		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
829		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
830		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
831			device_printf(sc->ti_dev, "firmware revision mismatch; "
832			    "want %d.%d.%d, got %d.%d.%d\n",
833			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
834			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
835			    tigonFwReleaseMinor, tigonFwReleaseFix);
836			return;
837		}
838		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
839		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
840		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
841		    tigonFwRodata);
842		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
843		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
844		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
845		break;
846	case TI_HWREV_TIGON_II:
847		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
848		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
849		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
850			device_printf(sc->ti_dev, "firmware revision mismatch; "
851			    "want %d.%d.%d, got %d.%d.%d\n",
852			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
853			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
854			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
855			return;
856		}
857		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
858		    tigon2FwText);
859		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
860		    tigon2FwData);
861		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
862		    tigon2FwRodata);
863		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
864		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
865		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
866		break;
867	default:
868		device_printf(sc->ti_dev,
869		    "can't load firmware: unknown hardware rev\n");
870		break;
871	}
872}
873
874/*
875 * Send the NIC a command via the command ring.
876 */
877static void
878ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
879{
880	int index;
881
882	index = sc->ti_cmd_saved_prodidx;
883	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
884	TI_INC(index, TI_CMD_RING_CNT);
885	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
886	sc->ti_cmd_saved_prodidx = index;
887}
888
889/*
890 * Send the NIC an extended command. The 'len' parameter specifies the
891 * number of command slots to include after the initial command.
892 */
893static void
894ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
895{
896	int index;
897	int i;
898
899	index = sc->ti_cmd_saved_prodidx;
900	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
901	TI_INC(index, TI_CMD_RING_CNT);
902	for (i = 0; i < len; i++) {
903		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
904		    *(uint32_t *)(&arg[i * 4]));
905		TI_INC(index, TI_CMD_RING_CNT);
906	}
907	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
908	sc->ti_cmd_saved_prodidx = index;
909}
910
911/*
912 * Handle events that have triggered interrupts.
913 */
914static void
915ti_handle_events(struct ti_softc *sc)
916{
917	struct ti_event_desc *e;
918
919	if (sc->ti_rdata->ti_event_ring == NULL)
920		return;
921
922	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
923		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
924		switch (TI_EVENT_EVENT(e)) {
925		case TI_EV_LINKSTAT_CHANGED:
926			sc->ti_linkstat = TI_EVENT_CODE(e);
927			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
928				device_printf(sc->ti_dev, "10/100 link up\n");
929			else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
930				device_printf(sc->ti_dev, "gigabit link up\n");
931			else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
932				device_printf(sc->ti_dev, "link down\n");
933			break;
934		case TI_EV_ERROR:
935			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
936				device_printf(sc->ti_dev, "invalid command\n");
937			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
938				device_printf(sc->ti_dev, "unknown command\n");
939			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
940				device_printf(sc->ti_dev, "bad config data\n");
941			break;
942		case TI_EV_FIRMWARE_UP:
943			ti_init2(sc);
944			break;
945		case TI_EV_STATS_UPDATED:
946			ti_stats_update(sc);
947			break;
948		case TI_EV_RESET_JUMBO_RING:
949		case TI_EV_MCAST_UPDATED:
950			/* Who cares. */
951			break;
952		default:
953			device_printf(sc->ti_dev, "unknown event: %d\n",
954			    TI_EVENT_EVENT(e));
955			break;
956		}
957		/* Advance the consumer index. */
958		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
959		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
960	}
961}
962
963static int
964ti_alloc_dmamaps(struct ti_softc *sc)
965{
966	int i;
967
968	for (i = 0; i < TI_TX_RING_CNT; i++) {
969		sc->ti_cdata.ti_txdesc[i].tx_m = NULL;
970		sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
971		if (bus_dmamap_create(sc->ti_mbuftx_dmat, 0,
972				      &sc->ti_cdata.ti_txdesc[i].tx_dmamap))
973			return (ENOBUFS);
974	}
975	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
976		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
977				      &sc->ti_cdata.ti_rx_std_maps[i]))
978			return (ENOBUFS);
979	}
980
981	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
982		if (bus_dmamap_create(sc->ti_jumbo_dmat, 0,
983				      &sc->ti_cdata.ti_rx_jumbo_maps[i]))
984			return (ENOBUFS);
985	}
986	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
987		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
988				      &sc->ti_cdata.ti_rx_mini_maps[i]))
989			return (ENOBUFS);
990	}
991
992	return (0);
993}
994
995static void
996ti_free_dmamaps(struct ti_softc *sc)
997{
998	int i;
999
1000	if (sc->ti_mbuftx_dmat)
1001		for (i = 0; i < TI_TX_RING_CNT; i++)
1002			if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1003				bus_dmamap_destroy(sc->ti_mbuftx_dmat,
1004				    sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1005				sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
1006			}
1007
1008	if (sc->ti_mbufrx_dmat)
1009		for (i = 0; i < TI_STD_RX_RING_CNT; i++)
1010			if (sc->ti_cdata.ti_rx_std_maps[i]) {
1011				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1012				    sc->ti_cdata.ti_rx_std_maps[i]);
1013				sc->ti_cdata.ti_rx_std_maps[i] = 0;
1014			}
1015
1016	if (sc->ti_jumbo_dmat)
1017		for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++)
1018			if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1019				bus_dmamap_destroy(sc->ti_jumbo_dmat,
1020				    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1021				sc->ti_cdata.ti_rx_jumbo_maps[i] = 0;
1022			}
1023	if (sc->ti_mbufrx_dmat)
1024		for (i = 0; i < TI_MINI_RX_RING_CNT; i++)
1025			if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1026				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1027				    sc->ti_cdata.ti_rx_mini_maps[i]);
1028				sc->ti_cdata.ti_rx_mini_maps[i] = 0;
1029			}
1030}
1031
1032#ifdef TI_PRIVATE_JUMBOS
1033
1034/*
1035 * Memory management for the jumbo receive ring is a pain in the
1036 * butt. We need to allocate at least 9018 bytes of space per frame,
1037 * _and_ it has to be contiguous (unless you use the extended
1038 * jumbo descriptor format). Using malloc() all the time won't
1039 * work: malloc() allocates memory in powers of two, which means we
1040 * would end up wasting a considerable amount of space by allocating
1041 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
1042 * to do our own memory management.
1043 *
1044 * The driver needs to allocate a contiguous chunk of memory at boot
1045 * time. We then chop this up ourselves into 9K pieces and use them
1046 * as external mbuf storage.
1047 *
1048 * One issue here is how much memory to allocate. The jumbo ring has
1049 * 256 slots in it, but at 9K per slot than can consume over 2MB of
1050 * RAM. This is a bit much, especially considering we also need
1051 * RAM for the standard ring and mini ring (on the Tigon 2). To
1052 * save space, we only actually allocate enough memory for 64 slots
1053 * by default, which works out to between 500 and 600K. This can
1054 * be tuned by changing a #define in if_tireg.h.
1055 */
1056
1057static int
1058ti_alloc_jumbo_mem(struct ti_softc *sc)
1059{
1060	struct ti_jpool_entry *entry;
1061	caddr_t ptr;
1062	int i;
1063
1064	/*
1065	 * Grab a big chunk o' storage.  Since we are chopping this pool up
1066	 * into ~9k chunks, there doesn't appear to be a need to use page
1067	 * alignment.
1068	 */
1069	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1070				1, 0,			/* algnmnt, boundary */
1071				BUS_SPACE_MAXADDR,	/* lowaddr */
1072				BUS_SPACE_MAXADDR,	/* highaddr */
1073				NULL, NULL,		/* filter, filterarg */
1074				TI_JMEM,		/* maxsize */
1075				1,			/* nsegments */
1076				TI_JMEM,		/* maxsegsize */
1077				0,			/* flags */
1078				NULL, NULL,		/* lockfunc, lockarg */
1079				&sc->ti_jumbo_dmat) != 0) {
1080		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1081		return (ENOBUFS);
1082	}
1083
1084	if (bus_dmamem_alloc(sc->ti_jumbo_dmat,
1085			     (void**)&sc->ti_cdata.ti_jumbo_buf,
1086			     BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
1087			     &sc->ti_jumbo_dmamap) != 0) {
1088		device_printf(sc->ti_dev, "Failed to allocate jumbo memory\n");
1089		return (ENOBUFS);
1090	}
1091
1092	SLIST_INIT(&sc->ti_jfree_listhead);
1093	SLIST_INIT(&sc->ti_jinuse_listhead);
1094
1095	/*
1096	 * Now divide it up into 9K pieces and save the addresses
1097	 * in an array.
1098	 */
1099	ptr = sc->ti_cdata.ti_jumbo_buf;
1100	for (i = 0; i < TI_JSLOTS; i++) {
1101		sc->ti_cdata.ti_jslots[i] = ptr;
1102		ptr += TI_JLEN;
1103		entry = malloc(sizeof(struct ti_jpool_entry),
1104			       M_DEVBUF, M_NOWAIT);
1105		if (entry == NULL) {
1106			device_printf(sc->ti_dev, "no memory for jumbo "
1107			    "buffer queue!\n");
1108			return (ENOBUFS);
1109		}
1110		entry->slot = i;
1111		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1112	}
1113
1114	return (0);
1115}
1116
1117/*
1118 * Allocate a jumbo buffer.
1119 */
1120static void *ti_jalloc(struct ti_softc *sc)
1121{
1122	struct ti_jpool_entry *entry;
1123
1124	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1125
1126	if (entry == NULL) {
1127		device_printf(sc->ti_dev, "no free jumbo buffers\n");
1128		return (NULL);
1129	}
1130
1131	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1132	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1133	return (sc->ti_cdata.ti_jslots[entry->slot]);
1134}
1135
1136/*
1137 * Release a jumbo buffer.
1138 */
1139static void
1140ti_jfree(void *buf, void *args)
1141{
1142	struct ti_softc *sc;
1143	int i;
1144	struct ti_jpool_entry *entry;
1145
1146	/* Extract the softc struct pointer. */
1147	sc = (struct ti_softc *)args;
1148
1149	if (sc == NULL)
1150		panic("ti_jfree: didn't get softc pointer!");
1151
1152	/* calculate the slot this buffer belongs to */
1153	i = ((vm_offset_t)buf
1154	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1155
1156	if ((i < 0) || (i >= TI_JSLOTS))
1157		panic("ti_jfree: asked to free buffer that we don't manage!");
1158
1159	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1160	if (entry == NULL)
1161		panic("ti_jfree: buffer not in use!");
1162	entry->slot = i;
1163	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1164	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1165}
1166
1167#else
1168
1169static int
1170ti_alloc_jumbo_mem(struct ti_softc *sc)
1171{
1172
1173	/*
1174	 * The VM system will take care of providing aligned pages.  Alignment
1175	 * is set to 1 here so that busdma resources won't be wasted.
1176	 */
1177	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1178				1, 0,			/* algnmnt, boundary */
1179				BUS_SPACE_MAXADDR,	/* lowaddr */
1180				BUS_SPACE_MAXADDR,	/* highaddr */
1181				NULL, NULL,		/* filter, filterarg */
1182				PAGE_SIZE * 4 /*XXX*/,	/* maxsize */
1183				4,			/* nsegments */
1184				PAGE_SIZE,		/* maxsegsize */
1185				0,			/* flags */
1186				NULL, NULL,		/* lockfunc, lockarg */
1187				&sc->ti_jumbo_dmat) != 0) {
1188		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1189		return (ENOBUFS);
1190	}
1191
1192	return (0);
1193}
1194
1195#endif /* TI_PRIVATE_JUMBOS */
1196
1197/*
1198 * Intialize a standard receive ring descriptor.
1199 */
1200static int
1201ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m)
1202{
1203	bus_dmamap_t map;
1204	bus_dma_segment_t segs;
1205	struct mbuf *m_new = NULL;
1206	struct ti_rx_desc *r;
1207	int nsegs;
1208
1209	nsegs = 0;
1210	if (m == NULL) {
1211		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1212		if (m_new == NULL)
1213			return (ENOBUFS);
1214
1215		MCLGET(m_new, M_DONTWAIT);
1216		if (!(m_new->m_flags & M_EXT)) {
1217			m_freem(m_new);
1218			return (ENOBUFS);
1219		}
1220		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1221	} else {
1222		m_new = m;
1223		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1224		m_new->m_data = m_new->m_ext.ext_buf;
1225	}
1226
1227	m_adj(m_new, ETHER_ALIGN);
1228	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1229	r = &sc->ti_rdata->ti_rx_std_ring[i];
1230	map = sc->ti_cdata.ti_rx_std_maps[i];
1231	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1232				    &nsegs, 0))
1233		return (ENOBUFS);
1234	if (nsegs != 1)
1235		return (ENOBUFS);
1236	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1237	r->ti_len = segs.ds_len;
1238	r->ti_type = TI_BDTYPE_RECV_BD;
1239	r->ti_flags = 0;
1240	if (sc->ti_ifp->if_hwassist)
1241		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1242	r->ti_idx = i;
1243
1244	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1245	return (0);
1246}
1247
1248/*
1249 * Intialize a mini receive ring descriptor. This only applies to
1250 * the Tigon 2.
1251 */
1252static int
1253ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m)
1254{
1255	bus_dma_segment_t segs;
1256	bus_dmamap_t map;
1257	struct mbuf *m_new = NULL;
1258	struct ti_rx_desc *r;
1259	int nsegs;
1260
1261	nsegs = 0;
1262	if (m == NULL) {
1263		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1264		if (m_new == NULL) {
1265			return (ENOBUFS);
1266		}
1267		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1268	} else {
1269		m_new = m;
1270		m_new->m_data = m_new->m_pktdat;
1271		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1272	}
1273
1274	m_adj(m_new, ETHER_ALIGN);
1275	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1276	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1277	map = sc->ti_cdata.ti_rx_mini_maps[i];
1278	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1279				    &nsegs, 0))
1280		return (ENOBUFS);
1281	if (nsegs != 1)
1282		return (ENOBUFS);
1283	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1284	r->ti_len = segs.ds_len;
1285	r->ti_type = TI_BDTYPE_RECV_BD;
1286	r->ti_flags = TI_BDFLAG_MINI_RING;
1287	if (sc->ti_ifp->if_hwassist)
1288		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1289	r->ti_idx = i;
1290
1291	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1292	return (0);
1293}
1294
1295#ifdef TI_PRIVATE_JUMBOS
1296
1297/*
1298 * Initialize a jumbo receive ring descriptor. This allocates
1299 * a jumbo buffer from the pool managed internally by the driver.
1300 */
1301static int
1302ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
1303{
1304	bus_dmamap_t map;
1305	struct mbuf *m_new = NULL;
1306	struct ti_rx_desc *r;
1307	int nsegs;
1308	bus_dma_segment_t segs;
1309
1310	if (m == NULL) {
1311		caddr_t *buf = NULL;
1312
1313		/* Allocate the mbuf. */
1314		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1315		if (m_new == NULL) {
1316			return (ENOBUFS);
1317		}
1318
1319		/* Allocate the jumbo buffer */
1320		buf = ti_jalloc(sc);
1321		if (buf == NULL) {
1322			m_freem(m_new);
1323			device_printf(sc->ti_dev, "jumbo allocation failed "
1324			    "-- packet dropped!\n");
1325			return (ENOBUFS);
1326		}
1327
1328		/* Attach the buffer to the mbuf. */
1329		m_new->m_data = (void *) buf;
1330		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1331		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree, buf,
1332		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1333	} else {
1334		m_new = m;
1335		m_new->m_data = m_new->m_ext.ext_buf;
1336		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1337	}
1338
1339	m_adj(m_new, ETHER_ALIGN);
1340	/* Set up the descriptor. */
1341	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1342	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1343	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1344	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, &segs,
1345				    &nsegs, 0))
1346		return (ENOBUFS);
1347	if (nsegs != 1)
1348		return (ENOBUFS);
1349	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1350	r->ti_len = segs.ds_len;
1351	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1352	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1353	if (sc->ti_ifp->if_hwassist)
1354		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1355	r->ti_idx = i;
1356
1357	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1358	return (0);
1359}
1360
1361#else
1362
1363#if (PAGE_SIZE == 4096)
1364#define NPAYLOAD 2
1365#else
1366#define NPAYLOAD 1
1367#endif
1368
1369#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1370#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1371#define NFS_HDR_LEN (UDP_HDR_LEN)
1372static int HDR_LEN = TCP_HDR_LEN;
1373
1374/*
1375 * Initialize a jumbo receive ring descriptor. This allocates
1376 * a jumbo buffer from the pool managed internally by the driver.
1377 */
1378static int
1379ti_newbuf_jumbo(struct ti_softc *sc, int idx, struct mbuf *m_old)
1380{
1381	bus_dmamap_t map;
1382	struct mbuf *cur, *m_new = NULL;
1383	struct mbuf *m[3] = {NULL, NULL, NULL};
1384	struct ti_rx_desc_ext *r;
1385	vm_page_t frame;
1386	static int color;
1387	/* 1 extra buf to make nobufs easy*/
1388	struct sf_buf *sf[3] = {NULL, NULL, NULL};
1389	int i;
1390	bus_dma_segment_t segs[4];
1391	int nsegs;
1392
1393	if (m_old != NULL) {
1394		m_new = m_old;
1395		cur = m_old->m_next;
1396		for (i = 0; i <= NPAYLOAD; i++){
1397			m[i] = cur;
1398			cur = cur->m_next;
1399		}
1400	} else {
1401		/* Allocate the mbufs. */
1402		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1403		if (m_new == NULL) {
1404			device_printf(sc->ti_dev, "mbuf allocation failed "
1405			    "-- packet dropped!\n");
1406			goto nobufs;
1407		}
1408		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1409		if (m[NPAYLOAD] == NULL) {
1410			device_printf(sc->ti_dev, "cluster mbuf allocation "
1411			    "failed -- packet dropped!\n");
1412			goto nobufs;
1413		}
1414		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1415		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1416			device_printf(sc->ti_dev, "mbuf allocation failed "
1417			    "-- packet dropped!\n");
1418			goto nobufs;
1419		}
1420		m[NPAYLOAD]->m_len = MCLBYTES;
1421
1422		for (i = 0; i < NPAYLOAD; i++){
1423			MGET(m[i], M_DONTWAIT, MT_DATA);
1424			if (m[i] == NULL) {
1425				device_printf(sc->ti_dev, "mbuf allocation "
1426				    "failed -- packet dropped!\n");
1427				goto nobufs;
1428			}
1429			frame = vm_page_alloc(NULL, color++,
1430			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1431			    VM_ALLOC_WIRED);
1432			if (frame == NULL) {
1433				device_printf(sc->ti_dev, "buffer allocation "
1434				    "failed -- packet dropped!\n");
1435				printf("      index %d page %d\n", idx, i);
1436				goto nobufs;
1437			}
1438			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1439			if (sf[i] == NULL) {
1440				vm_page_unwire(frame, 0);
1441				vm_page_free(frame);
1442				device_printf(sc->ti_dev, "buffer allocation "
1443				    "failed -- packet dropped!\n");
1444				printf("      index %d page %d\n", idx, i);
1445				goto nobufs;
1446			}
1447		}
1448		for (i = 0; i < NPAYLOAD; i++){
1449		/* Attach the buffer to the mbuf. */
1450			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1451			m[i]->m_len = PAGE_SIZE;
1452			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1453			    sf_buf_mext, (void*)sf_buf_kva(sf[i]), sf[i],
1454			    0, EXT_DISPOSABLE);
1455			m[i]->m_next = m[i+1];
1456		}
1457		/* link the buffers to the header */
1458		m_new->m_next = m[0];
1459		m_new->m_data += ETHER_ALIGN;
1460		if (sc->ti_hdrsplit)
1461			m_new->m_len = MHLEN - ETHER_ALIGN;
1462		else
1463			m_new->m_len = HDR_LEN;
1464		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1465	}
1466
1467	/* Set up the descriptor. */
1468	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1469	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1470	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1471	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, segs,
1472				    &nsegs, 0))
1473		return (ENOBUFS);
1474	if ((nsegs < 1) || (nsegs > 4))
1475		return (ENOBUFS);
1476	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1477	r->ti_len0 = m_new->m_len;
1478
1479	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1480	r->ti_len1 = PAGE_SIZE;
1481
1482	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1483	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1484
1485	if (PAGE_SIZE == 4096) {
1486		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1487		r->ti_len3 = MCLBYTES;
1488	} else {
1489		r->ti_len3 = 0;
1490	}
1491	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1492
1493	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1494
1495	if (sc->ti_ifp->if_hwassist)
1496		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1497
1498	r->ti_idx = idx;
1499
1500	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1501	return (0);
1502
1503nobufs:
1504
1505	/*
1506	 * Warning! :
1507	 * This can only be called before the mbufs are strung together.
1508	 * If the mbufs are strung together, m_freem() will free the chain,
1509	 * so that the later mbufs will be freed multiple times.
1510	 */
1511	if (m_new)
1512		m_freem(m_new);
1513
1514	for (i = 0; i < 3; i++) {
1515		if (m[i])
1516			m_freem(m[i]);
1517		if (sf[i])
1518			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1519	}
1520	return (ENOBUFS);
1521}
1522#endif
1523
1524/*
1525 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1526 * that's 1MB or memory, which is a lot. For now, we fill only the first
1527 * 256 ring entries and hope that our CPU is fast enough to keep up with
1528 * the NIC.
1529 */
1530static int
1531ti_init_rx_ring_std(struct ti_softc *sc)
1532{
1533	int i;
1534	struct ti_cmd_desc cmd;
1535
1536	for (i = 0; i < TI_SSLOTS; i++) {
1537		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1538			return (ENOBUFS);
1539	};
1540
1541	TI_UPDATE_STDPROD(sc, i - 1);
1542	sc->ti_std = i - 1;
1543
1544	return (0);
1545}
1546
1547static void
1548ti_free_rx_ring_std(struct ti_softc *sc)
1549{
1550	bus_dmamap_t map;
1551	int i;
1552
1553	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1554		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1555			map = sc->ti_cdata.ti_rx_std_maps[i];
1556			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1557			    BUS_DMASYNC_POSTREAD);
1558			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1559			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1560			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1561		}
1562		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1563		    sizeof(struct ti_rx_desc));
1564	}
1565}
1566
1567static int
1568ti_init_rx_ring_jumbo(struct ti_softc *sc)
1569{
1570	struct ti_cmd_desc cmd;
1571	int i;
1572
1573	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1574		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1575			return (ENOBUFS);
1576	};
1577
1578	TI_UPDATE_JUMBOPROD(sc, i - 1);
1579	sc->ti_jumbo = i - 1;
1580
1581	return (0);
1582}
1583
1584static void
1585ti_free_rx_ring_jumbo(struct ti_softc *sc)
1586{
1587	bus_dmamap_t map;
1588	int i;
1589
1590	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1591		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1592			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1593			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
1594			    BUS_DMASYNC_POSTREAD);
1595			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
1596			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1597			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1598		}
1599		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1600		    sizeof(struct ti_rx_desc));
1601	}
1602}
1603
1604static int
1605ti_init_rx_ring_mini(struct ti_softc *sc)
1606{
1607	int i;
1608
1609	for (i = 0; i < TI_MSLOTS; i++) {
1610		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1611			return (ENOBUFS);
1612	};
1613
1614	TI_UPDATE_MINIPROD(sc, i - 1);
1615	sc->ti_mini = i - 1;
1616
1617	return (0);
1618}
1619
1620static void
1621ti_free_rx_ring_mini(struct ti_softc *sc)
1622{
1623	bus_dmamap_t map;
1624	int i;
1625
1626	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1627		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1628			map = sc->ti_cdata.ti_rx_mini_maps[i];
1629			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1630			    BUS_DMASYNC_POSTREAD);
1631			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1632			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1633			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1634		}
1635		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1636		    sizeof(struct ti_rx_desc));
1637	}
1638}
1639
1640static void
1641ti_free_tx_ring(struct ti_softc *sc)
1642{
1643	struct ti_txdesc *txd;
1644	int i;
1645
1646	if (sc->ti_rdata->ti_tx_ring == NULL)
1647		return;
1648
1649	for (i = 0; i < TI_TX_RING_CNT; i++) {
1650		txd = &sc->ti_cdata.ti_txdesc[i];
1651		if (txd->tx_m != NULL) {
1652			bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
1653			    BUS_DMASYNC_POSTWRITE);
1654			bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
1655			m_freem(txd->tx_m);
1656			txd->tx_m = NULL;
1657		}
1658		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1659		    sizeof(struct ti_tx_desc));
1660	}
1661}
1662
1663static int
1664ti_init_tx_ring(struct ti_softc *sc)
1665{
1666	struct ti_txdesc *txd;
1667	int i;
1668
1669	STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1670	STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1671	for (i = 0; i < TI_TX_RING_CNT; i++) {
1672		txd = &sc->ti_cdata.ti_txdesc[i];
1673		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1674	}
1675	sc->ti_txcnt = 0;
1676	sc->ti_tx_saved_considx = 0;
1677	sc->ti_tx_saved_prodidx = 0;
1678	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1679	return (0);
1680}
1681
1682/*
1683 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1684 * but we have to support the old way too so that Tigon 1 cards will
1685 * work.
1686 */
1687static void
1688ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1689{
1690	struct ti_cmd_desc cmd;
1691	uint16_t *m;
1692	uint32_t ext[2] = {0, 0};
1693
1694	m = (uint16_t *)&addr->octet[0];
1695
1696	switch (sc->ti_hwrev) {
1697	case TI_HWREV_TIGON:
1698		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1699		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1700		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1701		break;
1702	case TI_HWREV_TIGON_II:
1703		ext[0] = htons(m[0]);
1704		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1705		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1706		break;
1707	default:
1708		device_printf(sc->ti_dev, "unknown hwrev\n");
1709		break;
1710	}
1711}
1712
1713static void
1714ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1715{
1716	struct ti_cmd_desc cmd;
1717	uint16_t *m;
1718	uint32_t ext[2] = {0, 0};
1719
1720	m = (uint16_t *)&addr->octet[0];
1721
1722	switch (sc->ti_hwrev) {
1723	case TI_HWREV_TIGON:
1724		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1725		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1726		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1727		break;
1728	case TI_HWREV_TIGON_II:
1729		ext[0] = htons(m[0]);
1730		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1731		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1732		break;
1733	default:
1734		device_printf(sc->ti_dev, "unknown hwrev\n");
1735		break;
1736	}
1737}
1738
1739/*
1740 * Configure the Tigon's multicast address filter.
1741 *
1742 * The actual multicast table management is a bit of a pain, thanks to
1743 * slight brain damage on the part of both Alteon and us. With our
1744 * multicast code, we are only alerted when the multicast address table
1745 * changes and at that point we only have the current list of addresses:
1746 * we only know the current state, not the previous state, so we don't
1747 * actually know what addresses were removed or added. The firmware has
1748 * state, but we can't get our grubby mits on it, and there is no 'delete
1749 * all multicast addresses' command. Hence, we have to maintain our own
1750 * state so we know what addresses have been programmed into the NIC at
1751 * any given time.
1752 */
1753static void
1754ti_setmulti(struct ti_softc *sc)
1755{
1756	struct ifnet *ifp;
1757	struct ifmultiaddr *ifma;
1758	struct ti_cmd_desc cmd;
1759	struct ti_mc_entry *mc;
1760	uint32_t intrs;
1761
1762	TI_LOCK_ASSERT(sc);
1763
1764	ifp = sc->ti_ifp;
1765
1766	if (ifp->if_flags & IFF_ALLMULTI) {
1767		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1768		return;
1769	} else {
1770		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1771	}
1772
1773	/* Disable interrupts. */
1774	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1775	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1776
1777	/* First, zot all the existing filters. */
1778	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1779		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1780		ti_del_mcast(sc, &mc->mc_addr);
1781		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1782		free(mc, M_DEVBUF);
1783	}
1784
1785	/* Now program new ones. */
1786	if_maddr_rlock(ifp);
1787	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1788		if (ifma->ifma_addr->sa_family != AF_LINK)
1789			continue;
1790		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1791		if (mc == NULL) {
1792			device_printf(sc->ti_dev,
1793			    "no memory for mcast filter entry\n");
1794			continue;
1795		}
1796		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1797		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1798		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1799		ti_add_mcast(sc, &mc->mc_addr);
1800	}
1801	if_maddr_runlock(ifp);
1802
1803	/* Re-enable interrupts. */
1804	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1805}
1806
1807/*
1808 * Check to see if the BIOS has configured us for a 64 bit slot when
1809 * we aren't actually in one. If we detect this condition, we can work
1810 * around it on the Tigon 2 by setting a bit in the PCI state register,
1811 * but for the Tigon 1 we must give up and abort the interface attach.
1812 */
1813static int ti_64bitslot_war(struct ti_softc *sc)
1814{
1815
1816	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1817		CSR_WRITE_4(sc, 0x600, 0);
1818		CSR_WRITE_4(sc, 0x604, 0);
1819		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1820		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1821			if (sc->ti_hwrev == TI_HWREV_TIGON)
1822				return (EINVAL);
1823			else {
1824				TI_SETBIT(sc, TI_PCI_STATE,
1825				    TI_PCISTATE_32BIT_BUS);
1826				return (0);
1827			}
1828		}
1829	}
1830
1831	return (0);
1832}
1833
1834/*
1835 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1836 * self-test results.
1837 */
1838static int
1839ti_chipinit(struct ti_softc *sc)
1840{
1841	uint32_t cacheline;
1842	uint32_t pci_writemax = 0;
1843	uint32_t hdrsplit;
1844
1845	/* Initialize link to down state. */
1846	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1847
1848	if (sc->ti_ifp->if_capenable & IFCAP_HWCSUM)
1849		sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
1850	else
1851		sc->ti_ifp->if_hwassist = 0;
1852
1853	/* Set endianness before we access any non-PCI registers. */
1854#if 0 && BYTE_ORDER == BIG_ENDIAN
1855	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1856	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1857#else
1858	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1859	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1860#endif
1861
1862	/* Check the ROM failed bit to see if self-tests passed. */
1863	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1864		device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
1865		return (ENODEV);
1866	}
1867
1868	/* Halt the CPU. */
1869	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1870
1871	/* Figure out the hardware revision. */
1872	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1873	case TI_REV_TIGON_I:
1874		sc->ti_hwrev = TI_HWREV_TIGON;
1875		break;
1876	case TI_REV_TIGON_II:
1877		sc->ti_hwrev = TI_HWREV_TIGON_II;
1878		break;
1879	default:
1880		device_printf(sc->ti_dev, "unsupported chip revision\n");
1881		return (ENODEV);
1882	}
1883
1884	/* Do special setup for Tigon 2. */
1885	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1886		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1887		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1888		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1889	}
1890
1891	/*
1892	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1893	 * can't do header splitting.
1894	 */
1895#ifdef TI_JUMBO_HDRSPLIT
1896	if (sc->ti_hwrev != TI_HWREV_TIGON)
1897		sc->ti_hdrsplit = 1;
1898	else
1899		device_printf(sc->ti_dev,
1900		    "can't do header splitting on a Tigon I board\n");
1901#endif /* TI_JUMBO_HDRSPLIT */
1902
1903	/* Set up the PCI state register. */
1904	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1905	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1906		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1907	}
1908
1909	/* Clear the read/write max DMA parameters. */
1910	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1911	    TI_PCISTATE_READ_MAXDMA));
1912
1913	/* Get cache line size. */
1914	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1915
1916	/*
1917	 * If the system has set enabled the PCI memory write
1918	 * and invalidate command in the command register, set
1919	 * the write max parameter accordingly. This is necessary
1920	 * to use MWI with the Tigon 2.
1921	 */
1922	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1923		switch (cacheline) {
1924		case 1:
1925		case 4:
1926		case 8:
1927		case 16:
1928		case 32:
1929		case 64:
1930			break;
1931		default:
1932		/* Disable PCI memory write and invalidate. */
1933			if (bootverbose)
1934				device_printf(sc->ti_dev, "cache line size %d"
1935				    " not supported; disabling PCI MWI\n",
1936				    cacheline);
1937			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1938			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1939			break;
1940		}
1941	}
1942
1943	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1944
1945	/* This sets the min dma param all the way up (0xff). */
1946	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1947
1948	if (sc->ti_hdrsplit)
1949		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1950	else
1951		hdrsplit = 0;
1952
1953	/* Configure DMA variables. */
1954#if BYTE_ORDER == BIG_ENDIAN
1955	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1956	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1957	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1958	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1959#else /* BYTE_ORDER */
1960	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1961	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1962	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1963#endif /* BYTE_ORDER */
1964
1965	/*
1966	 * Only allow 1 DMA channel to be active at a time.
1967	 * I don't think this is a good idea, but without it
1968	 * the firmware racks up lots of nicDmaReadRingFull
1969	 * errors.  This is not compatible with hardware checksums.
1970	 */
1971	if (sc->ti_ifp->if_hwassist == 0)
1972		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1973
1974	/* Recommended settings from Tigon manual. */
1975	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1976	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1977
1978	if (ti_64bitslot_war(sc)) {
1979		device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
1980		    "but we aren't");
1981		return (EINVAL);
1982	}
1983
1984	return (0);
1985}
1986
1987/*
1988 * Initialize the general information block and firmware, and
1989 * start the CPU(s) running.
1990 */
1991static int
1992ti_gibinit(struct ti_softc *sc)
1993{
1994	struct ifnet *ifp;
1995	struct ti_rcb *rcb;
1996	uint32_t rdphys;
1997	int i;
1998
1999	TI_LOCK_ASSERT(sc);
2000
2001	ifp = sc->ti_ifp;
2002	rdphys = sc->ti_rdata_phys;
2003
2004	/* Disable interrupts for now. */
2005	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2006
2007	/*
2008	 * Tell the chip where to find the general information block.
2009	 * While this struct could go into >4GB memory, we allocate it in a
2010	 * single slab with the other descriptors, and those don't seem to
2011	 * support being located in a 64-bit region.
2012	 */
2013	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
2014	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
2015
2016	/* Load the firmware into SRAM. */
2017	ti_loadfw(sc);
2018
2019	/* Set up the contents of the general info and ring control blocks. */
2020
2021	/* Set up the event ring and producer pointer. */
2022	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
2023
2024	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
2025	rcb->ti_flags = 0;
2026	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
2027	    rdphys + TI_RD_OFF(ti_ev_prodidx_r);
2028	sc->ti_ev_prodidx.ti_idx = 0;
2029	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2030	sc->ti_ev_saved_considx = 0;
2031
2032	/* Set up the command ring and producer mailbox. */
2033	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
2034
2035	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
2036	rcb->ti_flags = 0;
2037	rcb->ti_max_len = 0;
2038	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2039		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2040	}
2041	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2042	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2043	sc->ti_cmd_saved_prodidx = 0;
2044
2045	/*
2046	 * Assign the address of the stats refresh buffer.
2047	 * We re-use the current stats buffer for this to
2048	 * conserve memory.
2049	 */
2050	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
2051	    rdphys + TI_RD_OFF(ti_info.ti_stats);
2052
2053	/* Set up the standard receive ring. */
2054	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
2055	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
2056	rcb->ti_max_len = TI_FRAMELEN;
2057	rcb->ti_flags = 0;
2058	if (sc->ti_ifp->if_hwassist)
2059		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2060		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2061	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2062
2063	/* Set up the jumbo receive ring. */
2064	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
2065	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
2066
2067#ifdef TI_PRIVATE_JUMBOS
2068	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
2069	rcb->ti_flags = 0;
2070#else
2071	rcb->ti_max_len = PAGE_SIZE;
2072	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2073#endif
2074	if (sc->ti_ifp->if_hwassist)
2075		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2076		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2077	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2078
2079	/*
2080	 * Set up the mini ring. Only activated on the
2081	 * Tigon 2 but the slot in the config block is
2082	 * still there on the Tigon 1.
2083	 */
2084	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
2085	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
2086	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2087	if (sc->ti_hwrev == TI_HWREV_TIGON)
2088		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2089	else
2090		rcb->ti_flags = 0;
2091	if (sc->ti_ifp->if_hwassist)
2092		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2093		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2094	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2095
2096	/*
2097	 * Set up the receive return ring.
2098	 */
2099	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
2100	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
2101	rcb->ti_flags = 0;
2102	rcb->ti_max_len = TI_RETURN_RING_CNT;
2103	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
2104	    rdphys + TI_RD_OFF(ti_return_prodidx_r);
2105
2106	/*
2107	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2108	 * of putting the transmit ring in the host's address space and
2109	 * letting the chip DMA it instead of leaving the ring in the NIC's
2110	 * memory and accessing it through the shared memory region. We
2111	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2112	 * so we have to revert to the shared memory scheme if we detect
2113	 * a Tigon 1 chip.
2114	 */
2115	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2116	bzero((char *)sc->ti_rdata->ti_tx_ring,
2117	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
2118	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
2119	if (sc->ti_hwrev == TI_HWREV_TIGON)
2120		rcb->ti_flags = 0;
2121	else
2122		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2123	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2124	if (sc->ti_ifp->if_hwassist)
2125		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2126		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2127	rcb->ti_max_len = TI_TX_RING_CNT;
2128	if (sc->ti_hwrev == TI_HWREV_TIGON)
2129		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
2130	else
2131		TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
2132	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
2133	    rdphys + TI_RD_OFF(ti_tx_considx_r);
2134
2135	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2136	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2137
2138	/* Set up tuneables */
2139#if 0
2140	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2141		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2142		    (sc->ti_rx_coal_ticks / 10));
2143	else
2144#endif
2145		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2146	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2147	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2148	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2149	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2150	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2151
2152	/* Turn interrupts on. */
2153	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2154	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2155
2156	/* Start CPU. */
2157	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2158
2159	return (0);
2160}
2161
2162static void
2163ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2164{
2165	struct ti_softc *sc;
2166
2167	sc = arg;
2168	if (error || nseg != 1)
2169		return;
2170
2171	/*
2172	 * All of the Tigon data structures need to live at <4GB.  This
2173	 * cast is fine since busdma was told about this constraint.
2174	 */
2175	sc->ti_rdata_phys = segs[0].ds_addr;
2176	return;
2177}
2178
2179/*
2180 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2181 * against our list and return its name if we find a match.
2182 */
2183static int
2184ti_probe(device_t dev)
2185{
2186	const struct ti_type *t;
2187
2188	t = ti_devs;
2189
2190	while (t->ti_name != NULL) {
2191		if ((pci_get_vendor(dev) == t->ti_vid) &&
2192		    (pci_get_device(dev) == t->ti_did)) {
2193			device_set_desc(dev, t->ti_name);
2194			return (BUS_PROBE_DEFAULT);
2195		}
2196		t++;
2197	}
2198
2199	return (ENXIO);
2200}
2201
2202static int
2203ti_attach(device_t dev)
2204{
2205	struct ifnet *ifp;
2206	struct ti_softc *sc;
2207	int error = 0, rid;
2208	u_char eaddr[6];
2209
2210	sc = device_get_softc(dev);
2211	sc->ti_unit = device_get_unit(dev);
2212	sc->ti_dev = dev;
2213
2214	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2215	    MTX_DEF);
2216	callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2217	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2218	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2219	if (ifp == NULL) {
2220		device_printf(dev, "can not if_alloc()\n");
2221		error = ENOSPC;
2222		goto fail;
2223	}
2224	sc->ti_ifp->if_capabilities = IFCAP_HWCSUM |
2225	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2226	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2227
2228	/*
2229	 * Map control/status registers.
2230	 */
2231	pci_enable_busmaster(dev);
2232
2233	rid = TI_PCI_LOMEM;
2234	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2235	    RF_ACTIVE);
2236
2237	if (sc->ti_res == NULL) {
2238		device_printf(dev, "couldn't map memory\n");
2239		error = ENXIO;
2240		goto fail;
2241	}
2242
2243	sc->ti_btag = rman_get_bustag(sc->ti_res);
2244	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2245
2246	/* Allocate interrupt */
2247	rid = 0;
2248
2249	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2250	    RF_SHAREABLE | RF_ACTIVE);
2251
2252	if (sc->ti_irq == NULL) {
2253		device_printf(dev, "couldn't map interrupt\n");
2254		error = ENXIO;
2255		goto fail;
2256	}
2257
2258	if (ti_chipinit(sc)) {
2259		device_printf(dev, "chip initialization failed\n");
2260		error = ENXIO;
2261		goto fail;
2262	}
2263
2264	/* Zero out the NIC's on-board SRAM. */
2265	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2266
2267	/* Init again -- zeroing memory may have clobbered some registers. */
2268	if (ti_chipinit(sc)) {
2269		device_printf(dev, "chip initialization failed\n");
2270		error = ENXIO;
2271		goto fail;
2272	}
2273
2274	/*
2275	 * Get station address from the EEPROM. Note: the manual states
2276	 * that the MAC address is at offset 0x8c, however the data is
2277	 * stored as two longwords (since that's how it's loaded into
2278	 * the NIC). This means the MAC address is actually preceded
2279	 * by two zero bytes. We need to skip over those.
2280	 */
2281	if (ti_read_eeprom(sc, eaddr,
2282				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2283		device_printf(dev, "failed to read station address\n");
2284		error = ENXIO;
2285		goto fail;
2286	}
2287
2288	/* Allocate the general information block and ring buffers. */
2289	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
2290				1, 0,			/* algnmnt, boundary */
2291				BUS_SPACE_MAXADDR,	/* lowaddr */
2292				BUS_SPACE_MAXADDR,	/* highaddr */
2293				NULL, NULL,		/* filter, filterarg */
2294				BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2295				0,			/* nsegments */
2296				BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2297				0,			/* flags */
2298				NULL, NULL,		/* lockfunc, lockarg */
2299				&sc->ti_parent_dmat) != 0) {
2300		device_printf(dev, "Failed to allocate parent dmat\n");
2301		error = ENOMEM;
2302		goto fail;
2303	}
2304
2305	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2306				PAGE_SIZE, 0,		/* algnmnt, boundary */
2307				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2308				BUS_SPACE_MAXADDR,	/* highaddr */
2309				NULL, NULL,		/* filter, filterarg */
2310				sizeof(struct ti_ring_data),	/* maxsize */
2311				1,			/* nsegments */
2312				sizeof(struct ti_ring_data),	/* maxsegsize */
2313				0,			/* flags */
2314				NULL, NULL,		/* lockfunc, lockarg */
2315				&sc->ti_rdata_dmat) != 0) {
2316		device_printf(dev, "Failed to allocate rdata dmat\n");
2317		error = ENOMEM;
2318		goto fail;
2319	}
2320
2321	if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2322			     BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2323			     &sc->ti_rdata_dmamap) != 0) {
2324		device_printf(dev, "Failed to allocate rdata memory\n");
2325		error = ENOMEM;
2326		goto fail;
2327	}
2328
2329	if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2330			    sc->ti_rdata, sizeof(struct ti_ring_data),
2331			    ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2332		device_printf(dev, "Failed to load rdata segments\n");
2333		error = ENOMEM;
2334		goto fail;
2335	}
2336
2337	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2338
2339	/* Try to allocate memory for jumbo buffers. */
2340	if (ti_alloc_jumbo_mem(sc)) {
2341		device_printf(dev, "jumbo buffer allocation failed\n");
2342		error = ENXIO;
2343		goto fail;
2344	}
2345
2346	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2347				1, 0,			/* algnmnt, boundary */
2348				BUS_SPACE_MAXADDR,	/* lowaddr */
2349				BUS_SPACE_MAXADDR,	/* highaddr */
2350				NULL, NULL,		/* filter, filterarg */
2351				MCLBYTES * TI_MAXTXSEGS,/* maxsize */
2352				TI_MAXTXSEGS,		/* nsegments */
2353				MCLBYTES,		/* maxsegsize */
2354				0,			/* flags */
2355				NULL, NULL,		/* lockfunc, lockarg */
2356				&sc->ti_mbuftx_dmat) != 0) {
2357		device_printf(dev, "Failed to allocate rdata dmat\n");
2358		error = ENOMEM;
2359		goto fail;
2360	}
2361
2362	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2363				1, 0,			/* algnmnt, boundary */
2364				BUS_SPACE_MAXADDR,	/* lowaddr */
2365				BUS_SPACE_MAXADDR,	/* highaddr */
2366				NULL, NULL,		/* filter, filterarg */
2367				MCLBYTES,		/* maxsize */
2368				1,			/* nsegments */
2369				MCLBYTES,		/* maxsegsize */
2370				0,			/* flags */
2371				NULL, NULL,		/* lockfunc, lockarg */
2372				&sc->ti_mbufrx_dmat) != 0) {
2373		device_printf(dev, "Failed to allocate rdata dmat\n");
2374		error = ENOMEM;
2375		goto fail;
2376	}
2377
2378	if (ti_alloc_dmamaps(sc)) {
2379		device_printf(dev, "dma map creation failed\n");
2380		error = ENXIO;
2381		goto fail;
2382	}
2383
2384	/*
2385	 * We really need a better way to tell a 1000baseTX card
2386	 * from a 1000baseSX one, since in theory there could be
2387	 * OEMed 1000baseTX cards from lame vendors who aren't
2388	 * clever enough to change the PCI ID. For the moment
2389	 * though, the AceNIC is the only copper card available.
2390	 */
2391	if (pci_get_vendor(dev) == ALT_VENDORID &&
2392	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2393		sc->ti_copper = 1;
2394	/* Ok, it's not the only copper card available. */
2395	if (pci_get_vendor(dev) == NG_VENDORID &&
2396	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2397		sc->ti_copper = 1;
2398
2399	/* Set default tuneable values. */
2400	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2401#if 0
2402	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2403#endif
2404	sc->ti_rx_coal_ticks = 170;
2405	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2406	sc->ti_rx_max_coal_bds = 64;
2407#if 0
2408	sc->ti_tx_max_coal_bds = 128;
2409#endif
2410	sc->ti_tx_max_coal_bds = 32;
2411	sc->ti_tx_buf_ratio = 21;
2412
2413	/* Set up ifnet structure */
2414	ifp->if_softc = sc;
2415	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2416	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2417	ifp->if_ioctl = ti_ioctl;
2418	ifp->if_start = ti_start;
2419	ifp->if_init = ti_init;
2420	ifp->if_baudrate = 1000000000;
2421	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2422
2423	/* Set up ifmedia support. */
2424	if (sc->ti_copper) {
2425		/*
2426		 * Copper cards allow manual 10/100 mode selection,
2427		 * but not manual 1000baseTX mode selection. Why?
2428		 * Becuase currently there's no way to specify the
2429		 * master/slave setting through the firmware interface,
2430		 * so Alteon decided to just bag it and handle it
2431		 * via autonegotiation.
2432		 */
2433		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2434		ifmedia_add(&sc->ifmedia,
2435		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2436		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2437		ifmedia_add(&sc->ifmedia,
2438		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2439		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2440		ifmedia_add(&sc->ifmedia,
2441		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2442	} else {
2443		/* Fiber cards don't support 10/100 modes. */
2444		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2445		ifmedia_add(&sc->ifmedia,
2446		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2447	}
2448	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2449	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2450
2451	/*
2452	 * We're assuming here that card initialization is a sequential
2453	 * thing.  If it isn't, multiple cards probing at the same time
2454	 * could stomp on the list of softcs here.
2455	 */
2456
2457	/* Register the device */
2458	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2459			   0600, "ti%d", sc->ti_unit);
2460	sc->dev->si_drv1 = sc;
2461
2462	/*
2463	 * Call MI attach routine.
2464	 */
2465	ether_ifattach(ifp, eaddr);
2466
2467	/* Hook interrupt last to avoid having to lock softc */
2468	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2469	   NULL, ti_intr, sc, &sc->ti_intrhand);
2470
2471	if (error) {
2472		device_printf(dev, "couldn't set up irq\n");
2473		goto fail;
2474	}
2475
2476fail:
2477	if (error)
2478		ti_detach(dev);
2479
2480	return (error);
2481}
2482
2483/*
2484 * Shutdown hardware and free up resources. This can be called any
2485 * time after the mutex has been initialized. It is called in both
2486 * the error case in attach and the normal detach case so it needs
2487 * to be careful about only freeing resources that have actually been
2488 * allocated.
2489 */
2490static int
2491ti_detach(device_t dev)
2492{
2493	struct ti_softc *sc;
2494	struct ifnet *ifp;
2495
2496	sc = device_get_softc(dev);
2497	if (sc->dev)
2498		destroy_dev(sc->dev);
2499	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2500	ifp = sc->ti_ifp;
2501	if (device_is_attached(dev)) {
2502		ether_ifdetach(ifp);
2503		TI_LOCK(sc);
2504		ti_stop(sc);
2505		TI_UNLOCK(sc);
2506	}
2507
2508	/* These should only be active if attach succeeded */
2509	callout_drain(&sc->ti_watchdog);
2510	bus_generic_detach(dev);
2511	ti_free_dmamaps(sc);
2512	ifmedia_removeall(&sc->ifmedia);
2513
2514#ifdef TI_PRIVATE_JUMBOS
2515	if (sc->ti_cdata.ti_jumbo_buf)
2516		bus_dmamem_free(sc->ti_jumbo_dmat, sc->ti_cdata.ti_jumbo_buf,
2517		    sc->ti_jumbo_dmamap);
2518#endif
2519	if (sc->ti_jumbo_dmat)
2520		bus_dma_tag_destroy(sc->ti_jumbo_dmat);
2521	if (sc->ti_mbuftx_dmat)
2522		bus_dma_tag_destroy(sc->ti_mbuftx_dmat);
2523	if (sc->ti_mbufrx_dmat)
2524		bus_dma_tag_destroy(sc->ti_mbufrx_dmat);
2525	if (sc->ti_rdata && sc->ti_rdata_dmamap)
2526		bus_dmamap_unload(sc->ti_rdata_dmat, sc->ti_rdata_dmamap);
2527	if (sc->ti_rdata)
2528		bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2529				sc->ti_rdata_dmamap);
2530	if (sc->ti_rdata_dmat)
2531		bus_dma_tag_destroy(sc->ti_rdata_dmat);
2532	if (sc->ti_parent_dmat)
2533		bus_dma_tag_destroy(sc->ti_parent_dmat);
2534	if (sc->ti_intrhand)
2535		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2536	if (sc->ti_irq)
2537		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2538	if (sc->ti_res) {
2539		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2540		    sc->ti_res);
2541	}
2542	if (ifp)
2543		if_free(ifp);
2544
2545	mtx_destroy(&sc->ti_mtx);
2546
2547	return (0);
2548}
2549
2550#ifdef TI_JUMBO_HDRSPLIT
2551/*
2552 * If hdr_len is 0, that means that header splitting wasn't done on
2553 * this packet for some reason.  The two most likely reasons are that
2554 * the protocol isn't a supported protocol for splitting, or this
2555 * packet had a fragment offset that wasn't 0.
2556 *
2557 * The header length, if it is non-zero, will always be the length of
2558 * the headers on the packet, but that length could be longer than the
2559 * first mbuf.  So we take the minimum of the two as the actual
2560 * length.
2561 */
2562static __inline void
2563ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2564{
2565	int i = 0;
2566	int lengths[4] = {0, 0, 0, 0};
2567	struct mbuf *m, *mp;
2568
2569	if (hdr_len != 0)
2570		top->m_len = min(hdr_len, top->m_len);
2571	pkt_len -= top->m_len;
2572	lengths[i++] = top->m_len;
2573
2574	mp = top;
2575	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2576		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2577		pkt_len -= m->m_len;
2578		lengths[i++] = m->m_len;
2579		mp = m;
2580	}
2581
2582#if 0
2583	if (hdr_len != 0)
2584		printf("got split packet: ");
2585	else
2586		printf("got non-split packet: ");
2587
2588	printf("%d,%d,%d,%d = %d\n", lengths[0],
2589	    lengths[1], lengths[2], lengths[3],
2590	    lengths[0] + lengths[1] + lengths[2] +
2591	    lengths[3]);
2592#endif
2593
2594	if (pkt_len)
2595		panic("header splitting didn't");
2596
2597	if (m) {
2598		m_freem(m);
2599		mp->m_next = NULL;
2600
2601	}
2602	if (mp->m_next != NULL)
2603		panic("ti_hdr_split: last mbuf in chain should be null");
2604}
2605#endif /* TI_JUMBO_HDRSPLIT */
2606
2607/*
2608 * Frame reception handling. This is called if there's a frame
2609 * on the receive return list.
2610 *
2611 * Note: we have to be able to handle three possibilities here:
2612 * 1) the frame is from the mini receive ring (can only happen)
2613 *    on Tigon 2 boards)
2614 * 2) the frame is from the jumbo recieve ring
2615 * 3) the frame is from the standard receive ring
2616 */
2617
2618static void
2619ti_rxeof(struct ti_softc *sc)
2620{
2621	struct ifnet *ifp;
2622	bus_dmamap_t map;
2623	struct ti_cmd_desc cmd;
2624
2625	TI_LOCK_ASSERT(sc);
2626
2627	ifp = sc->ti_ifp;
2628
2629	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2630		struct ti_rx_desc *cur_rx;
2631		struct mbuf *m = NULL;
2632		uint32_t rxidx;
2633		uint16_t vlan_tag = 0;
2634		int have_tag = 0;
2635
2636		cur_rx =
2637		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2638		rxidx = cur_rx->ti_idx;
2639		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2640
2641		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2642			have_tag = 1;
2643			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2644		}
2645
2646		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2647
2648			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2649			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2650			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2651			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2652			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
2653			    BUS_DMASYNC_POSTREAD);
2654			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
2655			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2656				ifp->if_ierrors++;
2657				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2658				continue;
2659			}
2660			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2661				ifp->if_ierrors++;
2662				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2663				continue;
2664			}
2665#ifdef TI_PRIVATE_JUMBOS
2666			m->m_len = cur_rx->ti_len;
2667#else /* TI_PRIVATE_JUMBOS */
2668#ifdef TI_JUMBO_HDRSPLIT
2669			if (sc->ti_hdrsplit)
2670				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2671					     cur_rx->ti_len, rxidx);
2672			else
2673#endif /* TI_JUMBO_HDRSPLIT */
2674			m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2675#endif /* TI_PRIVATE_JUMBOS */
2676		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2677			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2678			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2679			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2680			map = sc->ti_cdata.ti_rx_mini_maps[rxidx];
2681			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2682			    BUS_DMASYNC_POSTREAD);
2683			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2684			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2685				ifp->if_ierrors++;
2686				ti_newbuf_mini(sc, sc->ti_mini, m);
2687				continue;
2688			}
2689			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2690				ifp->if_ierrors++;
2691				ti_newbuf_mini(sc, sc->ti_mini, m);
2692				continue;
2693			}
2694			m->m_len = cur_rx->ti_len;
2695		} else {
2696			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2697			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2698			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2699			map = sc->ti_cdata.ti_rx_std_maps[rxidx];
2700			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2701			    BUS_DMASYNC_POSTREAD);
2702			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2703			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2704				ifp->if_ierrors++;
2705				ti_newbuf_std(sc, sc->ti_std, m);
2706				continue;
2707			}
2708			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2709				ifp->if_ierrors++;
2710				ti_newbuf_std(sc, sc->ti_std, m);
2711				continue;
2712			}
2713			m->m_len = cur_rx->ti_len;
2714		}
2715
2716		m->m_pkthdr.len = cur_rx->ti_len;
2717		ifp->if_ipackets++;
2718		m->m_pkthdr.rcvif = ifp;
2719
2720		if (ifp->if_hwassist) {
2721			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2722			    CSUM_DATA_VALID;
2723			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2724				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2725			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2726		}
2727
2728		/*
2729		 * If we received a packet with a vlan tag,
2730		 * tag it before passing the packet upward.
2731		 */
2732		if (have_tag) {
2733			m->m_pkthdr.ether_vtag = vlan_tag;
2734			m->m_flags |= M_VLANTAG;
2735		}
2736		TI_UNLOCK(sc);
2737		(*ifp->if_input)(ifp, m);
2738		TI_LOCK(sc);
2739	}
2740
2741	/* Only necessary on the Tigon 1. */
2742	if (sc->ti_hwrev == TI_HWREV_TIGON)
2743		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2744		    sc->ti_rx_saved_considx);
2745
2746	TI_UPDATE_STDPROD(sc, sc->ti_std);
2747	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2748	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2749}
2750
2751static void
2752ti_txeof(struct ti_softc *sc)
2753{
2754	struct ti_txdesc *txd;
2755	struct ti_tx_desc txdesc;
2756	struct ti_tx_desc *cur_tx = NULL;
2757	struct ifnet *ifp;
2758	int idx;
2759
2760	ifp = sc->ti_ifp;
2761
2762	txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2763	if (txd == NULL)
2764		return;
2765	/*
2766	 * Go through our tx ring and free mbufs for those
2767	 * frames that have been sent.
2768	 */
2769	for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2770	    TI_INC(idx, TI_TX_RING_CNT)) {
2771		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2772			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2773			    sizeof(txdesc), &txdesc);
2774			cur_tx = &txdesc;
2775		} else
2776			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2777		sc->ti_txcnt--;
2778		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2779		if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2780			continue;
2781		bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2782		    BUS_DMASYNC_POSTWRITE);
2783		bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2784
2785		ifp->if_opackets++;
2786		m_freem(txd->tx_m);
2787		txd->tx_m = NULL;
2788		STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2789		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2790		txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2791	}
2792	sc->ti_tx_saved_considx = idx;
2793
2794	sc->ti_timer = sc->ti_txcnt > 0 ? 5 : 0;
2795}
2796
2797static void
2798ti_intr(void *xsc)
2799{
2800	struct ti_softc *sc;
2801	struct ifnet *ifp;
2802
2803	sc = xsc;
2804	TI_LOCK(sc);
2805	ifp = sc->ti_ifp;
2806
2807/*#ifdef notdef*/
2808	/* Avoid this for now -- checking this register is expensive. */
2809	/* Make sure this is really our interrupt. */
2810	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2811		TI_UNLOCK(sc);
2812		return;
2813	}
2814/*#endif*/
2815
2816	/* Ack interrupt and stop others from occuring. */
2817	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2818
2819	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2820		/* Check RX return ring producer/consumer */
2821		ti_rxeof(sc);
2822
2823		/* Check TX ring producer/consumer */
2824		ti_txeof(sc);
2825	}
2826
2827	ti_handle_events(sc);
2828
2829	/* Re-enable interrupts. */
2830	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2831
2832	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2833	    ifp->if_snd.ifq_head != NULL)
2834		ti_start_locked(ifp);
2835
2836	TI_UNLOCK(sc);
2837}
2838
2839static void
2840ti_stats_update(struct ti_softc *sc)
2841{
2842	struct ifnet *ifp;
2843
2844	ifp = sc->ti_ifp;
2845
2846	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2847	    BUS_DMASYNC_POSTREAD);
2848
2849	ifp->if_collisions +=
2850	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2851	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2852	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2853	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2854	   ifp->if_collisions;
2855
2856	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2857	    BUS_DMASYNC_PREREAD);
2858}
2859
2860/*
2861 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2862 * pointers to descriptors.
2863 */
2864static int
2865ti_encap(struct ti_softc *sc, struct mbuf **m_head)
2866{
2867	struct ti_txdesc *txd;
2868	struct ti_tx_desc *f;
2869	struct ti_tx_desc txdesc;
2870	struct mbuf *m;
2871	bus_dma_segment_t txsegs[TI_MAXTXSEGS];
2872	uint16_t csum_flags;
2873	int error, frag, i, nseg;
2874
2875	if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
2876		return (ENOBUFS);
2877
2878	error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2879	    *m_head, txsegs, &nseg, 0);
2880	if (error == EFBIG) {
2881		m = m_defrag(*m_head, M_DONTWAIT);
2882		if (m == NULL) {
2883			m_freem(*m_head);
2884			*m_head = NULL;
2885			return (ENOMEM);
2886		}
2887		*m_head = m;
2888		error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat,
2889		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2890		if (error) {
2891			m_freem(*m_head);
2892			*m_head = NULL;
2893			return (error);
2894		}
2895	} else if (error != 0)
2896		return (error);
2897	if (nseg == 0) {
2898		m_freem(*m_head);
2899		*m_head = NULL;
2900		return (EIO);
2901	}
2902
2903	if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
2904		bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2905		return (ENOBUFS);
2906	}
2907
2908	m = *m_head;
2909	csum_flags = 0;
2910	if (m->m_pkthdr.csum_flags) {
2911		if (m->m_pkthdr.csum_flags & CSUM_IP)
2912			csum_flags |= TI_BDFLAG_IP_CKSUM;
2913		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2914			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2915		if (m->m_flags & M_LASTFRAG)
2916			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2917		else if (m->m_flags & M_FRAG)
2918			csum_flags |= TI_BDFLAG_IP_FRAG;
2919	}
2920
2921	bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2922	    BUS_DMASYNC_PREWRITE);
2923	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2924	    BUS_DMASYNC_PREWRITE);
2925
2926	frag = sc->ti_tx_saved_prodidx;
2927	for (i = 0; i < nseg; i++) {
2928		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2929			bzero(&txdesc, sizeof(txdesc));
2930			f = &txdesc;
2931		} else
2932			f = &sc->ti_rdata->ti_tx_ring[frag];
2933		ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
2934		f->ti_len = txsegs[i].ds_len;
2935		f->ti_flags = csum_flags;
2936		if (m->m_flags & M_VLANTAG) {
2937			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2938			f->ti_vlan_tag = m->m_pkthdr.ether_vtag & 0xfff;
2939		} else {
2940			f->ti_vlan_tag = 0;
2941		}
2942
2943		if (sc->ti_hwrev == TI_HWREV_TIGON)
2944			ti_mem_write(sc, TI_TX_RING_BASE + frag *
2945			    sizeof(txdesc), sizeof(txdesc), &txdesc);
2946		TI_INC(frag, TI_TX_RING_CNT);
2947	}
2948
2949	sc->ti_tx_saved_prodidx = frag;
2950	/* set TI_BDFLAG_END on the last descriptor */
2951	frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
2952	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2953		txdesc.ti_flags |= TI_BDFLAG_END;
2954		ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
2955		    sizeof(txdesc), &txdesc);
2956	} else
2957		sc->ti_rdata->ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
2958
2959	STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
2960	STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
2961	txd->tx_m = m;
2962	sc->ti_txcnt += nseg;
2963
2964	return (0);
2965}
2966
2967static void
2968ti_start(struct ifnet *ifp)
2969{
2970	struct ti_softc *sc;
2971
2972	sc = ifp->if_softc;
2973	TI_LOCK(sc);
2974	ti_start_locked(ifp);
2975	TI_UNLOCK(sc);
2976}
2977
2978/*
2979 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2980 * to the mbuf data regions directly in the transmit descriptors.
2981 */
2982static void
2983ti_start_locked(struct ifnet *ifp)
2984{
2985	struct ti_softc *sc;
2986	struct mbuf *m_head = NULL;
2987	int enq = 0;
2988
2989	sc = ifp->if_softc;
2990
2991	for (; ifp->if_snd.ifq_head != NULL &&
2992	    sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
2993		IF_DEQUEUE(&ifp->if_snd, m_head);
2994		if (m_head == NULL)
2995			break;
2996
2997		/*
2998		 * XXX
2999		 * safety overkill.  If this is a fragmented packet chain
3000		 * with delayed TCP/UDP checksums, then only encapsulate
3001		 * it if we have enough descriptors to handle the entire
3002		 * chain at once.
3003		 * (paranoia -- may not actually be needed)
3004		 */
3005		if (m_head->m_flags & M_FIRSTFRAG &&
3006		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3007			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
3008			    m_head->m_pkthdr.csum_data + 16) {
3009				IF_PREPEND(&ifp->if_snd, m_head);
3010				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3011				break;
3012			}
3013		}
3014
3015		/*
3016		 * Pack the data into the transmit ring. If we
3017		 * don't have room, set the OACTIVE flag and wait
3018		 * for the NIC to drain the ring.
3019		 */
3020		if (ti_encap(sc, &m_head)) {
3021			if (m_head == NULL)
3022				break;
3023			IF_PREPEND(&ifp->if_snd, m_head);
3024			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3025			break;
3026		}
3027
3028		enq++;
3029		/*
3030		 * If there's a BPF listener, bounce a copy of this frame
3031		 * to him.
3032		 */
3033		ETHER_BPF_MTAP(ifp, m_head);
3034	}
3035
3036	if (enq > 0) {
3037		/* Transmit */
3038		CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3039
3040		/*
3041		 * Set a timeout in case the chip goes out to lunch.
3042		 */
3043		sc->ti_timer = 5;
3044	}
3045}
3046
3047static void
3048ti_init(void *xsc)
3049{
3050	struct ti_softc *sc;
3051
3052	sc = xsc;
3053	TI_LOCK(sc);
3054	ti_init_locked(sc);
3055	TI_UNLOCK(sc);
3056}
3057
3058static void
3059ti_init_locked(void *xsc)
3060{
3061	struct ti_softc *sc = xsc;
3062
3063	/* Cancel pending I/O and flush buffers. */
3064	ti_stop(sc);
3065
3066	/* Init the gen info block, ring control blocks and firmware. */
3067	if (ti_gibinit(sc)) {
3068		device_printf(sc->ti_dev, "initialization failure\n");
3069		return;
3070	}
3071}
3072
3073static void ti_init2(struct ti_softc *sc)
3074{
3075	struct ti_cmd_desc cmd;
3076	struct ifnet *ifp;
3077	uint8_t *ea;
3078	struct ifmedia *ifm;
3079	int tmp;
3080
3081	TI_LOCK_ASSERT(sc);
3082
3083	ifp = sc->ti_ifp;
3084
3085	/* Specify MTU and interface index. */
3086	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
3087	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3088	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3089	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3090
3091	/* Load our MAC address. */
3092	ea = IF_LLADDR(sc->ti_ifp);
3093	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3094	CSR_WRITE_4(sc, TI_GCR_PAR1,
3095	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3096	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3097
3098	/* Enable or disable promiscuous mode as needed. */
3099	if (ifp->if_flags & IFF_PROMISC) {
3100		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3101	} else {
3102		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3103	}
3104
3105	/* Program multicast filter. */
3106	ti_setmulti(sc);
3107
3108	/*
3109	 * If this is a Tigon 1, we should tell the
3110	 * firmware to use software packet filtering.
3111	 */
3112	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3113		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3114	}
3115
3116	/* Init RX ring. */
3117	ti_init_rx_ring_std(sc);
3118
3119	/* Init jumbo RX ring. */
3120	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3121		ti_init_rx_ring_jumbo(sc);
3122
3123	/*
3124	 * If this is a Tigon 2, we can also configure the
3125	 * mini ring.
3126	 */
3127	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
3128		ti_init_rx_ring_mini(sc);
3129
3130	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3131	sc->ti_rx_saved_considx = 0;
3132
3133	/* Init TX ring. */
3134	ti_init_tx_ring(sc);
3135
3136	/* Tell firmware we're alive. */
3137	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3138
3139	/* Enable host interrupts. */
3140	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3141
3142	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3143	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3144	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3145
3146	/*
3147	 * Make sure to set media properly. We have to do this
3148	 * here since we have to issue commands in order to set
3149	 * the link negotiation and we can't issue commands until
3150	 * the firmware is running.
3151	 */
3152	ifm = &sc->ifmedia;
3153	tmp = ifm->ifm_media;
3154	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3155	ti_ifmedia_upd(ifp);
3156	ifm->ifm_media = tmp;
3157}
3158
3159/*
3160 * Set media options.
3161 */
3162static int
3163ti_ifmedia_upd(struct ifnet *ifp)
3164{
3165	struct ti_softc *sc;
3166	struct ifmedia *ifm;
3167	struct ti_cmd_desc cmd;
3168	uint32_t flowctl;
3169
3170	sc = ifp->if_softc;
3171	ifm = &sc->ifmedia;
3172
3173	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3174		return (EINVAL);
3175
3176	flowctl = 0;
3177
3178	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3179	case IFM_AUTO:
3180		/*
3181		 * Transmit flow control doesn't work on the Tigon 1.
3182		 */
3183		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3184
3185		/*
3186		 * Transmit flow control can also cause problems on the
3187		 * Tigon 2, apparantly with both the copper and fiber
3188		 * boards.  The symptom is that the interface will just
3189		 * hang.  This was reproduced with Alteon 180 switches.
3190		 */
3191#if 0
3192		if (sc->ti_hwrev != TI_HWREV_TIGON)
3193			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3194#endif
3195
3196		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3197		    TI_GLNK_FULL_DUPLEX| flowctl |
3198		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3199
3200		flowctl = TI_LNK_RX_FLOWCTL_Y;
3201#if 0
3202		if (sc->ti_hwrev != TI_HWREV_TIGON)
3203			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3204#endif
3205
3206		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3207		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3208		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3209		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3210		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3211		break;
3212	case IFM_1000_SX:
3213	case IFM_1000_T:
3214		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3215#if 0
3216		if (sc->ti_hwrev != TI_HWREV_TIGON)
3217			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3218#endif
3219
3220		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3221		    flowctl |TI_GLNK_ENB);
3222		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3223		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3224			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3225		}
3226		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3227		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3228		break;
3229	case IFM_100_FX:
3230	case IFM_10_FL:
3231	case IFM_100_TX:
3232	case IFM_10_T:
3233		flowctl = TI_LNK_RX_FLOWCTL_Y;
3234#if 0
3235		if (sc->ti_hwrev != TI_HWREV_TIGON)
3236			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3237#endif
3238
3239		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3240		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3241		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3242		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3243			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3244		} else {
3245			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3246		}
3247		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3248			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3249		} else {
3250			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3251		}
3252		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3253		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3254		break;
3255	}
3256
3257	return (0);
3258}
3259
3260/*
3261 * Report current media status.
3262 */
3263static void
3264ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3265{
3266	struct ti_softc *sc;
3267	uint32_t media = 0;
3268
3269	sc = ifp->if_softc;
3270
3271	ifmr->ifm_status = IFM_AVALID;
3272	ifmr->ifm_active = IFM_ETHER;
3273
3274	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3275		return;
3276
3277	ifmr->ifm_status |= IFM_ACTIVE;
3278
3279	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3280		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3281		if (sc->ti_copper)
3282			ifmr->ifm_active |= IFM_1000_T;
3283		else
3284			ifmr->ifm_active |= IFM_1000_SX;
3285		if (media & TI_GLNK_FULL_DUPLEX)
3286			ifmr->ifm_active |= IFM_FDX;
3287		else
3288			ifmr->ifm_active |= IFM_HDX;
3289	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3290		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3291		if (sc->ti_copper) {
3292			if (media & TI_LNK_100MB)
3293				ifmr->ifm_active |= IFM_100_TX;
3294			if (media & TI_LNK_10MB)
3295				ifmr->ifm_active |= IFM_10_T;
3296		} else {
3297			if (media & TI_LNK_100MB)
3298				ifmr->ifm_active |= IFM_100_FX;
3299			if (media & TI_LNK_10MB)
3300				ifmr->ifm_active |= IFM_10_FL;
3301		}
3302		if (media & TI_LNK_FULL_DUPLEX)
3303			ifmr->ifm_active |= IFM_FDX;
3304		if (media & TI_LNK_HALF_DUPLEX)
3305			ifmr->ifm_active |= IFM_HDX;
3306	}
3307}
3308
3309static int
3310ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3311{
3312	struct ti_softc *sc = ifp->if_softc;
3313	struct ifreq *ifr = (struct ifreq *) data;
3314	struct ti_cmd_desc cmd;
3315	int mask, error = 0;
3316
3317	switch (command) {
3318	case SIOCSIFMTU:
3319		TI_LOCK(sc);
3320		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3321			error = EINVAL;
3322		else {
3323			ifp->if_mtu = ifr->ifr_mtu;
3324			ti_init_locked(sc);
3325		}
3326		TI_UNLOCK(sc);
3327		break;
3328	case SIOCSIFFLAGS:
3329		TI_LOCK(sc);
3330		if (ifp->if_flags & IFF_UP) {
3331			/*
3332			 * If only the state of the PROMISC flag changed,
3333			 * then just use the 'set promisc mode' command
3334			 * instead of reinitializing the entire NIC. Doing
3335			 * a full re-init means reloading the firmware and
3336			 * waiting for it to start up, which may take a
3337			 * second or two.
3338			 */
3339			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3340			    ifp->if_flags & IFF_PROMISC &&
3341			    !(sc->ti_if_flags & IFF_PROMISC)) {
3342				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3343				    TI_CMD_CODE_PROMISC_ENB, 0);
3344			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3345			    !(ifp->if_flags & IFF_PROMISC) &&
3346			    sc->ti_if_flags & IFF_PROMISC) {
3347				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3348				    TI_CMD_CODE_PROMISC_DIS, 0);
3349			} else
3350				ti_init_locked(sc);
3351		} else {
3352			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3353				ti_stop(sc);
3354			}
3355		}
3356		sc->ti_if_flags = ifp->if_flags;
3357		TI_UNLOCK(sc);
3358		break;
3359	case SIOCADDMULTI:
3360	case SIOCDELMULTI:
3361		TI_LOCK(sc);
3362		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3363			ti_setmulti(sc);
3364		TI_UNLOCK(sc);
3365		break;
3366	case SIOCSIFMEDIA:
3367	case SIOCGIFMEDIA:
3368		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3369		break;
3370	case SIOCSIFCAP:
3371		TI_LOCK(sc);
3372		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3373		if (mask & IFCAP_HWCSUM) {
3374			if (IFCAP_HWCSUM & ifp->if_capenable)
3375				ifp->if_capenable &= ~IFCAP_HWCSUM;
3376			else
3377				ifp->if_capenable |= IFCAP_HWCSUM;
3378			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3379				ti_init_locked(sc);
3380		}
3381		TI_UNLOCK(sc);
3382		break;
3383	default:
3384		error = ether_ioctl(ifp, command, data);
3385		break;
3386	}
3387
3388	return (error);
3389}
3390
3391static int
3392ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3393{
3394	struct ti_softc *sc;
3395
3396	sc = dev->si_drv1;
3397	if (sc == NULL)
3398		return (ENODEV);
3399
3400	TI_LOCK(sc);
3401	sc->ti_flags |= TI_FLAG_DEBUGING;
3402	TI_UNLOCK(sc);
3403
3404	return (0);
3405}
3406
3407static int
3408ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3409{
3410	struct ti_softc *sc;
3411
3412	sc = dev->si_drv1;
3413	if (sc == NULL)
3414		return (ENODEV);
3415
3416	TI_LOCK(sc);
3417	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3418	TI_UNLOCK(sc);
3419
3420	return (0);
3421}
3422
3423/*
3424 * This ioctl routine goes along with the Tigon character device.
3425 */
3426static int
3427ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3428    struct thread *td)
3429{
3430	struct ti_softc *sc;
3431	int error;
3432
3433	sc = dev->si_drv1;
3434	if (sc == NULL)
3435		return (ENODEV);
3436
3437	error = 0;
3438
3439	switch (cmd) {
3440	case TIIOCGETSTATS:
3441	{
3442		struct ti_stats *outstats;
3443
3444		outstats = (struct ti_stats *)addr;
3445
3446		TI_LOCK(sc);
3447		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3448		      sizeof(struct ti_stats));
3449		TI_UNLOCK(sc);
3450		break;
3451	}
3452	case TIIOCGETPARAMS:
3453	{
3454		struct ti_params *params;
3455
3456		params = (struct ti_params *)addr;
3457
3458		TI_LOCK(sc);
3459		params->ti_stat_ticks = sc->ti_stat_ticks;
3460		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3461		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3462		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3463		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3464		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3465		params->param_mask = TI_PARAM_ALL;
3466		TI_UNLOCK(sc);
3467
3468		error = 0;
3469
3470		break;
3471	}
3472	case TIIOCSETPARAMS:
3473	{
3474		struct ti_params *params;
3475
3476		params = (struct ti_params *)addr;
3477
3478		TI_LOCK(sc);
3479		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3480			sc->ti_stat_ticks = params->ti_stat_ticks;
3481			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3482		}
3483
3484		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3485			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3486			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3487				    sc->ti_rx_coal_ticks);
3488		}
3489
3490		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3491			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3492			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3493				    sc->ti_tx_coal_ticks);
3494		}
3495
3496		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3497			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3498			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3499				    sc->ti_rx_max_coal_bds);
3500		}
3501
3502		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3503			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3504			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3505				    sc->ti_tx_max_coal_bds);
3506		}
3507
3508		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3509			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3510			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3511				    sc->ti_tx_buf_ratio);
3512		}
3513		TI_UNLOCK(sc);
3514
3515		error = 0;
3516
3517		break;
3518	}
3519	case TIIOCSETTRACE: {
3520		ti_trace_type	trace_type;
3521
3522		trace_type = *(ti_trace_type *)addr;
3523
3524		/*
3525		 * Set tracing to whatever the user asked for.  Setting
3526		 * this register to 0 should have the effect of disabling
3527		 * tracing.
3528		 */
3529		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3530
3531		error = 0;
3532
3533		break;
3534	}
3535	case TIIOCGETTRACE: {
3536		struct ti_trace_buf *trace_buf;
3537		uint32_t trace_start, cur_trace_ptr, trace_len;
3538
3539		trace_buf = (struct ti_trace_buf *)addr;
3540
3541		TI_LOCK(sc);
3542		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3543		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3544		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3545
3546#if 0
3547		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3548		       "trace_len = %d\n", trace_start,
3549		       cur_trace_ptr, trace_len);
3550		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3551		       trace_buf->buf_len);
3552#endif
3553
3554		error = ti_copy_mem(sc, trace_start, min(trace_len,
3555				    trace_buf->buf_len),
3556				    (caddr_t)trace_buf->buf, 1, 1);
3557
3558		if (error == 0) {
3559			trace_buf->fill_len = min(trace_len,
3560						  trace_buf->buf_len);
3561			if (cur_trace_ptr < trace_start)
3562				trace_buf->cur_trace_ptr =
3563					trace_start - cur_trace_ptr;
3564			else
3565				trace_buf->cur_trace_ptr =
3566					cur_trace_ptr - trace_start;
3567		} else
3568			trace_buf->fill_len = 0;
3569		TI_UNLOCK(sc);
3570
3571		break;
3572	}
3573
3574	/*
3575	 * For debugging, five ioctls are needed:
3576	 * ALT_ATTACH
3577	 * ALT_READ_TG_REG
3578	 * ALT_WRITE_TG_REG
3579	 * ALT_READ_TG_MEM
3580	 * ALT_WRITE_TG_MEM
3581	 */
3582	case ALT_ATTACH:
3583		/*
3584		 * From what I can tell, Alteon's Solaris Tigon driver
3585		 * only has one character device, so you have to attach
3586		 * to the Tigon board you're interested in.  This seems
3587		 * like a not-so-good way to do things, since unless you
3588		 * subsequently specify the unit number of the device
3589		 * you're interested in every ioctl, you'll only be
3590		 * able to debug one board at a time.
3591		 */
3592		error = 0;
3593		break;
3594	case ALT_READ_TG_MEM:
3595	case ALT_WRITE_TG_MEM:
3596	{
3597		struct tg_mem *mem_param;
3598		uint32_t sram_end, scratch_end;
3599
3600		mem_param = (struct tg_mem *)addr;
3601
3602		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3603			sram_end = TI_END_SRAM_I;
3604			scratch_end = TI_END_SCRATCH_I;
3605		} else {
3606			sram_end = TI_END_SRAM_II;
3607			scratch_end = TI_END_SCRATCH_II;
3608		}
3609
3610		/*
3611		 * For now, we'll only handle accessing regular SRAM,
3612		 * nothing else.
3613		 */
3614		TI_LOCK(sc);
3615		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3616		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3617			/*
3618			 * In this instance, we always copy to/from user
3619			 * space, so the user space argument is set to 1.
3620			 */
3621			error = ti_copy_mem(sc, mem_param->tgAddr,
3622					    mem_param->len,
3623					    mem_param->userAddr, 1,
3624					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3625		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3626			&& (mem_param->tgAddr <= scratch_end)) {
3627			error = ti_copy_scratch(sc, mem_param->tgAddr,
3628						mem_param->len,
3629						mem_param->userAddr, 1,
3630						(cmd == ALT_READ_TG_MEM) ?
3631						1 : 0, TI_PROCESSOR_A);
3632		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3633			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3634			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3635				if_printf(sc->ti_ifp,
3636				    "invalid memory range for Tigon I\n");
3637				error = EINVAL;
3638				break;
3639			}
3640			error = ti_copy_scratch(sc, mem_param->tgAddr -
3641						TI_SCRATCH_DEBUG_OFF,
3642						mem_param->len,
3643						mem_param->userAddr, 1,
3644						(cmd == ALT_READ_TG_MEM) ?
3645						1 : 0, TI_PROCESSOR_B);
3646		} else {
3647			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3648			        "out of supported range\n",
3649			        mem_param->tgAddr, mem_param->len);
3650			error = EINVAL;
3651		}
3652		TI_UNLOCK(sc);
3653
3654		break;
3655	}
3656	case ALT_READ_TG_REG:
3657	case ALT_WRITE_TG_REG:
3658	{
3659		struct tg_reg	*regs;
3660		uint32_t	tmpval;
3661
3662		regs = (struct tg_reg *)addr;
3663
3664		/*
3665		 * Make sure the address in question isn't out of range.
3666		 */
3667		if (regs->addr > TI_REG_MAX) {
3668			error = EINVAL;
3669			break;
3670		}
3671		TI_LOCK(sc);
3672		if (cmd == ALT_READ_TG_REG) {
3673			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3674						regs->addr, &tmpval, 1);
3675			regs->data = ntohl(tmpval);
3676#if 0
3677			if ((regs->addr == TI_CPU_STATE)
3678			 || (regs->addr == TI_CPU_CTL_B)) {
3679				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3680				       regs->addr, tmpval);
3681			}
3682#endif
3683		} else {
3684			tmpval = htonl(regs->data);
3685			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3686						 regs->addr, &tmpval, 1);
3687		}
3688		TI_UNLOCK(sc);
3689
3690		break;
3691	}
3692	default:
3693		error = ENOTTY;
3694		break;
3695	}
3696	return (error);
3697}
3698
3699static void
3700ti_watchdog(void *arg)
3701{
3702	struct ti_softc *sc;
3703	struct ifnet *ifp;
3704
3705	sc = arg;
3706	TI_LOCK_ASSERT(sc);
3707	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3708	if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3709		return;
3710
3711	/*
3712	 * When we're debugging, the chip is often stopped for long periods
3713	 * of time, and that would normally cause the watchdog timer to fire.
3714	 * Since that impedes debugging, we don't want to do that.
3715	 */
3716	if (sc->ti_flags & TI_FLAG_DEBUGING)
3717		return;
3718
3719	ifp = sc->ti_ifp;
3720	if_printf(ifp, "watchdog timeout -- resetting\n");
3721	ti_stop(sc);
3722	ti_init_locked(sc);
3723
3724	ifp->if_oerrors++;
3725}
3726
3727/*
3728 * Stop the adapter and free any mbufs allocated to the
3729 * RX and TX lists.
3730 */
3731static void
3732ti_stop(struct ti_softc *sc)
3733{
3734	struct ifnet *ifp;
3735	struct ti_cmd_desc cmd;
3736
3737	TI_LOCK_ASSERT(sc);
3738
3739	ifp = sc->ti_ifp;
3740
3741	/* Disable host interrupts. */
3742	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3743	/*
3744	 * Tell firmware we're shutting down.
3745	 */
3746	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3747
3748	/* Halt and reinitialize. */
3749	if (ti_chipinit(sc) != 0)
3750		return;
3751	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3752	if (ti_chipinit(sc) != 0)
3753		return;
3754
3755	/* Free the RX lists. */
3756	ti_free_rx_ring_std(sc);
3757
3758	/* Free jumbo RX list. */
3759	ti_free_rx_ring_jumbo(sc);
3760
3761	/* Free mini RX list. */
3762	ti_free_rx_ring_mini(sc);
3763
3764	/* Free TX buffers. */
3765	ti_free_tx_ring(sc);
3766
3767	sc->ti_ev_prodidx.ti_idx = 0;
3768	sc->ti_return_prodidx.ti_idx = 0;
3769	sc->ti_tx_considx.ti_idx = 0;
3770	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3771
3772	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3773	callout_stop(&sc->ti_watchdog);
3774}
3775
3776/*
3777 * Stop all chip I/O so that the kernel's probe routines don't
3778 * get confused by errant DMAs when rebooting.
3779 */
3780static int
3781ti_shutdown(device_t dev)
3782{
3783	struct ti_softc *sc;
3784
3785	sc = device_get_softc(dev);
3786	TI_LOCK(sc);
3787	ti_chipinit(sc);
3788	TI_UNLOCK(sc);
3789
3790	return (0);
3791}
3792