if_ti.c revision 219547
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35 * Manuals, sample driver and firmware source kits are available
36 * from http://www.alteon.com/support/openkits.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48 * filtering and jumbo (9014 byte) frames. The hardware is largely
49 * controlled by firmware, which must be loaded into the NIC during
50 * initialization.
51 *
52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53 * revision, which supports new features such as extended commands,
54 * extended jumbo receive ring desciptors and a mini receive ring.
55 *
56 * Alteon Networks is to be commended for releasing such a vast amount
57 * of development material for the Tigon NIC without requiring an NDA
58 * (although they really should have done it a long time ago). With
59 * any luck, the other vendors will finally wise up and follow Alteon's
60 * stellar example.
61 *
62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63 * this driver by #including it as a C header file. This bloats the
64 * driver somewhat, but it's the easiest method considering that the
65 * driver code and firmware code need to be kept in sync. The source
66 * for the firmware is not provided with the FreeBSD distribution since
67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68 *
69 * The following people deserve special thanks:
70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71 *   for testing
72 * - Raymond Lee of Netgear, for providing a pair of Netgear
73 *   GA620 Tigon 2 boards for testing
74 * - Ulf Zimmermann, for bringing the GA260 to my attention and
75 *   convincing me to write this driver.
76 * - Andrew Gallatin for providing FreeBSD/Alpha support.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/dev/ti/if_ti.c 219547 2011-03-11 22:32:17Z marius $");
81
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/module.h>
91#include <sys/socket.h>
92#include <sys/queue.h>
93#include <sys/conf.h>
94#include <sys/sf_buf.h>
95
96#include <net/if.h>
97#include <net/if_arp.h>
98#include <net/ethernet.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101#include <net/if_types.h>
102#include <net/if_vlan_var.h>
103
104#include <net/bpf.h>
105
106#include <netinet/in_systm.h>
107#include <netinet/in.h>
108#include <netinet/ip.h>
109
110#include <machine/bus.h>
111#include <machine/resource.h>
112#include <sys/bus.h>
113#include <sys/rman.h>
114
115/* #define TI_PRIVATE_JUMBOS */
116#ifndef TI_PRIVATE_JUMBOS
117#include <vm/vm.h>
118#include <vm/vm_page.h>
119#endif
120
121#include <dev/pci/pcireg.h>
122#include <dev/pci/pcivar.h>
123
124#include <sys/tiio.h>
125#include <dev/ti/if_tireg.h>
126#include <dev/ti/ti_fw.h>
127#include <dev/ti/ti_fw2.h>
128
129#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
130/*
131 * We can only turn on header splitting if we're using extended receive
132 * BDs.
133 */
134#if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
135#error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
136#endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
137
138typedef enum {
139	TI_SWAP_HTON,
140	TI_SWAP_NTOH
141} ti_swap_type;
142
143
144/*
145 * Various supported device vendors/types and their names.
146 */
147
148static const struct ti_type const ti_devs[] = {
149	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
150		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
151	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
152		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
153	{ TC_VENDORID,	TC_DEVICEID_3C985,
154		"3Com 3c985-SX Gigabit Ethernet" },
155	{ NG_VENDORID, NG_DEVICEID_GA620,
156		"Netgear GA620 1000baseSX Gigabit Ethernet" },
157	{ NG_VENDORID, NG_DEVICEID_GA620T,
158		"Netgear GA620 1000baseT Gigabit Ethernet" },
159	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
160		"Silicon Graphics Gigabit Ethernet" },
161	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
162		"Farallon PN9000SX Gigabit Ethernet" },
163	{ 0, 0, NULL }
164};
165
166
167static	d_open_t	ti_open;
168static	d_close_t	ti_close;
169static	d_ioctl_t	ti_ioctl2;
170
171static struct cdevsw ti_cdevsw = {
172	.d_version =	D_VERSION,
173	.d_flags =	0,
174	.d_open =	ti_open,
175	.d_close =	ti_close,
176	.d_ioctl =	ti_ioctl2,
177	.d_name =	"ti",
178};
179
180static int ti_probe(device_t);
181static int ti_attach(device_t);
182static int ti_detach(device_t);
183static void ti_txeof(struct ti_softc *);
184static void ti_rxeof(struct ti_softc *);
185
186static void ti_stats_update(struct ti_softc *);
187static int ti_encap(struct ti_softc *, struct mbuf **);
188
189static void ti_intr(void *);
190static void ti_start(struct ifnet *);
191static void ti_start_locked(struct ifnet *);
192static int ti_ioctl(struct ifnet *, u_long, caddr_t);
193static void ti_init(void *);
194static void ti_init_locked(void *);
195static void ti_init2(struct ti_softc *);
196static void ti_stop(struct ti_softc *);
197static void ti_watchdog(void *);
198static int ti_shutdown(device_t);
199static int ti_ifmedia_upd(struct ifnet *);
200static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
201
202static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
203static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
204static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
205
206static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
207static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
208static void ti_setmulti(struct ti_softc *);
209
210static void ti_mem_read(struct ti_softc *, u_int32_t, u_int32_t, void *);
211static void ti_mem_write(struct ti_softc *, u_int32_t, u_int32_t, void *);
212static void ti_mem_zero(struct ti_softc *, u_int32_t, u_int32_t);
213static int ti_copy_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t, int, int);
214static int ti_copy_scratch(struct ti_softc *, u_int32_t, u_int32_t, caddr_t,
215		int, int, int);
216static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
217static void ti_loadfw(struct ti_softc *);
218static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
219static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
220static void ti_handle_events(struct ti_softc *);
221static int ti_alloc_dmamaps(struct ti_softc *);
222static void ti_free_dmamaps(struct ti_softc *);
223static int ti_alloc_jumbo_mem(struct ti_softc *);
224#ifdef TI_PRIVATE_JUMBOS
225static void *ti_jalloc(struct ti_softc *);
226static void ti_jfree(void *, void *);
227#endif /* TI_PRIVATE_JUMBOS */
228static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
229static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
230static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
231static int ti_init_rx_ring_std(struct ti_softc *);
232static void ti_free_rx_ring_std(struct ti_softc *);
233static int ti_init_rx_ring_jumbo(struct ti_softc *);
234static void ti_free_rx_ring_jumbo(struct ti_softc *);
235static int ti_init_rx_ring_mini(struct ti_softc *);
236static void ti_free_rx_ring_mini(struct ti_softc *);
237static void ti_free_tx_ring(struct ti_softc *);
238static int ti_init_tx_ring(struct ti_softc *);
239
240static int ti_64bitslot_war(struct ti_softc *);
241static int ti_chipinit(struct ti_softc *);
242static int ti_gibinit(struct ti_softc *);
243
244#ifdef TI_JUMBO_HDRSPLIT
245static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
246					     int pkt_len, int idx);
247#endif /* TI_JUMBO_HDRSPLIT */
248
249static device_method_t ti_methods[] = {
250	/* Device interface */
251	DEVMETHOD(device_probe,		ti_probe),
252	DEVMETHOD(device_attach,	ti_attach),
253	DEVMETHOD(device_detach,	ti_detach),
254	DEVMETHOD(device_shutdown,	ti_shutdown),
255	{ 0, 0 }
256};
257
258static driver_t ti_driver = {
259	"ti",
260	ti_methods,
261	sizeof(struct ti_softc)
262};
263
264static devclass_t ti_devclass;
265
266DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
267MODULE_DEPEND(ti, pci, 1, 1, 1);
268MODULE_DEPEND(ti, ether, 1, 1, 1);
269
270/*
271 * Send an instruction or address to the EEPROM, check for ACK.
272 */
273static u_int32_t ti_eeprom_putbyte(sc, byte)
274	struct ti_softc		*sc;
275	int			byte;
276{
277	int			i, ack = 0;
278
279	/*
280	 * Make sure we're in TX mode.
281	 */
282	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
283
284	/*
285	 * Feed in each bit and stobe the clock.
286	 */
287	for (i = 0x80; i; i >>= 1) {
288		if (byte & i) {
289			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
290		} else {
291			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
292		}
293		DELAY(1);
294		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
295		DELAY(1);
296		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
297	}
298
299	/*
300	 * Turn off TX mode.
301	 */
302	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
303
304	/*
305	 * Check for ack.
306	 */
307	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
308	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
309	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
310
311	return (ack);
312}
313
314/*
315 * Read a byte of data stored in the EEPROM at address 'addr.'
316 * We have to send two address bytes since the EEPROM can hold
317 * more than 256 bytes of data.
318 */
319static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
320	struct ti_softc		*sc;
321	int			addr;
322	u_int8_t		*dest;
323{
324	int			i;
325	u_int8_t		byte = 0;
326
327	EEPROM_START;
328
329	/*
330	 * Send write control code to EEPROM.
331	 */
332	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
333		device_printf(sc->ti_dev,
334		    "failed to send write command, status: %x\n",
335		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
336		return (1);
337	}
338
339	/*
340	 * Send first byte of address of byte we want to read.
341	 */
342	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
343		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
344		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
345		return (1);
346	}
347	/*
348	 * Send second byte address of byte we want to read.
349	 */
350	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
351		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
352		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
353		return (1);
354	}
355
356	EEPROM_STOP;
357	EEPROM_START;
358	/*
359	 * Send read control code to EEPROM.
360	 */
361	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
362		device_printf(sc->ti_dev,
363		    "failed to send read command, status: %x\n",
364		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
365		return (1);
366	}
367
368	/*
369	 * Start reading bits from EEPROM.
370	 */
371	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
372	for (i = 0x80; i; i >>= 1) {
373		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
374		DELAY(1);
375		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
376			byte |= i;
377		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
378		DELAY(1);
379	}
380
381	EEPROM_STOP;
382
383	/*
384	 * No ACK generated for read, so just return byte.
385	 */
386
387	*dest = byte;
388
389	return (0);
390}
391
392/*
393 * Read a sequence of bytes from the EEPROM.
394 */
395static int
396ti_read_eeprom(sc, dest, off, cnt)
397	struct ti_softc		*sc;
398	caddr_t			dest;
399	int			off;
400	int			cnt;
401{
402	int			err = 0, i;
403	u_int8_t		byte = 0;
404
405	for (i = 0; i < cnt; i++) {
406		err = ti_eeprom_getbyte(sc, off + i, &byte);
407		if (err)
408			break;
409		*(dest + i) = byte;
410	}
411
412	return (err ? 1 : 0);
413}
414
415/*
416 * NIC memory read function.
417 * Can be used to copy data from NIC local memory.
418 */
419static void
420ti_mem_read(sc, addr, len, buf)
421	struct ti_softc		*sc;
422	u_int32_t		addr, len;
423	void			*buf;
424{
425	int			segptr, segsize, cnt;
426	char			*ptr;
427
428	segptr = addr;
429	cnt = len;
430	ptr = buf;
431
432	while (cnt) {
433		if (cnt < TI_WINLEN)
434			segsize = cnt;
435		else
436			segsize = TI_WINLEN - (segptr % TI_WINLEN);
437		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
438		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
439		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
440		    segsize / 4);
441		ptr += segsize;
442		segptr += segsize;
443		cnt -= segsize;
444	}
445}
446
447
448/*
449 * NIC memory write function.
450 * Can be used to copy data into NIC local memory.
451 */
452static void
453ti_mem_write(sc, addr, len, buf)
454	struct ti_softc		*sc;
455	u_int32_t		addr, len;
456	void			*buf;
457{
458	int			segptr, segsize, cnt;
459	char			*ptr;
460
461	segptr = addr;
462	cnt = len;
463	ptr = buf;
464
465	while (cnt) {
466		if (cnt < TI_WINLEN)
467			segsize = cnt;
468		else
469			segsize = TI_WINLEN - (segptr % TI_WINLEN);
470		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
471		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
472		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
473		    segsize / 4);
474		ptr += segsize;
475		segptr += segsize;
476		cnt -= segsize;
477	}
478}
479
480/*
481 * NIC memory read function.
482 * Can be used to clear a section of NIC local memory.
483 */
484static void
485ti_mem_zero(sc, addr, len)
486	struct ti_softc		*sc;
487	u_int32_t		addr, len;
488{
489	int			segptr, segsize, cnt;
490
491	segptr = addr;
492	cnt = len;
493
494	while (cnt) {
495		if (cnt < TI_WINLEN)
496			segsize = cnt;
497		else
498			segsize = TI_WINLEN - (segptr % TI_WINLEN);
499		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
500		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
501		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
502		segptr += segsize;
503		cnt -= segsize;
504	}
505}
506
507static int
508ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
509	struct ti_softc		*sc;
510	u_int32_t		tigon_addr, len;
511	caddr_t			buf;
512	int			useraddr, readdata;
513{
514	int		segptr, segsize, cnt;
515	caddr_t		ptr;
516	u_int32_t	origwin;
517	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
518	int		resid, segresid;
519	int		first_pass;
520
521	TI_LOCK_ASSERT(sc);
522
523	/*
524	 * At the moment, we don't handle non-aligned cases, we just bail.
525	 * If this proves to be a problem, it will be fixed.
526	 */
527	if ((readdata == 0)
528	 && (tigon_addr & 0x3)) {
529		device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
530		    "word-aligned\n", __func__, tigon_addr);
531		device_printf(sc->ti_dev, "%s: unaligned writes aren't "
532		    "yet supported\n", __func__);
533		return (EINVAL);
534	}
535
536	segptr = tigon_addr & ~0x3;
537	segresid = tigon_addr - segptr;
538
539	/*
540	 * This is the non-aligned amount left over that we'll need to
541	 * copy.
542	 */
543	resid = len & 0x3;
544
545	/* Add in the left over amount at the front of the buffer */
546	resid += segresid;
547
548	cnt = len & ~0x3;
549	/*
550	 * If resid + segresid is >= 4, add multiples of 4 to the count and
551	 * decrease the residual by that much.
552	 */
553	cnt += resid & ~0x3;
554	resid -= resid & ~0x3;
555
556	ptr = buf;
557
558	first_pass = 1;
559
560	/*
561	 * Save the old window base value.
562	 */
563	origwin = CSR_READ_4(sc, TI_WINBASE);
564
565	while (cnt) {
566		bus_size_t ti_offset;
567
568		if (cnt < TI_WINLEN)
569			segsize = cnt;
570		else
571			segsize = TI_WINLEN - (segptr % TI_WINLEN);
572		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
573
574		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
575
576		if (readdata) {
577
578			bus_space_read_region_4(sc->ti_btag,
579						sc->ti_bhandle, ti_offset,
580						(u_int32_t *)tmparray,
581						segsize >> 2);
582			if (useraddr) {
583				/*
584				 * Yeah, this is a little on the kludgy
585				 * side, but at least this code is only
586				 * used for debugging.
587				 */
588				ti_bcopy_swap(tmparray, tmparray2, segsize,
589					      TI_SWAP_NTOH);
590
591				TI_UNLOCK(sc);
592				if (first_pass) {
593					copyout(&tmparray2[segresid], ptr,
594						segsize - segresid);
595					first_pass = 0;
596				} else
597					copyout(tmparray2, ptr, segsize);
598				TI_LOCK(sc);
599			} else {
600				if (first_pass) {
601
602					ti_bcopy_swap(tmparray, tmparray2,
603						      segsize, TI_SWAP_NTOH);
604					TI_UNLOCK(sc);
605					bcopy(&tmparray2[segresid], ptr,
606					      segsize - segresid);
607					TI_LOCK(sc);
608					first_pass = 0;
609				} else
610					ti_bcopy_swap(tmparray, ptr, segsize,
611						      TI_SWAP_NTOH);
612			}
613
614		} else {
615			if (useraddr) {
616				TI_UNLOCK(sc);
617				copyin(ptr, tmparray2, segsize);
618				TI_LOCK(sc);
619				ti_bcopy_swap(tmparray2, tmparray, segsize,
620					      TI_SWAP_HTON);
621			} else
622				ti_bcopy_swap(ptr, tmparray, segsize,
623					      TI_SWAP_HTON);
624
625			bus_space_write_region_4(sc->ti_btag,
626						 sc->ti_bhandle, ti_offset,
627						 (u_int32_t *)tmparray,
628						 segsize >> 2);
629		}
630		segptr += segsize;
631		ptr += segsize;
632		cnt -= segsize;
633	}
634
635	/*
636	 * Handle leftover, non-word-aligned bytes.
637	 */
638	if (resid != 0) {
639		u_int32_t	tmpval, tmpval2;
640		bus_size_t	ti_offset;
641
642		/*
643		 * Set the segment pointer.
644		 */
645		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
646
647		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
648
649		/*
650		 * First, grab whatever is in our source/destination.
651		 * We'll obviously need this for reads, but also for
652		 * writes, since we'll be doing read/modify/write.
653		 */
654		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
655					ti_offset, &tmpval, 1);
656
657		/*
658		 * Next, translate this from little-endian to big-endian
659		 * (at least on i386 boxes).
660		 */
661		tmpval2 = ntohl(tmpval);
662
663		if (readdata) {
664			/*
665			 * If we're reading, just copy the leftover number
666			 * of bytes from the host byte order buffer to
667			 * the user's buffer.
668			 */
669			if (useraddr) {
670				TI_UNLOCK(sc);
671				copyout(&tmpval2, ptr, resid);
672				TI_LOCK(sc);
673			} else
674				bcopy(&tmpval2, ptr, resid);
675		} else {
676			/*
677			 * If we're writing, first copy the bytes to be
678			 * written into the network byte order buffer,
679			 * leaving the rest of the buffer with whatever was
680			 * originally in there.  Then, swap the bytes
681			 * around into host order and write them out.
682			 *
683			 * XXX KDM the read side of this has been verified
684			 * to work, but the write side of it has not been
685			 * verified.  So user beware.
686			 */
687			if (useraddr) {
688				TI_UNLOCK(sc);
689				copyin(ptr, &tmpval2, resid);
690				TI_LOCK(sc);
691			} else
692				bcopy(ptr, &tmpval2, resid);
693
694			tmpval = htonl(tmpval2);
695
696			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
697						 ti_offset, &tmpval, 1);
698		}
699	}
700
701	CSR_WRITE_4(sc, TI_WINBASE, origwin);
702
703	return (0);
704}
705
706static int
707ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
708	struct ti_softc		*sc;
709	u_int32_t		tigon_addr, len;
710	caddr_t			buf;
711	int			useraddr, readdata;
712	int			cpu;
713{
714	u_int32_t	segptr;
715	int		cnt;
716	u_int32_t	tmpval, tmpval2;
717	caddr_t		ptr;
718
719	TI_LOCK_ASSERT(sc);
720
721	/*
722	 * At the moment, we don't handle non-aligned cases, we just bail.
723	 * If this proves to be a problem, it will be fixed.
724	 */
725	if (tigon_addr & 0x3) {
726		device_printf(sc->ti_dev, "%s: tigon address %#x "
727		    "isn't word-aligned\n", __func__, tigon_addr);
728		return (EINVAL);
729	}
730
731	if (len & 0x3) {
732		device_printf(sc->ti_dev, "%s: transfer length %d "
733		    "isn't word-aligned\n", __func__, len);
734		return (EINVAL);
735	}
736
737	segptr = tigon_addr;
738	cnt = len;
739	ptr = buf;
740
741	while (cnt) {
742		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
743
744		if (readdata) {
745			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
746
747			tmpval = ntohl(tmpval2);
748
749			/*
750			 * Note:  I've used this debugging interface
751			 * extensively with Alteon's 12.3.15 firmware,
752			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
753			 *
754			 * When you compile the firmware without
755			 * optimization, which is necessary sometimes in
756			 * order to properly step through it, you sometimes
757			 * read out a bogus value of 0xc0017c instead of
758			 * whatever was supposed to be in that scratchpad
759			 * location.  That value is on the stack somewhere,
760			 * but I've never been able to figure out what was
761			 * causing the problem.
762			 *
763			 * The address seems to pop up in random places,
764			 * often not in the same place on two subsequent
765			 * reads.
766			 *
767			 * In any case, the underlying data doesn't seem
768			 * to be affected, just the value read out.
769			 *
770			 * KDM, 3/7/2000
771			 */
772
773			if (tmpval2 == 0xc0017c)
774				device_printf(sc->ti_dev, "found 0xc0017c at "
775				    "%#x (tmpval2)\n", segptr);
776
777			if (tmpval == 0xc0017c)
778				device_printf(sc->ti_dev, "found 0xc0017c at "
779				    "%#x (tmpval)\n", segptr);
780
781			if (useraddr)
782				copyout(&tmpval, ptr, 4);
783			else
784				bcopy(&tmpval, ptr, 4);
785		} else {
786			if (useraddr)
787				copyin(ptr, &tmpval2, 4);
788			else
789				bcopy(ptr, &tmpval2, 4);
790
791			tmpval = htonl(tmpval2);
792
793			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
794		}
795
796		cnt -= 4;
797		segptr += 4;
798		ptr += 4;
799	}
800
801	return (0);
802}
803
804static int
805ti_bcopy_swap(src, dst, len, swap_type)
806	const void	*src;
807	void		*dst;
808	size_t		len;
809	ti_swap_type	swap_type;
810{
811	const u_int8_t *tmpsrc;
812	u_int8_t *tmpdst;
813	size_t tmplen;
814
815	if (len & 0x3) {
816		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
817		       len);
818		return (-1);
819	}
820
821	tmpsrc = src;
822	tmpdst = dst;
823	tmplen = len;
824
825	while (tmplen) {
826		if (swap_type == TI_SWAP_NTOH)
827			*(u_int32_t *)tmpdst =
828				ntohl(*(const u_int32_t *)tmpsrc);
829		else
830			*(u_int32_t *)tmpdst =
831				htonl(*(const u_int32_t *)tmpsrc);
832
833		tmpsrc += 4;
834		tmpdst += 4;
835		tmplen -= 4;
836	}
837
838	return (0);
839}
840
841/*
842 * Load firmware image into the NIC. Check that the firmware revision
843 * is acceptable and see if we want the firmware for the Tigon 1 or
844 * Tigon 2.
845 */
846static void
847ti_loadfw(sc)
848	struct ti_softc		*sc;
849{
850
851	TI_LOCK_ASSERT(sc);
852
853	switch (sc->ti_hwrev) {
854	case TI_HWREV_TIGON:
855		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
856		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
857		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
858			device_printf(sc->ti_dev, "firmware revision mismatch; "
859			    "want %d.%d.%d, got %d.%d.%d\n",
860			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
861			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
862			    tigonFwReleaseMinor, tigonFwReleaseFix);
863			return;
864		}
865		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
866		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
867		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
868		    tigonFwRodata);
869		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
870		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
871		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
872		break;
873	case TI_HWREV_TIGON_II:
874		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
875		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
876		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
877			device_printf(sc->ti_dev, "firmware revision mismatch; "
878			    "want %d.%d.%d, got %d.%d.%d\n",
879			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
880			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
881			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
882			return;
883		}
884		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
885		    tigon2FwText);
886		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
887		    tigon2FwData);
888		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
889		    tigon2FwRodata);
890		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
891		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
892		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
893		break;
894	default:
895		device_printf(sc->ti_dev,
896		    "can't load firmware: unknown hardware rev\n");
897		break;
898	}
899}
900
901/*
902 * Send the NIC a command via the command ring.
903 */
904static void
905ti_cmd(sc, cmd)
906	struct ti_softc		*sc;
907	struct ti_cmd_desc	*cmd;
908{
909	int			index;
910
911	index = sc->ti_cmd_saved_prodidx;
912	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
913	TI_INC(index, TI_CMD_RING_CNT);
914	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
915	sc->ti_cmd_saved_prodidx = index;
916}
917
918/*
919 * Send the NIC an extended command. The 'len' parameter specifies the
920 * number of command slots to include after the initial command.
921 */
922static void
923ti_cmd_ext(sc, cmd, arg, len)
924	struct ti_softc		*sc;
925	struct ti_cmd_desc	*cmd;
926	caddr_t			arg;
927	int			len;
928{
929	int			index;
930	int			i;
931
932	index = sc->ti_cmd_saved_prodidx;
933	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
934	TI_INC(index, TI_CMD_RING_CNT);
935	for (i = 0; i < len; i++) {
936		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
937		    *(u_int32_t *)(&arg[i * 4]));
938		TI_INC(index, TI_CMD_RING_CNT);
939	}
940	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
941	sc->ti_cmd_saved_prodidx = index;
942}
943
944/*
945 * Handle events that have triggered interrupts.
946 */
947static void
948ti_handle_events(sc)
949	struct ti_softc		*sc;
950{
951	struct ti_event_desc	*e;
952
953	if (sc->ti_rdata->ti_event_ring == NULL)
954		return;
955
956	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
957		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
958		switch (TI_EVENT_EVENT(e)) {
959		case TI_EV_LINKSTAT_CHANGED:
960			sc->ti_linkstat = TI_EVENT_CODE(e);
961			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
962				device_printf(sc->ti_dev, "10/100 link up\n");
963			else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
964				device_printf(sc->ti_dev, "gigabit link up\n");
965			else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
966				device_printf(sc->ti_dev, "link down\n");
967			break;
968		case TI_EV_ERROR:
969			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
970				device_printf(sc->ti_dev, "invalid command\n");
971			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
972				device_printf(sc->ti_dev, "unknown command\n");
973			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
974				device_printf(sc->ti_dev, "bad config data\n");
975			break;
976		case TI_EV_FIRMWARE_UP:
977			ti_init2(sc);
978			break;
979		case TI_EV_STATS_UPDATED:
980			ti_stats_update(sc);
981			break;
982		case TI_EV_RESET_JUMBO_RING:
983		case TI_EV_MCAST_UPDATED:
984			/* Who cares. */
985			break;
986		default:
987			device_printf(sc->ti_dev, "unknown event: %d\n",
988			    TI_EVENT_EVENT(e));
989			break;
990		}
991		/* Advance the consumer index. */
992		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
993		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
994	}
995}
996
997static int
998ti_alloc_dmamaps(struct ti_softc *sc)
999{
1000	int i;
1001
1002	for (i = 0; i < TI_TX_RING_CNT; i++) {
1003		sc->ti_cdata.ti_txdesc[i].tx_m = NULL;
1004		sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
1005		if (bus_dmamap_create(sc->ti_mbuftx_dmat, 0,
1006				      &sc->ti_cdata.ti_txdesc[i].tx_dmamap))
1007			return (ENOBUFS);
1008	}
1009	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1010		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1011				      &sc->ti_cdata.ti_rx_std_maps[i]))
1012			return (ENOBUFS);
1013	}
1014
1015	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1016		if (bus_dmamap_create(sc->ti_jumbo_dmat, 0,
1017				      &sc->ti_cdata.ti_rx_jumbo_maps[i]))
1018			return (ENOBUFS);
1019	}
1020	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1021		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1022				      &sc->ti_cdata.ti_rx_mini_maps[i]))
1023			return (ENOBUFS);
1024	}
1025
1026	return (0);
1027}
1028
1029static void
1030ti_free_dmamaps(struct ti_softc *sc)
1031{
1032	int i;
1033
1034	if (sc->ti_mbuftx_dmat)
1035		for (i = 0; i < TI_TX_RING_CNT; i++)
1036			if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1037				bus_dmamap_destroy(sc->ti_mbuftx_dmat,
1038				    sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1039				sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
1040			}
1041
1042	if (sc->ti_mbufrx_dmat)
1043		for (i = 0; i < TI_STD_RX_RING_CNT; i++)
1044			if (sc->ti_cdata.ti_rx_std_maps[i]) {
1045				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1046				    sc->ti_cdata.ti_rx_std_maps[i]);
1047				sc->ti_cdata.ti_rx_std_maps[i] = 0;
1048			}
1049
1050	if (sc->ti_jumbo_dmat)
1051		for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++)
1052			if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1053				bus_dmamap_destroy(sc->ti_jumbo_dmat,
1054				    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1055				sc->ti_cdata.ti_rx_jumbo_maps[i] = 0;
1056			}
1057	if (sc->ti_mbufrx_dmat)
1058		for (i = 0; i < TI_MINI_RX_RING_CNT; i++)
1059			if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1060				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1061				    sc->ti_cdata.ti_rx_mini_maps[i]);
1062				sc->ti_cdata.ti_rx_mini_maps[i] = 0;
1063			}
1064}
1065
1066#ifdef TI_PRIVATE_JUMBOS
1067
1068/*
1069 * Memory management for the jumbo receive ring is a pain in the
1070 * butt. We need to allocate at least 9018 bytes of space per frame,
1071 * _and_ it has to be contiguous (unless you use the extended
1072 * jumbo descriptor format). Using malloc() all the time won't
1073 * work: malloc() allocates memory in powers of two, which means we
1074 * would end up wasting a considerable amount of space by allocating
1075 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
1076 * to do our own memory management.
1077 *
1078 * The driver needs to allocate a contiguous chunk of memory at boot
1079 * time. We then chop this up ourselves into 9K pieces and use them
1080 * as external mbuf storage.
1081 *
1082 * One issue here is how much memory to allocate. The jumbo ring has
1083 * 256 slots in it, but at 9K per slot than can consume over 2MB of
1084 * RAM. This is a bit much, especially considering we also need
1085 * RAM for the standard ring and mini ring (on the Tigon 2). To
1086 * save space, we only actually allocate enough memory for 64 slots
1087 * by default, which works out to between 500 and 600K. This can
1088 * be tuned by changing a #define in if_tireg.h.
1089 */
1090
1091static int
1092ti_alloc_jumbo_mem(sc)
1093	struct ti_softc		*sc;
1094{
1095	caddr_t			ptr;
1096	int			i;
1097	struct ti_jpool_entry   *entry;
1098
1099	/*
1100	 * Grab a big chunk o' storage.  Since we are chopping this pool up
1101	 * into ~9k chunks, there doesn't appear to be a need to use page
1102	 * alignment.
1103	 */
1104	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1105				1, 0,			/* algnmnt, boundary */
1106				BUS_SPACE_MAXADDR,	/* lowaddr */
1107				BUS_SPACE_MAXADDR,	/* highaddr */
1108				NULL, NULL,		/* filter, filterarg */
1109				TI_JMEM,		/* maxsize */
1110				1,			/* nsegments */
1111				TI_JMEM,		/* maxsegsize */
1112				0,			/* flags */
1113				NULL, NULL,		/* lockfunc, lockarg */
1114				&sc->ti_jumbo_dmat) != 0) {
1115		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1116		return (ENOBUFS);
1117	}
1118
1119	if (bus_dmamem_alloc(sc->ti_jumbo_dmat,
1120			     (void**)&sc->ti_cdata.ti_jumbo_buf,
1121			     BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
1122			     &sc->ti_jumbo_dmamap) != 0) {
1123		device_printf(sc->ti_dev, "Failed to allocate jumbo memory\n");
1124		return (ENOBUFS);
1125	}
1126
1127	SLIST_INIT(&sc->ti_jfree_listhead);
1128	SLIST_INIT(&sc->ti_jinuse_listhead);
1129
1130	/*
1131	 * Now divide it up into 9K pieces and save the addresses
1132	 * in an array.
1133	 */
1134	ptr = sc->ti_cdata.ti_jumbo_buf;
1135	for (i = 0; i < TI_JSLOTS; i++) {
1136		sc->ti_cdata.ti_jslots[i] = ptr;
1137		ptr += TI_JLEN;
1138		entry = malloc(sizeof(struct ti_jpool_entry),
1139			       M_DEVBUF, M_NOWAIT);
1140		if (entry == NULL) {
1141			device_printf(sc->ti_dev, "no memory for jumbo "
1142			    "buffer queue!\n");
1143			return (ENOBUFS);
1144		}
1145		entry->slot = i;
1146		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1147	}
1148
1149	return (0);
1150}
1151
1152/*
1153 * Allocate a jumbo buffer.
1154 */
1155static void *ti_jalloc(sc)
1156	struct ti_softc		*sc;
1157{
1158	struct ti_jpool_entry	*entry;
1159
1160	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1161
1162	if (entry == NULL) {
1163		device_printf(sc->ti_dev, "no free jumbo buffers\n");
1164		return (NULL);
1165	}
1166
1167	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1168	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1169	return (sc->ti_cdata.ti_jslots[entry->slot]);
1170}
1171
1172/*
1173 * Release a jumbo buffer.
1174 */
1175static void
1176ti_jfree(buf, args)
1177	void			*buf;
1178	void			*args;
1179{
1180	struct ti_softc		*sc;
1181	int			i;
1182	struct ti_jpool_entry	*entry;
1183
1184	/* Extract the softc struct pointer. */
1185	sc = (struct ti_softc *)args;
1186
1187	if (sc == NULL)
1188		panic("ti_jfree: didn't get softc pointer!");
1189
1190	/* calculate the slot this buffer belongs to */
1191	i = ((vm_offset_t)buf
1192	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1193
1194	if ((i < 0) || (i >= TI_JSLOTS))
1195		panic("ti_jfree: asked to free buffer that we don't manage!");
1196
1197	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1198	if (entry == NULL)
1199		panic("ti_jfree: buffer not in use!");
1200	entry->slot = i;
1201	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1202	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1203}
1204
1205#else
1206
1207static int
1208ti_alloc_jumbo_mem(sc)
1209	struct ti_softc		*sc;
1210{
1211
1212	/*
1213	 * The VM system will take care of providing aligned pages.  Alignment
1214	 * is set to 1 here so that busdma resources won't be wasted.
1215	 */
1216	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1217				1, 0,			/* algnmnt, boundary */
1218				BUS_SPACE_MAXADDR,	/* lowaddr */
1219				BUS_SPACE_MAXADDR,	/* highaddr */
1220				NULL, NULL,		/* filter, filterarg */
1221				PAGE_SIZE * 4 /*XXX*/,	/* maxsize */
1222				4,			/* nsegments */
1223				PAGE_SIZE,		/* maxsegsize */
1224				0,			/* flags */
1225				NULL, NULL,		/* lockfunc, lockarg */
1226				&sc->ti_jumbo_dmat) != 0) {
1227		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1228		return (ENOBUFS);
1229	}
1230
1231	return (0);
1232}
1233
1234#endif /* TI_PRIVATE_JUMBOS */
1235
1236/*
1237 * Intialize a standard receive ring descriptor.
1238 */
1239static int
1240ti_newbuf_std(sc, i, m)
1241	struct ti_softc		*sc;
1242	int			i;
1243	struct mbuf		*m;
1244{
1245	bus_dmamap_t		map;
1246	bus_dma_segment_t	segs;
1247	struct mbuf		*m_new = NULL;
1248	struct ti_rx_desc	*r;
1249	int			nsegs;
1250
1251	nsegs = 0;
1252	if (m == NULL) {
1253		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1254		if (m_new == NULL)
1255			return (ENOBUFS);
1256
1257		MCLGET(m_new, M_DONTWAIT);
1258		if (!(m_new->m_flags & M_EXT)) {
1259			m_freem(m_new);
1260			return (ENOBUFS);
1261		}
1262		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1263	} else {
1264		m_new = m;
1265		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1266		m_new->m_data = m_new->m_ext.ext_buf;
1267	}
1268
1269	m_adj(m_new, ETHER_ALIGN);
1270	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1271	r = &sc->ti_rdata->ti_rx_std_ring[i];
1272	map = sc->ti_cdata.ti_rx_std_maps[i];
1273	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1274				    &nsegs, 0))
1275		return (ENOBUFS);
1276	if (nsegs != 1)
1277		return (ENOBUFS);
1278	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1279	r->ti_len = segs.ds_len;
1280	r->ti_type = TI_BDTYPE_RECV_BD;
1281	r->ti_flags = 0;
1282	if (sc->ti_ifp->if_hwassist)
1283		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1284	r->ti_idx = i;
1285
1286	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1287	return (0);
1288}
1289
1290/*
1291 * Intialize a mini receive ring descriptor. This only applies to
1292 * the Tigon 2.
1293 */
1294static int
1295ti_newbuf_mini(sc, i, m)
1296	struct ti_softc		*sc;
1297	int			i;
1298	struct mbuf		*m;
1299{
1300	bus_dma_segment_t	segs;
1301	bus_dmamap_t		map;
1302	struct mbuf		*m_new = NULL;
1303	struct ti_rx_desc	*r;
1304	int			nsegs;
1305
1306	nsegs = 0;
1307	if (m == NULL) {
1308		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1309		if (m_new == NULL) {
1310			return (ENOBUFS);
1311		}
1312		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1313	} else {
1314		m_new = m;
1315		m_new->m_data = m_new->m_pktdat;
1316		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1317	}
1318
1319	m_adj(m_new, ETHER_ALIGN);
1320	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1321	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1322	map = sc->ti_cdata.ti_rx_mini_maps[i];
1323	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1324				    &nsegs, 0))
1325		return (ENOBUFS);
1326	if (nsegs != 1)
1327		return (ENOBUFS);
1328	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1329	r->ti_len = segs.ds_len;
1330	r->ti_type = TI_BDTYPE_RECV_BD;
1331	r->ti_flags = TI_BDFLAG_MINI_RING;
1332	if (sc->ti_ifp->if_hwassist)
1333		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1334	r->ti_idx = i;
1335
1336	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1337	return (0);
1338}
1339
1340#ifdef TI_PRIVATE_JUMBOS
1341
1342/*
1343 * Initialize a jumbo receive ring descriptor. This allocates
1344 * a jumbo buffer from the pool managed internally by the driver.
1345 */
1346static int
1347ti_newbuf_jumbo(sc, i, m)
1348	struct ti_softc		*sc;
1349	int			i;
1350	struct mbuf		*m;
1351{
1352	bus_dmamap_t		map;
1353	struct mbuf		*m_new = NULL;
1354	struct ti_rx_desc	*r;
1355	int			nsegs;
1356	bus_dma_segment_t	segs;
1357
1358	if (m == NULL) {
1359		caddr_t			*buf = NULL;
1360
1361		/* Allocate the mbuf. */
1362		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1363		if (m_new == NULL) {
1364			return (ENOBUFS);
1365		}
1366
1367		/* Allocate the jumbo buffer */
1368		buf = ti_jalloc(sc);
1369		if (buf == NULL) {
1370			m_freem(m_new);
1371			device_printf(sc->ti_dev, "jumbo allocation failed "
1372			    "-- packet dropped!\n");
1373			return (ENOBUFS);
1374		}
1375
1376		/* Attach the buffer to the mbuf. */
1377		m_new->m_data = (void *) buf;
1378		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1379		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1380		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1381	} else {
1382		m_new = m;
1383		m_new->m_data = m_new->m_ext.ext_buf;
1384		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1385	}
1386
1387	m_adj(m_new, ETHER_ALIGN);
1388	/* Set up the descriptor. */
1389	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1390	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1391	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1392	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, &segs,
1393				    &nsegs, 0))
1394		return (ENOBUFS);
1395	if (nsegs != 1)
1396		return (ENOBUFS);
1397	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1398	r->ti_len = segs.ds_len;
1399	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1400	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1401	if (sc->ti_ifp->if_hwassist)
1402		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1403	r->ti_idx = i;
1404
1405	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1406	return (0);
1407}
1408
1409#else
1410
1411#if (PAGE_SIZE == 4096)
1412#define NPAYLOAD 2
1413#else
1414#define NPAYLOAD 1
1415#endif
1416
1417#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1418#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1419#define NFS_HDR_LEN (UDP_HDR_LEN)
1420static int HDR_LEN =  TCP_HDR_LEN;
1421
1422
1423/*
1424 * Initialize a jumbo receive ring descriptor. This allocates
1425 * a jumbo buffer from the pool managed internally by the driver.
1426 */
1427static int
1428ti_newbuf_jumbo(sc, idx, m_old)
1429	struct ti_softc		*sc;
1430	int			idx;
1431	struct mbuf		*m_old;
1432{
1433	bus_dmamap_t		map;
1434	struct mbuf		*cur, *m_new = NULL;
1435	struct mbuf		*m[3] = {NULL, NULL, NULL};
1436	struct ti_rx_desc_ext	*r;
1437	vm_page_t		frame;
1438	static int		color;
1439				/* 1 extra buf to make nobufs easy*/
1440	struct sf_buf		*sf[3] = {NULL, NULL, NULL};
1441	int			i;
1442	bus_dma_segment_t	segs[4];
1443	int			nsegs;
1444
1445	if (m_old != NULL) {
1446		m_new = m_old;
1447		cur = m_old->m_next;
1448		for (i = 0; i <= NPAYLOAD; i++){
1449			m[i] = cur;
1450			cur = cur->m_next;
1451		}
1452	} else {
1453		/* Allocate the mbufs. */
1454		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1455		if (m_new == NULL) {
1456			device_printf(sc->ti_dev, "mbuf allocation failed "
1457			    "-- packet dropped!\n");
1458			goto nobufs;
1459		}
1460		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1461		if (m[NPAYLOAD] == NULL) {
1462			device_printf(sc->ti_dev, "cluster mbuf allocation "
1463			    "failed -- packet dropped!\n");
1464			goto nobufs;
1465		}
1466		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1467		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1468			device_printf(sc->ti_dev, "mbuf allocation failed "
1469			    "-- packet dropped!\n");
1470			goto nobufs;
1471		}
1472		m[NPAYLOAD]->m_len = MCLBYTES;
1473
1474		for (i = 0; i < NPAYLOAD; i++){
1475			MGET(m[i], M_DONTWAIT, MT_DATA);
1476			if (m[i] == NULL) {
1477				device_printf(sc->ti_dev, "mbuf allocation "
1478				    "failed -- packet dropped!\n");
1479				goto nobufs;
1480			}
1481			frame = vm_page_alloc(NULL, color++,
1482			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1483			    VM_ALLOC_WIRED);
1484			if (frame == NULL) {
1485				device_printf(sc->ti_dev, "buffer allocation "
1486				    "failed -- packet dropped!\n");
1487				printf("      index %d page %d\n", idx, i);
1488				goto nobufs;
1489			}
1490			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1491			if (sf[i] == NULL) {
1492				vm_page_unwire(frame, 0);
1493				vm_page_free(frame);
1494				device_printf(sc->ti_dev, "buffer allocation "
1495				    "failed -- packet dropped!\n");
1496				printf("      index %d page %d\n", idx, i);
1497				goto nobufs;
1498			}
1499		}
1500		for (i = 0; i < NPAYLOAD; i++){
1501		/* Attach the buffer to the mbuf. */
1502			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1503			m[i]->m_len = PAGE_SIZE;
1504			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1505			    sf_buf_mext, (void*)sf_buf_kva(sf[i]), sf[i],
1506			    0, EXT_DISPOSABLE);
1507			m[i]->m_next = m[i+1];
1508		}
1509		/* link the buffers to the header */
1510		m_new->m_next = m[0];
1511		m_new->m_data += ETHER_ALIGN;
1512		if (sc->ti_hdrsplit)
1513			m_new->m_len = MHLEN - ETHER_ALIGN;
1514		else
1515			m_new->m_len = HDR_LEN;
1516		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1517	}
1518
1519	/* Set up the descriptor. */
1520	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1521	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1522	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1523	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, segs,
1524				    &nsegs, 0))
1525		return (ENOBUFS);
1526	if ((nsegs < 1) || (nsegs > 4))
1527		return (ENOBUFS);
1528	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1529	r->ti_len0 = m_new->m_len;
1530
1531	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1532	r->ti_len1 = PAGE_SIZE;
1533
1534	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1535	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1536
1537	if (PAGE_SIZE == 4096) {
1538		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1539		r->ti_len3 = MCLBYTES;
1540	} else {
1541		r->ti_len3 = 0;
1542	}
1543	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1544
1545	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1546
1547	if (sc->ti_ifp->if_hwassist)
1548		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1549
1550	r->ti_idx = idx;
1551
1552	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1553	return (0);
1554
1555nobufs:
1556
1557	/*
1558	 * Warning! :
1559	 * This can only be called before the mbufs are strung together.
1560	 * If the mbufs are strung together, m_freem() will free the chain,
1561	 * so that the later mbufs will be freed multiple times.
1562	 */
1563	if (m_new)
1564		m_freem(m_new);
1565
1566	for (i = 0; i < 3; i++) {
1567		if (m[i])
1568			m_freem(m[i]);
1569		if (sf[i])
1570			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1571	}
1572	return (ENOBUFS);
1573}
1574#endif
1575
1576
1577
1578/*
1579 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1580 * that's 1MB or memory, which is a lot. For now, we fill only the first
1581 * 256 ring entries and hope that our CPU is fast enough to keep up with
1582 * the NIC.
1583 */
1584static int
1585ti_init_rx_ring_std(sc)
1586	struct ti_softc		*sc;
1587{
1588	int			i;
1589	struct ti_cmd_desc	cmd;
1590
1591	for (i = 0; i < TI_SSLOTS; i++) {
1592		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1593			return (ENOBUFS);
1594	};
1595
1596	TI_UPDATE_STDPROD(sc, i - 1);
1597	sc->ti_std = i - 1;
1598
1599	return (0);
1600}
1601
1602static void
1603ti_free_rx_ring_std(sc)
1604	struct ti_softc		*sc;
1605{
1606	bus_dmamap_t		map;
1607	int			i;
1608
1609	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1610		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1611			map = sc->ti_cdata.ti_rx_std_maps[i];
1612			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1613			    BUS_DMASYNC_POSTREAD);
1614			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1615			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1616			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1617		}
1618		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1619		    sizeof(struct ti_rx_desc));
1620	}
1621}
1622
1623static int
1624ti_init_rx_ring_jumbo(sc)
1625	struct ti_softc		*sc;
1626{
1627	int			i;
1628	struct ti_cmd_desc	cmd;
1629
1630	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1631		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1632			return (ENOBUFS);
1633	};
1634
1635	TI_UPDATE_JUMBOPROD(sc, i - 1);
1636	sc->ti_jumbo = i - 1;
1637
1638	return (0);
1639}
1640
1641static void
1642ti_free_rx_ring_jumbo(sc)
1643	struct ti_softc		*sc;
1644{
1645	bus_dmamap_t		map;
1646	int			i;
1647
1648	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1649		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1650			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1651			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
1652			    BUS_DMASYNC_POSTREAD);
1653			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
1654			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1655			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1656		}
1657		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1658		    sizeof(struct ti_rx_desc));
1659	}
1660}
1661
1662static int
1663ti_init_rx_ring_mini(sc)
1664	struct ti_softc		*sc;
1665{
1666	int			i;
1667
1668	for (i = 0; i < TI_MSLOTS; i++) {
1669		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1670			return (ENOBUFS);
1671	};
1672
1673	TI_UPDATE_MINIPROD(sc, i - 1);
1674	sc->ti_mini = i - 1;
1675
1676	return (0);
1677}
1678
1679static void
1680ti_free_rx_ring_mini(sc)
1681	struct ti_softc		*sc;
1682{
1683	bus_dmamap_t		map;
1684	int			i;
1685
1686	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1687		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1688			map = sc->ti_cdata.ti_rx_mini_maps[i];
1689			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1690			    BUS_DMASYNC_POSTREAD);
1691			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1692			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1693			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1694		}
1695		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1696		    sizeof(struct ti_rx_desc));
1697	}
1698}
1699
1700static void
1701ti_free_tx_ring(sc)
1702	struct ti_softc		*sc;
1703{
1704	struct ti_txdesc	*txd;
1705	int			i;
1706
1707	if (sc->ti_rdata->ti_tx_ring == NULL)
1708		return;
1709
1710	for (i = 0; i < TI_TX_RING_CNT; i++) {
1711		txd = &sc->ti_cdata.ti_txdesc[i];
1712		if (txd->tx_m != NULL) {
1713			bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
1714			    BUS_DMASYNC_POSTWRITE);
1715			bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
1716			m_freem(txd->tx_m);
1717			txd->tx_m = NULL;
1718		}
1719		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1720		    sizeof(struct ti_tx_desc));
1721	}
1722}
1723
1724static int
1725ti_init_tx_ring(sc)
1726	struct ti_softc		*sc;
1727{
1728	struct ti_txdesc	*txd;
1729	int			i;
1730
1731	STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1732	STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1733	for (i = 0; i < TI_TX_RING_CNT; i++) {
1734		txd = &sc->ti_cdata.ti_txdesc[i];
1735		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1736	}
1737	sc->ti_txcnt = 0;
1738	sc->ti_tx_saved_considx = 0;
1739	sc->ti_tx_saved_prodidx = 0;
1740	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1741	return (0);
1742}
1743
1744/*
1745 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1746 * but we have to support the old way too so that Tigon 1 cards will
1747 * work.
1748 */
1749static void
1750ti_add_mcast(sc, addr)
1751	struct ti_softc		*sc;
1752	struct ether_addr	*addr;
1753{
1754	struct ti_cmd_desc	cmd;
1755	u_int16_t		*m;
1756	u_int32_t		ext[2] = {0, 0};
1757
1758	m = (u_int16_t *)&addr->octet[0];
1759
1760	switch (sc->ti_hwrev) {
1761	case TI_HWREV_TIGON:
1762		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1763		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1764		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1765		break;
1766	case TI_HWREV_TIGON_II:
1767		ext[0] = htons(m[0]);
1768		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1769		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1770		break;
1771	default:
1772		device_printf(sc->ti_dev, "unknown hwrev\n");
1773		break;
1774	}
1775}
1776
1777static void
1778ti_del_mcast(sc, addr)
1779	struct ti_softc		*sc;
1780	struct ether_addr	*addr;
1781{
1782	struct ti_cmd_desc	cmd;
1783	u_int16_t		*m;
1784	u_int32_t		ext[2] = {0, 0};
1785
1786	m = (u_int16_t *)&addr->octet[0];
1787
1788	switch (sc->ti_hwrev) {
1789	case TI_HWREV_TIGON:
1790		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1791		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1792		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1793		break;
1794	case TI_HWREV_TIGON_II:
1795		ext[0] = htons(m[0]);
1796		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1797		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1798		break;
1799	default:
1800		device_printf(sc->ti_dev, "unknown hwrev\n");
1801		break;
1802	}
1803}
1804
1805/*
1806 * Configure the Tigon's multicast address filter.
1807 *
1808 * The actual multicast table management is a bit of a pain, thanks to
1809 * slight brain damage on the part of both Alteon and us. With our
1810 * multicast code, we are only alerted when the multicast address table
1811 * changes and at that point we only have the current list of addresses:
1812 * we only know the current state, not the previous state, so we don't
1813 * actually know what addresses were removed or added. The firmware has
1814 * state, but we can't get our grubby mits on it, and there is no 'delete
1815 * all multicast addresses' command. Hence, we have to maintain our own
1816 * state so we know what addresses have been programmed into the NIC at
1817 * any given time.
1818 */
1819static void
1820ti_setmulti(sc)
1821	struct ti_softc		*sc;
1822{
1823	struct ifnet		*ifp;
1824	struct ifmultiaddr	*ifma;
1825	struct ti_cmd_desc	cmd;
1826	struct ti_mc_entry	*mc;
1827	u_int32_t		intrs;
1828
1829	TI_LOCK_ASSERT(sc);
1830
1831	ifp = sc->ti_ifp;
1832
1833	if (ifp->if_flags & IFF_ALLMULTI) {
1834		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1835		return;
1836	} else {
1837		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1838	}
1839
1840	/* Disable interrupts. */
1841	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1842	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1843
1844	/* First, zot all the existing filters. */
1845	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1846		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1847		ti_del_mcast(sc, &mc->mc_addr);
1848		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1849		free(mc, M_DEVBUF);
1850	}
1851
1852	/* Now program new ones. */
1853	if_maddr_rlock(ifp);
1854	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1855		if (ifma->ifma_addr->sa_family != AF_LINK)
1856			continue;
1857		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1858		if (mc == NULL) {
1859			device_printf(sc->ti_dev,
1860			    "no memory for mcast filter entry\n");
1861			continue;
1862		}
1863		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1864		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1865		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1866		ti_add_mcast(sc, &mc->mc_addr);
1867	}
1868	if_maddr_runlock(ifp);
1869
1870	/* Re-enable interrupts. */
1871	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1872}
1873
1874/*
1875 * Check to see if the BIOS has configured us for a 64 bit slot when
1876 * we aren't actually in one. If we detect this condition, we can work
1877 * around it on the Tigon 2 by setting a bit in the PCI state register,
1878 * but for the Tigon 1 we must give up and abort the interface attach.
1879 */
1880static int ti_64bitslot_war(sc)
1881	struct ti_softc		*sc;
1882{
1883	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1884		CSR_WRITE_4(sc, 0x600, 0);
1885		CSR_WRITE_4(sc, 0x604, 0);
1886		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1887		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1888			if (sc->ti_hwrev == TI_HWREV_TIGON)
1889				return (EINVAL);
1890			else {
1891				TI_SETBIT(sc, TI_PCI_STATE,
1892				    TI_PCISTATE_32BIT_BUS);
1893				return (0);
1894			}
1895		}
1896	}
1897
1898	return (0);
1899}
1900
1901/*
1902 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1903 * self-test results.
1904 */
1905static int
1906ti_chipinit(sc)
1907	struct ti_softc		*sc;
1908{
1909	u_int32_t		cacheline;
1910	u_int32_t		pci_writemax = 0;
1911	u_int32_t		hdrsplit;
1912
1913	/* Initialize link to down state. */
1914	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1915
1916	if (sc->ti_ifp->if_capenable & IFCAP_HWCSUM)
1917		sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
1918	else
1919		sc->ti_ifp->if_hwassist = 0;
1920
1921	/* Set endianness before we access any non-PCI registers. */
1922#if 0 && BYTE_ORDER == BIG_ENDIAN
1923	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1924	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1925#else
1926	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1927	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1928#endif
1929
1930	/* Check the ROM failed bit to see if self-tests passed. */
1931	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1932		device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
1933		return (ENODEV);
1934	}
1935
1936	/* Halt the CPU. */
1937	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1938
1939	/* Figure out the hardware revision. */
1940	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1941	case TI_REV_TIGON_I:
1942		sc->ti_hwrev = TI_HWREV_TIGON;
1943		break;
1944	case TI_REV_TIGON_II:
1945		sc->ti_hwrev = TI_HWREV_TIGON_II;
1946		break;
1947	default:
1948		device_printf(sc->ti_dev, "unsupported chip revision\n");
1949		return (ENODEV);
1950	}
1951
1952	/* Do special setup for Tigon 2. */
1953	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1954		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1955		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1956		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1957	}
1958
1959	/*
1960	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1961	 * can't do header splitting.
1962	 */
1963#ifdef TI_JUMBO_HDRSPLIT
1964	if (sc->ti_hwrev != TI_HWREV_TIGON)
1965		sc->ti_hdrsplit = 1;
1966	else
1967		device_printf(sc->ti_dev,
1968		    "can't do header splitting on a Tigon I board\n");
1969#endif /* TI_JUMBO_HDRSPLIT */
1970
1971	/* Set up the PCI state register. */
1972	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1973	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1974		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1975	}
1976
1977	/* Clear the read/write max DMA parameters. */
1978	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1979	    TI_PCISTATE_READ_MAXDMA));
1980
1981	/* Get cache line size. */
1982	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1983
1984	/*
1985	 * If the system has set enabled the PCI memory write
1986	 * and invalidate command in the command register, set
1987	 * the write max parameter accordingly. This is necessary
1988	 * to use MWI with the Tigon 2.
1989	 */
1990	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1991		switch (cacheline) {
1992		case 1:
1993		case 4:
1994		case 8:
1995		case 16:
1996		case 32:
1997		case 64:
1998			break;
1999		default:
2000		/* Disable PCI memory write and invalidate. */
2001			if (bootverbose)
2002				device_printf(sc->ti_dev, "cache line size %d"
2003				    " not supported; disabling PCI MWI\n",
2004				    cacheline);
2005			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
2006			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
2007			break;
2008		}
2009	}
2010
2011	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2012
2013	/* This sets the min dma param all the way up (0xff). */
2014	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2015
2016	if (sc->ti_hdrsplit)
2017		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2018	else
2019		hdrsplit = 0;
2020
2021	/* Configure DMA variables. */
2022#if BYTE_ORDER == BIG_ENDIAN
2023	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2024	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2025	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2026	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2027#else /* BYTE_ORDER */
2028	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2029	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2030	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2031#endif /* BYTE_ORDER */
2032
2033	/*
2034	 * Only allow 1 DMA channel to be active at a time.
2035	 * I don't think this is a good idea, but without it
2036	 * the firmware racks up lots of nicDmaReadRingFull
2037	 * errors.  This is not compatible with hardware checksums.
2038	 */
2039	if (sc->ti_ifp->if_hwassist == 0)
2040		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2041
2042	/* Recommended settings from Tigon manual. */
2043	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2044	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2045
2046	if (ti_64bitslot_war(sc)) {
2047		device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
2048		    "but we aren't");
2049		return (EINVAL);
2050	}
2051
2052	return (0);
2053}
2054
2055/*
2056 * Initialize the general information block and firmware, and
2057 * start the CPU(s) running.
2058 */
2059static int
2060ti_gibinit(sc)
2061	struct ti_softc		*sc;
2062{
2063	struct ti_rcb		*rcb;
2064	int			i;
2065	struct ifnet		*ifp;
2066	uint32_t		rdphys;
2067
2068	TI_LOCK_ASSERT(sc);
2069
2070	ifp = sc->ti_ifp;
2071	rdphys = sc->ti_rdata_phys;
2072
2073	/* Disable interrupts for now. */
2074	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2075
2076	/*
2077	 * Tell the chip where to find the general information block.
2078	 * While this struct could go into >4GB memory, we allocate it in a
2079	 * single slab with the other descriptors, and those don't seem to
2080	 * support being located in a 64-bit region.
2081	 */
2082	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
2083	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
2084
2085	/* Load the firmware into SRAM. */
2086	ti_loadfw(sc);
2087
2088	/* Set up the contents of the general info and ring control blocks. */
2089
2090	/* Set up the event ring and producer pointer. */
2091	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
2092
2093	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
2094	rcb->ti_flags = 0;
2095	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
2096	    rdphys + TI_RD_OFF(ti_ev_prodidx_r);
2097	sc->ti_ev_prodidx.ti_idx = 0;
2098	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2099	sc->ti_ev_saved_considx = 0;
2100
2101	/* Set up the command ring and producer mailbox. */
2102	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
2103
2104	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
2105	rcb->ti_flags = 0;
2106	rcb->ti_max_len = 0;
2107	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2108		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2109	}
2110	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2111	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2112	sc->ti_cmd_saved_prodidx = 0;
2113
2114	/*
2115	 * Assign the address of the stats refresh buffer.
2116	 * We re-use the current stats buffer for this to
2117	 * conserve memory.
2118	 */
2119	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
2120	    rdphys + TI_RD_OFF(ti_info.ti_stats);
2121
2122	/* Set up the standard receive ring. */
2123	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
2124	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
2125	rcb->ti_max_len = TI_FRAMELEN;
2126	rcb->ti_flags = 0;
2127	if (sc->ti_ifp->if_hwassist)
2128		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2129		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2130	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2131
2132	/* Set up the jumbo receive ring. */
2133	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
2134	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
2135
2136#ifdef TI_PRIVATE_JUMBOS
2137	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
2138	rcb->ti_flags = 0;
2139#else
2140	rcb->ti_max_len = PAGE_SIZE;
2141	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2142#endif
2143	if (sc->ti_ifp->if_hwassist)
2144		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2145		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2146	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2147
2148	/*
2149	 * Set up the mini ring. Only activated on the
2150	 * Tigon 2 but the slot in the config block is
2151	 * still there on the Tigon 1.
2152	 */
2153	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
2154	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
2155	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2156	if (sc->ti_hwrev == TI_HWREV_TIGON)
2157		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2158	else
2159		rcb->ti_flags = 0;
2160	if (sc->ti_ifp->if_hwassist)
2161		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2162		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2163	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2164
2165	/*
2166	 * Set up the receive return ring.
2167	 */
2168	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
2169	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
2170	rcb->ti_flags = 0;
2171	rcb->ti_max_len = TI_RETURN_RING_CNT;
2172	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
2173	    rdphys + TI_RD_OFF(ti_return_prodidx_r);
2174
2175	/*
2176	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2177	 * of putting the transmit ring in the host's address space and
2178	 * letting the chip DMA it instead of leaving the ring in the NIC's
2179	 * memory and accessing it through the shared memory region. We
2180	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2181	 * so we have to revert to the shared memory scheme if we detect
2182	 * a Tigon 1 chip.
2183	 */
2184	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2185	bzero((char *)sc->ti_rdata->ti_tx_ring,
2186	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
2187	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
2188	if (sc->ti_hwrev == TI_HWREV_TIGON)
2189		rcb->ti_flags = 0;
2190	else
2191		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2192	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2193	if (sc->ti_ifp->if_hwassist)
2194		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2195		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2196	rcb->ti_max_len = TI_TX_RING_CNT;
2197	if (sc->ti_hwrev == TI_HWREV_TIGON)
2198		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
2199	else
2200		TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
2201	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
2202	    rdphys + TI_RD_OFF(ti_tx_considx_r);
2203
2204	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2205	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2206
2207	/* Set up tuneables */
2208#if 0
2209	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2210		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2211		    (sc->ti_rx_coal_ticks / 10));
2212	else
2213#endif
2214		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2215	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2216	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2217	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2218	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2219	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2220
2221	/* Turn interrupts on. */
2222	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2223	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2224
2225	/* Start CPU. */
2226	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2227
2228	return (0);
2229}
2230
2231static void
2232ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2233{
2234	struct ti_softc *sc;
2235
2236	sc = arg;
2237	if (error || nseg != 1)
2238		return;
2239
2240	/*
2241	 * All of the Tigon data structures need to live at <4GB.  This
2242	 * cast is fine since busdma was told about this constraint.
2243	 */
2244	sc->ti_rdata_phys = segs[0].ds_addr;
2245	return;
2246}
2247
2248/*
2249 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2250 * against our list and return its name if we find a match.
2251 */
2252static int
2253ti_probe(dev)
2254	device_t		dev;
2255{
2256	const struct ti_type	*t;
2257
2258	t = ti_devs;
2259
2260	while (t->ti_name != NULL) {
2261		if ((pci_get_vendor(dev) == t->ti_vid) &&
2262		    (pci_get_device(dev) == t->ti_did)) {
2263			device_set_desc(dev, t->ti_name);
2264			return (BUS_PROBE_DEFAULT);
2265		}
2266		t++;
2267	}
2268
2269	return (ENXIO);
2270}
2271
2272static int
2273ti_attach(dev)
2274	device_t		dev;
2275{
2276	struct ifnet		*ifp;
2277	struct ti_softc		*sc;
2278	int			error = 0, rid;
2279	u_char			eaddr[6];
2280
2281	sc = device_get_softc(dev);
2282	sc->ti_unit = device_get_unit(dev);
2283	sc->ti_dev = dev;
2284
2285	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2286	    MTX_DEF);
2287	callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2288	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2289	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2290	if (ifp == NULL) {
2291		device_printf(dev, "can not if_alloc()\n");
2292		error = ENOSPC;
2293		goto fail;
2294	}
2295	sc->ti_ifp->if_capabilities = IFCAP_HWCSUM |
2296	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2297	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2298
2299	/*
2300	 * Map control/status registers.
2301	 */
2302	pci_enable_busmaster(dev);
2303
2304	rid = TI_PCI_LOMEM;
2305	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2306	    RF_ACTIVE);
2307
2308	if (sc->ti_res == NULL) {
2309		device_printf(dev, "couldn't map memory\n");
2310		error = ENXIO;
2311		goto fail;
2312	}
2313
2314	sc->ti_btag = rman_get_bustag(sc->ti_res);
2315	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2316
2317	/* Allocate interrupt */
2318	rid = 0;
2319
2320	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2321	    RF_SHAREABLE | RF_ACTIVE);
2322
2323	if (sc->ti_irq == NULL) {
2324		device_printf(dev, "couldn't map interrupt\n");
2325		error = ENXIO;
2326		goto fail;
2327	}
2328
2329	if (ti_chipinit(sc)) {
2330		device_printf(dev, "chip initialization failed\n");
2331		error = ENXIO;
2332		goto fail;
2333	}
2334
2335	/* Zero out the NIC's on-board SRAM. */
2336	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2337
2338	/* Init again -- zeroing memory may have clobbered some registers. */
2339	if (ti_chipinit(sc)) {
2340		device_printf(dev, "chip initialization failed\n");
2341		error = ENXIO;
2342		goto fail;
2343	}
2344
2345	/*
2346	 * Get station address from the EEPROM. Note: the manual states
2347	 * that the MAC address is at offset 0x8c, however the data is
2348	 * stored as two longwords (since that's how it's loaded into
2349	 * the NIC). This means the MAC address is actually preceded
2350	 * by two zero bytes. We need to skip over those.
2351	 */
2352	if (ti_read_eeprom(sc, eaddr,
2353				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2354		device_printf(dev, "failed to read station address\n");
2355		error = ENXIO;
2356		goto fail;
2357	}
2358
2359	/* Allocate the general information block and ring buffers. */
2360	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
2361				1, 0,			/* algnmnt, boundary */
2362				BUS_SPACE_MAXADDR,	/* lowaddr */
2363				BUS_SPACE_MAXADDR,	/* highaddr */
2364				NULL, NULL,		/* filter, filterarg */
2365				BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2366				0,			/* nsegments */
2367				BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2368				0,			/* flags */
2369				NULL, NULL,		/* lockfunc, lockarg */
2370				&sc->ti_parent_dmat) != 0) {
2371		device_printf(dev, "Failed to allocate parent dmat\n");
2372		error = ENOMEM;
2373		goto fail;
2374	}
2375
2376	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2377				PAGE_SIZE, 0,		/* algnmnt, boundary */
2378				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2379				BUS_SPACE_MAXADDR,	/* highaddr */
2380				NULL, NULL,		/* filter, filterarg */
2381				sizeof(struct ti_ring_data),	/* maxsize */
2382				1,			/* nsegments */
2383				sizeof(struct ti_ring_data),	/* maxsegsize */
2384				0,			/* flags */
2385				NULL, NULL,		/* lockfunc, lockarg */
2386				&sc->ti_rdata_dmat) != 0) {
2387		device_printf(dev, "Failed to allocate rdata dmat\n");
2388		error = ENOMEM;
2389		goto fail;
2390	}
2391
2392	if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2393			     BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2394			     &sc->ti_rdata_dmamap) != 0) {
2395		device_printf(dev, "Failed to allocate rdata memory\n");
2396		error = ENOMEM;
2397		goto fail;
2398	}
2399
2400	if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2401			    sc->ti_rdata, sizeof(struct ti_ring_data),
2402			    ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2403		device_printf(dev, "Failed to load rdata segments\n");
2404		error = ENOMEM;
2405		goto fail;
2406	}
2407
2408	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2409
2410	/* Try to allocate memory for jumbo buffers. */
2411	if (ti_alloc_jumbo_mem(sc)) {
2412		device_printf(dev, "jumbo buffer allocation failed\n");
2413		error = ENXIO;
2414		goto fail;
2415	}
2416
2417	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2418				1, 0,			/* algnmnt, boundary */
2419				BUS_SPACE_MAXADDR,	/* lowaddr */
2420				BUS_SPACE_MAXADDR,	/* highaddr */
2421				NULL, NULL,		/* filter, filterarg */
2422				MCLBYTES * TI_MAXTXSEGS,/* maxsize */
2423				TI_MAXTXSEGS,		/* nsegments */
2424				MCLBYTES,		/* maxsegsize */
2425				0,			/* flags */
2426				NULL, NULL,		/* lockfunc, lockarg */
2427				&sc->ti_mbuftx_dmat) != 0) {
2428		device_printf(dev, "Failed to allocate rdata dmat\n");
2429		error = ENOMEM;
2430		goto fail;
2431	}
2432
2433	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2434				1, 0,			/* algnmnt, boundary */
2435				BUS_SPACE_MAXADDR,	/* lowaddr */
2436				BUS_SPACE_MAXADDR,	/* highaddr */
2437				NULL, NULL,		/* filter, filterarg */
2438				MCLBYTES,		/* maxsize */
2439				1,			/* nsegments */
2440				MCLBYTES,		/* maxsegsize */
2441				0,			/* flags */
2442				NULL, NULL,		/* lockfunc, lockarg */
2443				&sc->ti_mbufrx_dmat) != 0) {
2444		device_printf(dev, "Failed to allocate rdata dmat\n");
2445		error = ENOMEM;
2446		goto fail;
2447	}
2448
2449	if (ti_alloc_dmamaps(sc)) {
2450		device_printf(dev, "dma map creation failed\n");
2451		error = ENXIO;
2452		goto fail;
2453	}
2454
2455	/*
2456	 * We really need a better way to tell a 1000baseTX card
2457	 * from a 1000baseSX one, since in theory there could be
2458	 * OEMed 1000baseTX cards from lame vendors who aren't
2459	 * clever enough to change the PCI ID. For the moment
2460	 * though, the AceNIC is the only copper card available.
2461	 */
2462	if (pci_get_vendor(dev) == ALT_VENDORID &&
2463	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2464		sc->ti_copper = 1;
2465	/* Ok, it's not the only copper card available. */
2466	if (pci_get_vendor(dev) == NG_VENDORID &&
2467	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2468		sc->ti_copper = 1;
2469
2470	/* Set default tuneable values. */
2471	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2472#if 0
2473	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2474#endif
2475	sc->ti_rx_coal_ticks = 170;
2476	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2477	sc->ti_rx_max_coal_bds = 64;
2478#if 0
2479	sc->ti_tx_max_coal_bds = 128;
2480#endif
2481	sc->ti_tx_max_coal_bds = 32;
2482	sc->ti_tx_buf_ratio = 21;
2483
2484	/* Set up ifnet structure */
2485	ifp->if_softc = sc;
2486	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2487	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2488	ifp->if_ioctl = ti_ioctl;
2489	ifp->if_start = ti_start;
2490	ifp->if_init = ti_init;
2491	ifp->if_baudrate = 1000000000;
2492	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2493
2494	/* Set up ifmedia support. */
2495	if (sc->ti_copper) {
2496		/*
2497		 * Copper cards allow manual 10/100 mode selection,
2498		 * but not manual 1000baseTX mode selection. Why?
2499		 * Becuase currently there's no way to specify the
2500		 * master/slave setting through the firmware interface,
2501		 * so Alteon decided to just bag it and handle it
2502		 * via autonegotiation.
2503		 */
2504		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2505		ifmedia_add(&sc->ifmedia,
2506		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2507		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2508		ifmedia_add(&sc->ifmedia,
2509		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2510		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2511		ifmedia_add(&sc->ifmedia,
2512		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2513	} else {
2514		/* Fiber cards don't support 10/100 modes. */
2515		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2516		ifmedia_add(&sc->ifmedia,
2517		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2518	}
2519	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2520	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2521
2522	/*
2523	 * We're assuming here that card initialization is a sequential
2524	 * thing.  If it isn't, multiple cards probing at the same time
2525	 * could stomp on the list of softcs here.
2526	 */
2527
2528	/* Register the device */
2529	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2530			   0600, "ti%d", sc->ti_unit);
2531	sc->dev->si_drv1 = sc;
2532
2533	/*
2534	 * Call MI attach routine.
2535	 */
2536	ether_ifattach(ifp, eaddr);
2537
2538	/* Hook interrupt last to avoid having to lock softc */
2539	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2540	   NULL, ti_intr, sc, &sc->ti_intrhand);
2541
2542	if (error) {
2543		device_printf(dev, "couldn't set up irq\n");
2544		goto fail;
2545	}
2546
2547fail:
2548	if (error)
2549		ti_detach(dev);
2550
2551	return (error);
2552}
2553
2554/*
2555 * Shutdown hardware and free up resources. This can be called any
2556 * time after the mutex has been initialized. It is called in both
2557 * the error case in attach and the normal detach case so it needs
2558 * to be careful about only freeing resources that have actually been
2559 * allocated.
2560 */
2561static int
2562ti_detach(dev)
2563	device_t		dev;
2564{
2565	struct ti_softc		*sc;
2566	struct ifnet		*ifp;
2567
2568	sc = device_get_softc(dev);
2569	if (sc->dev)
2570		destroy_dev(sc->dev);
2571	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2572	ifp = sc->ti_ifp;
2573	if (device_is_attached(dev)) {
2574		ether_ifdetach(ifp);
2575		TI_LOCK(sc);
2576		ti_stop(sc);
2577		TI_UNLOCK(sc);
2578	}
2579
2580	/* These should only be active if attach succeeded */
2581	callout_drain(&sc->ti_watchdog);
2582	bus_generic_detach(dev);
2583	ti_free_dmamaps(sc);
2584	ifmedia_removeall(&sc->ifmedia);
2585
2586#ifdef TI_PRIVATE_JUMBOS
2587	if (sc->ti_cdata.ti_jumbo_buf)
2588		bus_dmamem_free(sc->ti_jumbo_dmat, sc->ti_cdata.ti_jumbo_buf,
2589		    sc->ti_jumbo_dmamap);
2590#endif
2591	if (sc->ti_jumbo_dmat)
2592		bus_dma_tag_destroy(sc->ti_jumbo_dmat);
2593	if (sc->ti_mbuftx_dmat)
2594		bus_dma_tag_destroy(sc->ti_mbuftx_dmat);
2595	if (sc->ti_mbufrx_dmat)
2596		bus_dma_tag_destroy(sc->ti_mbufrx_dmat);
2597	if (sc->ti_rdata)
2598		bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2599				sc->ti_rdata_dmamap);
2600	if (sc->ti_rdata_dmat)
2601		bus_dma_tag_destroy(sc->ti_rdata_dmat);
2602	if (sc->ti_parent_dmat)
2603		bus_dma_tag_destroy(sc->ti_parent_dmat);
2604	if (sc->ti_intrhand)
2605		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2606	if (sc->ti_irq)
2607		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2608	if (sc->ti_res) {
2609		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2610		    sc->ti_res);
2611	}
2612	if (ifp)
2613		if_free(ifp);
2614
2615	mtx_destroy(&sc->ti_mtx);
2616
2617	return (0);
2618}
2619
2620#ifdef TI_JUMBO_HDRSPLIT
2621/*
2622 * If hdr_len is 0, that means that header splitting wasn't done on
2623 * this packet for some reason.  The two most likely reasons are that
2624 * the protocol isn't a supported protocol for splitting, or this
2625 * packet had a fragment offset that wasn't 0.
2626 *
2627 * The header length, if it is non-zero, will always be the length of
2628 * the headers on the packet, but that length could be longer than the
2629 * first mbuf.  So we take the minimum of the two as the actual
2630 * length.
2631 */
2632static __inline void
2633ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2634{
2635	int i = 0;
2636	int lengths[4] = {0, 0, 0, 0};
2637	struct mbuf *m, *mp;
2638
2639	if (hdr_len != 0)
2640		top->m_len = min(hdr_len, top->m_len);
2641	pkt_len -= top->m_len;
2642	lengths[i++] = top->m_len;
2643
2644	mp = top;
2645	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2646		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2647		pkt_len -= m->m_len;
2648		lengths[i++] = m->m_len;
2649		mp = m;
2650	}
2651
2652#if 0
2653	if (hdr_len != 0)
2654		printf("got split packet: ");
2655	else
2656		printf("got non-split packet: ");
2657
2658	printf("%d,%d,%d,%d = %d\n", lengths[0],
2659	    lengths[1], lengths[2], lengths[3],
2660	    lengths[0] + lengths[1] + lengths[2] +
2661	    lengths[3]);
2662#endif
2663
2664	if (pkt_len)
2665		panic("header splitting didn't");
2666
2667	if (m) {
2668		m_freem(m);
2669		mp->m_next = NULL;
2670
2671	}
2672	if (mp->m_next != NULL)
2673		panic("ti_hdr_split: last mbuf in chain should be null");
2674}
2675#endif /* TI_JUMBO_HDRSPLIT */
2676
2677/*
2678 * Frame reception handling. This is called if there's a frame
2679 * on the receive return list.
2680 *
2681 * Note: we have to be able to handle three possibilities here:
2682 * 1) the frame is from the mini receive ring (can only happen)
2683 *    on Tigon 2 boards)
2684 * 2) the frame is from the jumbo recieve ring
2685 * 3) the frame is from the standard receive ring
2686 */
2687
2688static void
2689ti_rxeof(sc)
2690	struct ti_softc		*sc;
2691{
2692	bus_dmamap_t		map;
2693	struct ifnet		*ifp;
2694	struct ti_cmd_desc	cmd;
2695
2696	TI_LOCK_ASSERT(sc);
2697
2698	ifp = sc->ti_ifp;
2699
2700	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2701		struct ti_rx_desc	*cur_rx;
2702		u_int32_t		rxidx;
2703		struct mbuf		*m = NULL;
2704		u_int16_t		vlan_tag = 0;
2705		int			have_tag = 0;
2706
2707		cur_rx =
2708		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2709		rxidx = cur_rx->ti_idx;
2710		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2711
2712		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2713			have_tag = 1;
2714			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2715		}
2716
2717		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2718
2719			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2720			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2721			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2722			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2723			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
2724			    BUS_DMASYNC_POSTREAD);
2725			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
2726			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2727				ifp->if_ierrors++;
2728				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2729				continue;
2730			}
2731			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2732				ifp->if_ierrors++;
2733				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2734				continue;
2735			}
2736#ifdef TI_PRIVATE_JUMBOS
2737			m->m_len = cur_rx->ti_len;
2738#else /* TI_PRIVATE_JUMBOS */
2739#ifdef TI_JUMBO_HDRSPLIT
2740			if (sc->ti_hdrsplit)
2741				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2742					     cur_rx->ti_len, rxidx);
2743			else
2744#endif /* TI_JUMBO_HDRSPLIT */
2745			m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2746#endif /* TI_PRIVATE_JUMBOS */
2747		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2748			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2749			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2750			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2751			map = sc->ti_cdata.ti_rx_mini_maps[rxidx];
2752			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2753			    BUS_DMASYNC_POSTREAD);
2754			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2755			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2756				ifp->if_ierrors++;
2757				ti_newbuf_mini(sc, sc->ti_mini, m);
2758				continue;
2759			}
2760			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2761				ifp->if_ierrors++;
2762				ti_newbuf_mini(sc, sc->ti_mini, m);
2763				continue;
2764			}
2765			m->m_len = cur_rx->ti_len;
2766		} else {
2767			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2768			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2769			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2770			map = sc->ti_cdata.ti_rx_std_maps[rxidx];
2771			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2772			    BUS_DMASYNC_POSTREAD);
2773			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2774			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2775				ifp->if_ierrors++;
2776				ti_newbuf_std(sc, sc->ti_std, m);
2777				continue;
2778			}
2779			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2780				ifp->if_ierrors++;
2781				ti_newbuf_std(sc, sc->ti_std, m);
2782				continue;
2783			}
2784			m->m_len = cur_rx->ti_len;
2785		}
2786
2787		m->m_pkthdr.len = cur_rx->ti_len;
2788		ifp->if_ipackets++;
2789		m->m_pkthdr.rcvif = ifp;
2790
2791		if (ifp->if_hwassist) {
2792			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2793			    CSUM_DATA_VALID;
2794			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2795				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2796			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2797		}
2798
2799		/*
2800		 * If we received a packet with a vlan tag,
2801		 * tag it before passing the packet upward.
2802		 */
2803		if (have_tag) {
2804			m->m_pkthdr.ether_vtag = vlan_tag;
2805			m->m_flags |= M_VLANTAG;
2806		}
2807		TI_UNLOCK(sc);
2808		(*ifp->if_input)(ifp, m);
2809		TI_LOCK(sc);
2810	}
2811
2812	/* Only necessary on the Tigon 1. */
2813	if (sc->ti_hwrev == TI_HWREV_TIGON)
2814		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2815		    sc->ti_rx_saved_considx);
2816
2817	TI_UPDATE_STDPROD(sc, sc->ti_std);
2818	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2819	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2820}
2821
2822static void
2823ti_txeof(sc)
2824	struct ti_softc		*sc;
2825{
2826	struct ti_txdesc	*txd;
2827	struct ti_tx_desc	txdesc;
2828	struct ti_tx_desc	*cur_tx = NULL;
2829	struct ifnet		*ifp;
2830	int			idx;
2831
2832	ifp = sc->ti_ifp;
2833
2834	txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2835	if (txd == NULL)
2836		return;
2837	/*
2838	 * Go through our tx ring and free mbufs for those
2839	 * frames that have been sent.
2840	 */
2841	for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2842	    TI_INC(idx, TI_TX_RING_CNT)) {
2843		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2844			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2845			    sizeof(txdesc), &txdesc);
2846			cur_tx = &txdesc;
2847		} else
2848			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2849		sc->ti_txcnt--;
2850		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2851		if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2852			continue;
2853		bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2854		    BUS_DMASYNC_POSTWRITE);
2855		bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2856
2857		ifp->if_opackets++;
2858		m_freem(txd->tx_m);
2859		txd->tx_m = NULL;
2860		STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2861		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2862		txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2863	}
2864	sc->ti_tx_saved_considx = idx;
2865
2866	sc->ti_timer = sc->ti_txcnt > 0 ? 5 : 0;
2867}
2868
2869static void
2870ti_intr(xsc)
2871	void			*xsc;
2872{
2873	struct ti_softc		*sc;
2874	struct ifnet		*ifp;
2875
2876	sc = xsc;
2877	TI_LOCK(sc);
2878	ifp = sc->ti_ifp;
2879
2880/*#ifdef notdef*/
2881	/* Avoid this for now -- checking this register is expensive. */
2882	/* Make sure this is really our interrupt. */
2883	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2884		TI_UNLOCK(sc);
2885		return;
2886	}
2887/*#endif*/
2888
2889	/* Ack interrupt and stop others from occuring. */
2890	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2891
2892	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2893		/* Check RX return ring producer/consumer */
2894		ti_rxeof(sc);
2895
2896		/* Check TX ring producer/consumer */
2897		ti_txeof(sc);
2898	}
2899
2900	ti_handle_events(sc);
2901
2902	/* Re-enable interrupts. */
2903	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2904
2905	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2906	    ifp->if_snd.ifq_head != NULL)
2907		ti_start_locked(ifp);
2908
2909	TI_UNLOCK(sc);
2910}
2911
2912static void
2913ti_stats_update(sc)
2914	struct ti_softc		*sc;
2915{
2916	struct ifnet		*ifp;
2917
2918	ifp = sc->ti_ifp;
2919
2920	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2921	    BUS_DMASYNC_POSTREAD);
2922
2923	ifp->if_collisions +=
2924	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2925	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2926	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2927	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2928	   ifp->if_collisions;
2929
2930	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2931	    BUS_DMASYNC_PREREAD);
2932}
2933
2934/*
2935 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2936 * pointers to descriptors.
2937 */
2938static int
2939ti_encap(sc, m_head)
2940	struct ti_softc		*sc;
2941	struct mbuf		**m_head;
2942{
2943	struct ti_txdesc	*txd;
2944	struct ti_tx_desc	*f;
2945	struct ti_tx_desc	txdesc;
2946	struct mbuf		*m;
2947	bus_dma_segment_t	txsegs[TI_MAXTXSEGS];
2948	u_int16_t		csum_flags;
2949	int			error, frag, i, nseg;
2950
2951	if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
2952		return (ENOBUFS);
2953
2954	error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2955	    *m_head, txsegs, &nseg, 0);
2956	if (error == EFBIG) {
2957		m = m_defrag(*m_head, M_DONTWAIT);
2958		if (m == NULL) {
2959			m_freem(*m_head);
2960			*m_head = NULL;
2961			return (ENOMEM);
2962		}
2963		*m_head = m;
2964		error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat,
2965		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2966		if (error) {
2967			m_freem(*m_head);
2968			*m_head = NULL;
2969			return (error);
2970		}
2971	} else if (error != 0)
2972		return (error);
2973	if (nseg == 0) {
2974		m_freem(*m_head);
2975		*m_head = NULL;
2976		return (EIO);
2977	}
2978
2979	if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
2980		bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2981		return (ENOBUFS);
2982	}
2983
2984	m = *m_head;
2985	csum_flags = 0;
2986	if (m->m_pkthdr.csum_flags) {
2987		if (m->m_pkthdr.csum_flags & CSUM_IP)
2988			csum_flags |= TI_BDFLAG_IP_CKSUM;
2989		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2990			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2991		if (m->m_flags & M_LASTFRAG)
2992			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2993		else if (m->m_flags & M_FRAG)
2994			csum_flags |= TI_BDFLAG_IP_FRAG;
2995	}
2996
2997	bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2998	    BUS_DMASYNC_PREWRITE);
2999	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
3000	    BUS_DMASYNC_PREWRITE);
3001
3002	frag = sc->ti_tx_saved_prodidx;
3003	for (i = 0; i < nseg; i++) {
3004		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3005			bzero(&txdesc, sizeof(txdesc));
3006			f = &txdesc;
3007		} else
3008			f = &sc->ti_rdata->ti_tx_ring[frag];
3009		ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
3010		f->ti_len = txsegs[i].ds_len;
3011		f->ti_flags = csum_flags;
3012		if (m->m_flags & M_VLANTAG) {
3013			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
3014			f->ti_vlan_tag = m->m_pkthdr.ether_vtag & 0xfff;
3015		} else {
3016			f->ti_vlan_tag = 0;
3017		}
3018
3019		if (sc->ti_hwrev == TI_HWREV_TIGON)
3020			ti_mem_write(sc, TI_TX_RING_BASE + frag *
3021			    sizeof(txdesc), sizeof(txdesc), &txdesc);
3022		TI_INC(frag, TI_TX_RING_CNT);
3023	}
3024
3025	sc->ti_tx_saved_prodidx = frag;
3026	/* set TI_BDFLAG_END on the last descriptor */
3027	frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
3028	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3029		txdesc.ti_flags |= TI_BDFLAG_END;
3030		ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
3031		    sizeof(txdesc), &txdesc);
3032	} else
3033		sc->ti_rdata->ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3034
3035	STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3036	STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3037	txd->tx_m = m;
3038	sc->ti_txcnt += nseg;
3039
3040	return (0);
3041}
3042
3043static void
3044ti_start(ifp)
3045	struct ifnet		*ifp;
3046{
3047	struct ti_softc		*sc;
3048
3049	sc = ifp->if_softc;
3050	TI_LOCK(sc);
3051	ti_start_locked(ifp);
3052	TI_UNLOCK(sc);
3053}
3054
3055/*
3056 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3057 * to the mbuf data regions directly in the transmit descriptors.
3058 */
3059static void
3060ti_start_locked(ifp)
3061	struct ifnet		*ifp;
3062{
3063	struct ti_softc		*sc;
3064	struct mbuf		*m_head = NULL;
3065	int			enq = 0;
3066
3067	sc = ifp->if_softc;
3068
3069	for (; ifp->if_snd.ifq_head != NULL &&
3070	    sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3071		IF_DEQUEUE(&ifp->if_snd, m_head);
3072		if (m_head == NULL)
3073			break;
3074
3075		/*
3076		 * XXX
3077		 * safety overkill.  If this is a fragmented packet chain
3078		 * with delayed TCP/UDP checksums, then only encapsulate
3079		 * it if we have enough descriptors to handle the entire
3080		 * chain at once.
3081		 * (paranoia -- may not actually be needed)
3082		 */
3083		if (m_head->m_flags & M_FIRSTFRAG &&
3084		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3085			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
3086			    m_head->m_pkthdr.csum_data + 16) {
3087				IF_PREPEND(&ifp->if_snd, m_head);
3088				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3089				break;
3090			}
3091		}
3092
3093		/*
3094		 * Pack the data into the transmit ring. If we
3095		 * don't have room, set the OACTIVE flag and wait
3096		 * for the NIC to drain the ring.
3097		 */
3098		if (ti_encap(sc, &m_head)) {
3099			if (m_head == NULL)
3100				break;
3101			IF_PREPEND(&ifp->if_snd, m_head);
3102			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3103			break;
3104		}
3105
3106		enq++;
3107		/*
3108		 * If there's a BPF listener, bounce a copy of this frame
3109		 * to him.
3110		 */
3111		ETHER_BPF_MTAP(ifp, m_head);
3112	}
3113
3114	if (enq > 0) {
3115		/* Transmit */
3116		CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3117
3118		/*
3119		 * Set a timeout in case the chip goes out to lunch.
3120		 */
3121		sc->ti_timer = 5;
3122	}
3123}
3124
3125static void
3126ti_init(xsc)
3127	void			*xsc;
3128{
3129	struct ti_softc		*sc;
3130
3131	sc = xsc;
3132	TI_LOCK(sc);
3133	ti_init_locked(sc);
3134	TI_UNLOCK(sc);
3135}
3136
3137static void
3138ti_init_locked(xsc)
3139	void			*xsc;
3140{
3141	struct ti_softc		*sc = xsc;
3142
3143	/* Cancel pending I/O and flush buffers. */
3144	ti_stop(sc);
3145
3146	/* Init the gen info block, ring control blocks and firmware. */
3147	if (ti_gibinit(sc)) {
3148		device_printf(sc->ti_dev, "initialization failure\n");
3149		return;
3150	}
3151}
3152
3153static void ti_init2(sc)
3154	struct ti_softc		*sc;
3155{
3156	struct ti_cmd_desc	cmd;
3157	struct ifnet		*ifp;
3158	u_int8_t		*ea;
3159	struct ifmedia		*ifm;
3160	int			tmp;
3161
3162	TI_LOCK_ASSERT(sc);
3163
3164	ifp = sc->ti_ifp;
3165
3166	/* Specify MTU and interface index. */
3167	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
3168	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3169	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3170	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3171
3172	/* Load our MAC address. */
3173	ea = IF_LLADDR(sc->ti_ifp);
3174	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3175	CSR_WRITE_4(sc, TI_GCR_PAR1,
3176	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3177	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3178
3179	/* Enable or disable promiscuous mode as needed. */
3180	if (ifp->if_flags & IFF_PROMISC) {
3181		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3182	} else {
3183		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3184	}
3185
3186	/* Program multicast filter. */
3187	ti_setmulti(sc);
3188
3189	/*
3190	 * If this is a Tigon 1, we should tell the
3191	 * firmware to use software packet filtering.
3192	 */
3193	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3194		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3195	}
3196
3197	/* Init RX ring. */
3198	ti_init_rx_ring_std(sc);
3199
3200	/* Init jumbo RX ring. */
3201	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3202		ti_init_rx_ring_jumbo(sc);
3203
3204	/*
3205	 * If this is a Tigon 2, we can also configure the
3206	 * mini ring.
3207	 */
3208	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
3209		ti_init_rx_ring_mini(sc);
3210
3211	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3212	sc->ti_rx_saved_considx = 0;
3213
3214	/* Init TX ring. */
3215	ti_init_tx_ring(sc);
3216
3217	/* Tell firmware we're alive. */
3218	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3219
3220	/* Enable host interrupts. */
3221	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3222
3223	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3224	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3225	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3226
3227	/*
3228	 * Make sure to set media properly. We have to do this
3229	 * here since we have to issue commands in order to set
3230	 * the link negotiation and we can't issue commands until
3231	 * the firmware is running.
3232	 */
3233	ifm = &sc->ifmedia;
3234	tmp = ifm->ifm_media;
3235	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3236	ti_ifmedia_upd(ifp);
3237	ifm->ifm_media = tmp;
3238}
3239
3240/*
3241 * Set media options.
3242 */
3243static int
3244ti_ifmedia_upd(ifp)
3245	struct ifnet		*ifp;
3246{
3247	struct ti_softc		*sc;
3248	struct ifmedia		*ifm;
3249	struct ti_cmd_desc	cmd;
3250	u_int32_t		flowctl;
3251
3252	sc = ifp->if_softc;
3253	ifm = &sc->ifmedia;
3254
3255	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3256		return (EINVAL);
3257
3258	flowctl = 0;
3259
3260	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3261	case IFM_AUTO:
3262		/*
3263		 * Transmit flow control doesn't work on the Tigon 1.
3264		 */
3265		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3266
3267		/*
3268		 * Transmit flow control can also cause problems on the
3269		 * Tigon 2, apparantly with both the copper and fiber
3270		 * boards.  The symptom is that the interface will just
3271		 * hang.  This was reproduced with Alteon 180 switches.
3272		 */
3273#if 0
3274		if (sc->ti_hwrev != TI_HWREV_TIGON)
3275			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3276#endif
3277
3278		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3279		    TI_GLNK_FULL_DUPLEX| flowctl |
3280		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3281
3282		flowctl = TI_LNK_RX_FLOWCTL_Y;
3283#if 0
3284		if (sc->ti_hwrev != TI_HWREV_TIGON)
3285			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3286#endif
3287
3288		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3289		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3290		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3291		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3292		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3293		break;
3294	case IFM_1000_SX:
3295	case IFM_1000_T:
3296		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3297#if 0
3298		if (sc->ti_hwrev != TI_HWREV_TIGON)
3299			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3300#endif
3301
3302		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3303		    flowctl |TI_GLNK_ENB);
3304		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3305		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3306			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3307		}
3308		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3309		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3310		break;
3311	case IFM_100_FX:
3312	case IFM_10_FL:
3313	case IFM_100_TX:
3314	case IFM_10_T:
3315		flowctl = TI_LNK_RX_FLOWCTL_Y;
3316#if 0
3317		if (sc->ti_hwrev != TI_HWREV_TIGON)
3318			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3319#endif
3320
3321		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3322		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3323		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3324		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3325			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3326		} else {
3327			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3328		}
3329		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3330			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3331		} else {
3332			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3333		}
3334		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3335		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3336		break;
3337	}
3338
3339	return (0);
3340}
3341
3342/*
3343 * Report current media status.
3344 */
3345static void
3346ti_ifmedia_sts(ifp, ifmr)
3347	struct ifnet		*ifp;
3348	struct ifmediareq	*ifmr;
3349{
3350	struct ti_softc		*sc;
3351	u_int32_t		media = 0;
3352
3353	sc = ifp->if_softc;
3354
3355	ifmr->ifm_status = IFM_AVALID;
3356	ifmr->ifm_active = IFM_ETHER;
3357
3358	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3359		return;
3360
3361	ifmr->ifm_status |= IFM_ACTIVE;
3362
3363	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3364		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3365		if (sc->ti_copper)
3366			ifmr->ifm_active |= IFM_1000_T;
3367		else
3368			ifmr->ifm_active |= IFM_1000_SX;
3369		if (media & TI_GLNK_FULL_DUPLEX)
3370			ifmr->ifm_active |= IFM_FDX;
3371		else
3372			ifmr->ifm_active |= IFM_HDX;
3373	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3374		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3375		if (sc->ti_copper) {
3376			if (media & TI_LNK_100MB)
3377				ifmr->ifm_active |= IFM_100_TX;
3378			if (media & TI_LNK_10MB)
3379				ifmr->ifm_active |= IFM_10_T;
3380		} else {
3381			if (media & TI_LNK_100MB)
3382				ifmr->ifm_active |= IFM_100_FX;
3383			if (media & TI_LNK_10MB)
3384				ifmr->ifm_active |= IFM_10_FL;
3385		}
3386		if (media & TI_LNK_FULL_DUPLEX)
3387			ifmr->ifm_active |= IFM_FDX;
3388		if (media & TI_LNK_HALF_DUPLEX)
3389			ifmr->ifm_active |= IFM_HDX;
3390	}
3391}
3392
3393static int
3394ti_ioctl(ifp, command, data)
3395	struct ifnet		*ifp;
3396	u_long			command;
3397	caddr_t			data;
3398{
3399	struct ti_softc		*sc = ifp->if_softc;
3400	struct ifreq		*ifr = (struct ifreq *) data;
3401	int			mask, error = 0;
3402	struct ti_cmd_desc	cmd;
3403
3404	switch (command) {
3405	case SIOCSIFMTU:
3406		TI_LOCK(sc);
3407		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3408			error = EINVAL;
3409		else {
3410			ifp->if_mtu = ifr->ifr_mtu;
3411			ti_init_locked(sc);
3412		}
3413		TI_UNLOCK(sc);
3414		break;
3415	case SIOCSIFFLAGS:
3416		TI_LOCK(sc);
3417		if (ifp->if_flags & IFF_UP) {
3418			/*
3419			 * If only the state of the PROMISC flag changed,
3420			 * then just use the 'set promisc mode' command
3421			 * instead of reinitializing the entire NIC. Doing
3422			 * a full re-init means reloading the firmware and
3423			 * waiting for it to start up, which may take a
3424			 * second or two.
3425			 */
3426			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3427			    ifp->if_flags & IFF_PROMISC &&
3428			    !(sc->ti_if_flags & IFF_PROMISC)) {
3429				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3430				    TI_CMD_CODE_PROMISC_ENB, 0);
3431			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3432			    !(ifp->if_flags & IFF_PROMISC) &&
3433			    sc->ti_if_flags & IFF_PROMISC) {
3434				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3435				    TI_CMD_CODE_PROMISC_DIS, 0);
3436			} else
3437				ti_init_locked(sc);
3438		} else {
3439			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3440				ti_stop(sc);
3441			}
3442		}
3443		sc->ti_if_flags = ifp->if_flags;
3444		TI_UNLOCK(sc);
3445		break;
3446	case SIOCADDMULTI:
3447	case SIOCDELMULTI:
3448		TI_LOCK(sc);
3449		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3450			ti_setmulti(sc);
3451		TI_UNLOCK(sc);
3452		break;
3453	case SIOCSIFMEDIA:
3454	case SIOCGIFMEDIA:
3455		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3456		break;
3457	case SIOCSIFCAP:
3458		TI_LOCK(sc);
3459		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3460		if (mask & IFCAP_HWCSUM) {
3461			if (IFCAP_HWCSUM & ifp->if_capenable)
3462				ifp->if_capenable &= ~IFCAP_HWCSUM;
3463			else
3464				ifp->if_capenable |= IFCAP_HWCSUM;
3465			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3466				ti_init_locked(sc);
3467		}
3468		TI_UNLOCK(sc);
3469		break;
3470	default:
3471		error = ether_ioctl(ifp, command, data);
3472		break;
3473	}
3474
3475	return (error);
3476}
3477
3478static int
3479ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3480{
3481	struct ti_softc *sc;
3482
3483	sc = dev->si_drv1;
3484	if (sc == NULL)
3485		return (ENODEV);
3486
3487	TI_LOCK(sc);
3488	sc->ti_flags |= TI_FLAG_DEBUGING;
3489	TI_UNLOCK(sc);
3490
3491	return (0);
3492}
3493
3494static int
3495ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3496{
3497	struct ti_softc *sc;
3498
3499	sc = dev->si_drv1;
3500	if (sc == NULL)
3501		return (ENODEV);
3502
3503	TI_LOCK(sc);
3504	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3505	TI_UNLOCK(sc);
3506
3507	return (0);
3508}
3509
3510/*
3511 * This ioctl routine goes along with the Tigon character device.
3512 */
3513static int
3514ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3515    struct thread *td)
3516{
3517	int error;
3518	struct ti_softc *sc;
3519
3520	sc = dev->si_drv1;
3521	if (sc == NULL)
3522		return (ENODEV);
3523
3524	error = 0;
3525
3526	switch (cmd) {
3527	case TIIOCGETSTATS:
3528	{
3529		struct ti_stats *outstats;
3530
3531		outstats = (struct ti_stats *)addr;
3532
3533		TI_LOCK(sc);
3534		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3535		      sizeof(struct ti_stats));
3536		TI_UNLOCK(sc);
3537		break;
3538	}
3539	case TIIOCGETPARAMS:
3540	{
3541		struct ti_params	*params;
3542
3543		params = (struct ti_params *)addr;
3544
3545		TI_LOCK(sc);
3546		params->ti_stat_ticks = sc->ti_stat_ticks;
3547		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3548		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3549		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3550		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3551		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3552		params->param_mask = TI_PARAM_ALL;
3553		TI_UNLOCK(sc);
3554
3555		error = 0;
3556
3557		break;
3558	}
3559	case TIIOCSETPARAMS:
3560	{
3561		struct ti_params *params;
3562
3563		params = (struct ti_params *)addr;
3564
3565		TI_LOCK(sc);
3566		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3567			sc->ti_stat_ticks = params->ti_stat_ticks;
3568			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3569		}
3570
3571		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3572			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3573			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3574				    sc->ti_rx_coal_ticks);
3575		}
3576
3577		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3578			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3579			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3580				    sc->ti_tx_coal_ticks);
3581		}
3582
3583		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3584			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3585			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3586				    sc->ti_rx_max_coal_bds);
3587		}
3588
3589		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3590			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3591			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3592				    sc->ti_tx_max_coal_bds);
3593		}
3594
3595		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3596			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3597			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3598				    sc->ti_tx_buf_ratio);
3599		}
3600		TI_UNLOCK(sc);
3601
3602		error = 0;
3603
3604		break;
3605	}
3606	case TIIOCSETTRACE: {
3607		ti_trace_type	trace_type;
3608
3609		trace_type = *(ti_trace_type *)addr;
3610
3611		/*
3612		 * Set tracing to whatever the user asked for.  Setting
3613		 * this register to 0 should have the effect of disabling
3614		 * tracing.
3615		 */
3616		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3617
3618		error = 0;
3619
3620		break;
3621	}
3622	case TIIOCGETTRACE: {
3623		struct ti_trace_buf	*trace_buf;
3624		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3625
3626		trace_buf = (struct ti_trace_buf *)addr;
3627
3628		TI_LOCK(sc);
3629		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3630		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3631		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3632
3633#if 0
3634		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3635		       "trace_len = %d\n", trace_start,
3636		       cur_trace_ptr, trace_len);
3637		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3638		       trace_buf->buf_len);
3639#endif
3640
3641		error = ti_copy_mem(sc, trace_start, min(trace_len,
3642				    trace_buf->buf_len),
3643				    (caddr_t)trace_buf->buf, 1, 1);
3644
3645		if (error == 0) {
3646			trace_buf->fill_len = min(trace_len,
3647						  trace_buf->buf_len);
3648			if (cur_trace_ptr < trace_start)
3649				trace_buf->cur_trace_ptr =
3650					trace_start - cur_trace_ptr;
3651			else
3652				trace_buf->cur_trace_ptr =
3653					cur_trace_ptr - trace_start;
3654		} else
3655			trace_buf->fill_len = 0;
3656		TI_UNLOCK(sc);
3657
3658		break;
3659	}
3660
3661	/*
3662	 * For debugging, five ioctls are needed:
3663	 * ALT_ATTACH
3664	 * ALT_READ_TG_REG
3665	 * ALT_WRITE_TG_REG
3666	 * ALT_READ_TG_MEM
3667	 * ALT_WRITE_TG_MEM
3668	 */
3669	case ALT_ATTACH:
3670		/*
3671		 * From what I can tell, Alteon's Solaris Tigon driver
3672		 * only has one character device, so you have to attach
3673		 * to the Tigon board you're interested in.  This seems
3674		 * like a not-so-good way to do things, since unless you
3675		 * subsequently specify the unit number of the device
3676		 * you're interested in every ioctl, you'll only be
3677		 * able to debug one board at a time.
3678		 */
3679		error = 0;
3680		break;
3681	case ALT_READ_TG_MEM:
3682	case ALT_WRITE_TG_MEM:
3683	{
3684		struct tg_mem *mem_param;
3685		u_int32_t sram_end, scratch_end;
3686
3687		mem_param = (struct tg_mem *)addr;
3688
3689		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3690			sram_end = TI_END_SRAM_I;
3691			scratch_end = TI_END_SCRATCH_I;
3692		} else {
3693			sram_end = TI_END_SRAM_II;
3694			scratch_end = TI_END_SCRATCH_II;
3695		}
3696
3697		/*
3698		 * For now, we'll only handle accessing regular SRAM,
3699		 * nothing else.
3700		 */
3701		TI_LOCK(sc);
3702		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3703		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3704			/*
3705			 * In this instance, we always copy to/from user
3706			 * space, so the user space argument is set to 1.
3707			 */
3708			error = ti_copy_mem(sc, mem_param->tgAddr,
3709					    mem_param->len,
3710					    mem_param->userAddr, 1,
3711					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3712		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3713			&& (mem_param->tgAddr <= scratch_end)) {
3714			error = ti_copy_scratch(sc, mem_param->tgAddr,
3715						mem_param->len,
3716						mem_param->userAddr, 1,
3717						(cmd == ALT_READ_TG_MEM) ?
3718						1 : 0, TI_PROCESSOR_A);
3719		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3720			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3721			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3722				if_printf(sc->ti_ifp,
3723				    "invalid memory range for Tigon I\n");
3724				error = EINVAL;
3725				break;
3726			}
3727			error = ti_copy_scratch(sc, mem_param->tgAddr -
3728						TI_SCRATCH_DEBUG_OFF,
3729						mem_param->len,
3730						mem_param->userAddr, 1,
3731						(cmd == ALT_READ_TG_MEM) ?
3732						1 : 0, TI_PROCESSOR_B);
3733		} else {
3734			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3735			        "out of supported range\n",
3736			        mem_param->tgAddr, mem_param->len);
3737			error = EINVAL;
3738		}
3739		TI_UNLOCK(sc);
3740
3741		break;
3742	}
3743	case ALT_READ_TG_REG:
3744	case ALT_WRITE_TG_REG:
3745	{
3746		struct tg_reg	*regs;
3747		u_int32_t	tmpval;
3748
3749		regs = (struct tg_reg *)addr;
3750
3751		/*
3752		 * Make sure the address in question isn't out of range.
3753		 */
3754		if (regs->addr > TI_REG_MAX) {
3755			error = EINVAL;
3756			break;
3757		}
3758		TI_LOCK(sc);
3759		if (cmd == ALT_READ_TG_REG) {
3760			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3761						regs->addr, &tmpval, 1);
3762			regs->data = ntohl(tmpval);
3763#if 0
3764			if ((regs->addr == TI_CPU_STATE)
3765			 || (regs->addr == TI_CPU_CTL_B)) {
3766				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3767				       regs->addr, tmpval);
3768			}
3769#endif
3770		} else {
3771			tmpval = htonl(regs->data);
3772			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3773						 regs->addr, &tmpval, 1);
3774		}
3775		TI_UNLOCK(sc);
3776
3777		break;
3778	}
3779	default:
3780		error = ENOTTY;
3781		break;
3782	}
3783	return (error);
3784}
3785
3786static void
3787ti_watchdog(void *arg)
3788{
3789	struct ti_softc		*sc;
3790	struct ifnet		*ifp;
3791
3792	sc = arg;
3793	TI_LOCK_ASSERT(sc);
3794	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3795	if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3796		return;
3797
3798	/*
3799	 * When we're debugging, the chip is often stopped for long periods
3800	 * of time, and that would normally cause the watchdog timer to fire.
3801	 * Since that impedes debugging, we don't want to do that.
3802	 */
3803	if (sc->ti_flags & TI_FLAG_DEBUGING)
3804		return;
3805
3806	ifp = sc->ti_ifp;
3807	if_printf(ifp, "watchdog timeout -- resetting\n");
3808	ti_stop(sc);
3809	ti_init_locked(sc);
3810
3811	ifp->if_oerrors++;
3812}
3813
3814/*
3815 * Stop the adapter and free any mbufs allocated to the
3816 * RX and TX lists.
3817 */
3818static void
3819ti_stop(sc)
3820	struct ti_softc		*sc;
3821{
3822	struct ifnet		*ifp;
3823	struct ti_cmd_desc	cmd;
3824
3825	TI_LOCK_ASSERT(sc);
3826
3827	ifp = sc->ti_ifp;
3828
3829	/* Disable host interrupts. */
3830	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3831	/*
3832	 * Tell firmware we're shutting down.
3833	 */
3834	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3835
3836	/* Halt and reinitialize. */
3837	if (ti_chipinit(sc) != 0)
3838		return;
3839	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3840	if (ti_chipinit(sc) != 0)
3841		return;
3842
3843	/* Free the RX lists. */
3844	ti_free_rx_ring_std(sc);
3845
3846	/* Free jumbo RX list. */
3847	ti_free_rx_ring_jumbo(sc);
3848
3849	/* Free mini RX list. */
3850	ti_free_rx_ring_mini(sc);
3851
3852	/* Free TX buffers. */
3853	ti_free_tx_ring(sc);
3854
3855	sc->ti_ev_prodidx.ti_idx = 0;
3856	sc->ti_return_prodidx.ti_idx = 0;
3857	sc->ti_tx_considx.ti_idx = 0;
3858	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3859
3860	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3861	callout_stop(&sc->ti_watchdog);
3862}
3863
3864/*
3865 * Stop all chip I/O so that the kernel's probe routines don't
3866 * get confused by errant DMAs when rebooting.
3867 */
3868static int
3869ti_shutdown(dev)
3870	device_t		dev;
3871{
3872	struct ti_softc		*sc;
3873
3874	sc = device_get_softc(dev);
3875	TI_LOCK(sc);
3876	ti_chipinit(sc);
3877	TI_UNLOCK(sc);
3878
3879	return (0);
3880}
3881