if_ti.c revision 176413
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35 * Manuals, sample driver and firmware source kits are available
36 * from http://www.alteon.com/support/openkits.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48 * filtering and jumbo (9014 byte) frames. The hardware is largely
49 * controlled by firmware, which must be loaded into the NIC during
50 * initialization.
51 *
52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53 * revision, which supports new features such as extended commands,
54 * extended jumbo receive ring desciptors and a mini receive ring.
55 *
56 * Alteon Networks is to be commended for releasing such a vast amount
57 * of development material for the Tigon NIC without requiring an NDA
58 * (although they really should have done it a long time ago). With
59 * any luck, the other vendors will finally wise up and follow Alteon's
60 * stellar example.
61 *
62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63 * this driver by #including it as a C header file. This bloats the
64 * driver somewhat, but it's the easiest method considering that the
65 * driver code and firmware code need to be kept in sync. The source
66 * for the firmware is not provided with the FreeBSD distribution since
67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68 *
69 * The following people deserve special thanks:
70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71 *   for testing
72 * - Raymond Lee of Netgear, for providing a pair of Netgear
73 *   GA620 Tigon 2 boards for testing
74 * - Ulf Zimmermann, for bringing the GA260 to my attention and
75 *   convincing me to write this driver.
76 * - Andrew Gallatin for providing FreeBSD/Alpha support.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/dev/ti/if_ti.c 176413 2008-02-19 20:54:42Z remko $");
81
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/module.h>
91#include <sys/socket.h>
92#include <sys/queue.h>
93#include <sys/conf.h>
94#include <sys/sf_buf.h>
95
96#include <net/if.h>
97#include <net/if_arp.h>
98#include <net/ethernet.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101#include <net/if_types.h>
102#include <net/if_vlan_var.h>
103
104#include <net/bpf.h>
105
106#include <netinet/in_systm.h>
107#include <netinet/in.h>
108#include <netinet/ip.h>
109
110#include <machine/bus.h>
111#include <machine/resource.h>
112#include <sys/bus.h>
113#include <sys/rman.h>
114
115/* #define TI_PRIVATE_JUMBOS */
116#ifndef TI_PRIVATE_JUMBOS
117#include <vm/vm.h>
118#include <vm/vm_page.h>
119#endif
120
121#include <dev/pci/pcireg.h>
122#include <dev/pci/pcivar.h>
123
124#include <sys/tiio.h>
125#include <dev/ti/if_tireg.h>
126#include <dev/ti/ti_fw.h>
127#include <dev/ti/ti_fw2.h>
128
129#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
130/*
131 * We can only turn on header splitting if we're using extended receive
132 * BDs.
133 */
134#if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
135#error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
136#endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
137
138typedef enum {
139	TI_SWAP_HTON,
140	TI_SWAP_NTOH
141} ti_swap_type;
142
143
144/*
145 * Various supported device vendors/types and their names.
146 */
147
148static struct ti_type ti_devs[] = {
149	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
150		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
151	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
152		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
153	{ TC_VENDORID,	TC_DEVICEID_3C985,
154		"3Com 3c985-SX Gigabit Ethernet" },
155	{ NG_VENDORID, NG_DEVICEID_GA620,
156		"Netgear GA620 1000baseSX Gigabit Ethernet" },
157	{ NG_VENDORID, NG_DEVICEID_GA620T,
158		"Netgear GA620 1000baseT Gigabit Ethernet" },
159	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
160		"Silicon Graphics Gigabit Ethernet" },
161	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
162		"Farallon PN9000SX Gigabit Ethernet" },
163	{ 0, 0, NULL }
164};
165
166
167static	d_open_t	ti_open;
168static	d_close_t	ti_close;
169static	d_ioctl_t	ti_ioctl2;
170
171static struct cdevsw ti_cdevsw = {
172	.d_version =	D_VERSION,
173	.d_flags =	0,
174	.d_open =	ti_open,
175	.d_close =	ti_close,
176	.d_ioctl =	ti_ioctl2,
177	.d_name =	"ti",
178};
179
180static int ti_probe(device_t);
181static int ti_attach(device_t);
182static int ti_detach(device_t);
183static void ti_txeof(struct ti_softc *);
184static void ti_rxeof(struct ti_softc *);
185
186static void ti_stats_update(struct ti_softc *);
187static int ti_encap(struct ti_softc *, struct mbuf **);
188
189static void ti_intr(void *);
190static void ti_start(struct ifnet *);
191static void ti_start_locked(struct ifnet *);
192static int ti_ioctl(struct ifnet *, u_long, caddr_t);
193static void ti_init(void *);
194static void ti_init_locked(void *);
195static void ti_init2(struct ti_softc *);
196static void ti_stop(struct ti_softc *);
197static void ti_watchdog(struct ifnet *);
198static int ti_shutdown(device_t);
199static int ti_ifmedia_upd(struct ifnet *);
200static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
201
202static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
203static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
204static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
205
206static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
207static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
208static void ti_setmulti(struct ti_softc *);
209
210static void ti_mem_read(struct ti_softc *, u_int32_t, u_int32_t, void *);
211static void ti_mem_write(struct ti_softc *, u_int32_t, u_int32_t, void *);
212static void ti_mem_zero(struct ti_softc *, u_int32_t, u_int32_t);
213static int ti_copy_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t, int, int);
214static int ti_copy_scratch(struct ti_softc *, u_int32_t, u_int32_t, caddr_t,
215		int, int, int);
216static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
217static void ti_loadfw(struct ti_softc *);
218static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
219static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
220static void ti_handle_events(struct ti_softc *);
221static int ti_alloc_dmamaps(struct ti_softc *);
222static void ti_free_dmamaps(struct ti_softc *);
223static int ti_alloc_jumbo_mem(struct ti_softc *);
224#ifdef TI_PRIVATE_JUMBOS
225static void *ti_jalloc(struct ti_softc *);
226static void ti_jfree(void *, void *);
227#endif /* TI_PRIVATE_JUMBOS */
228static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
229static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
230static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
231static int ti_init_rx_ring_std(struct ti_softc *);
232static void ti_free_rx_ring_std(struct ti_softc *);
233static int ti_init_rx_ring_jumbo(struct ti_softc *);
234static void ti_free_rx_ring_jumbo(struct ti_softc *);
235static int ti_init_rx_ring_mini(struct ti_softc *);
236static void ti_free_rx_ring_mini(struct ti_softc *);
237static void ti_free_tx_ring(struct ti_softc *);
238static int ti_init_tx_ring(struct ti_softc *);
239
240static int ti_64bitslot_war(struct ti_softc *);
241static int ti_chipinit(struct ti_softc *);
242static int ti_gibinit(struct ti_softc *);
243
244#ifdef TI_JUMBO_HDRSPLIT
245static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
246					     int pkt_len, int idx);
247#endif /* TI_JUMBO_HDRSPLIT */
248
249static device_method_t ti_methods[] = {
250	/* Device interface */
251	DEVMETHOD(device_probe,		ti_probe),
252	DEVMETHOD(device_attach,	ti_attach),
253	DEVMETHOD(device_detach,	ti_detach),
254	DEVMETHOD(device_shutdown,	ti_shutdown),
255	{ 0, 0 }
256};
257
258static driver_t ti_driver = {
259	"ti",
260	ti_methods,
261	sizeof(struct ti_softc)
262};
263
264static devclass_t ti_devclass;
265
266DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
267MODULE_DEPEND(ti, pci, 1, 1, 1);
268MODULE_DEPEND(ti, ether, 1, 1, 1);
269
270/*
271 * Send an instruction or address to the EEPROM, check for ACK.
272 */
273static u_int32_t ti_eeprom_putbyte(sc, byte)
274	struct ti_softc		*sc;
275	int			byte;
276{
277	int			i, ack = 0;
278
279	/*
280	 * Make sure we're in TX mode.
281	 */
282	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
283
284	/*
285	 * Feed in each bit and stobe the clock.
286	 */
287	for (i = 0x80; i; i >>= 1) {
288		if (byte & i) {
289			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
290		} else {
291			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
292		}
293		DELAY(1);
294		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
295		DELAY(1);
296		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
297	}
298
299	/*
300	 * Turn off TX mode.
301	 */
302	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
303
304	/*
305	 * Check for ack.
306	 */
307	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
308	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
309	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
310
311	return (ack);
312}
313
314/*
315 * Read a byte of data stored in the EEPROM at address 'addr.'
316 * We have to send two address bytes since the EEPROM can hold
317 * more than 256 bytes of data.
318 */
319static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
320	struct ti_softc		*sc;
321	int			addr;
322	u_int8_t		*dest;
323{
324	int			i;
325	u_int8_t		byte = 0;
326
327	EEPROM_START;
328
329	/*
330	 * Send write control code to EEPROM.
331	 */
332	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
333		device_printf(sc->ti_dev,
334		    "failed to send write command, status: %x\n",
335		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
336		return (1);
337	}
338
339	/*
340	 * Send first byte of address of byte we want to read.
341	 */
342	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
343		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
344		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
345		return (1);
346	}
347	/*
348	 * Send second byte address of byte we want to read.
349	 */
350	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
351		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
352		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
353		return (1);
354	}
355
356	EEPROM_STOP;
357	EEPROM_START;
358	/*
359	 * Send read control code to EEPROM.
360	 */
361	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
362		device_printf(sc->ti_dev,
363		    "failed to send read command, status: %x\n",
364		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
365		return (1);
366	}
367
368	/*
369	 * Start reading bits from EEPROM.
370	 */
371	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
372	for (i = 0x80; i; i >>= 1) {
373		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
374		DELAY(1);
375		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
376			byte |= i;
377		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
378		DELAY(1);
379	}
380
381	EEPROM_STOP;
382
383	/*
384	 * No ACK generated for read, so just return byte.
385	 */
386
387	*dest = byte;
388
389	return (0);
390}
391
392/*
393 * Read a sequence of bytes from the EEPROM.
394 */
395static int
396ti_read_eeprom(sc, dest, off, cnt)
397	struct ti_softc		*sc;
398	caddr_t			dest;
399	int			off;
400	int			cnt;
401{
402	int			err = 0, i;
403	u_int8_t		byte = 0;
404
405	for (i = 0; i < cnt; i++) {
406		err = ti_eeprom_getbyte(sc, off + i, &byte);
407		if (err)
408			break;
409		*(dest + i) = byte;
410	}
411
412	return (err ? 1 : 0);
413}
414
415/*
416 * NIC memory read function.
417 * Can be used to copy data from NIC local memory.
418 */
419static void
420ti_mem_read(sc, addr, len, buf)
421	struct ti_softc		*sc;
422	u_int32_t		addr, len;
423	void			*buf;
424{
425	int			segptr, segsize, cnt;
426	char			*ptr;
427
428	segptr = addr;
429	cnt = len;
430	ptr = buf;
431
432	while (cnt) {
433		if (cnt < TI_WINLEN)
434			segsize = cnt;
435		else
436			segsize = TI_WINLEN - (segptr % TI_WINLEN);
437		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
438		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
439		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
440		    segsize / 4);
441		ptr += segsize;
442		segptr += segsize;
443		cnt -= segsize;
444	}
445}
446
447
448/*
449 * NIC memory write function.
450 * Can be used to copy data into NIC local memory.
451 */
452static void
453ti_mem_write(sc, addr, len, buf)
454	struct ti_softc		*sc;
455	u_int32_t		addr, len;
456	void			*buf;
457{
458	int			segptr, segsize, cnt;
459	char			*ptr;
460
461	segptr = addr;
462	cnt = len;
463	ptr = buf;
464
465	while (cnt) {
466		if (cnt < TI_WINLEN)
467			segsize = cnt;
468		else
469			segsize = TI_WINLEN - (segptr % TI_WINLEN);
470		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
471		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
472		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
473		    segsize / 4);
474		ptr += segsize;
475		segptr += segsize;
476		cnt -= segsize;
477	}
478}
479
480/*
481 * NIC memory read function.
482 * Can be used to clear a section of NIC local memory.
483 */
484static void
485ti_mem_zero(sc, addr, len)
486	struct ti_softc		*sc;
487	u_int32_t		addr, len;
488{
489	int			segptr, segsize, cnt;
490
491	segptr = addr;
492	cnt = len;
493
494	while (cnt) {
495		if (cnt < TI_WINLEN)
496			segsize = cnt;
497		else
498			segsize = TI_WINLEN - (segptr % TI_WINLEN);
499		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
500		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
501		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
502		segptr += segsize;
503		cnt -= segsize;
504	}
505}
506
507static int
508ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
509	struct ti_softc		*sc;
510	u_int32_t		tigon_addr, len;
511	caddr_t			buf;
512	int			useraddr, readdata;
513{
514	int		segptr, segsize, cnt;
515	caddr_t		ptr;
516	u_int32_t	origwin;
517	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
518	int		resid, segresid;
519	int		first_pass;
520
521	TI_LOCK_ASSERT(sc);
522
523	/*
524	 * At the moment, we don't handle non-aligned cases, we just bail.
525	 * If this proves to be a problem, it will be fixed.
526	 */
527	if ((readdata == 0)
528	 && (tigon_addr & 0x3)) {
529		device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
530		    "word-aligned\n", __func__, tigon_addr);
531		device_printf(sc->ti_dev, "%s: unaligned writes aren't "
532		    "yet supported\n", __func__);
533		return (EINVAL);
534	}
535
536	segptr = tigon_addr & ~0x3;
537	segresid = tigon_addr - segptr;
538
539	/*
540	 * This is the non-aligned amount left over that we'll need to
541	 * copy.
542	 */
543	resid = len & 0x3;
544
545	/* Add in the left over amount at the front of the buffer */
546	resid += segresid;
547
548	cnt = len & ~0x3;
549	/*
550	 * If resid + segresid is >= 4, add multiples of 4 to the count and
551	 * decrease the residual by that much.
552	 */
553	cnt += resid & ~0x3;
554	resid -= resid & ~0x3;
555
556	ptr = buf;
557
558	first_pass = 1;
559
560	/*
561	 * Save the old window base value.
562	 */
563	origwin = CSR_READ_4(sc, TI_WINBASE);
564
565	while (cnt) {
566		bus_size_t ti_offset;
567
568		if (cnt < TI_WINLEN)
569			segsize = cnt;
570		else
571			segsize = TI_WINLEN - (segptr % TI_WINLEN);
572		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
573
574		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
575
576		if (readdata) {
577
578			bus_space_read_region_4(sc->ti_btag,
579						sc->ti_bhandle, ti_offset,
580						(u_int32_t *)tmparray,
581						segsize >> 2);
582			if (useraddr) {
583				/*
584				 * Yeah, this is a little on the kludgy
585				 * side, but at least this code is only
586				 * used for debugging.
587				 */
588				ti_bcopy_swap(tmparray, tmparray2, segsize,
589					      TI_SWAP_NTOH);
590
591				TI_UNLOCK(sc);
592				if (first_pass) {
593					copyout(&tmparray2[segresid], ptr,
594						segsize - segresid);
595					first_pass = 0;
596				} else
597					copyout(tmparray2, ptr, segsize);
598				TI_LOCK(sc);
599			} else {
600				if (first_pass) {
601
602					ti_bcopy_swap(tmparray, tmparray2,
603						      segsize, TI_SWAP_NTOH);
604					TI_UNLOCK(sc);
605					bcopy(&tmparray2[segresid], ptr,
606					      segsize - segresid);
607					TI_LOCK(sc);
608					first_pass = 0;
609				} else
610					ti_bcopy_swap(tmparray, ptr, segsize,
611						      TI_SWAP_NTOH);
612			}
613
614		} else {
615			if (useraddr) {
616				TI_UNLOCK(sc);
617				copyin(ptr, tmparray2, segsize);
618				TI_LOCK(sc);
619				ti_bcopy_swap(tmparray2, tmparray, segsize,
620					      TI_SWAP_HTON);
621			} else
622				ti_bcopy_swap(ptr, tmparray, segsize,
623					      TI_SWAP_HTON);
624
625			bus_space_write_region_4(sc->ti_btag,
626						 sc->ti_bhandle, ti_offset,
627						 (u_int32_t *)tmparray,
628						 segsize >> 2);
629		}
630		segptr += segsize;
631		ptr += segsize;
632		cnt -= segsize;
633	}
634
635	/*
636	 * Handle leftover, non-word-aligned bytes.
637	 */
638	if (resid != 0) {
639		u_int32_t	tmpval, tmpval2;
640		bus_size_t	ti_offset;
641
642		/*
643		 * Set the segment pointer.
644		 */
645		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
646
647		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
648
649		/*
650		 * First, grab whatever is in our source/destination.
651		 * We'll obviously need this for reads, but also for
652		 * writes, since we'll be doing read/modify/write.
653		 */
654		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
655					ti_offset, &tmpval, 1);
656
657		/*
658		 * Next, translate this from little-endian to big-endian
659		 * (at least on i386 boxes).
660		 */
661		tmpval2 = ntohl(tmpval);
662
663		if (readdata) {
664			/*
665			 * If we're reading, just copy the leftover number
666			 * of bytes from the host byte order buffer to
667			 * the user's buffer.
668			 */
669			if (useraddr) {
670				TI_UNLOCK(sc);
671				copyout(&tmpval2, ptr, resid);
672				TI_LOCK(sc);
673			} else
674				bcopy(&tmpval2, ptr, resid);
675		} else {
676			/*
677			 * If we're writing, first copy the bytes to be
678			 * written into the network byte order buffer,
679			 * leaving the rest of the buffer with whatever was
680			 * originally in there.  Then, swap the bytes
681			 * around into host order and write them out.
682			 *
683			 * XXX KDM the read side of this has been verified
684			 * to work, but the write side of it has not been
685			 * verified.  So user beware.
686			 */
687			if (useraddr) {
688				TI_UNLOCK(sc);
689				copyin(ptr, &tmpval2, resid);
690				TI_LOCK(sc);
691			} else
692				bcopy(ptr, &tmpval2, resid);
693
694			tmpval = htonl(tmpval2);
695
696			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
697						 ti_offset, &tmpval, 1);
698		}
699	}
700
701	CSR_WRITE_4(sc, TI_WINBASE, origwin);
702
703	return (0);
704}
705
706static int
707ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
708	struct ti_softc		*sc;
709	u_int32_t		tigon_addr, len;
710	caddr_t			buf;
711	int			useraddr, readdata;
712	int			cpu;
713{
714	u_int32_t	segptr;
715	int		cnt;
716	u_int32_t	tmpval, tmpval2;
717	caddr_t		ptr;
718
719	TI_LOCK_ASSERT(sc);
720
721	/*
722	 * At the moment, we don't handle non-aligned cases, we just bail.
723	 * If this proves to be a problem, it will be fixed.
724	 */
725	if (tigon_addr & 0x3) {
726		device_printf(sc->ti_dev, "%s: tigon address %#x "
727		    "isn't word-aligned\n", __func__, tigon_addr);
728		return (EINVAL);
729	}
730
731	if (len & 0x3) {
732		device_printf(sc->ti_dev, "%s: transfer length %d "
733		    "isn't word-aligned\n", __func__, len);
734		return (EINVAL);
735	}
736
737	segptr = tigon_addr;
738	cnt = len;
739	ptr = buf;
740
741	while (cnt) {
742		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
743
744		if (readdata) {
745			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
746
747			tmpval = ntohl(tmpval2);
748
749			/*
750			 * Note:  I've used this debugging interface
751			 * extensively with Alteon's 12.3.15 firmware,
752			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
753			 *
754			 * When you compile the firmware without
755			 * optimization, which is necessary sometimes in
756			 * order to properly step through it, you sometimes
757			 * read out a bogus value of 0xc0017c instead of
758			 * whatever was supposed to be in that scratchpad
759			 * location.  That value is on the stack somewhere,
760			 * but I've never been able to figure out what was
761			 * causing the problem.
762			 *
763			 * The address seems to pop up in random places,
764			 * often not in the same place on two subsequent
765			 * reads.
766			 *
767			 * In any case, the underlying data doesn't seem
768			 * to be affected, just the value read out.
769			 *
770			 * KDM, 3/7/2000
771			 */
772
773			if (tmpval2 == 0xc0017c)
774				device_printf(sc->ti_dev, "found 0xc0017c at "
775				    "%#x (tmpval2)\n", segptr);
776
777			if (tmpval == 0xc0017c)
778				device_printf(sc->ti_dev, "found 0xc0017c at "
779				    "%#x (tmpval)\n", segptr);
780
781			if (useraddr)
782				copyout(&tmpval, ptr, 4);
783			else
784				bcopy(&tmpval, ptr, 4);
785		} else {
786			if (useraddr)
787				copyin(ptr, &tmpval2, 4);
788			else
789				bcopy(ptr, &tmpval2, 4);
790
791			tmpval = htonl(tmpval2);
792
793			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
794		}
795
796		cnt -= 4;
797		segptr += 4;
798		ptr += 4;
799	}
800
801	return (0);
802}
803
804static int
805ti_bcopy_swap(src, dst, len, swap_type)
806	const void	*src;
807	void		*dst;
808	size_t		len;
809	ti_swap_type	swap_type;
810{
811	const u_int8_t *tmpsrc;
812	u_int8_t *tmpdst;
813	size_t tmplen;
814
815	if (len & 0x3) {
816		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
817		       len);
818		return (-1);
819	}
820
821	tmpsrc = src;
822	tmpdst = dst;
823	tmplen = len;
824
825	while (tmplen) {
826		if (swap_type == TI_SWAP_NTOH)
827			*(u_int32_t *)tmpdst =
828				ntohl(*(const u_int32_t *)tmpsrc);
829		else
830			*(u_int32_t *)tmpdst =
831				htonl(*(const u_int32_t *)tmpsrc);
832
833		tmpsrc += 4;
834		tmpdst += 4;
835		tmplen -= 4;
836	}
837
838	return (0);
839}
840
841/*
842 * Load firmware image into the NIC. Check that the firmware revision
843 * is acceptable and see if we want the firmware for the Tigon 1 or
844 * Tigon 2.
845 */
846static void
847ti_loadfw(sc)
848	struct ti_softc		*sc;
849{
850
851	TI_LOCK_ASSERT(sc);
852
853	switch (sc->ti_hwrev) {
854	case TI_HWREV_TIGON:
855		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
856		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
857		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
858			device_printf(sc->ti_dev, "firmware revision mismatch; "
859			    "want %d.%d.%d, got %d.%d.%d\n",
860			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
861			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
862			    tigonFwReleaseMinor, tigonFwReleaseFix);
863			return;
864		}
865		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
866		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
867		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
868		    tigonFwRodata);
869		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
870		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
871		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
872		break;
873	case TI_HWREV_TIGON_II:
874		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
875		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
876		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
877			device_printf(sc->ti_dev, "firmware revision mismatch; "
878			    "want %d.%d.%d, got %d.%d.%d\n",
879			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
880			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
881			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
882			return;
883		}
884		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
885		    tigon2FwText);
886		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
887		    tigon2FwData);
888		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
889		    tigon2FwRodata);
890		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
891		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
892		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
893		break;
894	default:
895		device_printf(sc->ti_dev,
896		    "can't load firmware: unknown hardware rev\n");
897		break;
898	}
899}
900
901/*
902 * Send the NIC a command via the command ring.
903 */
904static void
905ti_cmd(sc, cmd)
906	struct ti_softc		*sc;
907	struct ti_cmd_desc	*cmd;
908{
909	int			index;
910
911	index = sc->ti_cmd_saved_prodidx;
912	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
913	TI_INC(index, TI_CMD_RING_CNT);
914	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
915	sc->ti_cmd_saved_prodidx = index;
916}
917
918/*
919 * Send the NIC an extended command. The 'len' parameter specifies the
920 * number of command slots to include after the initial command.
921 */
922static void
923ti_cmd_ext(sc, cmd, arg, len)
924	struct ti_softc		*sc;
925	struct ti_cmd_desc	*cmd;
926	caddr_t			arg;
927	int			len;
928{
929	int			index;
930	int			i;
931
932	index = sc->ti_cmd_saved_prodidx;
933	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
934	TI_INC(index, TI_CMD_RING_CNT);
935	for (i = 0; i < len; i++) {
936		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
937		    *(u_int32_t *)(&arg[i * 4]));
938		TI_INC(index, TI_CMD_RING_CNT);
939	}
940	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
941	sc->ti_cmd_saved_prodidx = index;
942}
943
944/*
945 * Handle events that have triggered interrupts.
946 */
947static void
948ti_handle_events(sc)
949	struct ti_softc		*sc;
950{
951	struct ti_event_desc	*e;
952
953	if (sc->ti_rdata->ti_event_ring == NULL)
954		return;
955
956	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
957		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
958		switch (TI_EVENT_EVENT(e)) {
959		case TI_EV_LINKSTAT_CHANGED:
960			sc->ti_linkstat = TI_EVENT_CODE(e);
961			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
962				device_printf(sc->ti_dev, "10/100 link up\n");
963			else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
964				device_printf(sc->ti_dev, "gigabit link up\n");
965			else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
966				device_printf(sc->ti_dev, "link down\n");
967			break;
968		case TI_EV_ERROR:
969			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
970				device_printf(sc->ti_dev, "invalid command\n");
971			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
972				device_printf(sc->ti_dev, "unknown command\n");
973			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
974				device_printf(sc->ti_dev, "bad config data\n");
975			break;
976		case TI_EV_FIRMWARE_UP:
977			ti_init2(sc);
978			break;
979		case TI_EV_STATS_UPDATED:
980			ti_stats_update(sc);
981			break;
982		case TI_EV_RESET_JUMBO_RING:
983		case TI_EV_MCAST_UPDATED:
984			/* Who cares. */
985			break;
986		default:
987			device_printf(sc->ti_dev, "unknown event: %d\n",
988			    TI_EVENT_EVENT(e));
989			break;
990		}
991		/* Advance the consumer index. */
992		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
993		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
994	}
995}
996
997static int
998ti_alloc_dmamaps(struct ti_softc *sc)
999{
1000	int i;
1001
1002	for (i = 0; i < TI_TX_RING_CNT; i++) {
1003		sc->ti_cdata.ti_txdesc[i].tx_m = NULL;
1004		sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
1005		if (bus_dmamap_create(sc->ti_mbuftx_dmat, 0,
1006				      &sc->ti_cdata.ti_txdesc[i].tx_dmamap))
1007			return (ENOBUFS);
1008	}
1009	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1010		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1011				      &sc->ti_cdata.ti_rx_std_maps[i]))
1012			return (ENOBUFS);
1013	}
1014
1015	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1016		if (bus_dmamap_create(sc->ti_jumbo_dmat, 0,
1017				      &sc->ti_cdata.ti_rx_jumbo_maps[i]))
1018			return (ENOBUFS);
1019	}
1020	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1021		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1022				      &sc->ti_cdata.ti_rx_mini_maps[i]))
1023			return (ENOBUFS);
1024	}
1025
1026	return (0);
1027}
1028
1029static void
1030ti_free_dmamaps(struct ti_softc *sc)
1031{
1032	int i;
1033
1034	if (sc->ti_mbuftx_dmat)
1035		for (i = 0; i < TI_TX_RING_CNT; i++)
1036			if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1037				bus_dmamap_destroy(sc->ti_mbuftx_dmat,
1038				    sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1039				sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
1040			}
1041
1042	if (sc->ti_mbufrx_dmat)
1043		for (i = 0; i < TI_STD_RX_RING_CNT; i++)
1044			if (sc->ti_cdata.ti_rx_std_maps[i]) {
1045				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1046				    sc->ti_cdata.ti_rx_std_maps[i]);
1047				sc->ti_cdata.ti_rx_std_maps[i] = 0;
1048			}
1049
1050	if (sc->ti_jumbo_dmat)
1051		for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++)
1052			if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1053				bus_dmamap_destroy(sc->ti_jumbo_dmat,
1054				    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1055				sc->ti_cdata.ti_rx_jumbo_maps[i] = 0;
1056			}
1057	if (sc->ti_mbufrx_dmat)
1058		for (i = 0; i < TI_MINI_RX_RING_CNT; i++)
1059			if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1060				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1061				    sc->ti_cdata.ti_rx_mini_maps[i]);
1062				sc->ti_cdata.ti_rx_mini_maps[i] = 0;
1063			}
1064}
1065
1066#ifdef TI_PRIVATE_JUMBOS
1067
1068/*
1069 * Memory management for the jumbo receive ring is a pain in the
1070 * butt. We need to allocate at least 9018 bytes of space per frame,
1071 * _and_ it has to be contiguous (unless you use the extended
1072 * jumbo descriptor format). Using malloc() all the time won't
1073 * work: malloc() allocates memory in powers of two, which means we
1074 * would end up wasting a considerable amount of space by allocating
1075 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
1076 * to do our own memory management.
1077 *
1078 * The driver needs to allocate a contiguous chunk of memory at boot
1079 * time. We then chop this up ourselves into 9K pieces and use them
1080 * as external mbuf storage.
1081 *
1082 * One issue here is how much memory to allocate. The jumbo ring has
1083 * 256 slots in it, but at 9K per slot than can consume over 2MB of
1084 * RAM. This is a bit much, especially considering we also need
1085 * RAM for the standard ring and mini ring (on the Tigon 2). To
1086 * save space, we only actually allocate enough memory for 64 slots
1087 * by default, which works out to between 500 and 600K. This can
1088 * be tuned by changing a #define in if_tireg.h.
1089 */
1090
1091static int
1092ti_alloc_jumbo_mem(sc)
1093	struct ti_softc		*sc;
1094{
1095	caddr_t			ptr;
1096	int			i;
1097	struct ti_jpool_entry   *entry;
1098
1099	/*
1100	 * Grab a big chunk o' storage.  Since we are chopping this pool up
1101	 * into ~9k chunks, there doesn't appear to be a need to use page
1102	 * alignment.
1103	 */
1104	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1105				1, 0,			/* algnmnt, boundary */
1106				BUS_SPACE_MAXADDR,	/* lowaddr */
1107				BUS_SPACE_MAXADDR,	/* highaddr */
1108				NULL, NULL,		/* filter, filterarg */
1109				TI_JMEM,		/* maxsize */
1110				1,			/* nsegments */
1111				TI_JMEM,		/* maxsegsize */
1112				0,			/* flags */
1113				NULL, NULL,		/* lockfunc, lockarg */
1114				&sc->ti_jumbo_dmat) != 0) {
1115		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1116		return (ENOBUFS);
1117	}
1118
1119	if (bus_dmamem_alloc(sc->ti_jumbo_dmat,
1120			     (void**)&sc->ti_cdata.ti_jumbo_buf,
1121			     BUS_DMA_NOWAIT, &sc->ti_jumbo_dmamap) != 0) {
1122		device_printf(sc->ti_dev, "Failed to allocate jumbo memory\n");
1123		return (ENOBUFS);
1124	}
1125
1126	SLIST_INIT(&sc->ti_jfree_listhead);
1127	SLIST_INIT(&sc->ti_jinuse_listhead);
1128
1129	/*
1130	 * Now divide it up into 9K pieces and save the addresses
1131	 * in an array.
1132	 */
1133	ptr = sc->ti_cdata.ti_jumbo_buf;
1134	for (i = 0; i < TI_JSLOTS; i++) {
1135		sc->ti_cdata.ti_jslots[i] = ptr;
1136		ptr += TI_JLEN;
1137		entry = malloc(sizeof(struct ti_jpool_entry),
1138			       M_DEVBUF, M_NOWAIT);
1139		if (entry == NULL) {
1140			device_printf(sc->ti_dev, "no memory for jumbo "
1141			    "buffer queue!\n");
1142			return (ENOBUFS);
1143		}
1144		entry->slot = i;
1145		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1146	}
1147
1148	return (0);
1149}
1150
1151/*
1152 * Allocate a jumbo buffer.
1153 */
1154static void *ti_jalloc(sc)
1155	struct ti_softc		*sc;
1156{
1157	struct ti_jpool_entry	*entry;
1158
1159	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1160
1161	if (entry == NULL) {
1162		device_printf(sc->ti_dev, "no free jumbo buffers\n");
1163		return (NULL);
1164	}
1165
1166	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1167	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1168	return (sc->ti_cdata.ti_jslots[entry->slot]);
1169}
1170
1171/*
1172 * Release a jumbo buffer.
1173 */
1174static void
1175ti_jfree(buf, args)
1176	void			*buf;
1177	void			*args;
1178{
1179	struct ti_softc		*sc;
1180	int			i;
1181	struct ti_jpool_entry	*entry;
1182
1183	/* Extract the softc struct pointer. */
1184	sc = (struct ti_softc *)args;
1185
1186	if (sc == NULL)
1187		panic("ti_jfree: didn't get softc pointer!");
1188
1189	/* calculate the slot this buffer belongs to */
1190	i = ((vm_offset_t)buf
1191	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1192
1193	if ((i < 0) || (i >= TI_JSLOTS))
1194		panic("ti_jfree: asked to free buffer that we don't manage!");
1195
1196	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1197	if (entry == NULL)
1198		panic("ti_jfree: buffer not in use!");
1199	entry->slot = i;
1200	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1201	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1202}
1203
1204#else
1205
1206static int
1207ti_alloc_jumbo_mem(sc)
1208	struct ti_softc		*sc;
1209{
1210
1211	/*
1212	 * The VM system will take care of providing aligned pages.  Alignment
1213	 * is set to 1 here so that busdma resources won't be wasted.
1214	 */
1215	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1216				1, 0,			/* algnmnt, boundary */
1217				BUS_SPACE_MAXADDR,	/* lowaddr */
1218				BUS_SPACE_MAXADDR,	/* highaddr */
1219				NULL, NULL,		/* filter, filterarg */
1220				PAGE_SIZE * 4 /*XXX*/,	/* maxsize */
1221				4,			/* nsegments */
1222				PAGE_SIZE,		/* maxsegsize */
1223				0,			/* flags */
1224				NULL, NULL,		/* lockfunc, lockarg */
1225				&sc->ti_jumbo_dmat) != 0) {
1226		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1227		return (ENOBUFS);
1228	}
1229
1230	return (0);
1231}
1232
1233#endif /* TI_PRIVATE_JUMBOS */
1234
1235/*
1236 * Intialize a standard receive ring descriptor.
1237 */
1238static int
1239ti_newbuf_std(sc, i, m)
1240	struct ti_softc		*sc;
1241	int			i;
1242	struct mbuf		*m;
1243{
1244	bus_dmamap_t		map;
1245	bus_dma_segment_t	segs;
1246	struct mbuf		*m_new = NULL;
1247	struct ti_rx_desc	*r;
1248	int			nsegs;
1249
1250	nsegs = 0;
1251	if (m == NULL) {
1252		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1253		if (m_new == NULL)
1254			return (ENOBUFS);
1255
1256		MCLGET(m_new, M_DONTWAIT);
1257		if (!(m_new->m_flags & M_EXT)) {
1258			m_freem(m_new);
1259			return (ENOBUFS);
1260		}
1261		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1262	} else {
1263		m_new = m;
1264		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1265		m_new->m_data = m_new->m_ext.ext_buf;
1266	}
1267
1268	m_adj(m_new, ETHER_ALIGN);
1269	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1270	r = &sc->ti_rdata->ti_rx_std_ring[i];
1271	map = sc->ti_cdata.ti_rx_std_maps[i];
1272	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1273				    &nsegs, 0))
1274		return (ENOBUFS);
1275	if (nsegs != 1)
1276		return (ENOBUFS);
1277	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1278	r->ti_len = segs.ds_len;
1279	r->ti_type = TI_BDTYPE_RECV_BD;
1280	r->ti_flags = 0;
1281	if (sc->ti_ifp->if_hwassist)
1282		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1283	r->ti_idx = i;
1284
1285	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1286	return (0);
1287}
1288
1289/*
1290 * Intialize a mini receive ring descriptor. This only applies to
1291 * the Tigon 2.
1292 */
1293static int
1294ti_newbuf_mini(sc, i, m)
1295	struct ti_softc		*sc;
1296	int			i;
1297	struct mbuf		*m;
1298{
1299	bus_dma_segment_t	segs;
1300	bus_dmamap_t		map;
1301	struct mbuf		*m_new = NULL;
1302	struct ti_rx_desc	*r;
1303	int			nsegs;
1304
1305	nsegs = 0;
1306	if (m == NULL) {
1307		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1308		if (m_new == NULL) {
1309			return (ENOBUFS);
1310		}
1311		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1312	} else {
1313		m_new = m;
1314		m_new->m_data = m_new->m_pktdat;
1315		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1316	}
1317
1318	m_adj(m_new, ETHER_ALIGN);
1319	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1320	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1321	map = sc->ti_cdata.ti_rx_mini_maps[i];
1322	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1323				    &nsegs, 0))
1324		return (ENOBUFS);
1325	if (nsegs != 1)
1326		return (ENOBUFS);
1327	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1328	r->ti_len = segs.ds_len;
1329	r->ti_type = TI_BDTYPE_RECV_BD;
1330	r->ti_flags = TI_BDFLAG_MINI_RING;
1331	if (sc->ti_ifp->if_hwassist)
1332		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1333	r->ti_idx = i;
1334
1335	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1336	return (0);
1337}
1338
1339#ifdef TI_PRIVATE_JUMBOS
1340
1341/*
1342 * Initialize a jumbo receive ring descriptor. This allocates
1343 * a jumbo buffer from the pool managed internally by the driver.
1344 */
1345static int
1346ti_newbuf_jumbo(sc, i, m)
1347	struct ti_softc		*sc;
1348	int			i;
1349	struct mbuf		*m;
1350{
1351	bus_dmamap_t		map;
1352	struct mbuf		*m_new = NULL;
1353	struct ti_rx_desc	*r;
1354	int			nsegs;
1355	bus_dma_segment_t	segs;
1356
1357	if (m == NULL) {
1358		caddr_t			*buf = NULL;
1359
1360		/* Allocate the mbuf. */
1361		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1362		if (m_new == NULL) {
1363			return (ENOBUFS);
1364		}
1365
1366		/* Allocate the jumbo buffer */
1367		buf = ti_jalloc(sc);
1368		if (buf == NULL) {
1369			m_freem(m_new);
1370			device_printf(sc->ti_dev, "jumbo allocation failed "
1371			    "-- packet dropped!\n");
1372			return (ENOBUFS);
1373		}
1374
1375		/* Attach the buffer to the mbuf. */
1376		m_new->m_data = (void *) buf;
1377		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1378		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1379		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1380	} else {
1381		m_new = m;
1382		m_new->m_data = m_new->m_ext.ext_buf;
1383		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1384	}
1385
1386	m_adj(m_new, ETHER_ALIGN);
1387	/* Set up the descriptor. */
1388	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1389	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1390	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1391	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, &segs,
1392				    &nsegs, 0))
1393		return (ENOBUFS);
1394	if (nsegs != 1)
1395		return (ENOBUFS);
1396	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1397	r->ti_len = segs.ds_len;
1398	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1399	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1400	if (sc->ti_ifp->if_hwassist)
1401		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1402	r->ti_idx = i;
1403
1404	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1405	return (0);
1406}
1407
1408#else
1409
1410#if (PAGE_SIZE == 4096)
1411#define NPAYLOAD 2
1412#else
1413#define NPAYLOAD 1
1414#endif
1415
1416#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1417#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1418#define NFS_HDR_LEN (UDP_HDR_LEN)
1419static int HDR_LEN =  TCP_HDR_LEN;
1420
1421
1422/*
1423 * Initialize a jumbo receive ring descriptor. This allocates
1424 * a jumbo buffer from the pool managed internally by the driver.
1425 */
1426static int
1427ti_newbuf_jumbo(sc, idx, m_old)
1428	struct ti_softc		*sc;
1429	int			idx;
1430	struct mbuf		*m_old;
1431{
1432	bus_dmamap_t		map;
1433	struct mbuf		*cur, *m_new = NULL;
1434	struct mbuf		*m[3] = {NULL, NULL, NULL};
1435	struct ti_rx_desc_ext	*r;
1436	vm_page_t		frame;
1437	static int		color;
1438				/* 1 extra buf to make nobufs easy*/
1439	struct sf_buf		*sf[3] = {NULL, NULL, NULL};
1440	int			i;
1441	bus_dma_segment_t	segs[4];
1442	int			nsegs;
1443
1444	if (m_old != NULL) {
1445		m_new = m_old;
1446		cur = m_old->m_next;
1447		for (i = 0; i <= NPAYLOAD; i++){
1448			m[i] = cur;
1449			cur = cur->m_next;
1450		}
1451	} else {
1452		/* Allocate the mbufs. */
1453		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1454		if (m_new == NULL) {
1455			device_printf(sc->ti_dev, "mbuf allocation failed "
1456			    "-- packet dropped!\n");
1457			goto nobufs;
1458		}
1459		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1460		if (m[NPAYLOAD] == NULL) {
1461			device_printf(sc->ti_dev, "cluster mbuf allocation "
1462			    "failed -- packet dropped!\n");
1463			goto nobufs;
1464		}
1465		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1466		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1467			device_printf(sc->ti_dev, "mbuf allocation failed "
1468			    "-- packet dropped!\n");
1469			goto nobufs;
1470		}
1471		m[NPAYLOAD]->m_len = MCLBYTES;
1472
1473		for (i = 0; i < NPAYLOAD; i++){
1474			MGET(m[i], M_DONTWAIT, MT_DATA);
1475			if (m[i] == NULL) {
1476				device_printf(sc->ti_dev, "mbuf allocation "
1477				    "failed -- packet dropped!\n");
1478				goto nobufs;
1479			}
1480			frame = vm_page_alloc(NULL, color++,
1481			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1482			    VM_ALLOC_WIRED);
1483			if (frame == NULL) {
1484				device_printf(sc->ti_dev, "buffer allocation "
1485				    "failed -- packet dropped!\n");
1486				printf("      index %d page %d\n", idx, i);
1487				goto nobufs;
1488			}
1489			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1490			if (sf[i] == NULL) {
1491				vm_page_lock_queues();
1492				vm_page_unwire(frame, 0);
1493				vm_page_free(frame);
1494				vm_page_unlock_queues();
1495				device_printf(sc->ti_dev, "buffer allocation "
1496				    "failed -- packet dropped!\n");
1497				printf("      index %d page %d\n", idx, i);
1498				goto nobufs;
1499			}
1500		}
1501		for (i = 0; i < NPAYLOAD; i++){
1502		/* Attach the buffer to the mbuf. */
1503			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1504			m[i]->m_len = PAGE_SIZE;
1505			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1506			    sf_buf_mext, (void*)sf_buf_kva(sf[i]), sf[i],
1507			    0, EXT_DISPOSABLE);
1508			m[i]->m_next = m[i+1];
1509		}
1510		/* link the buffers to the header */
1511		m_new->m_next = m[0];
1512		m_new->m_data += ETHER_ALIGN;
1513		if (sc->ti_hdrsplit)
1514			m_new->m_len = MHLEN - ETHER_ALIGN;
1515		else
1516			m_new->m_len = HDR_LEN;
1517		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1518	}
1519
1520	/* Set up the descriptor. */
1521	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1522	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1523	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1524	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, segs,
1525				    &nsegs, 0))
1526		return (ENOBUFS);
1527	if ((nsegs < 1) || (nsegs > 4))
1528		return (ENOBUFS);
1529	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1530	r->ti_len0 = m_new->m_len;
1531
1532	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1533	r->ti_len1 = PAGE_SIZE;
1534
1535	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1536	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1537
1538	if (PAGE_SIZE == 4096) {
1539		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1540		r->ti_len3 = MCLBYTES;
1541	} else {
1542		r->ti_len3 = 0;
1543	}
1544	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1545
1546	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1547
1548	if (sc->ti_ifp->if_hwassist)
1549		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1550
1551	r->ti_idx = idx;
1552
1553	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1554	return (0);
1555
1556nobufs:
1557
1558	/*
1559	 * Warning! :
1560	 * This can only be called before the mbufs are strung together.
1561	 * If the mbufs are strung together, m_freem() will free the chain,
1562	 * so that the later mbufs will be freed multiple times.
1563	 */
1564	if (m_new)
1565		m_freem(m_new);
1566
1567	for (i = 0; i < 3; i++) {
1568		if (m[i])
1569			m_freem(m[i]);
1570		if (sf[i])
1571			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1572	}
1573	return (ENOBUFS);
1574}
1575#endif
1576
1577
1578
1579/*
1580 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1581 * that's 1MB or memory, which is a lot. For now, we fill only the first
1582 * 256 ring entries and hope that our CPU is fast enough to keep up with
1583 * the NIC.
1584 */
1585static int
1586ti_init_rx_ring_std(sc)
1587	struct ti_softc		*sc;
1588{
1589	int			i;
1590	struct ti_cmd_desc	cmd;
1591
1592	for (i = 0; i < TI_SSLOTS; i++) {
1593		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1594			return (ENOBUFS);
1595	};
1596
1597	TI_UPDATE_STDPROD(sc, i - 1);
1598	sc->ti_std = i - 1;
1599
1600	return (0);
1601}
1602
1603static void
1604ti_free_rx_ring_std(sc)
1605	struct ti_softc		*sc;
1606{
1607	bus_dmamap_t		map;
1608	int			i;
1609
1610	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1611		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1612			map = sc->ti_cdata.ti_rx_std_maps[i];
1613			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1614			    BUS_DMASYNC_POSTREAD);
1615			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1616			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1617			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1618		}
1619		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1620		    sizeof(struct ti_rx_desc));
1621	}
1622}
1623
1624static int
1625ti_init_rx_ring_jumbo(sc)
1626	struct ti_softc		*sc;
1627{
1628	int			i;
1629	struct ti_cmd_desc	cmd;
1630
1631	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1632		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1633			return (ENOBUFS);
1634	};
1635
1636	TI_UPDATE_JUMBOPROD(sc, i - 1);
1637	sc->ti_jumbo = i - 1;
1638
1639	return (0);
1640}
1641
1642static void
1643ti_free_rx_ring_jumbo(sc)
1644	struct ti_softc		*sc;
1645{
1646	bus_dmamap_t		map;
1647	int			i;
1648
1649	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1650		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1651			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1652			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
1653			    BUS_DMASYNC_POSTREAD);
1654			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
1655			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1656			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1657		}
1658		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1659		    sizeof(struct ti_rx_desc));
1660	}
1661}
1662
1663static int
1664ti_init_rx_ring_mini(sc)
1665	struct ti_softc		*sc;
1666{
1667	int			i;
1668
1669	for (i = 0; i < TI_MSLOTS; i++) {
1670		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1671			return (ENOBUFS);
1672	};
1673
1674	TI_UPDATE_MINIPROD(sc, i - 1);
1675	sc->ti_mini = i - 1;
1676
1677	return (0);
1678}
1679
1680static void
1681ti_free_rx_ring_mini(sc)
1682	struct ti_softc		*sc;
1683{
1684	bus_dmamap_t		map;
1685	int			i;
1686
1687	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1688		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1689			map = sc->ti_cdata.ti_rx_mini_maps[i];
1690			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1691			    BUS_DMASYNC_POSTREAD);
1692			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1693			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1694			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1695		}
1696		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1697		    sizeof(struct ti_rx_desc));
1698	}
1699}
1700
1701static void
1702ti_free_tx_ring(sc)
1703	struct ti_softc		*sc;
1704{
1705	struct ti_txdesc	*txd;
1706	int			i;
1707
1708	if (sc->ti_rdata->ti_tx_ring == NULL)
1709		return;
1710
1711	for (i = 0; i < TI_TX_RING_CNT; i++) {
1712		txd = &sc->ti_cdata.ti_txdesc[i];
1713		if (txd->tx_m != NULL) {
1714			bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
1715			    BUS_DMASYNC_POSTWRITE);
1716			bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
1717			m_freem(txd->tx_m);
1718			txd->tx_m = NULL;
1719		}
1720		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1721		    sizeof(struct ti_tx_desc));
1722	}
1723}
1724
1725static int
1726ti_init_tx_ring(sc)
1727	struct ti_softc		*sc;
1728{
1729	struct ti_txdesc	*txd;
1730	int			i;
1731
1732	STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1733	STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1734	for (i = 0; i < TI_TX_RING_CNT; i++) {
1735		txd = &sc->ti_cdata.ti_txdesc[i];
1736		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1737	}
1738	sc->ti_txcnt = 0;
1739	sc->ti_tx_saved_considx = 0;
1740	sc->ti_tx_saved_prodidx = 0;
1741	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1742	return (0);
1743}
1744
1745/*
1746 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1747 * but we have to support the old way too so that Tigon 1 cards will
1748 * work.
1749 */
1750static void
1751ti_add_mcast(sc, addr)
1752	struct ti_softc		*sc;
1753	struct ether_addr	*addr;
1754{
1755	struct ti_cmd_desc	cmd;
1756	u_int16_t		*m;
1757	u_int32_t		ext[2] = {0, 0};
1758
1759	m = (u_int16_t *)&addr->octet[0];
1760
1761	switch (sc->ti_hwrev) {
1762	case TI_HWREV_TIGON:
1763		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1764		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1765		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1766		break;
1767	case TI_HWREV_TIGON_II:
1768		ext[0] = htons(m[0]);
1769		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1770		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1771		break;
1772	default:
1773		device_printf(sc->ti_dev, "unknown hwrev\n");
1774		break;
1775	}
1776}
1777
1778static void
1779ti_del_mcast(sc, addr)
1780	struct ti_softc		*sc;
1781	struct ether_addr	*addr;
1782{
1783	struct ti_cmd_desc	cmd;
1784	u_int16_t		*m;
1785	u_int32_t		ext[2] = {0, 0};
1786
1787	m = (u_int16_t *)&addr->octet[0];
1788
1789	switch (sc->ti_hwrev) {
1790	case TI_HWREV_TIGON:
1791		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1792		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1793		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1794		break;
1795	case TI_HWREV_TIGON_II:
1796		ext[0] = htons(m[0]);
1797		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1798		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1799		break;
1800	default:
1801		device_printf(sc->ti_dev, "unknown hwrev\n");
1802		break;
1803	}
1804}
1805
1806/*
1807 * Configure the Tigon's multicast address filter.
1808 *
1809 * The actual multicast table management is a bit of a pain, thanks to
1810 * slight brain damage on the part of both Alteon and us. With our
1811 * multicast code, we are only alerted when the multicast address table
1812 * changes and at that point we only have the current list of addresses:
1813 * we only know the current state, not the previous state, so we don't
1814 * actually know what addresses were removed or added. The firmware has
1815 * state, but we can't get our grubby mits on it, and there is no 'delete
1816 * all multicast addresses' command. Hence, we have to maintain our own
1817 * state so we know what addresses have been programmed into the NIC at
1818 * any given time.
1819 */
1820static void
1821ti_setmulti(sc)
1822	struct ti_softc		*sc;
1823{
1824	struct ifnet		*ifp;
1825	struct ifmultiaddr	*ifma;
1826	struct ti_cmd_desc	cmd;
1827	struct ti_mc_entry	*mc;
1828	u_int32_t		intrs;
1829
1830	TI_LOCK_ASSERT(sc);
1831
1832	ifp = sc->ti_ifp;
1833
1834	if (ifp->if_flags & IFF_ALLMULTI) {
1835		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1836		return;
1837	} else {
1838		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1839	}
1840
1841	/* Disable interrupts. */
1842	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1843	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1844
1845	/* First, zot all the existing filters. */
1846	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1847		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1848		ti_del_mcast(sc, &mc->mc_addr);
1849		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1850		free(mc, M_DEVBUF);
1851	}
1852
1853	/* Now program new ones. */
1854	IF_ADDR_LOCK(ifp);
1855	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1856		if (ifma->ifma_addr->sa_family != AF_LINK)
1857			continue;
1858		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1859		if (mc == NULL) {
1860			device_printf(sc->ti_dev,
1861			    "no memory for mcast filter entry\n");
1862			continue;
1863		}
1864		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1865		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1866		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1867		ti_add_mcast(sc, &mc->mc_addr);
1868	}
1869	IF_ADDR_UNLOCK(ifp);
1870
1871	/* Re-enable interrupts. */
1872	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1873}
1874
1875/*
1876 * Check to see if the BIOS has configured us for a 64 bit slot when
1877 * we aren't actually in one. If we detect this condition, we can work
1878 * around it on the Tigon 2 by setting a bit in the PCI state register,
1879 * but for the Tigon 1 we must give up and abort the interface attach.
1880 */
1881static int ti_64bitslot_war(sc)
1882	struct ti_softc		*sc;
1883{
1884	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1885		CSR_WRITE_4(sc, 0x600, 0);
1886		CSR_WRITE_4(sc, 0x604, 0);
1887		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1888		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1889			if (sc->ti_hwrev == TI_HWREV_TIGON)
1890				return (EINVAL);
1891			else {
1892				TI_SETBIT(sc, TI_PCI_STATE,
1893				    TI_PCISTATE_32BIT_BUS);
1894				return (0);
1895			}
1896		}
1897	}
1898
1899	return (0);
1900}
1901
1902/*
1903 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1904 * self-test results.
1905 */
1906static int
1907ti_chipinit(sc)
1908	struct ti_softc		*sc;
1909{
1910	u_int32_t		cacheline;
1911	u_int32_t		pci_writemax = 0;
1912	u_int32_t		hdrsplit;
1913
1914	/* Initialize link to down state. */
1915	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1916
1917	if (sc->ti_ifp->if_capenable & IFCAP_HWCSUM)
1918		sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
1919	else
1920		sc->ti_ifp->if_hwassist = 0;
1921
1922	/* Set endianness before we access any non-PCI registers. */
1923#if 0 && BYTE_ORDER == BIG_ENDIAN
1924	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1925	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1926#else
1927	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1928	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1929#endif
1930
1931	/* Check the ROM failed bit to see if self-tests passed. */
1932	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1933		device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
1934		return (ENODEV);
1935	}
1936
1937	/* Halt the CPU. */
1938	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1939
1940	/* Figure out the hardware revision. */
1941	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1942	case TI_REV_TIGON_I:
1943		sc->ti_hwrev = TI_HWREV_TIGON;
1944		break;
1945	case TI_REV_TIGON_II:
1946		sc->ti_hwrev = TI_HWREV_TIGON_II;
1947		break;
1948	default:
1949		device_printf(sc->ti_dev, "unsupported chip revision\n");
1950		return (ENODEV);
1951	}
1952
1953	/* Do special setup for Tigon 2. */
1954	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1955		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1956		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1957		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1958	}
1959
1960	/*
1961	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1962	 * can't do header splitting.
1963	 */
1964#ifdef TI_JUMBO_HDRSPLIT
1965	if (sc->ti_hwrev != TI_HWREV_TIGON)
1966		sc->ti_hdrsplit = 1;
1967	else
1968		device_printf(sc->ti_dev,
1969		    "can't do header splitting on a Tigon I board\n");
1970#endif /* TI_JUMBO_HDRSPLIT */
1971
1972	/* Set up the PCI state register. */
1973	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1974	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1975		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1976	}
1977
1978	/* Clear the read/write max DMA parameters. */
1979	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1980	    TI_PCISTATE_READ_MAXDMA));
1981
1982	/* Get cache line size. */
1983	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1984
1985	/*
1986	 * If the system has set enabled the PCI memory write
1987	 * and invalidate command in the command register, set
1988	 * the write max parameter accordingly. This is necessary
1989	 * to use MWI with the Tigon 2.
1990	 */
1991	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1992		switch (cacheline) {
1993		case 1:
1994		case 4:
1995		case 8:
1996		case 16:
1997		case 32:
1998		case 64:
1999			break;
2000		default:
2001		/* Disable PCI memory write and invalidate. */
2002			if (bootverbose)
2003				device_printf(sc->ti_dev, "cache line size %d"
2004				    " not supported; disabling PCI MWI\n",
2005				    cacheline);
2006			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
2007			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
2008			break;
2009		}
2010	}
2011
2012#ifdef __brokenalpha__
2013	/*
2014	 * From the Alteon sample driver:
2015	 * Must insure that we do not cross an 8K (bytes) boundary
2016	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
2017	 * restriction on some ALPHA platforms with early revision
2018	 * 21174 PCI chipsets, such as the AlphaPC 164lx
2019	 */
2020	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
2021#else
2022	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2023#endif
2024
2025	/* This sets the min dma param all the way up (0xff). */
2026	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2027
2028	if (sc->ti_hdrsplit)
2029		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2030	else
2031		hdrsplit = 0;
2032
2033	/* Configure DMA variables. */
2034#if BYTE_ORDER == BIG_ENDIAN
2035	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2036	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2037	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2038	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2039#else /* BYTE_ORDER */
2040	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2041	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2042	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2043#endif /* BYTE_ORDER */
2044
2045	/*
2046	 * Only allow 1 DMA channel to be active at a time.
2047	 * I don't think this is a good idea, but without it
2048	 * the firmware racks up lots of nicDmaReadRingFull
2049	 * errors.  This is not compatible with hardware checksums.
2050	 */
2051	if (sc->ti_ifp->if_hwassist == 0)
2052		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2053
2054	/* Recommended settings from Tigon manual. */
2055	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2056	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2057
2058	if (ti_64bitslot_war(sc)) {
2059		device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
2060		    "but we aren't");
2061		return (EINVAL);
2062	}
2063
2064	return (0);
2065}
2066
2067/*
2068 * Initialize the general information block and firmware, and
2069 * start the CPU(s) running.
2070 */
2071static int
2072ti_gibinit(sc)
2073	struct ti_softc		*sc;
2074{
2075	struct ti_rcb		*rcb;
2076	int			i;
2077	struct ifnet		*ifp;
2078	uint32_t		rdphys;
2079
2080	TI_LOCK_ASSERT(sc);
2081
2082	ifp = sc->ti_ifp;
2083	rdphys = sc->ti_rdata_phys;
2084
2085	/* Disable interrupts for now. */
2086	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2087
2088	/*
2089	 * Tell the chip where to find the general information block.
2090	 * While this struct could go into >4GB memory, we allocate it in a
2091	 * single slab with the other descriptors, and those don't seem to
2092	 * support being located in a 64-bit region.
2093	 */
2094	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
2095	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
2096
2097	/* Load the firmware into SRAM. */
2098	ti_loadfw(sc);
2099
2100	/* Set up the contents of the general info and ring control blocks. */
2101
2102	/* Set up the event ring and producer pointer. */
2103	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
2104
2105	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
2106	rcb->ti_flags = 0;
2107	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
2108	    rdphys + TI_RD_OFF(ti_ev_prodidx_r);
2109	sc->ti_ev_prodidx.ti_idx = 0;
2110	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2111	sc->ti_ev_saved_considx = 0;
2112
2113	/* Set up the command ring and producer mailbox. */
2114	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
2115
2116	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
2117	rcb->ti_flags = 0;
2118	rcb->ti_max_len = 0;
2119	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2120		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2121	}
2122	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2123	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2124	sc->ti_cmd_saved_prodidx = 0;
2125
2126	/*
2127	 * Assign the address of the stats refresh buffer.
2128	 * We re-use the current stats buffer for this to
2129	 * conserve memory.
2130	 */
2131	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
2132	    rdphys + TI_RD_OFF(ti_info.ti_stats);
2133
2134	/* Set up the standard receive ring. */
2135	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
2136	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
2137	rcb->ti_max_len = TI_FRAMELEN;
2138	rcb->ti_flags = 0;
2139	if (sc->ti_ifp->if_hwassist)
2140		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2141		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2142	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2143
2144	/* Set up the jumbo receive ring. */
2145	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
2146	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
2147
2148#ifdef TI_PRIVATE_JUMBOS
2149	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
2150	rcb->ti_flags = 0;
2151#else
2152	rcb->ti_max_len = PAGE_SIZE;
2153	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2154#endif
2155	if (sc->ti_ifp->if_hwassist)
2156		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2157		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2158	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2159
2160	/*
2161	 * Set up the mini ring. Only activated on the
2162	 * Tigon 2 but the slot in the config block is
2163	 * still there on the Tigon 1.
2164	 */
2165	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
2166	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
2167	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2168	if (sc->ti_hwrev == TI_HWREV_TIGON)
2169		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2170	else
2171		rcb->ti_flags = 0;
2172	if (sc->ti_ifp->if_hwassist)
2173		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2174		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2175	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2176
2177	/*
2178	 * Set up the receive return ring.
2179	 */
2180	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
2181	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
2182	rcb->ti_flags = 0;
2183	rcb->ti_max_len = TI_RETURN_RING_CNT;
2184	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
2185	    rdphys + TI_RD_OFF(ti_return_prodidx_r);
2186
2187	/*
2188	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2189	 * of putting the transmit ring in the host's address space and
2190	 * letting the chip DMA it instead of leaving the ring in the NIC's
2191	 * memory and accessing it through the shared memory region. We
2192	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2193	 * so we have to revert to the shared memory scheme if we detect
2194	 * a Tigon 1 chip.
2195	 */
2196	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2197	bzero((char *)sc->ti_rdata->ti_tx_ring,
2198	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
2199	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
2200	if (sc->ti_hwrev == TI_HWREV_TIGON)
2201		rcb->ti_flags = 0;
2202	else
2203		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2204	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2205	if (sc->ti_ifp->if_hwassist)
2206		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2207		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2208	rcb->ti_max_len = TI_TX_RING_CNT;
2209	if (sc->ti_hwrev == TI_HWREV_TIGON)
2210		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
2211	else
2212		TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
2213	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
2214	    rdphys + TI_RD_OFF(ti_tx_considx_r);
2215
2216	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2217	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2218
2219	/* Set up tuneables */
2220#if 0
2221	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2222		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2223		    (sc->ti_rx_coal_ticks / 10));
2224	else
2225#endif
2226		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2227	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2228	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2229	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2230	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2231	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2232
2233	/* Turn interrupts on. */
2234	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2235	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2236
2237	/* Start CPU. */
2238	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2239
2240	return (0);
2241}
2242
2243static void
2244ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2245{
2246	struct ti_softc *sc;
2247
2248	sc = arg;
2249	if (error || nseg != 1)
2250		return;
2251
2252	/*
2253	 * All of the Tigon data structures need to live at <4GB.  This
2254	 * cast is fine since busdma was told about this constraint.
2255	 */
2256	sc->ti_rdata_phys = segs[0].ds_addr;
2257	return;
2258}
2259
2260/*
2261 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2262 * against our list and return its name if we find a match.
2263 */
2264static int
2265ti_probe(dev)
2266	device_t		dev;
2267{
2268	struct ti_type		*t;
2269
2270	t = ti_devs;
2271
2272	while (t->ti_name != NULL) {
2273		if ((pci_get_vendor(dev) == t->ti_vid) &&
2274		    (pci_get_device(dev) == t->ti_did)) {
2275			device_set_desc(dev, t->ti_name);
2276			return (BUS_PROBE_DEFAULT);
2277		}
2278		t++;
2279	}
2280
2281	return (ENXIO);
2282}
2283
2284static int
2285ti_attach(dev)
2286	device_t		dev;
2287{
2288	struct ifnet		*ifp;
2289	struct ti_softc		*sc;
2290	int			error = 0, rid;
2291	u_char			eaddr[6];
2292
2293	sc = device_get_softc(dev);
2294	sc->ti_unit = device_get_unit(dev);
2295	sc->ti_dev = dev;
2296
2297	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2298	    MTX_DEF);
2299	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2300	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2301	if (ifp == NULL) {
2302		device_printf(dev, "can not if_alloc()\n");
2303		error = ENOSPC;
2304		goto fail;
2305	}
2306	sc->ti_ifp->if_capabilities = IFCAP_HWCSUM |
2307	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2308	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2309
2310	/*
2311	 * Map control/status registers.
2312	 */
2313	pci_enable_busmaster(dev);
2314
2315	rid = TI_PCI_LOMEM;
2316	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2317	    RF_ACTIVE|PCI_RF_DENSE);
2318
2319	if (sc->ti_res == NULL) {
2320		device_printf(dev, "couldn't map memory\n");
2321		error = ENXIO;
2322		goto fail;
2323	}
2324
2325	sc->ti_btag = rman_get_bustag(sc->ti_res);
2326	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2327
2328	/* Allocate interrupt */
2329	rid = 0;
2330
2331	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2332	    RF_SHAREABLE | RF_ACTIVE);
2333
2334	if (sc->ti_irq == NULL) {
2335		device_printf(dev, "couldn't map interrupt\n");
2336		error = ENXIO;
2337		goto fail;
2338	}
2339
2340	if (ti_chipinit(sc)) {
2341		device_printf(dev, "chip initialization failed\n");
2342		error = ENXIO;
2343		goto fail;
2344	}
2345
2346	/* Zero out the NIC's on-board SRAM. */
2347	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2348
2349	/* Init again -- zeroing memory may have clobbered some registers. */
2350	if (ti_chipinit(sc)) {
2351		device_printf(dev, "chip initialization failed\n");
2352		error = ENXIO;
2353		goto fail;
2354	}
2355
2356	/*
2357	 * Get station address from the EEPROM. Note: the manual states
2358	 * that the MAC address is at offset 0x8c, however the data is
2359	 * stored as two longwords (since that's how it's loaded into
2360	 * the NIC). This means the MAC address is actually preceded
2361	 * by two zero bytes. We need to skip over those.
2362	 */
2363	if (ti_read_eeprom(sc, eaddr,
2364				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2365		device_printf(dev, "failed to read station address\n");
2366		error = ENXIO;
2367		goto fail;
2368	}
2369
2370	/* Allocate the general information block and ring buffers. */
2371	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
2372				1, 0,			/* algnmnt, boundary */
2373				BUS_SPACE_MAXADDR,	/* lowaddr */
2374				BUS_SPACE_MAXADDR,	/* highaddr */
2375				NULL, NULL,		/* filter, filterarg */
2376				BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2377				0,			/* nsegments */
2378				BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2379				0,			/* flags */
2380				NULL, NULL,		/* lockfunc, lockarg */
2381				&sc->ti_parent_dmat) != 0) {
2382		device_printf(dev, "Failed to allocate parent dmat\n");
2383		error = ENOMEM;
2384		goto fail;
2385	}
2386
2387	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2388				PAGE_SIZE, 0,		/* algnmnt, boundary */
2389				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2390				BUS_SPACE_MAXADDR,	/* highaddr */
2391				NULL, NULL,		/* filter, filterarg */
2392				sizeof(struct ti_ring_data),	/* maxsize */
2393				1,			/* nsegments */
2394				sizeof(struct ti_ring_data),	/* maxsegsize */
2395				0,			/* flags */
2396				NULL, NULL,		/* lockfunc, lockarg */
2397				&sc->ti_rdata_dmat) != 0) {
2398		device_printf(dev, "Failed to allocate rdata dmat\n");
2399		error = ENOMEM;
2400		goto fail;
2401	}
2402
2403	if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2404			     BUS_DMA_NOWAIT, &sc->ti_rdata_dmamap) != 0) {
2405		device_printf(dev, "Failed to allocate rdata memory\n");
2406		error = ENOMEM;
2407		goto fail;
2408	}
2409
2410	if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2411			    sc->ti_rdata, sizeof(struct ti_ring_data),
2412			    ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2413		device_printf(dev, "Failed to load rdata segments\n");
2414		error = ENOMEM;
2415		goto fail;
2416	}
2417
2418	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2419
2420	/* Try to allocate memory for jumbo buffers. */
2421	if (ti_alloc_jumbo_mem(sc)) {
2422		device_printf(dev, "jumbo buffer allocation failed\n");
2423		error = ENXIO;
2424		goto fail;
2425	}
2426
2427	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2428				1, 0,			/* algnmnt, boundary */
2429				BUS_SPACE_MAXADDR,	/* lowaddr */
2430				BUS_SPACE_MAXADDR,	/* highaddr */
2431				NULL, NULL,		/* filter, filterarg */
2432				MCLBYTES * TI_MAXTXSEGS,/* maxsize */
2433				TI_MAXTXSEGS,		/* nsegments */
2434				MCLBYTES,		/* maxsegsize */
2435				0,			/* flags */
2436				NULL, NULL,		/* lockfunc, lockarg */
2437				&sc->ti_mbuftx_dmat) != 0) {
2438		device_printf(dev, "Failed to allocate rdata dmat\n");
2439		error = ENOMEM;
2440		goto fail;
2441	}
2442
2443	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2444				1, 0,			/* algnmnt, boundary */
2445				BUS_SPACE_MAXADDR,	/* lowaddr */
2446				BUS_SPACE_MAXADDR,	/* highaddr */
2447				NULL, NULL,		/* filter, filterarg */
2448				MCLBYTES,		/* maxsize */
2449				1,			/* nsegments */
2450				MCLBYTES,		/* maxsegsize */
2451				0,			/* flags */
2452				NULL, NULL,		/* lockfunc, lockarg */
2453				&sc->ti_mbufrx_dmat) != 0) {
2454		device_printf(dev, "Failed to allocate rdata dmat\n");
2455		error = ENOMEM;
2456		goto fail;
2457	}
2458
2459	if (ti_alloc_dmamaps(sc)) {
2460		device_printf(dev, "dma map creation failed\n");
2461		error = ENXIO;
2462		goto fail;
2463	}
2464
2465	/*
2466	 * We really need a better way to tell a 1000baseTX card
2467	 * from a 1000baseSX one, since in theory there could be
2468	 * OEMed 1000baseTX cards from lame vendors who aren't
2469	 * clever enough to change the PCI ID. For the moment
2470	 * though, the AceNIC is the only copper card available.
2471	 */
2472	if (pci_get_vendor(dev) == ALT_VENDORID &&
2473	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2474		sc->ti_copper = 1;
2475	/* Ok, it's not the only copper card available. */
2476	if (pci_get_vendor(dev) == NG_VENDORID &&
2477	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2478		sc->ti_copper = 1;
2479
2480	/* Set default tuneable values. */
2481	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2482#if 0
2483	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2484#endif
2485	sc->ti_rx_coal_ticks = 170;
2486	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2487	sc->ti_rx_max_coal_bds = 64;
2488#if 0
2489	sc->ti_tx_max_coal_bds = 128;
2490#endif
2491	sc->ti_tx_max_coal_bds = 32;
2492	sc->ti_tx_buf_ratio = 21;
2493
2494	/* Set up ifnet structure */
2495	ifp->if_softc = sc;
2496	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2497	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2498	ifp->if_ioctl = ti_ioctl;
2499	ifp->if_start = ti_start;
2500	ifp->if_watchdog = ti_watchdog;
2501	ifp->if_init = ti_init;
2502	ifp->if_baudrate = 1000000000;
2503	ifp->if_mtu = ETHERMTU;
2504	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2505
2506	/* Set up ifmedia support. */
2507	if (sc->ti_copper) {
2508		/*
2509		 * Copper cards allow manual 10/100 mode selection,
2510		 * but not manual 1000baseTX mode selection. Why?
2511		 * Becuase currently there's no way to specify the
2512		 * master/slave setting through the firmware interface,
2513		 * so Alteon decided to just bag it and handle it
2514		 * via autonegotiation.
2515		 */
2516		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2517		ifmedia_add(&sc->ifmedia,
2518		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2519		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2520		ifmedia_add(&sc->ifmedia,
2521		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2522		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2523		ifmedia_add(&sc->ifmedia,
2524		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2525	} else {
2526		/* Fiber cards don't support 10/100 modes. */
2527		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2528		ifmedia_add(&sc->ifmedia,
2529		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2530	}
2531	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2532	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2533
2534	/*
2535	 * We're assuming here that card initialization is a sequential
2536	 * thing.  If it isn't, multiple cards probing at the same time
2537	 * could stomp on the list of softcs here.
2538	 */
2539
2540	/* Register the device */
2541	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2542			   0600, "ti%d", sc->ti_unit);
2543	sc->dev->si_drv1 = sc;
2544
2545	/*
2546	 * Call MI attach routine.
2547	 */
2548	ether_ifattach(ifp, eaddr);
2549
2550	/* Hook interrupt last to avoid having to lock softc */
2551	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2552	   NULL, ti_intr, sc, &sc->ti_intrhand);
2553
2554	if (error) {
2555		device_printf(dev, "couldn't set up irq\n");
2556		goto fail;
2557	}
2558
2559fail:
2560	if (error)
2561		ti_detach(dev);
2562
2563	return (error);
2564}
2565
2566/*
2567 * Shutdown hardware and free up resources. This can be called any
2568 * time after the mutex has been initialized. It is called in both
2569 * the error case in attach and the normal detach case so it needs
2570 * to be careful about only freeing resources that have actually been
2571 * allocated.
2572 */
2573static int
2574ti_detach(dev)
2575	device_t		dev;
2576{
2577	struct ti_softc		*sc;
2578	struct ifnet		*ifp;
2579	int			attached;
2580
2581	sc = device_get_softc(dev);
2582	if (sc->dev)
2583		destroy_dev(sc->dev);
2584	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2585	attached = device_is_attached(dev);
2586	TI_LOCK(sc);
2587	ifp = sc->ti_ifp;
2588	if (attached)
2589		ti_stop(sc);
2590	TI_UNLOCK(sc);
2591	if (attached)
2592		ether_ifdetach(ifp);
2593
2594	/* These should only be active if attach succeeded */
2595	if (attached)
2596		bus_generic_detach(dev);
2597	ti_free_dmamaps(sc);
2598	ifmedia_removeall(&sc->ifmedia);
2599
2600#ifdef TI_PRIVATE_JUMBOS
2601	if (sc->ti_cdata.ti_jumbo_buf)
2602		bus_dmamem_free(sc->ti_jumbo_dmat, sc->ti_cdata.ti_jumbo_buf,
2603		    sc->ti_jumbo_dmamap);
2604#endif
2605	if (sc->ti_jumbo_dmat)
2606		bus_dma_tag_destroy(sc->ti_jumbo_dmat);
2607	if (sc->ti_mbuftx_dmat)
2608		bus_dma_tag_destroy(sc->ti_mbuftx_dmat);
2609	if (sc->ti_mbufrx_dmat)
2610		bus_dma_tag_destroy(sc->ti_mbufrx_dmat);
2611	if (sc->ti_rdata)
2612		bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2613				sc->ti_rdata_dmamap);
2614	if (sc->ti_rdata_dmat)
2615		bus_dma_tag_destroy(sc->ti_rdata_dmat);
2616	if (sc->ti_parent_dmat)
2617		bus_dma_tag_destroy(sc->ti_parent_dmat);
2618	if (sc->ti_intrhand)
2619		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2620	if (sc->ti_irq)
2621		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2622	if (sc->ti_res) {
2623		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2624		    sc->ti_res);
2625	}
2626	if (ifp)
2627		if_free(ifp);
2628
2629	mtx_destroy(&sc->ti_mtx);
2630
2631	return (0);
2632}
2633
2634#ifdef TI_JUMBO_HDRSPLIT
2635/*
2636 * If hdr_len is 0, that means that header splitting wasn't done on
2637 * this packet for some reason.  The two most likely reasons are that
2638 * the protocol isn't a supported protocol for splitting, or this
2639 * packet had a fragment offset that wasn't 0.
2640 *
2641 * The header length, if it is non-zero, will always be the length of
2642 * the headers on the packet, but that length could be longer than the
2643 * first mbuf.  So we take the minimum of the two as the actual
2644 * length.
2645 */
2646static __inline void
2647ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2648{
2649	int i = 0;
2650	int lengths[4] = {0, 0, 0, 0};
2651	struct mbuf *m, *mp;
2652
2653	if (hdr_len != 0)
2654		top->m_len = min(hdr_len, top->m_len);
2655	pkt_len -= top->m_len;
2656	lengths[i++] = top->m_len;
2657
2658	mp = top;
2659	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2660		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2661		pkt_len -= m->m_len;
2662		lengths[i++] = m->m_len;
2663		mp = m;
2664	}
2665
2666#if 0
2667	if (hdr_len != 0)
2668		printf("got split packet: ");
2669	else
2670		printf("got non-split packet: ");
2671
2672	printf("%d,%d,%d,%d = %d\n", lengths[0],
2673	    lengths[1], lengths[2], lengths[3],
2674	    lengths[0] + lengths[1] + lengths[2] +
2675	    lengths[3]);
2676#endif
2677
2678	if (pkt_len)
2679		panic("header splitting didn't");
2680
2681	if (m) {
2682		m_freem(m);
2683		mp->m_next = NULL;
2684
2685	}
2686	if (mp->m_next != NULL)
2687		panic("ti_hdr_split: last mbuf in chain should be null");
2688}
2689#endif /* TI_JUMBO_HDRSPLIT */
2690
2691/*
2692 * Frame reception handling. This is called if there's a frame
2693 * on the receive return list.
2694 *
2695 * Note: we have to be able to handle three possibilities here:
2696 * 1) the frame is from the mini receive ring (can only happen)
2697 *    on Tigon 2 boards)
2698 * 2) the frame is from the jumbo recieve ring
2699 * 3) the frame is from the standard receive ring
2700 */
2701
2702static void
2703ti_rxeof(sc)
2704	struct ti_softc		*sc;
2705{
2706	bus_dmamap_t		map;
2707	struct ifnet		*ifp;
2708	struct ti_cmd_desc	cmd;
2709
2710	TI_LOCK_ASSERT(sc);
2711
2712	ifp = sc->ti_ifp;
2713
2714	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2715		struct ti_rx_desc	*cur_rx;
2716		u_int32_t		rxidx;
2717		struct mbuf		*m = NULL;
2718		u_int16_t		vlan_tag = 0;
2719		int			have_tag = 0;
2720
2721		cur_rx =
2722		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2723		rxidx = cur_rx->ti_idx;
2724		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2725
2726		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2727			have_tag = 1;
2728			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2729		}
2730
2731		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2732
2733			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2734			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2735			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2736			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2737			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
2738			    BUS_DMASYNC_POSTREAD);
2739			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
2740			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2741				ifp->if_ierrors++;
2742				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2743				continue;
2744			}
2745			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2746				ifp->if_ierrors++;
2747				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2748				continue;
2749			}
2750#ifdef TI_PRIVATE_JUMBOS
2751			m->m_len = cur_rx->ti_len;
2752#else /* TI_PRIVATE_JUMBOS */
2753#ifdef TI_JUMBO_HDRSPLIT
2754			if (sc->ti_hdrsplit)
2755				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2756					     cur_rx->ti_len, rxidx);
2757			else
2758#endif /* TI_JUMBO_HDRSPLIT */
2759			m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2760#endif /* TI_PRIVATE_JUMBOS */
2761		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2762			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2763			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2764			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2765			map = sc->ti_cdata.ti_rx_mini_maps[rxidx];
2766			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2767			    BUS_DMASYNC_POSTREAD);
2768			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2769			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2770				ifp->if_ierrors++;
2771				ti_newbuf_mini(sc, sc->ti_mini, m);
2772				continue;
2773			}
2774			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2775				ifp->if_ierrors++;
2776				ti_newbuf_mini(sc, sc->ti_mini, m);
2777				continue;
2778			}
2779			m->m_len = cur_rx->ti_len;
2780		} else {
2781			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2782			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2783			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2784			map = sc->ti_cdata.ti_rx_std_maps[rxidx];
2785			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2786			    BUS_DMASYNC_POSTREAD);
2787			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2788			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2789				ifp->if_ierrors++;
2790				ti_newbuf_std(sc, sc->ti_std, m);
2791				continue;
2792			}
2793			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2794				ifp->if_ierrors++;
2795				ti_newbuf_std(sc, sc->ti_std, m);
2796				continue;
2797			}
2798			m->m_len = cur_rx->ti_len;
2799		}
2800
2801		m->m_pkthdr.len = cur_rx->ti_len;
2802		ifp->if_ipackets++;
2803		m->m_pkthdr.rcvif = ifp;
2804
2805		if (ifp->if_hwassist) {
2806			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2807			    CSUM_DATA_VALID;
2808			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2809				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2810			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2811		}
2812
2813		/*
2814		 * If we received a packet with a vlan tag,
2815		 * tag it before passing the packet upward.
2816		 */
2817		if (have_tag) {
2818			m->m_pkthdr.ether_vtag = vlan_tag;
2819			m->m_flags |= M_VLANTAG;
2820		}
2821		TI_UNLOCK(sc);
2822		(*ifp->if_input)(ifp, m);
2823		TI_LOCK(sc);
2824	}
2825
2826	/* Only necessary on the Tigon 1. */
2827	if (sc->ti_hwrev == TI_HWREV_TIGON)
2828		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2829		    sc->ti_rx_saved_considx);
2830
2831	TI_UPDATE_STDPROD(sc, sc->ti_std);
2832	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2833	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2834}
2835
2836static void
2837ti_txeof(sc)
2838	struct ti_softc		*sc;
2839{
2840	struct ti_txdesc	*txd;
2841	struct ti_tx_desc	txdesc;
2842	struct ti_tx_desc	*cur_tx = NULL;
2843	struct ifnet		*ifp;
2844	int			idx;
2845
2846	ifp = sc->ti_ifp;
2847
2848	txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2849	if (txd == NULL)
2850		return;
2851	/*
2852	 * Go through our tx ring and free mbufs for those
2853	 * frames that have been sent.
2854	 */
2855	for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2856	    TI_INC(idx, TI_TX_RING_CNT)) {
2857		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2858			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2859			    sizeof(txdesc), &txdesc);
2860			cur_tx = &txdesc;
2861		} else
2862			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2863		sc->ti_txcnt--;
2864		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2865		if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2866			continue;
2867		bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2868		    BUS_DMASYNC_POSTWRITE);
2869		bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2870
2871		ifp->if_opackets++;
2872		m_freem(txd->tx_m);
2873		txd->tx_m = NULL;
2874		STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2875		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2876		txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2877	}
2878	sc->ti_tx_saved_considx = idx;
2879
2880	ifp->if_timer = sc->ti_txcnt > 0 ? 5 : 0;
2881}
2882
2883static void
2884ti_intr(xsc)
2885	void			*xsc;
2886{
2887	struct ti_softc		*sc;
2888	struct ifnet		*ifp;
2889
2890	sc = xsc;
2891	TI_LOCK(sc);
2892	ifp = sc->ti_ifp;
2893
2894/*#ifdef notdef*/
2895	/* Avoid this for now -- checking this register is expensive. */
2896	/* Make sure this is really our interrupt. */
2897	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2898		TI_UNLOCK(sc);
2899		return;
2900	}
2901/*#endif*/
2902
2903	/* Ack interrupt and stop others from occuring. */
2904	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2905
2906	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2907		/* Check RX return ring producer/consumer */
2908		ti_rxeof(sc);
2909
2910		/* Check TX ring producer/consumer */
2911		ti_txeof(sc);
2912	}
2913
2914	ti_handle_events(sc);
2915
2916	/* Re-enable interrupts. */
2917	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2918
2919	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2920	    ifp->if_snd.ifq_head != NULL)
2921		ti_start_locked(ifp);
2922
2923	TI_UNLOCK(sc);
2924}
2925
2926static void
2927ti_stats_update(sc)
2928	struct ti_softc		*sc;
2929{
2930	struct ifnet		*ifp;
2931
2932	ifp = sc->ti_ifp;
2933
2934	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2935	    BUS_DMASYNC_POSTREAD);
2936
2937	ifp->if_collisions +=
2938	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2939	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2940	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2941	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2942	   ifp->if_collisions;
2943
2944	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2945	    BUS_DMASYNC_PREREAD);
2946}
2947
2948/*
2949 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2950 * pointers to descriptors.
2951 */
2952static int
2953ti_encap(sc, m_head)
2954	struct ti_softc		*sc;
2955	struct mbuf		**m_head;
2956{
2957	struct ti_txdesc	*txd;
2958	struct ti_tx_desc	*f;
2959	struct ti_tx_desc	txdesc;
2960	struct mbuf		*m;
2961	bus_dma_segment_t	txsegs[TI_MAXTXSEGS];
2962	u_int16_t		csum_flags;
2963	int			error, frag, i, nseg;
2964
2965	if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
2966		return (ENOBUFS);
2967
2968	error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2969	    *m_head, txsegs, &nseg, 0);
2970	if (error == EFBIG) {
2971		m = m_defrag(*m_head, M_DONTWAIT);
2972		if (m == NULL) {
2973			m_freem(*m_head);
2974			*m_head = NULL;
2975			return (ENOMEM);
2976		}
2977		*m_head = m;
2978		error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat,
2979		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2980		if (error) {
2981			m_freem(*m_head);
2982			*m_head = NULL;
2983			return (error);
2984		}
2985	} else if (error != 0)
2986		return (error);
2987	if (nseg == 0) {
2988		m_freem(*m_head);
2989		*m_head = NULL;
2990		return (EIO);
2991	}
2992
2993	if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
2994		bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2995		return (ENOBUFS);
2996	}
2997
2998	m = *m_head;
2999	csum_flags = 0;
3000	if (m->m_pkthdr.csum_flags) {
3001		if (m->m_pkthdr.csum_flags & CSUM_IP)
3002			csum_flags |= TI_BDFLAG_IP_CKSUM;
3003		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3004			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
3005		if (m->m_flags & M_LASTFRAG)
3006			csum_flags |= TI_BDFLAG_IP_FRAG_END;
3007		else if (m->m_flags & M_FRAG)
3008			csum_flags |= TI_BDFLAG_IP_FRAG;
3009	}
3010
3011	bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
3012	    BUS_DMASYNC_PREWRITE);
3013	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
3014	    BUS_DMASYNC_PREWRITE);
3015
3016	frag = sc->ti_tx_saved_prodidx;
3017	for (i = 0; i < nseg; i++) {
3018		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3019			bzero(&txdesc, sizeof(txdesc));
3020			f = &txdesc;
3021		} else
3022			f = &sc->ti_rdata->ti_tx_ring[frag];
3023		ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
3024		f->ti_len = txsegs[i].ds_len;
3025		f->ti_flags = csum_flags;
3026		if (m->m_flags & M_VLANTAG) {
3027			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
3028			f->ti_vlan_tag = m->m_pkthdr.ether_vtag & 0xfff;
3029		} else {
3030			f->ti_vlan_tag = 0;
3031		}
3032
3033		if (sc->ti_hwrev == TI_HWREV_TIGON)
3034			ti_mem_write(sc, TI_TX_RING_BASE + frag *
3035			    sizeof(txdesc), sizeof(txdesc), &txdesc);
3036		TI_INC(frag, TI_TX_RING_CNT);
3037	}
3038
3039	sc->ti_tx_saved_prodidx = frag;
3040	/* set TI_BDFLAG_END on the last descriptor */
3041	frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
3042	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3043		txdesc.ti_flags |= TI_BDFLAG_END;
3044		ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
3045		    sizeof(txdesc), &txdesc);
3046	} else
3047		sc->ti_rdata->ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3048
3049	STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3050	STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3051	txd->tx_m = m;
3052	sc->ti_txcnt += nseg;
3053
3054	return (0);
3055}
3056
3057static void
3058ti_start(ifp)
3059	struct ifnet		*ifp;
3060{
3061	struct ti_softc		*sc;
3062
3063	sc = ifp->if_softc;
3064	TI_LOCK(sc);
3065	ti_start_locked(ifp);
3066	TI_UNLOCK(sc);
3067}
3068
3069/*
3070 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3071 * to the mbuf data regions directly in the transmit descriptors.
3072 */
3073static void
3074ti_start_locked(ifp)
3075	struct ifnet		*ifp;
3076{
3077	struct ti_softc		*sc;
3078	struct mbuf		*m_head = NULL;
3079	int			enq = 0;
3080
3081	sc = ifp->if_softc;
3082
3083	for (; ifp->if_snd.ifq_head != NULL &&
3084	    sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3085		IF_DEQUEUE(&ifp->if_snd, m_head);
3086		if (m_head == NULL)
3087			break;
3088
3089		/*
3090		 * XXX
3091		 * safety overkill.  If this is a fragmented packet chain
3092		 * with delayed TCP/UDP checksums, then only encapsulate
3093		 * it if we have enough descriptors to handle the entire
3094		 * chain at once.
3095		 * (paranoia -- may not actually be needed)
3096		 */
3097		if (m_head->m_flags & M_FIRSTFRAG &&
3098		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3099			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
3100			    m_head->m_pkthdr.csum_data + 16) {
3101				IF_PREPEND(&ifp->if_snd, m_head);
3102				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3103				break;
3104			}
3105		}
3106
3107		/*
3108		 * Pack the data into the transmit ring. If we
3109		 * don't have room, set the OACTIVE flag and wait
3110		 * for the NIC to drain the ring.
3111		 */
3112		if (ti_encap(sc, &m_head)) {
3113			if (m_head == NULL)
3114				break;
3115			IF_PREPEND(&ifp->if_snd, m_head);
3116			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3117			break;
3118		}
3119
3120		enq++;
3121		/*
3122		 * If there's a BPF listener, bounce a copy of this frame
3123		 * to him.
3124		 */
3125		ETHER_BPF_MTAP(ifp, m_head);
3126	}
3127
3128	if (enq > 0) {
3129		/* Transmit */
3130		CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3131
3132		/*
3133		 * Set a timeout in case the chip goes out to lunch.
3134		 */
3135		ifp->if_timer = 5;
3136	}
3137}
3138
3139static void
3140ti_init(xsc)
3141	void			*xsc;
3142{
3143	struct ti_softc		*sc;
3144
3145	sc = xsc;
3146	TI_LOCK(sc);
3147	ti_init_locked(sc);
3148	TI_UNLOCK(sc);
3149}
3150
3151static void
3152ti_init_locked(xsc)
3153	void			*xsc;
3154{
3155	struct ti_softc		*sc = xsc;
3156
3157	/* Cancel pending I/O and flush buffers. */
3158	ti_stop(sc);
3159
3160	/* Init the gen info block, ring control blocks and firmware. */
3161	if (ti_gibinit(sc)) {
3162		device_printf(sc->ti_dev, "initialization failure\n");
3163		return;
3164	}
3165}
3166
3167static void ti_init2(sc)
3168	struct ti_softc		*sc;
3169{
3170	struct ti_cmd_desc	cmd;
3171	struct ifnet		*ifp;
3172	u_int8_t		*ea;
3173	struct ifmedia		*ifm;
3174	int			tmp;
3175
3176	TI_LOCK_ASSERT(sc);
3177
3178	ifp = sc->ti_ifp;
3179
3180	/* Specify MTU and interface index. */
3181	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
3182	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3183	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3184	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3185
3186	/* Load our MAC address. */
3187	ea = IF_LLADDR(sc->ti_ifp);
3188	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3189	CSR_WRITE_4(sc, TI_GCR_PAR1,
3190	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3191	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3192
3193	/* Enable or disable promiscuous mode as needed. */
3194	if (ifp->if_flags & IFF_PROMISC) {
3195		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3196	} else {
3197		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3198	}
3199
3200	/* Program multicast filter. */
3201	ti_setmulti(sc);
3202
3203	/*
3204	 * If this is a Tigon 1, we should tell the
3205	 * firmware to use software packet filtering.
3206	 */
3207	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3208		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3209	}
3210
3211	/* Init RX ring. */
3212	ti_init_rx_ring_std(sc);
3213
3214	/* Init jumbo RX ring. */
3215	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3216		ti_init_rx_ring_jumbo(sc);
3217
3218	/*
3219	 * If this is a Tigon 2, we can also configure the
3220	 * mini ring.
3221	 */
3222	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
3223		ti_init_rx_ring_mini(sc);
3224
3225	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3226	sc->ti_rx_saved_considx = 0;
3227
3228	/* Init TX ring. */
3229	ti_init_tx_ring(sc);
3230
3231	/* Tell firmware we're alive. */
3232	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3233
3234	/* Enable host interrupts. */
3235	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3236
3237	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3238	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3239
3240	/*
3241	 * Make sure to set media properly. We have to do this
3242	 * here since we have to issue commands in order to set
3243	 * the link negotiation and we can't issue commands until
3244	 * the firmware is running.
3245	 */
3246	ifm = &sc->ifmedia;
3247	tmp = ifm->ifm_media;
3248	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3249	ti_ifmedia_upd(ifp);
3250	ifm->ifm_media = tmp;
3251}
3252
3253/*
3254 * Set media options.
3255 */
3256static int
3257ti_ifmedia_upd(ifp)
3258	struct ifnet		*ifp;
3259{
3260	struct ti_softc		*sc;
3261	struct ifmedia		*ifm;
3262	struct ti_cmd_desc	cmd;
3263	u_int32_t		flowctl;
3264
3265	sc = ifp->if_softc;
3266	ifm = &sc->ifmedia;
3267
3268	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3269		return (EINVAL);
3270
3271	flowctl = 0;
3272
3273	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3274	case IFM_AUTO:
3275		/*
3276		 * Transmit flow control doesn't work on the Tigon 1.
3277		 */
3278		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3279
3280		/*
3281		 * Transmit flow control can also cause problems on the
3282		 * Tigon 2, apparantly with both the copper and fiber
3283		 * boards.  The symptom is that the interface will just
3284		 * hang.  This was reproduced with Alteon 180 switches.
3285		 */
3286#if 0
3287		if (sc->ti_hwrev != TI_HWREV_TIGON)
3288			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3289#endif
3290
3291		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3292		    TI_GLNK_FULL_DUPLEX| flowctl |
3293		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3294
3295		flowctl = TI_LNK_RX_FLOWCTL_Y;
3296#if 0
3297		if (sc->ti_hwrev != TI_HWREV_TIGON)
3298			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3299#endif
3300
3301		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3302		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3303		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3304		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3305		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3306		break;
3307	case IFM_1000_SX:
3308	case IFM_1000_T:
3309		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3310#if 0
3311		if (sc->ti_hwrev != TI_HWREV_TIGON)
3312			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3313#endif
3314
3315		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3316		    flowctl |TI_GLNK_ENB);
3317		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3318		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3319			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3320		}
3321		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3322		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3323		break;
3324	case IFM_100_FX:
3325	case IFM_10_FL:
3326	case IFM_100_TX:
3327	case IFM_10_T:
3328		flowctl = TI_LNK_RX_FLOWCTL_Y;
3329#if 0
3330		if (sc->ti_hwrev != TI_HWREV_TIGON)
3331			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3332#endif
3333
3334		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3335		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3336		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3337		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3338			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3339		} else {
3340			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3341		}
3342		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3343			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3344		} else {
3345			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3346		}
3347		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3348		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3349		break;
3350	}
3351
3352	return (0);
3353}
3354
3355/*
3356 * Report current media status.
3357 */
3358static void
3359ti_ifmedia_sts(ifp, ifmr)
3360	struct ifnet		*ifp;
3361	struct ifmediareq	*ifmr;
3362{
3363	struct ti_softc		*sc;
3364	u_int32_t		media = 0;
3365
3366	sc = ifp->if_softc;
3367
3368	ifmr->ifm_status = IFM_AVALID;
3369	ifmr->ifm_active = IFM_ETHER;
3370
3371	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3372		return;
3373
3374	ifmr->ifm_status |= IFM_ACTIVE;
3375
3376	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3377		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3378		if (sc->ti_copper)
3379			ifmr->ifm_active |= IFM_1000_T;
3380		else
3381			ifmr->ifm_active |= IFM_1000_SX;
3382		if (media & TI_GLNK_FULL_DUPLEX)
3383			ifmr->ifm_active |= IFM_FDX;
3384		else
3385			ifmr->ifm_active |= IFM_HDX;
3386	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3387		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3388		if (sc->ti_copper) {
3389			if (media & TI_LNK_100MB)
3390				ifmr->ifm_active |= IFM_100_TX;
3391			if (media & TI_LNK_10MB)
3392				ifmr->ifm_active |= IFM_10_T;
3393		} else {
3394			if (media & TI_LNK_100MB)
3395				ifmr->ifm_active |= IFM_100_FX;
3396			if (media & TI_LNK_10MB)
3397				ifmr->ifm_active |= IFM_10_FL;
3398		}
3399		if (media & TI_LNK_FULL_DUPLEX)
3400			ifmr->ifm_active |= IFM_FDX;
3401		if (media & TI_LNK_HALF_DUPLEX)
3402			ifmr->ifm_active |= IFM_HDX;
3403	}
3404}
3405
3406static int
3407ti_ioctl(ifp, command, data)
3408	struct ifnet		*ifp;
3409	u_long			command;
3410	caddr_t			data;
3411{
3412	struct ti_softc		*sc = ifp->if_softc;
3413	struct ifreq		*ifr = (struct ifreq *) data;
3414	int			mask, error = 0;
3415	struct ti_cmd_desc	cmd;
3416
3417	switch (command) {
3418	case SIOCSIFMTU:
3419		TI_LOCK(sc);
3420		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3421			error = EINVAL;
3422		else {
3423			ifp->if_mtu = ifr->ifr_mtu;
3424			ti_init_locked(sc);
3425		}
3426		TI_UNLOCK(sc);
3427		break;
3428	case SIOCSIFFLAGS:
3429		TI_LOCK(sc);
3430		if (ifp->if_flags & IFF_UP) {
3431			/*
3432			 * If only the state of the PROMISC flag changed,
3433			 * then just use the 'set promisc mode' command
3434			 * instead of reinitializing the entire NIC. Doing
3435			 * a full re-init means reloading the firmware and
3436			 * waiting for it to start up, which may take a
3437			 * second or two.
3438			 */
3439			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3440			    ifp->if_flags & IFF_PROMISC &&
3441			    !(sc->ti_if_flags & IFF_PROMISC)) {
3442				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3443				    TI_CMD_CODE_PROMISC_ENB, 0);
3444			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3445			    !(ifp->if_flags & IFF_PROMISC) &&
3446			    sc->ti_if_flags & IFF_PROMISC) {
3447				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3448				    TI_CMD_CODE_PROMISC_DIS, 0);
3449			} else
3450				ti_init_locked(sc);
3451		} else {
3452			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3453				ti_stop(sc);
3454			}
3455		}
3456		sc->ti_if_flags = ifp->if_flags;
3457		TI_UNLOCK(sc);
3458		break;
3459	case SIOCADDMULTI:
3460	case SIOCDELMULTI:
3461		TI_LOCK(sc);
3462		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3463			ti_setmulti(sc);
3464		TI_UNLOCK(sc);
3465		break;
3466	case SIOCSIFMEDIA:
3467	case SIOCGIFMEDIA:
3468		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3469		break;
3470	case SIOCSIFCAP:
3471		TI_LOCK(sc);
3472		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3473		if (mask & IFCAP_HWCSUM) {
3474			if (IFCAP_HWCSUM & ifp->if_capenable)
3475				ifp->if_capenable &= ~IFCAP_HWCSUM;
3476			else
3477				ifp->if_capenable |= IFCAP_HWCSUM;
3478			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3479				ti_init_locked(sc);
3480		}
3481		TI_UNLOCK(sc);
3482		break;
3483	default:
3484		error = ether_ioctl(ifp, command, data);
3485		break;
3486	}
3487
3488	return (error);
3489}
3490
3491static int
3492ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3493{
3494	struct ti_softc *sc;
3495
3496	sc = dev->si_drv1;
3497	if (sc == NULL)
3498		return (ENODEV);
3499
3500	TI_LOCK(sc);
3501	sc->ti_flags |= TI_FLAG_DEBUGING;
3502	TI_UNLOCK(sc);
3503
3504	return (0);
3505}
3506
3507static int
3508ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3509{
3510	struct ti_softc *sc;
3511
3512	sc = dev->si_drv1;
3513	if (sc == NULL)
3514		return (ENODEV);
3515
3516	TI_LOCK(sc);
3517	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3518	TI_UNLOCK(sc);
3519
3520	return (0);
3521}
3522
3523/*
3524 * This ioctl routine goes along with the Tigon character device.
3525 */
3526static int
3527ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3528    struct thread *td)
3529{
3530	int error;
3531	struct ti_softc *sc;
3532
3533	sc = dev->si_drv1;
3534	if (sc == NULL)
3535		return (ENODEV);
3536
3537	error = 0;
3538
3539	switch (cmd) {
3540	case TIIOCGETSTATS:
3541	{
3542		struct ti_stats *outstats;
3543
3544		outstats = (struct ti_stats *)addr;
3545
3546		TI_LOCK(sc);
3547		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3548		      sizeof(struct ti_stats));
3549		TI_UNLOCK(sc);
3550		break;
3551	}
3552	case TIIOCGETPARAMS:
3553	{
3554		struct ti_params	*params;
3555
3556		params = (struct ti_params *)addr;
3557
3558		TI_LOCK(sc);
3559		params->ti_stat_ticks = sc->ti_stat_ticks;
3560		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3561		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3562		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3563		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3564		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3565		params->param_mask = TI_PARAM_ALL;
3566		TI_UNLOCK(sc);
3567
3568		error = 0;
3569
3570		break;
3571	}
3572	case TIIOCSETPARAMS:
3573	{
3574		struct ti_params *params;
3575
3576		params = (struct ti_params *)addr;
3577
3578		TI_LOCK(sc);
3579		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3580			sc->ti_stat_ticks = params->ti_stat_ticks;
3581			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3582		}
3583
3584		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3585			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3586			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3587				    sc->ti_rx_coal_ticks);
3588		}
3589
3590		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3591			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3592			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3593				    sc->ti_tx_coal_ticks);
3594		}
3595
3596		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3597			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3598			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3599				    sc->ti_rx_max_coal_bds);
3600		}
3601
3602		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3603			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3604			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3605				    sc->ti_tx_max_coal_bds);
3606		}
3607
3608		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3609			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3610			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3611				    sc->ti_tx_buf_ratio);
3612		}
3613		TI_UNLOCK(sc);
3614
3615		error = 0;
3616
3617		break;
3618	}
3619	case TIIOCSETTRACE: {
3620		ti_trace_type	trace_type;
3621
3622		trace_type = *(ti_trace_type *)addr;
3623
3624		/*
3625		 * Set tracing to whatever the user asked for.  Setting
3626		 * this register to 0 should have the effect of disabling
3627		 * tracing.
3628		 */
3629		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3630
3631		error = 0;
3632
3633		break;
3634	}
3635	case TIIOCGETTRACE: {
3636		struct ti_trace_buf	*trace_buf;
3637		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3638
3639		trace_buf = (struct ti_trace_buf *)addr;
3640
3641		TI_LOCK(sc);
3642		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3643		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3644		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3645
3646#if 0
3647		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3648		       "trace_len = %d\n", trace_start,
3649		       cur_trace_ptr, trace_len);
3650		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3651		       trace_buf->buf_len);
3652#endif
3653
3654		error = ti_copy_mem(sc, trace_start, min(trace_len,
3655				    trace_buf->buf_len),
3656				    (caddr_t)trace_buf->buf, 1, 1);
3657
3658		if (error == 0) {
3659			trace_buf->fill_len = min(trace_len,
3660						  trace_buf->buf_len);
3661			if (cur_trace_ptr < trace_start)
3662				trace_buf->cur_trace_ptr =
3663					trace_start - cur_trace_ptr;
3664			else
3665				trace_buf->cur_trace_ptr =
3666					cur_trace_ptr - trace_start;
3667		} else
3668			trace_buf->fill_len = 0;
3669		TI_UNLOCK(sc);
3670
3671		break;
3672	}
3673
3674	/*
3675	 * For debugging, five ioctls are needed:
3676	 * ALT_ATTACH
3677	 * ALT_READ_TG_REG
3678	 * ALT_WRITE_TG_REG
3679	 * ALT_READ_TG_MEM
3680	 * ALT_WRITE_TG_MEM
3681	 */
3682	case ALT_ATTACH:
3683		/*
3684		 * From what I can tell, Alteon's Solaris Tigon driver
3685		 * only has one character device, so you have to attach
3686		 * to the Tigon board you're interested in.  This seems
3687		 * like a not-so-good way to do things, since unless you
3688		 * subsequently specify the unit number of the device
3689		 * you're interested in in every ioctl, you'll only be
3690		 * able to debug one board at a time.
3691		 */
3692		error = 0;
3693		break;
3694	case ALT_READ_TG_MEM:
3695	case ALT_WRITE_TG_MEM:
3696	{
3697		struct tg_mem *mem_param;
3698		u_int32_t sram_end, scratch_end;
3699
3700		mem_param = (struct tg_mem *)addr;
3701
3702		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3703			sram_end = TI_END_SRAM_I;
3704			scratch_end = TI_END_SCRATCH_I;
3705		} else {
3706			sram_end = TI_END_SRAM_II;
3707			scratch_end = TI_END_SCRATCH_II;
3708		}
3709
3710		/*
3711		 * For now, we'll only handle accessing regular SRAM,
3712		 * nothing else.
3713		 */
3714		TI_LOCK(sc);
3715		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3716		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3717			/*
3718			 * In this instance, we always copy to/from user
3719			 * space, so the user space argument is set to 1.
3720			 */
3721			error = ti_copy_mem(sc, mem_param->tgAddr,
3722					    mem_param->len,
3723					    mem_param->userAddr, 1,
3724					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3725		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3726			&& (mem_param->tgAddr <= scratch_end)) {
3727			error = ti_copy_scratch(sc, mem_param->tgAddr,
3728						mem_param->len,
3729						mem_param->userAddr, 1,
3730						(cmd == ALT_READ_TG_MEM) ?
3731						1 : 0, TI_PROCESSOR_A);
3732		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3733			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3734			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3735				if_printf(sc->ti_ifp,
3736				    "invalid memory range for Tigon I\n");
3737				error = EINVAL;
3738				break;
3739			}
3740			error = ti_copy_scratch(sc, mem_param->tgAddr -
3741						TI_SCRATCH_DEBUG_OFF,
3742						mem_param->len,
3743						mem_param->userAddr, 1,
3744						(cmd == ALT_READ_TG_MEM) ?
3745						1 : 0, TI_PROCESSOR_B);
3746		} else {
3747			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3748			        "out of supported range\n",
3749			        mem_param->tgAddr, mem_param->len);
3750			error = EINVAL;
3751		}
3752		TI_UNLOCK(sc);
3753
3754		break;
3755	}
3756	case ALT_READ_TG_REG:
3757	case ALT_WRITE_TG_REG:
3758	{
3759		struct tg_reg	*regs;
3760		u_int32_t	tmpval;
3761
3762		regs = (struct tg_reg *)addr;
3763
3764		/*
3765		 * Make sure the address in question isn't out of range.
3766		 */
3767		if (regs->addr > TI_REG_MAX) {
3768			error = EINVAL;
3769			break;
3770		}
3771		TI_LOCK(sc);
3772		if (cmd == ALT_READ_TG_REG) {
3773			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3774						regs->addr, &tmpval, 1);
3775			regs->data = ntohl(tmpval);
3776#if 0
3777			if ((regs->addr == TI_CPU_STATE)
3778			 || (regs->addr == TI_CPU_CTL_B)) {
3779				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3780				       regs->addr, tmpval);
3781			}
3782#endif
3783		} else {
3784			tmpval = htonl(regs->data);
3785			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3786						 regs->addr, &tmpval, 1);
3787		}
3788		TI_UNLOCK(sc);
3789
3790		break;
3791	}
3792	default:
3793		error = ENOTTY;
3794		break;
3795	}
3796	return (error);
3797}
3798
3799static void
3800ti_watchdog(ifp)
3801	struct ifnet		*ifp;
3802{
3803	struct ti_softc		*sc;
3804
3805	sc = ifp->if_softc;
3806	TI_LOCK(sc);
3807
3808	/*
3809	 * When we're debugging, the chip is often stopped for long periods
3810	 * of time, and that would normally cause the watchdog timer to fire.
3811	 * Since that impedes debugging, we don't want to do that.
3812	 */
3813	if (sc->ti_flags & TI_FLAG_DEBUGING) {
3814		TI_UNLOCK(sc);
3815		return;
3816	}
3817
3818	if_printf(ifp, "watchdog timeout -- resetting\n");
3819	ti_stop(sc);
3820	ti_init_locked(sc);
3821
3822	ifp->if_oerrors++;
3823	TI_UNLOCK(sc);
3824}
3825
3826/*
3827 * Stop the adapter and free any mbufs allocated to the
3828 * RX and TX lists.
3829 */
3830static void
3831ti_stop(sc)
3832	struct ti_softc		*sc;
3833{
3834	struct ifnet		*ifp;
3835	struct ti_cmd_desc	cmd;
3836
3837	TI_LOCK_ASSERT(sc);
3838
3839	ifp = sc->ti_ifp;
3840
3841	/* Disable host interrupts. */
3842	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3843	/*
3844	 * Tell firmware we're shutting down.
3845	 */
3846	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3847
3848	/* Halt and reinitialize. */
3849	if (ti_chipinit(sc) != 0)
3850		return;
3851	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3852	if (ti_chipinit(sc) != 0)
3853		return;
3854
3855	/* Free the RX lists. */
3856	ti_free_rx_ring_std(sc);
3857
3858	/* Free jumbo RX list. */
3859	ti_free_rx_ring_jumbo(sc);
3860
3861	/* Free mini RX list. */
3862	ti_free_rx_ring_mini(sc);
3863
3864	/* Free TX buffers. */
3865	ti_free_tx_ring(sc);
3866
3867	sc->ti_ev_prodidx.ti_idx = 0;
3868	sc->ti_return_prodidx.ti_idx = 0;
3869	sc->ti_tx_considx.ti_idx = 0;
3870	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3871
3872	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3873}
3874
3875/*
3876 * Stop all chip I/O so that the kernel's probe routines don't
3877 * get confused by errant DMAs when rebooting.
3878 */
3879static int
3880ti_shutdown(dev)
3881	device_t		dev;
3882{
3883	struct ti_softc		*sc;
3884
3885	sc = device_get_softc(dev);
3886	TI_LOCK(sc);
3887	ti_chipinit(sc);
3888	TI_UNLOCK(sc);
3889
3890	return (0);
3891}
3892