if_ti.c revision 162321
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35 * Manuals, sample driver and firmware source kits are available
36 * from http://www.alteon.com/support/openkits.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48 * filtering and jumbo (9014 byte) frames. The hardware is largely
49 * controlled by firmware, which must be loaded into the NIC during
50 * initialization.
51 *
52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53 * revision, which supports new features such as extended commands,
54 * extended jumbo receive ring desciptors and a mini receive ring.
55 *
56 * Alteon Networks is to be commended for releasing such a vast amount
57 * of development material for the Tigon NIC without requiring an NDA
58 * (although they really should have done it a long time ago). With
59 * any luck, the other vendors will finally wise up and follow Alteon's
60 * stellar example.
61 *
62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63 * this driver by #including it as a C header file. This bloats the
64 * driver somewhat, but it's the easiest method considering that the
65 * driver code and firmware code need to be kept in sync. The source
66 * for the firmware is not provided with the FreeBSD distribution since
67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68 *
69 * The following people deserve special thanks:
70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71 *   for testing
72 * - Raymond Lee of Netgear, for providing a pair of Netgear
73 *   GA620 Tigon 2 boards for testing
74 * - Ulf Zimmermann, for bringing the GA260 to my attention and
75 *   convincing me to write this driver.
76 * - Andrew Gallatin for providing FreeBSD/Alpha support.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/dev/ti/if_ti.c 162321 2006-09-15 15:16:12Z glebius $");
81
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/module.h>
91#include <sys/socket.h>
92#include <sys/queue.h>
93#include <sys/conf.h>
94#include <sys/sf_buf.h>
95
96#include <net/if.h>
97#include <net/if_arp.h>
98#include <net/ethernet.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101#include <net/if_types.h>
102#include <net/if_vlan_var.h>
103
104#include <net/bpf.h>
105
106#include <netinet/in_systm.h>
107#include <netinet/in.h>
108#include <netinet/ip.h>
109
110#include <machine/bus.h>
111#include <machine/resource.h>
112#include <sys/bus.h>
113#include <sys/rman.h>
114
115/* #define TI_PRIVATE_JUMBOS */
116#ifndef TI_PRIVATE_JUMBOS
117#include <vm/vm.h>
118#include <vm/vm_page.h>
119#endif
120
121#include <dev/pci/pcireg.h>
122#include <dev/pci/pcivar.h>
123
124#include <sys/tiio.h>
125#include <dev/ti/if_tireg.h>
126#include <dev/ti/ti_fw.h>
127#include <dev/ti/ti_fw2.h>
128
129#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
130/*
131 * We can only turn on header splitting if we're using extended receive
132 * BDs.
133 */
134#if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
135#error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
136#endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
137
138typedef enum {
139	TI_SWAP_HTON,
140	TI_SWAP_NTOH
141} ti_swap_type;
142
143
144/*
145 * Various supported device vendors/types and their names.
146 */
147
148static struct ti_type ti_devs[] = {
149	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
150		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
151	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
152		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
153	{ TC_VENDORID,	TC_DEVICEID_3C985,
154		"3Com 3c985-SX Gigabit Ethernet" },
155	{ NG_VENDORID, NG_DEVICEID_GA620,
156		"Netgear GA620 1000baseSX Gigabit Ethernet" },
157	{ NG_VENDORID, NG_DEVICEID_GA620T,
158		"Netgear GA620 1000baseT Gigabit Ethernet" },
159	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
160		"Silicon Graphics Gigabit Ethernet" },
161	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
162		"Farallon PN9000SX Gigabit Ethernet" },
163	{ 0, 0, NULL }
164};
165
166
167static	d_open_t	ti_open;
168static	d_close_t	ti_close;
169static	d_ioctl_t	ti_ioctl2;
170
171static struct cdevsw ti_cdevsw = {
172	.d_version =	D_VERSION,
173	.d_flags =	0,
174	.d_open =	ti_open,
175	.d_close =	ti_close,
176	.d_ioctl =	ti_ioctl2,
177	.d_name =	"ti",
178};
179
180static int ti_probe(device_t);
181static int ti_attach(device_t);
182static int ti_detach(device_t);
183static void ti_txeof(struct ti_softc *);
184static void ti_rxeof(struct ti_softc *);
185
186static void ti_stats_update(struct ti_softc *);
187static int ti_encap(struct ti_softc *, struct mbuf **);
188
189static void ti_intr(void *);
190static void ti_start(struct ifnet *);
191static void ti_start_locked(struct ifnet *);
192static int ti_ioctl(struct ifnet *, u_long, caddr_t);
193static void ti_init(void *);
194static void ti_init_locked(void *);
195static void ti_init2(struct ti_softc *);
196static void ti_stop(struct ti_softc *);
197static void ti_watchdog(struct ifnet *);
198static void ti_shutdown(device_t);
199static int ti_ifmedia_upd(struct ifnet *);
200static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
201
202static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
203static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
204static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
205
206static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
207static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
208static void ti_setmulti(struct ti_softc *);
209
210static void ti_mem_read(struct ti_softc *, u_int32_t, u_int32_t, void *);
211static void ti_mem_write(struct ti_softc *, u_int32_t, u_int32_t, void *);
212static void ti_mem_zero(struct ti_softc *, u_int32_t, u_int32_t);
213static int ti_copy_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t, int, int);
214static int ti_copy_scratch(struct ti_softc *, u_int32_t, u_int32_t, caddr_t,
215		int, int, int);
216static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
217static void ti_loadfw(struct ti_softc *);
218static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
219static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
220static void ti_handle_events(struct ti_softc *);
221static int ti_alloc_dmamaps(struct ti_softc *);
222static void ti_free_dmamaps(struct ti_softc *);
223static int ti_alloc_jumbo_mem(struct ti_softc *);
224#ifdef TI_PRIVATE_JUMBOS
225static void *ti_jalloc(struct ti_softc *);
226static void ti_jfree(void *, void *);
227#endif /* TI_PRIVATE_JUMBOS */
228static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
229static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
230static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
231static int ti_init_rx_ring_std(struct ti_softc *);
232static void ti_free_rx_ring_std(struct ti_softc *);
233static int ti_init_rx_ring_jumbo(struct ti_softc *);
234static void ti_free_rx_ring_jumbo(struct ti_softc *);
235static int ti_init_rx_ring_mini(struct ti_softc *);
236static void ti_free_rx_ring_mini(struct ti_softc *);
237static void ti_free_tx_ring(struct ti_softc *);
238static int ti_init_tx_ring(struct ti_softc *);
239
240static int ti_64bitslot_war(struct ti_softc *);
241static int ti_chipinit(struct ti_softc *);
242static int ti_gibinit(struct ti_softc *);
243
244#ifdef TI_JUMBO_HDRSPLIT
245static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
246					     int pkt_len, int idx);
247#endif /* TI_JUMBO_HDRSPLIT */
248
249static device_method_t ti_methods[] = {
250	/* Device interface */
251	DEVMETHOD(device_probe,		ti_probe),
252	DEVMETHOD(device_attach,	ti_attach),
253	DEVMETHOD(device_detach,	ti_detach),
254	DEVMETHOD(device_shutdown,	ti_shutdown),
255	{ 0, 0 }
256};
257
258static driver_t ti_driver = {
259	"ti",
260	ti_methods,
261	sizeof(struct ti_softc)
262};
263
264static devclass_t ti_devclass;
265
266DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
267MODULE_DEPEND(ti, pci, 1, 1, 1);
268MODULE_DEPEND(ti, ether, 1, 1, 1);
269
270/*
271 * Send an instruction or address to the EEPROM, check for ACK.
272 */
273static u_int32_t ti_eeprom_putbyte(sc, byte)
274	struct ti_softc		*sc;
275	int			byte;
276{
277	int			i, ack = 0;
278
279	/*
280	 * Make sure we're in TX mode.
281	 */
282	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
283
284	/*
285	 * Feed in each bit and stobe the clock.
286	 */
287	for (i = 0x80; i; i >>= 1) {
288		if (byte & i) {
289			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
290		} else {
291			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
292		}
293		DELAY(1);
294		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
295		DELAY(1);
296		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
297	}
298
299	/*
300	 * Turn off TX mode.
301	 */
302	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
303
304	/*
305	 * Check for ack.
306	 */
307	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
308	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
309	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
310
311	return (ack);
312}
313
314/*
315 * Read a byte of data stored in the EEPROM at address 'addr.'
316 * We have to send two address bytes since the EEPROM can hold
317 * more than 256 bytes of data.
318 */
319static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
320	struct ti_softc		*sc;
321	int			addr;
322	u_int8_t		*dest;
323{
324	int			i;
325	u_int8_t		byte = 0;
326
327	EEPROM_START;
328
329	/*
330	 * Send write control code to EEPROM.
331	 */
332	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
333		device_printf(sc->ti_dev,
334		    "failed to send write command, status: %x\n",
335		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
336		return (1);
337	}
338
339	/*
340	 * Send first byte of address of byte we want to read.
341	 */
342	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
343		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
344		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
345		return (1);
346	}
347	/*
348	 * Send second byte address of byte we want to read.
349	 */
350	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
351		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
352		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
353		return (1);
354	}
355
356	EEPROM_STOP;
357	EEPROM_START;
358	/*
359	 * Send read control code to EEPROM.
360	 */
361	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
362		device_printf(sc->ti_dev,
363		    "failed to send read command, status: %x\n",
364		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
365		return (1);
366	}
367
368	/*
369	 * Start reading bits from EEPROM.
370	 */
371	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
372	for (i = 0x80; i; i >>= 1) {
373		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
374		DELAY(1);
375		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
376			byte |= i;
377		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
378		DELAY(1);
379	}
380
381	EEPROM_STOP;
382
383	/*
384	 * No ACK generated for read, so just return byte.
385	 */
386
387	*dest = byte;
388
389	return (0);
390}
391
392/*
393 * Read a sequence of bytes from the EEPROM.
394 */
395static int
396ti_read_eeprom(sc, dest, off, cnt)
397	struct ti_softc		*sc;
398	caddr_t			dest;
399	int			off;
400	int			cnt;
401{
402	int			err = 0, i;
403	u_int8_t		byte = 0;
404
405	for (i = 0; i < cnt; i++) {
406		err = ti_eeprom_getbyte(sc, off + i, &byte);
407		if (err)
408			break;
409		*(dest + i) = byte;
410	}
411
412	return (err ? 1 : 0);
413}
414
415/*
416 * NIC memory read function.
417 * Can be used to copy data from NIC local memory.
418 */
419static void
420ti_mem_read(sc, addr, len, buf)
421	struct ti_softc		*sc;
422	u_int32_t		addr, len;
423	void			*buf;
424{
425	int			segptr, segsize, cnt;
426	char			*ptr;
427
428	segptr = addr;
429	cnt = len;
430	ptr = buf;
431
432	while (cnt) {
433		if (cnt < TI_WINLEN)
434			segsize = cnt;
435		else
436			segsize = TI_WINLEN - (segptr % TI_WINLEN);
437		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
438		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
439		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
440		    segsize / 4);
441		ptr += segsize;
442		segptr += segsize;
443		cnt -= segsize;
444	}
445}
446
447
448/*
449 * NIC memory write function.
450 * Can be used to copy data into NIC local memory.
451 */
452static void
453ti_mem_write(sc, addr, len, buf)
454	struct ti_softc		*sc;
455	u_int32_t		addr, len;
456	void			*buf;
457{
458	int			segptr, segsize, cnt;
459	char			*ptr;
460
461	segptr = addr;
462	cnt = len;
463	ptr = buf;
464
465	while (cnt) {
466		if (cnt < TI_WINLEN)
467			segsize = cnt;
468		else
469			segsize = TI_WINLEN - (segptr % TI_WINLEN);
470		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
471		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
472		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
473		    segsize / 4);
474		ptr += segsize;
475		segptr += segsize;
476		cnt -= segsize;
477	}
478}
479
480/*
481 * NIC memory read function.
482 * Can be used to clear a section of NIC local memory.
483 */
484static void
485ti_mem_zero(sc, addr, len)
486	struct ti_softc		*sc;
487	u_int32_t		addr, len;
488{
489	int			segptr, segsize, cnt;
490
491	segptr = addr;
492	cnt = len;
493
494	while (cnt) {
495		if (cnt < TI_WINLEN)
496			segsize = cnt;
497		else
498			segsize = TI_WINLEN - (segptr % TI_WINLEN);
499		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
500		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
501		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
502		segptr += segsize;
503		cnt -= segsize;
504	}
505}
506
507static int
508ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
509	struct ti_softc		*sc;
510	u_int32_t		tigon_addr, len;
511	caddr_t			buf;
512	int			useraddr, readdata;
513{
514	int		segptr, segsize, cnt;
515	caddr_t		ptr;
516	u_int32_t	origwin;
517	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
518	int		resid, segresid;
519	int		first_pass;
520
521	TI_LOCK_ASSERT(sc);
522
523	/*
524	 * At the moment, we don't handle non-aligned cases, we just bail.
525	 * If this proves to be a problem, it will be fixed.
526	 */
527	if ((readdata == 0)
528	 && (tigon_addr & 0x3)) {
529		device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
530		    "word-aligned\n", __func__, tigon_addr);
531		device_printf(sc->ti_dev, "%s: unaligned writes aren't "
532		    "yet supported\n", __func__);
533		return (EINVAL);
534	}
535
536	segptr = tigon_addr & ~0x3;
537	segresid = tigon_addr - segptr;
538
539	/*
540	 * This is the non-aligned amount left over that we'll need to
541	 * copy.
542	 */
543	resid = len & 0x3;
544
545	/* Add in the left over amount at the front of the buffer */
546	resid += segresid;
547
548	cnt = len & ~0x3;
549	/*
550	 * If resid + segresid is >= 4, add multiples of 4 to the count and
551	 * decrease the residual by that much.
552	 */
553	cnt += resid & ~0x3;
554	resid -= resid & ~0x3;
555
556	ptr = buf;
557
558	first_pass = 1;
559
560	/*
561	 * Save the old window base value.
562	 */
563	origwin = CSR_READ_4(sc, TI_WINBASE);
564
565	while (cnt) {
566		bus_size_t ti_offset;
567
568		if (cnt < TI_WINLEN)
569			segsize = cnt;
570		else
571			segsize = TI_WINLEN - (segptr % TI_WINLEN);
572		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
573
574		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
575
576		if (readdata) {
577
578			bus_space_read_region_4(sc->ti_btag,
579						sc->ti_bhandle, ti_offset,
580						(u_int32_t *)tmparray,
581						segsize >> 2);
582			if (useraddr) {
583				/*
584				 * Yeah, this is a little on the kludgy
585				 * side, but at least this code is only
586				 * used for debugging.
587				 */
588				ti_bcopy_swap(tmparray, tmparray2, segsize,
589					      TI_SWAP_NTOH);
590
591				TI_UNLOCK(sc);
592				if (first_pass) {
593					copyout(&tmparray2[segresid], ptr,
594						segsize - segresid);
595					first_pass = 0;
596				} else
597					copyout(tmparray2, ptr, segsize);
598				TI_LOCK(sc);
599			} else {
600				if (first_pass) {
601
602					ti_bcopy_swap(tmparray, tmparray2,
603						      segsize, TI_SWAP_NTOH);
604					TI_UNLOCK(sc);
605					bcopy(&tmparray2[segresid], ptr,
606					      segsize - segresid);
607					TI_LOCK(sc);
608					first_pass = 0;
609				} else
610					ti_bcopy_swap(tmparray, ptr, segsize,
611						      TI_SWAP_NTOH);
612			}
613
614		} else {
615			if (useraddr) {
616				TI_UNLOCK(sc);
617				copyin(ptr, tmparray2, segsize);
618				TI_LOCK(sc);
619				ti_bcopy_swap(tmparray2, tmparray, segsize,
620					      TI_SWAP_HTON);
621			} else
622				ti_bcopy_swap(ptr, tmparray, segsize,
623					      TI_SWAP_HTON);
624
625			bus_space_write_region_4(sc->ti_btag,
626						 sc->ti_bhandle, ti_offset,
627						 (u_int32_t *)tmparray,
628						 segsize >> 2);
629		}
630		segptr += segsize;
631		ptr += segsize;
632		cnt -= segsize;
633	}
634
635	/*
636	 * Handle leftover, non-word-aligned bytes.
637	 */
638	if (resid != 0) {
639		u_int32_t	tmpval, tmpval2;
640		bus_size_t	ti_offset;
641
642		/*
643		 * Set the segment pointer.
644		 */
645		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
646
647		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
648
649		/*
650		 * First, grab whatever is in our source/destination.
651		 * We'll obviously need this for reads, but also for
652		 * writes, since we'll be doing read/modify/write.
653		 */
654		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
655					ti_offset, &tmpval, 1);
656
657		/*
658		 * Next, translate this from little-endian to big-endian
659		 * (at least on i386 boxes).
660		 */
661		tmpval2 = ntohl(tmpval);
662
663		if (readdata) {
664			/*
665			 * If we're reading, just copy the leftover number
666			 * of bytes from the host byte order buffer to
667			 * the user's buffer.
668			 */
669			if (useraddr) {
670				TI_UNLOCK(sc);
671				copyout(&tmpval2, ptr, resid);
672				TI_LOCK(sc);
673			} else
674				bcopy(&tmpval2, ptr, resid);
675		} else {
676			/*
677			 * If we're writing, first copy the bytes to be
678			 * written into the network byte order buffer,
679			 * leaving the rest of the buffer with whatever was
680			 * originally in there.  Then, swap the bytes
681			 * around into host order and write them out.
682			 *
683			 * XXX KDM the read side of this has been verified
684			 * to work, but the write side of it has not been
685			 * verified.  So user beware.
686			 */
687			if (useraddr) {
688				TI_UNLOCK(sc);
689				copyin(ptr, &tmpval2, resid);
690				TI_LOCK(sc);
691			} else
692				bcopy(ptr, &tmpval2, resid);
693
694			tmpval = htonl(tmpval2);
695
696			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
697						 ti_offset, &tmpval, 1);
698		}
699	}
700
701	CSR_WRITE_4(sc, TI_WINBASE, origwin);
702
703	return (0);
704}
705
706static int
707ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
708	struct ti_softc		*sc;
709	u_int32_t		tigon_addr, len;
710	caddr_t			buf;
711	int			useraddr, readdata;
712	int			cpu;
713{
714	u_int32_t	segptr;
715	int		cnt;
716	u_int32_t	tmpval, tmpval2;
717	caddr_t		ptr;
718
719	TI_LOCK_ASSERT(sc);
720
721	/*
722	 * At the moment, we don't handle non-aligned cases, we just bail.
723	 * If this proves to be a problem, it will be fixed.
724	 */
725	if (tigon_addr & 0x3) {
726		device_printf(sc->ti_dev, "%s: tigon address %#x "
727		    "isn't word-aligned\n", __func__, tigon_addr);
728		return (EINVAL);
729	}
730
731	if (len & 0x3) {
732		device_printf(sc->ti_dev, "%s: transfer length %d "
733		    "isn't word-aligned\n", __func__, len);
734		return (EINVAL);
735	}
736
737	segptr = tigon_addr;
738	cnt = len;
739	ptr = buf;
740
741	while (cnt) {
742		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
743
744		if (readdata) {
745			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
746
747			tmpval = ntohl(tmpval2);
748
749			/*
750			 * Note:  I've used this debugging interface
751			 * extensively with Alteon's 12.3.15 firmware,
752			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
753			 *
754			 * When you compile the firmware without
755			 * optimization, which is necessary sometimes in
756			 * order to properly step through it, you sometimes
757			 * read out a bogus value of 0xc0017c instead of
758			 * whatever was supposed to be in that scratchpad
759			 * location.  That value is on the stack somewhere,
760			 * but I've never been able to figure out what was
761			 * causing the problem.
762			 *
763			 * The address seems to pop up in random places,
764			 * often not in the same place on two subsequent
765			 * reads.
766			 *
767			 * In any case, the underlying data doesn't seem
768			 * to be affected, just the value read out.
769			 *
770			 * KDM, 3/7/2000
771			 */
772
773			if (tmpval2 == 0xc0017c)
774				device_printf(sc->ti_dev, "found 0xc0017c at "
775				    "%#x (tmpval2)\n", segptr);
776
777			if (tmpval == 0xc0017c)
778				device_printf(sc->ti_dev, "found 0xc0017c at "
779				    "%#x (tmpval)\n", segptr);
780
781			if (useraddr)
782				copyout(&tmpval, ptr, 4);
783			else
784				bcopy(&tmpval, ptr, 4);
785		} else {
786			if (useraddr)
787				copyin(ptr, &tmpval2, 4);
788			else
789				bcopy(ptr, &tmpval2, 4);
790
791			tmpval = htonl(tmpval2);
792
793			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
794		}
795
796		cnt -= 4;
797		segptr += 4;
798		ptr += 4;
799	}
800
801	return (0);
802}
803
804static int
805ti_bcopy_swap(src, dst, len, swap_type)
806	const void	*src;
807	void		*dst;
808	size_t		len;
809	ti_swap_type	swap_type;
810{
811	const u_int8_t *tmpsrc;
812	u_int8_t *tmpdst;
813	size_t tmplen;
814
815	if (len & 0x3) {
816		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
817		       len);
818		return (-1);
819	}
820
821	tmpsrc = src;
822	tmpdst = dst;
823	tmplen = len;
824
825	while (tmplen) {
826		if (swap_type == TI_SWAP_NTOH)
827			*(u_int32_t *)tmpdst =
828				ntohl(*(const u_int32_t *)tmpsrc);
829		else
830			*(u_int32_t *)tmpdst =
831				htonl(*(const u_int32_t *)tmpsrc);
832
833		tmpsrc += 4;
834		tmpdst += 4;
835		tmplen -= 4;
836	}
837
838	return (0);
839}
840
841/*
842 * Load firmware image into the NIC. Check that the firmware revision
843 * is acceptable and see if we want the firmware for the Tigon 1 or
844 * Tigon 2.
845 */
846static void
847ti_loadfw(sc)
848	struct ti_softc		*sc;
849{
850
851	TI_LOCK_ASSERT(sc);
852
853	switch (sc->ti_hwrev) {
854	case TI_HWREV_TIGON:
855		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
856		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
857		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
858			device_printf(sc->ti_dev, "firmware revision mismatch; "
859			    "want %d.%d.%d, got %d.%d.%d\n",
860			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
861			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
862			    tigonFwReleaseMinor, tigonFwReleaseFix);
863			return;
864		}
865		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
866		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
867		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
868		    tigonFwRodata);
869		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
870		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
871		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
872		break;
873	case TI_HWREV_TIGON_II:
874		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
875		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
876		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
877			device_printf(sc->ti_dev, "firmware revision mismatch; "
878			    "want %d.%d.%d, got %d.%d.%d\n",
879			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
880			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
881			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
882			return;
883		}
884		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
885		    tigon2FwText);
886		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
887		    tigon2FwData);
888		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
889		    tigon2FwRodata);
890		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
891		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
892		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
893		break;
894	default:
895		device_printf(sc->ti_dev,
896		    "can't load firmware: unknown hardware rev\n");
897		break;
898	}
899}
900
901/*
902 * Send the NIC a command via the command ring.
903 */
904static void
905ti_cmd(sc, cmd)
906	struct ti_softc		*sc;
907	struct ti_cmd_desc	*cmd;
908{
909	int			index;
910
911	index = sc->ti_cmd_saved_prodidx;
912	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
913	TI_INC(index, TI_CMD_RING_CNT);
914	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
915	sc->ti_cmd_saved_prodidx = index;
916}
917
918/*
919 * Send the NIC an extended command. The 'len' parameter specifies the
920 * number of command slots to include after the initial command.
921 */
922static void
923ti_cmd_ext(sc, cmd, arg, len)
924	struct ti_softc		*sc;
925	struct ti_cmd_desc	*cmd;
926	caddr_t			arg;
927	int			len;
928{
929	int			index;
930	int			i;
931
932	index = sc->ti_cmd_saved_prodidx;
933	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
934	TI_INC(index, TI_CMD_RING_CNT);
935	for (i = 0; i < len; i++) {
936		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
937		    *(u_int32_t *)(&arg[i * 4]));
938		TI_INC(index, TI_CMD_RING_CNT);
939	}
940	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
941	sc->ti_cmd_saved_prodidx = index;
942}
943
944/*
945 * Handle events that have triggered interrupts.
946 */
947static void
948ti_handle_events(sc)
949	struct ti_softc		*sc;
950{
951	struct ti_event_desc	*e;
952
953	if (sc->ti_rdata->ti_event_ring == NULL)
954		return;
955
956	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
957		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
958		switch (TI_EVENT_EVENT(e)) {
959		case TI_EV_LINKSTAT_CHANGED:
960			sc->ti_linkstat = TI_EVENT_CODE(e);
961			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
962				device_printf(sc->ti_dev, "10/100 link up\n");
963			else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
964				device_printf(sc->ti_dev, "gigabit link up\n");
965			else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
966				device_printf(sc->ti_dev, "link down\n");
967			break;
968		case TI_EV_ERROR:
969			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
970				device_printf(sc->ti_dev, "invalid command\n");
971			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
972				device_printf(sc->ti_dev, "unknown command\n");
973			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
974				device_printf(sc->ti_dev, "bad config data\n");
975			break;
976		case TI_EV_FIRMWARE_UP:
977			ti_init2(sc);
978			break;
979		case TI_EV_STATS_UPDATED:
980			ti_stats_update(sc);
981			break;
982		case TI_EV_RESET_JUMBO_RING:
983		case TI_EV_MCAST_UPDATED:
984			/* Who cares. */
985			break;
986		default:
987			device_printf(sc->ti_dev, "unknown event: %d\n",
988			    TI_EVENT_EVENT(e));
989			break;
990		}
991		/* Advance the consumer index. */
992		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
993		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
994	}
995}
996
997static int
998ti_alloc_dmamaps(struct ti_softc *sc)
999{
1000	int i;
1001
1002	for (i = 0; i < TI_TX_RING_CNT; i++) {
1003		sc->ti_cdata.ti_txdesc[i].tx_m = NULL;
1004		sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
1005		if (bus_dmamap_create(sc->ti_mbuftx_dmat, 0,
1006				      &sc->ti_cdata.ti_txdesc[i].tx_dmamap))
1007			return (ENOBUFS);
1008	}
1009	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1010		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1011				      &sc->ti_cdata.ti_rx_std_maps[i]))
1012			return (ENOBUFS);
1013	}
1014
1015	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1016		if (bus_dmamap_create(sc->ti_jumbo_dmat, 0,
1017				      &sc->ti_cdata.ti_rx_jumbo_maps[i]))
1018			return (ENOBUFS);
1019	}
1020	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1021		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1022				      &sc->ti_cdata.ti_rx_mini_maps[i]))
1023			return (ENOBUFS);
1024	}
1025
1026	return (0);
1027}
1028
1029static void
1030ti_free_dmamaps(struct ti_softc *sc)
1031{
1032	int i;
1033
1034	if (sc->ti_mbuftx_dmat)
1035		for (i = 0; i < TI_TX_RING_CNT; i++)
1036			if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1037				bus_dmamap_destroy(sc->ti_mbuftx_dmat,
1038				    sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1039				sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
1040			}
1041
1042	if (sc->ti_mbufrx_dmat)
1043		for (i = 0; i < TI_STD_RX_RING_CNT; i++)
1044			if (sc->ti_cdata.ti_rx_std_maps[i]) {
1045				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1046				    sc->ti_cdata.ti_rx_std_maps[i]);
1047				sc->ti_cdata.ti_rx_std_maps[i] = 0;
1048			}
1049
1050	if (sc->ti_jumbo_dmat)
1051		for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++)
1052			if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1053				bus_dmamap_destroy(sc->ti_jumbo_dmat,
1054				    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1055				sc->ti_cdata.ti_rx_jumbo_maps[i] = 0;
1056			}
1057	if (sc->ti_mbufrx_dmat)
1058		for (i = 0; i < TI_MINI_RX_RING_CNT; i++)
1059			if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1060				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1061				    sc->ti_cdata.ti_rx_mini_maps[i]);
1062				sc->ti_cdata.ti_rx_mini_maps[i] = 0;
1063			}
1064}
1065
1066#ifdef TI_PRIVATE_JUMBOS
1067
1068/*
1069 * Memory management for the jumbo receive ring is a pain in the
1070 * butt. We need to allocate at least 9018 bytes of space per frame,
1071 * _and_ it has to be contiguous (unless you use the extended
1072 * jumbo descriptor format). Using malloc() all the time won't
1073 * work: malloc() allocates memory in powers of two, which means we
1074 * would end up wasting a considerable amount of space by allocating
1075 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
1076 * to do our own memory management.
1077 *
1078 * The driver needs to allocate a contiguous chunk of memory at boot
1079 * time. We then chop this up ourselves into 9K pieces and use them
1080 * as external mbuf storage.
1081 *
1082 * One issue here is how much memory to allocate. The jumbo ring has
1083 * 256 slots in it, but at 9K per slot than can consume over 2MB of
1084 * RAM. This is a bit much, especially considering we also need
1085 * RAM for the standard ring and mini ring (on the Tigon 2). To
1086 * save space, we only actually allocate enough memory for 64 slots
1087 * by default, which works out to between 500 and 600K. This can
1088 * be tuned by changing a #define in if_tireg.h.
1089 */
1090
1091static int
1092ti_alloc_jumbo_mem(sc)
1093	struct ti_softc		*sc;
1094{
1095	caddr_t			ptr;
1096	int			i;
1097	struct ti_jpool_entry   *entry;
1098
1099	/*
1100	 * Grab a big chunk o' storage.  Since we are chopping this pool up
1101	 * into ~9k chunks, there doesn't appear to be a need to use page
1102	 * alignment.
1103	 */
1104	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1105				1, 0,			/* algnmnt, boundary */
1106				BUS_SPACE_MAXADDR,	/* lowaddr */
1107				BUS_SPACE_MAXADDR,	/* highaddr */
1108				NULL, NULL,		/* filter, filterarg */
1109				TI_JMEM,		/* maxsize */
1110				1,			/* nsegments */
1111				TI_JMEM,		/* maxsegsize */
1112				0,			/* flags */
1113				NULL, NULL,		/* lockfunc, lockarg */
1114				&sc->ti_jumbo_dmat) != 0) {
1115		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1116		return (ENOBUFS);
1117	}
1118
1119	if (bus_dmamem_alloc(sc->ti_jumbo_dmat,
1120			     (void**)&sc->ti_cdata.ti_jumbo_buf,
1121			     BUS_DMA_NOWAIT, &sc->ti_jumbo_dmamap) != 0) {
1122		device_printf(sc->ti_dev, "Failed to allocate jumbo memory\n");
1123		return (ENOBUFS);
1124	}
1125
1126	SLIST_INIT(&sc->ti_jfree_listhead);
1127	SLIST_INIT(&sc->ti_jinuse_listhead);
1128
1129	/*
1130	 * Now divide it up into 9K pieces and save the addresses
1131	 * in an array.
1132	 */
1133	ptr = sc->ti_cdata.ti_jumbo_buf;
1134	for (i = 0; i < TI_JSLOTS; i++) {
1135		sc->ti_cdata.ti_jslots[i] = ptr;
1136		ptr += TI_JLEN;
1137		entry = malloc(sizeof(struct ti_jpool_entry),
1138			       M_DEVBUF, M_NOWAIT);
1139		if (entry == NULL) {
1140			device_printf(sc->ti_dev, "no memory for jumbo "
1141			    "buffer queue!\n");
1142			return (ENOBUFS);
1143		}
1144		entry->slot = i;
1145		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1146	}
1147
1148	return (0);
1149}
1150
1151/*
1152 * Allocate a jumbo buffer.
1153 */
1154static void *ti_jalloc(sc)
1155	struct ti_softc		*sc;
1156{
1157	struct ti_jpool_entry	*entry;
1158
1159	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1160
1161	if (entry == NULL) {
1162		device_printf(sc->ti_dev, "no free jumbo buffers\n");
1163		return (NULL);
1164	}
1165
1166	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1167	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1168	return (sc->ti_cdata.ti_jslots[entry->slot]);
1169}
1170
1171/*
1172 * Release a jumbo buffer.
1173 */
1174static void
1175ti_jfree(buf, args)
1176	void			*buf;
1177	void			*args;
1178{
1179	struct ti_softc		*sc;
1180	int			i;
1181	struct ti_jpool_entry	*entry;
1182
1183	/* Extract the softc struct pointer. */
1184	sc = (struct ti_softc *)args;
1185
1186	if (sc == NULL)
1187		panic("ti_jfree: didn't get softc pointer!");
1188
1189	/* calculate the slot this buffer belongs to */
1190	i = ((vm_offset_t)buf
1191	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1192
1193	if ((i < 0) || (i >= TI_JSLOTS))
1194		panic("ti_jfree: asked to free buffer that we don't manage!");
1195
1196	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1197	if (entry == NULL)
1198		panic("ti_jfree: buffer not in use!");
1199	entry->slot = i;
1200	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1201	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1202}
1203
1204#else
1205
1206static int
1207ti_alloc_jumbo_mem(sc)
1208	struct ti_softc		*sc;
1209{
1210
1211	/*
1212	 * The VM system will take care of providing aligned pages.  Alignment
1213	 * is set to 1 here so that busdma resources won't be wasted.
1214	 */
1215	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1216				1, 0,			/* algnmnt, boundary */
1217				BUS_SPACE_MAXADDR,	/* lowaddr */
1218				BUS_SPACE_MAXADDR,	/* highaddr */
1219				NULL, NULL,		/* filter, filterarg */
1220				PAGE_SIZE * 4 /*XXX*/,	/* maxsize */
1221				4,			/* nsegments */
1222				PAGE_SIZE,		/* maxsegsize */
1223				0,			/* flags */
1224				NULL, NULL,		/* lockfunc, lockarg */
1225				&sc->ti_jumbo_dmat) != 0) {
1226		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1227		return (ENOBUFS);
1228	}
1229
1230	return (0);
1231}
1232
1233#endif /* TI_PRIVATE_JUMBOS */
1234
1235/*
1236 * Intialize a standard receive ring descriptor.
1237 */
1238static int
1239ti_newbuf_std(sc, i, m)
1240	struct ti_softc		*sc;
1241	int			i;
1242	struct mbuf		*m;
1243{
1244	bus_dmamap_t		map;
1245	bus_dma_segment_t	segs;
1246	struct mbuf		*m_new = NULL;
1247	struct ti_rx_desc	*r;
1248	int			nsegs;
1249
1250	nsegs = 0;
1251	if (m == NULL) {
1252		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1253		if (m_new == NULL)
1254			return (ENOBUFS);
1255
1256		MCLGET(m_new, M_DONTWAIT);
1257		if (!(m_new->m_flags & M_EXT)) {
1258			m_freem(m_new);
1259			return (ENOBUFS);
1260		}
1261		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1262	} else {
1263		m_new = m;
1264		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1265		m_new->m_data = m_new->m_ext.ext_buf;
1266	}
1267
1268	m_adj(m_new, ETHER_ALIGN);
1269	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1270	r = &sc->ti_rdata->ti_rx_std_ring[i];
1271	map = sc->ti_cdata.ti_rx_std_maps[i];
1272	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1273				    &nsegs, 0))
1274		return (ENOBUFS);
1275	if (nsegs != 1)
1276		return (ENOBUFS);
1277	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1278	r->ti_len = segs.ds_len;
1279	r->ti_type = TI_BDTYPE_RECV_BD;
1280	r->ti_flags = 0;
1281	if (sc->ti_ifp->if_hwassist)
1282		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1283	r->ti_idx = i;
1284
1285	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1286	return (0);
1287}
1288
1289/*
1290 * Intialize a mini receive ring descriptor. This only applies to
1291 * the Tigon 2.
1292 */
1293static int
1294ti_newbuf_mini(sc, i, m)
1295	struct ti_softc		*sc;
1296	int			i;
1297	struct mbuf		*m;
1298{
1299	bus_dma_segment_t	segs;
1300	bus_dmamap_t		map;
1301	struct mbuf		*m_new = NULL;
1302	struct ti_rx_desc	*r;
1303	int			nsegs;
1304
1305	nsegs = 0;
1306	if (m == NULL) {
1307		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1308		if (m_new == NULL) {
1309			return (ENOBUFS);
1310		}
1311		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1312	} else {
1313		m_new = m;
1314		m_new->m_data = m_new->m_pktdat;
1315		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1316	}
1317
1318	m_adj(m_new, ETHER_ALIGN);
1319	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1320	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1321	map = sc->ti_cdata.ti_rx_mini_maps[i];
1322	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1323				    &nsegs, 0))
1324		return (ENOBUFS);
1325	if (nsegs != 1)
1326		return (ENOBUFS);
1327	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1328	r->ti_len = segs.ds_len;
1329	r->ti_type = TI_BDTYPE_RECV_BD;
1330	r->ti_flags = TI_BDFLAG_MINI_RING;
1331	if (sc->ti_ifp->if_hwassist)
1332		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1333	r->ti_idx = i;
1334
1335	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1336	return (0);
1337}
1338
1339#ifdef TI_PRIVATE_JUMBOS
1340
1341/*
1342 * Initialize a jumbo receive ring descriptor. This allocates
1343 * a jumbo buffer from the pool managed internally by the driver.
1344 */
1345static int
1346ti_newbuf_jumbo(sc, i, m)
1347	struct ti_softc		*sc;
1348	int			i;
1349	struct mbuf		*m;
1350{
1351	bus_dmamap_t		map;
1352	struct mbuf		*m_new = NULL;
1353	struct ti_rx_desc	*r;
1354	int			nsegs;
1355	bus_dma_segment_t	segs;
1356
1357	if (m == NULL) {
1358		caddr_t			*buf = NULL;
1359
1360		/* Allocate the mbuf. */
1361		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1362		if (m_new == NULL) {
1363			return (ENOBUFS);
1364		}
1365
1366		/* Allocate the jumbo buffer */
1367		buf = ti_jalloc(sc);
1368		if (buf == NULL) {
1369			m_freem(m_new);
1370			device_printf(sc->ti_dev, "jumbo allocation failed "
1371			    "-- packet dropped!\n");
1372			return (ENOBUFS);
1373		}
1374
1375		/* Attach the buffer to the mbuf. */
1376		m_new->m_data = (void *) buf;
1377		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1378		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1379		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1380	} else {
1381		m_new = m;
1382		m_new->m_data = m_new->m_ext.ext_buf;
1383		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1384	}
1385
1386	m_adj(m_new, ETHER_ALIGN);
1387	/* Set up the descriptor. */
1388	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1389	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1390	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1391	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, &segs,
1392				    &nsegs, 0))
1393		return (ENOBUFS);
1394	if (nsegs != 1)
1395		return (ENOBUFS);
1396	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1397	r->ti_len = segs.ds_len;
1398	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1399	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1400	if (sc->ti_ifp->if_hwassist)
1401		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1402	r->ti_idx = i;
1403
1404	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1405	return (0);
1406}
1407
1408#else
1409
1410#if (PAGE_SIZE == 4096)
1411#define NPAYLOAD 2
1412#else
1413#define NPAYLOAD 1
1414#endif
1415
1416#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1417#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1418#define NFS_HDR_LEN (UDP_HDR_LEN)
1419static int HDR_LEN =  TCP_HDR_LEN;
1420
1421
1422/*
1423 * Initialize a jumbo receive ring descriptor. This allocates
1424 * a jumbo buffer from the pool managed internally by the driver.
1425 */
1426static int
1427ti_newbuf_jumbo(sc, idx, m_old)
1428	struct ti_softc		*sc;
1429	int			idx;
1430	struct mbuf		*m_old;
1431{
1432	bus_dmamap_t		map;
1433	struct mbuf		*cur, *m_new = NULL;
1434	struct mbuf		*m[3] = {NULL, NULL, NULL};
1435	struct ti_rx_desc_ext	*r;
1436	vm_page_t		frame;
1437	static int		color;
1438				/* 1 extra buf to make nobufs easy*/
1439	struct sf_buf		*sf[3] = {NULL, NULL, NULL};
1440	int			i;
1441	bus_dma_segment_t	segs[4];
1442	int			nsegs;
1443
1444	if (m_old != NULL) {
1445		m_new = m_old;
1446		cur = m_old->m_next;
1447		for (i = 0; i <= NPAYLOAD; i++){
1448			m[i] = cur;
1449			cur = cur->m_next;
1450		}
1451	} else {
1452		/* Allocate the mbufs. */
1453		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1454		if (m_new == NULL) {
1455			device_printf(sc->ti_dev, "mbuf allocation failed "
1456			    "-- packet dropped!\n");
1457			goto nobufs;
1458		}
1459		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1460		if (m[NPAYLOAD] == NULL) {
1461			device_printf(sc->ti_dev, "cluster mbuf allocation "
1462			    "failed -- packet dropped!\n");
1463			goto nobufs;
1464		}
1465		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1466		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1467			device_printf(sc->ti_dev, "mbuf allocation failed "
1468			    "-- packet dropped!\n");
1469			goto nobufs;
1470		}
1471		m[NPAYLOAD]->m_len = MCLBYTES;
1472
1473		for (i = 0; i < NPAYLOAD; i++){
1474			MGET(m[i], M_DONTWAIT, MT_DATA);
1475			if (m[i] == NULL) {
1476				device_printf(sc->ti_dev, "mbuf allocation "
1477				    "failed -- packet dropped!\n");
1478				goto nobufs;
1479			}
1480			frame = vm_page_alloc(NULL, color++,
1481			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1482			    VM_ALLOC_WIRED);
1483			if (frame == NULL) {
1484				device_printf(sc->ti_dev, "buffer allocation "
1485				    "failed -- packet dropped!\n");
1486				printf("      index %d page %d\n", idx, i);
1487				goto nobufs;
1488			}
1489			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1490			if (sf[i] == NULL) {
1491				vm_page_lock_queues();
1492				vm_page_unwire(frame, 0);
1493				vm_page_free(frame);
1494				vm_page_unlock_queues();
1495				device_printf(sc->ti_dev, "buffer allocation "
1496				    "failed -- packet dropped!\n");
1497				printf("      index %d page %d\n", idx, i);
1498				goto nobufs;
1499			}
1500		}
1501		for (i = 0; i < NPAYLOAD; i++){
1502		/* Attach the buffer to the mbuf. */
1503			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1504			m[i]->m_len = PAGE_SIZE;
1505			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1506			    sf_buf_mext, sf[i], 0, EXT_DISPOSABLE);
1507			m[i]->m_next = m[i+1];
1508		}
1509		/* link the buffers to the header */
1510		m_new->m_next = m[0];
1511		m_new->m_data += ETHER_ALIGN;
1512		if (sc->ti_hdrsplit)
1513			m_new->m_len = MHLEN - ETHER_ALIGN;
1514		else
1515			m_new->m_len = HDR_LEN;
1516		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1517	}
1518
1519	/* Set up the descriptor. */
1520	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1521	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1522	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1523	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, segs,
1524				    &nsegs, 0))
1525		return (ENOBUFS);
1526	if ((nsegs < 1) || (nsegs > 4))
1527		return (ENOBUFS);
1528	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1529	r->ti_len0 = m_new->m_len;
1530
1531	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1532	r->ti_len1 = PAGE_SIZE;
1533
1534	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1535	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1536
1537	if (PAGE_SIZE == 4096) {
1538		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1539		r->ti_len3 = MCLBYTES;
1540	} else {
1541		r->ti_len3 = 0;
1542	}
1543	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1544
1545	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1546
1547	if (sc->ti_ifp->if_hwassist)
1548		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1549
1550	r->ti_idx = idx;
1551
1552	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1553	return (0);
1554
1555nobufs:
1556
1557	/*
1558	 * Warning! :
1559	 * This can only be called before the mbufs are strung together.
1560	 * If the mbufs are strung together, m_freem() will free the chain,
1561	 * so that the later mbufs will be freed multiple times.
1562	 */
1563	if (m_new)
1564		m_freem(m_new);
1565
1566	for (i = 0; i < 3; i++) {
1567		if (m[i])
1568			m_freem(m[i]);
1569		if (sf[i])
1570			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1571	}
1572	return (ENOBUFS);
1573}
1574#endif
1575
1576
1577
1578/*
1579 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1580 * that's 1MB or memory, which is a lot. For now, we fill only the first
1581 * 256 ring entries and hope that our CPU is fast enough to keep up with
1582 * the NIC.
1583 */
1584static int
1585ti_init_rx_ring_std(sc)
1586	struct ti_softc		*sc;
1587{
1588	int			i;
1589	struct ti_cmd_desc	cmd;
1590
1591	for (i = 0; i < TI_SSLOTS; i++) {
1592		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1593			return (ENOBUFS);
1594	};
1595
1596	TI_UPDATE_STDPROD(sc, i - 1);
1597	sc->ti_std = i - 1;
1598
1599	return (0);
1600}
1601
1602static void
1603ti_free_rx_ring_std(sc)
1604	struct ti_softc		*sc;
1605{
1606	bus_dmamap_t		map;
1607	int			i;
1608
1609	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1610		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1611			map = sc->ti_cdata.ti_rx_std_maps[i];
1612			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1613			    BUS_DMASYNC_POSTREAD);
1614			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1615			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1616			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1617		}
1618		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1619		    sizeof(struct ti_rx_desc));
1620	}
1621}
1622
1623static int
1624ti_init_rx_ring_jumbo(sc)
1625	struct ti_softc		*sc;
1626{
1627	int			i;
1628	struct ti_cmd_desc	cmd;
1629
1630	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1631		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1632			return (ENOBUFS);
1633	};
1634
1635	TI_UPDATE_JUMBOPROD(sc, i - 1);
1636	sc->ti_jumbo = i - 1;
1637
1638	return (0);
1639}
1640
1641static void
1642ti_free_rx_ring_jumbo(sc)
1643	struct ti_softc		*sc;
1644{
1645	bus_dmamap_t		map;
1646	int			i;
1647
1648	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1649		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1650			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1651			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
1652			    BUS_DMASYNC_POSTREAD);
1653			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
1654			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1655			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1656		}
1657		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1658		    sizeof(struct ti_rx_desc));
1659	}
1660}
1661
1662static int
1663ti_init_rx_ring_mini(sc)
1664	struct ti_softc		*sc;
1665{
1666	int			i;
1667
1668	for (i = 0; i < TI_MSLOTS; i++) {
1669		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1670			return (ENOBUFS);
1671	};
1672
1673	TI_UPDATE_MINIPROD(sc, i - 1);
1674	sc->ti_mini = i - 1;
1675
1676	return (0);
1677}
1678
1679static void
1680ti_free_rx_ring_mini(sc)
1681	struct ti_softc		*sc;
1682{
1683	bus_dmamap_t		map;
1684	int			i;
1685
1686	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1687		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1688			map = sc->ti_cdata.ti_rx_mini_maps[i];
1689			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1690			    BUS_DMASYNC_POSTREAD);
1691			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1692			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1693			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1694		}
1695		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1696		    sizeof(struct ti_rx_desc));
1697	}
1698}
1699
1700static void
1701ti_free_tx_ring(sc)
1702	struct ti_softc		*sc;
1703{
1704	struct ti_txdesc	*txd;
1705	int			i;
1706
1707	if (sc->ti_rdata->ti_tx_ring == NULL)
1708		return;
1709
1710	for (i = 0; i < TI_TX_RING_CNT; i++) {
1711		txd = &sc->ti_cdata.ti_txdesc[i];
1712		if (txd->tx_m != NULL) {
1713			bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
1714			    BUS_DMASYNC_POSTWRITE);
1715			bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
1716			m_freem(txd->tx_m);
1717			txd->tx_m = NULL;
1718		}
1719		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1720		    sizeof(struct ti_tx_desc));
1721	}
1722}
1723
1724static int
1725ti_init_tx_ring(sc)
1726	struct ti_softc		*sc;
1727{
1728	struct ti_txdesc	*txd;
1729	int			i;
1730
1731	STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1732	STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1733	for (i = 0; i < TI_TX_RING_CNT; i++) {
1734		txd = &sc->ti_cdata.ti_txdesc[i];
1735		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1736	}
1737	sc->ti_txcnt = 0;
1738	sc->ti_tx_saved_considx = 0;
1739	sc->ti_tx_saved_prodidx = 0;
1740	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1741	return (0);
1742}
1743
1744/*
1745 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1746 * but we have to support the old way too so that Tigon 1 cards will
1747 * work.
1748 */
1749static void
1750ti_add_mcast(sc, addr)
1751	struct ti_softc		*sc;
1752	struct ether_addr	*addr;
1753{
1754	struct ti_cmd_desc	cmd;
1755	u_int16_t		*m;
1756	u_int32_t		ext[2] = {0, 0};
1757
1758	m = (u_int16_t *)&addr->octet[0];
1759
1760	switch (sc->ti_hwrev) {
1761	case TI_HWREV_TIGON:
1762		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1763		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1764		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1765		break;
1766	case TI_HWREV_TIGON_II:
1767		ext[0] = htons(m[0]);
1768		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1769		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1770		break;
1771	default:
1772		device_printf(sc->ti_dev, "unknown hwrev\n");
1773		break;
1774	}
1775}
1776
1777static void
1778ti_del_mcast(sc, addr)
1779	struct ti_softc		*sc;
1780	struct ether_addr	*addr;
1781{
1782	struct ti_cmd_desc	cmd;
1783	u_int16_t		*m;
1784	u_int32_t		ext[2] = {0, 0};
1785
1786	m = (u_int16_t *)&addr->octet[0];
1787
1788	switch (sc->ti_hwrev) {
1789	case TI_HWREV_TIGON:
1790		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1791		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1792		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1793		break;
1794	case TI_HWREV_TIGON_II:
1795		ext[0] = htons(m[0]);
1796		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1797		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1798		break;
1799	default:
1800		device_printf(sc->ti_dev, "unknown hwrev\n");
1801		break;
1802	}
1803}
1804
1805/*
1806 * Configure the Tigon's multicast address filter.
1807 *
1808 * The actual multicast table management is a bit of a pain, thanks to
1809 * slight brain damage on the part of both Alteon and us. With our
1810 * multicast code, we are only alerted when the multicast address table
1811 * changes and at that point we only have the current list of addresses:
1812 * we only know the current state, not the previous state, so we don't
1813 * actually know what addresses were removed or added. The firmware has
1814 * state, but we can't get our grubby mits on it, and there is no 'delete
1815 * all multicast addresses' command. Hence, we have to maintain our own
1816 * state so we know what addresses have been programmed into the NIC at
1817 * any given time.
1818 */
1819static void
1820ti_setmulti(sc)
1821	struct ti_softc		*sc;
1822{
1823	struct ifnet		*ifp;
1824	struct ifmultiaddr	*ifma;
1825	struct ti_cmd_desc	cmd;
1826	struct ti_mc_entry	*mc;
1827	u_int32_t		intrs;
1828
1829	TI_LOCK_ASSERT(sc);
1830
1831	ifp = sc->ti_ifp;
1832
1833	if (ifp->if_flags & IFF_ALLMULTI) {
1834		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1835		return;
1836	} else {
1837		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1838	}
1839
1840	/* Disable interrupts. */
1841	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1842	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1843
1844	/* First, zot all the existing filters. */
1845	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1846		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1847		ti_del_mcast(sc, &mc->mc_addr);
1848		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1849		free(mc, M_DEVBUF);
1850	}
1851
1852	/* Now program new ones. */
1853	IF_ADDR_LOCK(ifp);
1854	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1855		if (ifma->ifma_addr->sa_family != AF_LINK)
1856			continue;
1857		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1858		if (mc == NULL) {
1859			device_printf(sc->ti_dev,
1860			    "no memory for mcast filter entry\n");
1861			continue;
1862		}
1863		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1864		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1865		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1866		ti_add_mcast(sc, &mc->mc_addr);
1867	}
1868	IF_ADDR_UNLOCK(ifp);
1869
1870	/* Re-enable interrupts. */
1871	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1872}
1873
1874/*
1875 * Check to see if the BIOS has configured us for a 64 bit slot when
1876 * we aren't actually in one. If we detect this condition, we can work
1877 * around it on the Tigon 2 by setting a bit in the PCI state register,
1878 * but for the Tigon 1 we must give up and abort the interface attach.
1879 */
1880static int ti_64bitslot_war(sc)
1881	struct ti_softc		*sc;
1882{
1883	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1884		CSR_WRITE_4(sc, 0x600, 0);
1885		CSR_WRITE_4(sc, 0x604, 0);
1886		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1887		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1888			if (sc->ti_hwrev == TI_HWREV_TIGON)
1889				return (EINVAL);
1890			else {
1891				TI_SETBIT(sc, TI_PCI_STATE,
1892				    TI_PCISTATE_32BIT_BUS);
1893				return (0);
1894			}
1895		}
1896	}
1897
1898	return (0);
1899}
1900
1901/*
1902 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1903 * self-test results.
1904 */
1905static int
1906ti_chipinit(sc)
1907	struct ti_softc		*sc;
1908{
1909	u_int32_t		cacheline;
1910	u_int32_t		pci_writemax = 0;
1911	u_int32_t		hdrsplit;
1912
1913	/* Initialize link to down state. */
1914	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1915
1916	if (sc->ti_ifp->if_capenable & IFCAP_HWCSUM)
1917		sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
1918	else
1919		sc->ti_ifp->if_hwassist = 0;
1920
1921	/* Set endianness before we access any non-PCI registers. */
1922#if 0 && BYTE_ORDER == BIG_ENDIAN
1923	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1924	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1925#else
1926	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1927	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1928#endif
1929
1930	/* Check the ROM failed bit to see if self-tests passed. */
1931	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1932		device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
1933		return (ENODEV);
1934	}
1935
1936	/* Halt the CPU. */
1937	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1938
1939	/* Figure out the hardware revision. */
1940	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1941	case TI_REV_TIGON_I:
1942		sc->ti_hwrev = TI_HWREV_TIGON;
1943		break;
1944	case TI_REV_TIGON_II:
1945		sc->ti_hwrev = TI_HWREV_TIGON_II;
1946		break;
1947	default:
1948		device_printf(sc->ti_dev, "unsupported chip revision\n");
1949		return (ENODEV);
1950	}
1951
1952	/* Do special setup for Tigon 2. */
1953	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1954		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1955		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1956		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1957	}
1958
1959	/*
1960	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1961	 * can't do header splitting.
1962	 */
1963#ifdef TI_JUMBO_HDRSPLIT
1964	if (sc->ti_hwrev != TI_HWREV_TIGON)
1965		sc->ti_hdrsplit = 1;
1966	else
1967		device_printf(sc->ti_dev,
1968		    "can't do header splitting on a Tigon I board\n");
1969#endif /* TI_JUMBO_HDRSPLIT */
1970
1971	/* Set up the PCI state register. */
1972	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1973	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1974		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1975	}
1976
1977	/* Clear the read/write max DMA parameters. */
1978	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1979	    TI_PCISTATE_READ_MAXDMA));
1980
1981	/* Get cache line size. */
1982	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1983
1984	/*
1985	 * If the system has set enabled the PCI memory write
1986	 * and invalidate command in the command register, set
1987	 * the write max parameter accordingly. This is necessary
1988	 * to use MWI with the Tigon 2.
1989	 */
1990	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1991		switch (cacheline) {
1992		case 1:
1993		case 4:
1994		case 8:
1995		case 16:
1996		case 32:
1997		case 64:
1998			break;
1999		default:
2000		/* Disable PCI memory write and invalidate. */
2001			if (bootverbose)
2002				device_printf(sc->ti_dev, "cache line size %d"
2003				    " not supported; disabling PCI MWI\n",
2004				    cacheline);
2005			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
2006			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
2007			break;
2008		}
2009	}
2010
2011#ifdef __brokenalpha__
2012	/*
2013	 * From the Alteon sample driver:
2014	 * Must insure that we do not cross an 8K (bytes) boundary
2015	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
2016	 * restriction on some ALPHA platforms with early revision
2017	 * 21174 PCI chipsets, such as the AlphaPC 164lx
2018	 */
2019	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
2020#else
2021	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2022#endif
2023
2024	/* This sets the min dma param all the way up (0xff). */
2025	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2026
2027	if (sc->ti_hdrsplit)
2028		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2029	else
2030		hdrsplit = 0;
2031
2032	/* Configure DMA variables. */
2033#if BYTE_ORDER == BIG_ENDIAN
2034	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2035	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2036	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2037	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2038#else /* BYTE_ORDER */
2039	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2040	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2041	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2042#endif /* BYTE_ORDER */
2043
2044	/*
2045	 * Only allow 1 DMA channel to be active at a time.
2046	 * I don't think this is a good idea, but without it
2047	 * the firmware racks up lots of nicDmaReadRingFull
2048	 * errors.  This is not compatible with hardware checksums.
2049	 */
2050	if (sc->ti_ifp->if_hwassist == 0)
2051		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2052
2053	/* Recommended settings from Tigon manual. */
2054	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2055	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2056
2057	if (ti_64bitslot_war(sc)) {
2058		device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
2059		    "but we aren't");
2060		return (EINVAL);
2061	}
2062
2063	return (0);
2064}
2065
2066/*
2067 * Initialize the general information block and firmware, and
2068 * start the CPU(s) running.
2069 */
2070static int
2071ti_gibinit(sc)
2072	struct ti_softc		*sc;
2073{
2074	struct ti_rcb		*rcb;
2075	int			i;
2076	struct ifnet		*ifp;
2077	uint32_t		rdphys;
2078
2079	TI_LOCK_ASSERT(sc);
2080
2081	ifp = sc->ti_ifp;
2082	rdphys = sc->ti_rdata_phys;
2083
2084	/* Disable interrupts for now. */
2085	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2086
2087	/*
2088	 * Tell the chip where to find the general information block.
2089	 * While this struct could go into >4GB memory, we allocate it in a
2090	 * single slab with the other descriptors, and those don't seem to
2091	 * support being located in a 64-bit region.
2092	 */
2093	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
2094	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
2095
2096	/* Load the firmware into SRAM. */
2097	ti_loadfw(sc);
2098
2099	/* Set up the contents of the general info and ring control blocks. */
2100
2101	/* Set up the event ring and producer pointer. */
2102	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
2103
2104	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
2105	rcb->ti_flags = 0;
2106	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
2107	    rdphys + TI_RD_OFF(ti_ev_prodidx_r);
2108	sc->ti_ev_prodidx.ti_idx = 0;
2109	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2110	sc->ti_ev_saved_considx = 0;
2111
2112	/* Set up the command ring and producer mailbox. */
2113	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
2114
2115	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
2116	rcb->ti_flags = 0;
2117	rcb->ti_max_len = 0;
2118	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2119		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2120	}
2121	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2122	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2123	sc->ti_cmd_saved_prodidx = 0;
2124
2125	/*
2126	 * Assign the address of the stats refresh buffer.
2127	 * We re-use the current stats buffer for this to
2128	 * conserve memory.
2129	 */
2130	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
2131	    rdphys + TI_RD_OFF(ti_info.ti_stats);
2132
2133	/* Set up the standard receive ring. */
2134	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
2135	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
2136	rcb->ti_max_len = TI_FRAMELEN;
2137	rcb->ti_flags = 0;
2138	if (sc->ti_ifp->if_hwassist)
2139		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2140		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2141	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2142
2143	/* Set up the jumbo receive ring. */
2144	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
2145	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
2146
2147#ifdef TI_PRIVATE_JUMBOS
2148	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
2149	rcb->ti_flags = 0;
2150#else
2151	rcb->ti_max_len = PAGE_SIZE;
2152	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2153#endif
2154	if (sc->ti_ifp->if_hwassist)
2155		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2156		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2157	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2158
2159	/*
2160	 * Set up the mini ring. Only activated on the
2161	 * Tigon 2 but the slot in the config block is
2162	 * still there on the Tigon 1.
2163	 */
2164	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
2165	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
2166	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2167	if (sc->ti_hwrev == TI_HWREV_TIGON)
2168		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2169	else
2170		rcb->ti_flags = 0;
2171	if (sc->ti_ifp->if_hwassist)
2172		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2173		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2174	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2175
2176	/*
2177	 * Set up the receive return ring.
2178	 */
2179	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
2180	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
2181	rcb->ti_flags = 0;
2182	rcb->ti_max_len = TI_RETURN_RING_CNT;
2183	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
2184	    rdphys + TI_RD_OFF(ti_return_prodidx_r);
2185
2186	/*
2187	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2188	 * of putting the transmit ring in the host's address space and
2189	 * letting the chip DMA it instead of leaving the ring in the NIC's
2190	 * memory and accessing it through the shared memory region. We
2191	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2192	 * so we have to revert to the shared memory scheme if we detect
2193	 * a Tigon 1 chip.
2194	 */
2195	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2196	bzero((char *)sc->ti_rdata->ti_tx_ring,
2197	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
2198	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
2199	if (sc->ti_hwrev == TI_HWREV_TIGON)
2200		rcb->ti_flags = 0;
2201	else
2202		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2203	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2204	if (sc->ti_ifp->if_hwassist)
2205		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2206		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2207	rcb->ti_max_len = TI_TX_RING_CNT;
2208	if (sc->ti_hwrev == TI_HWREV_TIGON)
2209		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
2210	else
2211		TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
2212	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
2213	    rdphys + TI_RD_OFF(ti_tx_considx_r);
2214
2215	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2216	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2217
2218	/* Set up tuneables */
2219#if 0
2220	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2221		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2222		    (sc->ti_rx_coal_ticks / 10));
2223	else
2224#endif
2225		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2226	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2227	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2228	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2229	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2230	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2231
2232	/* Turn interrupts on. */
2233	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2234	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2235
2236	/* Start CPU. */
2237	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2238
2239	return (0);
2240}
2241
2242static void
2243ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2244{
2245	struct ti_softc *sc;
2246
2247	sc = arg;
2248	if (error || nseg != 1)
2249		return;
2250
2251	/*
2252	 * All of the Tigon data structures need to live at <4GB.  This
2253	 * cast is fine since busdma was told about this constraint.
2254	 */
2255	sc->ti_rdata_phys = segs[0].ds_addr;
2256	return;
2257}
2258
2259/*
2260 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2261 * against our list and return its name if we find a match.
2262 */
2263static int
2264ti_probe(dev)
2265	device_t		dev;
2266{
2267	struct ti_type		*t;
2268
2269	t = ti_devs;
2270
2271	while (t->ti_name != NULL) {
2272		if ((pci_get_vendor(dev) == t->ti_vid) &&
2273		    (pci_get_device(dev) == t->ti_did)) {
2274			device_set_desc(dev, t->ti_name);
2275			return (BUS_PROBE_DEFAULT);
2276		}
2277		t++;
2278	}
2279
2280	return (ENXIO);
2281}
2282
2283static int
2284ti_attach(dev)
2285	device_t		dev;
2286{
2287	struct ifnet		*ifp;
2288	struct ti_softc		*sc;
2289	int			error = 0, rid;
2290	u_char			eaddr[6];
2291
2292	sc = device_get_softc(dev);
2293	sc->ti_unit = device_get_unit(dev);
2294	sc->ti_dev = dev;
2295
2296	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2297	    MTX_DEF);
2298	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2299	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2300	if (ifp == NULL) {
2301		device_printf(dev, "can not if_alloc()\n");
2302		error = ENOSPC;
2303		goto fail;
2304	}
2305	sc->ti_ifp->if_capabilities = IFCAP_HWCSUM |
2306	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2307	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2308
2309	/*
2310	 * Map control/status registers.
2311	 */
2312	pci_enable_busmaster(dev);
2313
2314	rid = TI_PCI_LOMEM;
2315	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2316	    RF_ACTIVE|PCI_RF_DENSE);
2317
2318	if (sc->ti_res == NULL) {
2319		device_printf(dev, "couldn't map memory\n");
2320		error = ENXIO;
2321		goto fail;
2322	}
2323
2324	sc->ti_btag = rman_get_bustag(sc->ti_res);
2325	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2326
2327	/* Allocate interrupt */
2328	rid = 0;
2329
2330	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2331	    RF_SHAREABLE | RF_ACTIVE);
2332
2333	if (sc->ti_irq == NULL) {
2334		device_printf(dev, "couldn't map interrupt\n");
2335		error = ENXIO;
2336		goto fail;
2337	}
2338
2339	if (ti_chipinit(sc)) {
2340		device_printf(dev, "chip initialization failed\n");
2341		error = ENXIO;
2342		goto fail;
2343	}
2344
2345	/* Zero out the NIC's on-board SRAM. */
2346	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2347
2348	/* Init again -- zeroing memory may have clobbered some registers. */
2349	if (ti_chipinit(sc)) {
2350		device_printf(dev, "chip initialization failed\n");
2351		error = ENXIO;
2352		goto fail;
2353	}
2354
2355	/*
2356	 * Get station address from the EEPROM. Note: the manual states
2357	 * that the MAC address is at offset 0x8c, however the data is
2358	 * stored as two longwords (since that's how it's loaded into
2359	 * the NIC). This means the MAC address is actually preceded
2360	 * by two zero bytes. We need to skip over those.
2361	 */
2362	if (ti_read_eeprom(sc, eaddr,
2363				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2364		device_printf(dev, "failed to read station address\n");
2365		error = ENXIO;
2366		goto fail;
2367	}
2368
2369	/* Allocate the general information block and ring buffers. */
2370	if (bus_dma_tag_create(NULL,			/* parent */
2371				1, 0,			/* algnmnt, boundary */
2372				BUS_SPACE_MAXADDR,	/* lowaddr */
2373				BUS_SPACE_MAXADDR,	/* highaddr */
2374				NULL, NULL,		/* filter, filterarg */
2375				BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2376				0,			/* nsegments */
2377				BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2378				0,			/* flags */
2379				NULL, NULL,		/* lockfunc, lockarg */
2380				&sc->ti_parent_dmat) != 0) {
2381		device_printf(dev, "Failed to allocate parent dmat\n");
2382		error = ENOMEM;
2383		goto fail;
2384	}
2385
2386	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2387				PAGE_SIZE, 0,		/* algnmnt, boundary */
2388				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2389				BUS_SPACE_MAXADDR,	/* highaddr */
2390				NULL, NULL,		/* filter, filterarg */
2391				sizeof(struct ti_ring_data),	/* maxsize */
2392				1,			/* nsegments */
2393				sizeof(struct ti_ring_data),	/* maxsegsize */
2394				0,			/* flags */
2395				NULL, NULL,		/* lockfunc, lockarg */
2396				&sc->ti_rdata_dmat) != 0) {
2397		device_printf(dev, "Failed to allocate rdata dmat\n");
2398		error = ENOMEM;
2399		goto fail;
2400	}
2401
2402	if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2403			     BUS_DMA_NOWAIT, &sc->ti_rdata_dmamap) != 0) {
2404		device_printf(dev, "Failed to allocate rdata memory\n");
2405		error = ENOMEM;
2406		goto fail;
2407	}
2408
2409	if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2410			    sc->ti_rdata, sizeof(struct ti_ring_data),
2411			    ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2412		device_printf(dev, "Failed to load rdata segments\n");
2413		error = ENOMEM;
2414		goto fail;
2415	}
2416
2417	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2418
2419	/* Try to allocate memory for jumbo buffers. */
2420	if (ti_alloc_jumbo_mem(sc)) {
2421		device_printf(dev, "jumbo buffer allocation failed\n");
2422		error = ENXIO;
2423		goto fail;
2424	}
2425
2426	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2427				1, 0,			/* algnmnt, boundary */
2428				BUS_SPACE_MAXADDR,	/* lowaddr */
2429				BUS_SPACE_MAXADDR,	/* highaddr */
2430				NULL, NULL,		/* filter, filterarg */
2431				MCLBYTES * TI_MAXTXSEGS,/* maxsize */
2432				TI_MAXTXSEGS,		/* nsegments */
2433				MCLBYTES,		/* maxsegsize */
2434				0,			/* flags */
2435				NULL, NULL,		/* lockfunc, lockarg */
2436				&sc->ti_mbuftx_dmat) != 0) {
2437		device_printf(dev, "Failed to allocate rdata dmat\n");
2438		error = ENOMEM;
2439		goto fail;
2440	}
2441
2442	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2443				1, 0,			/* algnmnt, boundary */
2444				BUS_SPACE_MAXADDR,	/* lowaddr */
2445				BUS_SPACE_MAXADDR,	/* highaddr */
2446				NULL, NULL,		/* filter, filterarg */
2447				MCLBYTES,		/* maxsize */
2448				1,			/* nsegments */
2449				MCLBYTES,		/* maxsegsize */
2450				0,			/* flags */
2451				NULL, NULL,		/* lockfunc, lockarg */
2452				&sc->ti_mbufrx_dmat) != 0) {
2453		device_printf(dev, "Failed to allocate rdata dmat\n");
2454		error = ENOMEM;
2455		goto fail;
2456	}
2457
2458	if (ti_alloc_dmamaps(sc)) {
2459		device_printf(dev, "dma map creation failed\n");
2460		error = ENXIO;
2461		goto fail;
2462	}
2463
2464	/*
2465	 * We really need a better way to tell a 1000baseTX card
2466	 * from a 1000baseSX one, since in theory there could be
2467	 * OEMed 1000baseTX cards from lame vendors who aren't
2468	 * clever enough to change the PCI ID. For the moment
2469	 * though, the AceNIC is the only copper card available.
2470	 */
2471	if (pci_get_vendor(dev) == ALT_VENDORID &&
2472	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2473		sc->ti_copper = 1;
2474	/* Ok, it's not the only copper card available. */
2475	if (pci_get_vendor(dev) == NG_VENDORID &&
2476	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2477		sc->ti_copper = 1;
2478
2479	/* Set default tuneable values. */
2480	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2481#if 0
2482	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2483#endif
2484	sc->ti_rx_coal_ticks = 170;
2485	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2486	sc->ti_rx_max_coal_bds = 64;
2487#if 0
2488	sc->ti_tx_max_coal_bds = 128;
2489#endif
2490	sc->ti_tx_max_coal_bds = 32;
2491	sc->ti_tx_buf_ratio = 21;
2492
2493	/* Set up ifnet structure */
2494	ifp->if_softc = sc;
2495	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2496	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2497	ifp->if_ioctl = ti_ioctl;
2498	ifp->if_start = ti_start;
2499	ifp->if_watchdog = ti_watchdog;
2500	ifp->if_init = ti_init;
2501	ifp->if_mtu = ETHERMTU;
2502	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2503
2504	/* Set up ifmedia support. */
2505	if (sc->ti_copper) {
2506		/*
2507		 * Copper cards allow manual 10/100 mode selection,
2508		 * but not manual 1000baseTX mode selection. Why?
2509		 * Becuase currently there's no way to specify the
2510		 * master/slave setting through the firmware interface,
2511		 * so Alteon decided to just bag it and handle it
2512		 * via autonegotiation.
2513		 */
2514		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2515		ifmedia_add(&sc->ifmedia,
2516		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2517		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2518		ifmedia_add(&sc->ifmedia,
2519		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2520		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2521		ifmedia_add(&sc->ifmedia,
2522		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2523	} else {
2524		/* Fiber cards don't support 10/100 modes. */
2525		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2526		ifmedia_add(&sc->ifmedia,
2527		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2528	}
2529	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2530	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2531
2532	/*
2533	 * We're assuming here that card initialization is a sequential
2534	 * thing.  If it isn't, multiple cards probing at the same time
2535	 * could stomp on the list of softcs here.
2536	 */
2537
2538	/* Register the device */
2539	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2540			   0600, "ti%d", sc->ti_unit);
2541	sc->dev->si_drv1 = sc;
2542
2543	/*
2544	 * Call MI attach routine.
2545	 */
2546	ether_ifattach(ifp, eaddr);
2547
2548	/* Hook interrupt last to avoid having to lock softc */
2549	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2550	   ti_intr, sc, &sc->ti_intrhand);
2551
2552	if (error) {
2553		device_printf(dev, "couldn't set up irq\n");
2554		goto fail;
2555	}
2556
2557fail:
2558	if (error)
2559		ti_detach(dev);
2560
2561	return (error);
2562}
2563
2564/*
2565 * Shutdown hardware and free up resources. This can be called any
2566 * time after the mutex has been initialized. It is called in both
2567 * the error case in attach and the normal detach case so it needs
2568 * to be careful about only freeing resources that have actually been
2569 * allocated.
2570 */
2571static int
2572ti_detach(dev)
2573	device_t		dev;
2574{
2575	struct ti_softc		*sc;
2576	struct ifnet		*ifp;
2577	int			attached;
2578
2579	sc = device_get_softc(dev);
2580	if (sc->dev)
2581		destroy_dev(sc->dev);
2582	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2583	attached = device_is_attached(dev);
2584	TI_LOCK(sc);
2585	ifp = sc->ti_ifp;
2586	if (attached)
2587		ti_stop(sc);
2588	TI_UNLOCK(sc);
2589	if (attached)
2590		ether_ifdetach(ifp);
2591
2592	/* These should only be active if attach succeeded */
2593	if (attached)
2594		bus_generic_detach(dev);
2595	ti_free_dmamaps(sc);
2596	ifmedia_removeall(&sc->ifmedia);
2597
2598#ifdef TI_PRIVATE_JUMBOS
2599	if (sc->ti_cdata.ti_jumbo_buf)
2600		bus_dmamem_free(sc->ti_jumbo_dmat, sc->ti_cdata.ti_jumbo_buf,
2601		    sc->ti_jumbo_dmamap);
2602#endif
2603	if (sc->ti_jumbo_dmat)
2604		bus_dma_tag_destroy(sc->ti_jumbo_dmat);
2605	if (sc->ti_mbuftx_dmat)
2606		bus_dma_tag_destroy(sc->ti_mbuftx_dmat);
2607	if (sc->ti_mbufrx_dmat)
2608		bus_dma_tag_destroy(sc->ti_mbufrx_dmat);
2609	if (sc->ti_rdata)
2610		bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2611				sc->ti_rdata_dmamap);
2612	if (sc->ti_rdata_dmat)
2613		bus_dma_tag_destroy(sc->ti_rdata_dmat);
2614	if (sc->ti_parent_dmat)
2615		bus_dma_tag_destroy(sc->ti_parent_dmat);
2616	if (sc->ti_intrhand)
2617		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2618	if (sc->ti_irq)
2619		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2620	if (sc->ti_res) {
2621		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2622		    sc->ti_res);
2623	}
2624	if (ifp)
2625		if_free(ifp);
2626
2627	mtx_destroy(&sc->ti_mtx);
2628
2629	return (0);
2630}
2631
2632#ifdef TI_JUMBO_HDRSPLIT
2633/*
2634 * If hdr_len is 0, that means that header splitting wasn't done on
2635 * this packet for some reason.  The two most likely reasons are that
2636 * the protocol isn't a supported protocol for splitting, or this
2637 * packet had a fragment offset that wasn't 0.
2638 *
2639 * The header length, if it is non-zero, will always be the length of
2640 * the headers on the packet, but that length could be longer than the
2641 * first mbuf.  So we take the minimum of the two as the actual
2642 * length.
2643 */
2644static __inline void
2645ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2646{
2647	int i = 0;
2648	int lengths[4] = {0, 0, 0, 0};
2649	struct mbuf *m, *mp;
2650
2651	if (hdr_len != 0)
2652		top->m_len = min(hdr_len, top->m_len);
2653	pkt_len -= top->m_len;
2654	lengths[i++] = top->m_len;
2655
2656	mp = top;
2657	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2658		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2659		pkt_len -= m->m_len;
2660		lengths[i++] = m->m_len;
2661		mp = m;
2662	}
2663
2664#if 0
2665	if (hdr_len != 0)
2666		printf("got split packet: ");
2667	else
2668		printf("got non-split packet: ");
2669
2670	printf("%d,%d,%d,%d = %d\n", lengths[0],
2671	    lengths[1], lengths[2], lengths[3],
2672	    lengths[0] + lengths[1] + lengths[2] +
2673	    lengths[3]);
2674#endif
2675
2676	if (pkt_len)
2677		panic("header splitting didn't");
2678
2679	if (m) {
2680		m_freem(m);
2681		mp->m_next = NULL;
2682
2683	}
2684	if (mp->m_next != NULL)
2685		panic("ti_hdr_split: last mbuf in chain should be null");
2686}
2687#endif /* TI_JUMBO_HDRSPLIT */
2688
2689/*
2690 * Frame reception handling. This is called if there's a frame
2691 * on the receive return list.
2692 *
2693 * Note: we have to be able to handle three possibilities here:
2694 * 1) the frame is from the mini receive ring (can only happen)
2695 *    on Tigon 2 boards)
2696 * 2) the frame is from the jumbo recieve ring
2697 * 3) the frame is from the standard receive ring
2698 */
2699
2700static void
2701ti_rxeof(sc)
2702	struct ti_softc		*sc;
2703{
2704	bus_dmamap_t		map;
2705	struct ifnet		*ifp;
2706	struct ti_cmd_desc	cmd;
2707
2708	TI_LOCK_ASSERT(sc);
2709
2710	ifp = sc->ti_ifp;
2711
2712	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2713		struct ti_rx_desc	*cur_rx;
2714		u_int32_t		rxidx;
2715		struct mbuf		*m = NULL;
2716		u_int16_t		vlan_tag = 0;
2717		int			have_tag = 0;
2718
2719		cur_rx =
2720		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2721		rxidx = cur_rx->ti_idx;
2722		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2723
2724		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2725			have_tag = 1;
2726			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2727		}
2728
2729		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2730
2731			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2732			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2733			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2734			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2735			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
2736			    BUS_DMASYNC_POSTREAD);
2737			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
2738			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2739				ifp->if_ierrors++;
2740				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2741				continue;
2742			}
2743			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2744				ifp->if_ierrors++;
2745				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2746				continue;
2747			}
2748#ifdef TI_PRIVATE_JUMBOS
2749			m->m_len = cur_rx->ti_len;
2750#else /* TI_PRIVATE_JUMBOS */
2751#ifdef TI_JUMBO_HDRSPLIT
2752			if (sc->ti_hdrsplit)
2753				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2754					     cur_rx->ti_len, rxidx);
2755			else
2756#endif /* TI_JUMBO_HDRSPLIT */
2757			m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2758#endif /* TI_PRIVATE_JUMBOS */
2759		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2760			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2761			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2762			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2763			map = sc->ti_cdata.ti_rx_mini_maps[rxidx];
2764			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2765			    BUS_DMASYNC_POSTREAD);
2766			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2767			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2768				ifp->if_ierrors++;
2769				ti_newbuf_mini(sc, sc->ti_mini, m);
2770				continue;
2771			}
2772			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2773				ifp->if_ierrors++;
2774				ti_newbuf_mini(sc, sc->ti_mini, m);
2775				continue;
2776			}
2777			m->m_len = cur_rx->ti_len;
2778		} else {
2779			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2780			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2781			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2782			map = sc->ti_cdata.ti_rx_std_maps[rxidx];
2783			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2784			    BUS_DMASYNC_POSTREAD);
2785			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2786			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2787				ifp->if_ierrors++;
2788				ti_newbuf_std(sc, sc->ti_std, m);
2789				continue;
2790			}
2791			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2792				ifp->if_ierrors++;
2793				ti_newbuf_std(sc, sc->ti_std, m);
2794				continue;
2795			}
2796			m->m_len = cur_rx->ti_len;
2797		}
2798
2799		m->m_pkthdr.len = cur_rx->ti_len;
2800		ifp->if_ipackets++;
2801		m->m_pkthdr.rcvif = ifp;
2802
2803		if (ifp->if_hwassist) {
2804			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2805			    CSUM_DATA_VALID;
2806			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2807				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2808			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2809		}
2810
2811		/*
2812		 * If we received a packet with a vlan tag,
2813		 * tag it before passing the packet upward.
2814		 */
2815		if (have_tag) {
2816			VLAN_INPUT_TAG(ifp, m, vlan_tag);
2817			if (m == NULL)
2818				continue;
2819		}
2820		TI_UNLOCK(sc);
2821		(*ifp->if_input)(ifp, m);
2822		TI_LOCK(sc);
2823	}
2824
2825	/* Only necessary on the Tigon 1. */
2826	if (sc->ti_hwrev == TI_HWREV_TIGON)
2827		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2828		    sc->ti_rx_saved_considx);
2829
2830	TI_UPDATE_STDPROD(sc, sc->ti_std);
2831	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2832	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2833}
2834
2835static void
2836ti_txeof(sc)
2837	struct ti_softc		*sc;
2838{
2839	struct ti_txdesc	*txd;
2840	struct ti_tx_desc	txdesc;
2841	struct ti_tx_desc	*cur_tx = NULL;
2842	struct ifnet		*ifp;
2843	int			idx;
2844
2845	ifp = sc->ti_ifp;
2846
2847	txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2848	if (txd == NULL)
2849		return;
2850	/*
2851	 * Go through our tx ring and free mbufs for those
2852	 * frames that have been sent.
2853	 */
2854	for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2855	    TI_INC(idx, TI_TX_RING_CNT)) {
2856		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2857			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2858			    sizeof(txdesc), &txdesc);
2859			cur_tx = &txdesc;
2860		} else
2861			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2862		sc->ti_txcnt--;
2863		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2864		if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2865			continue;
2866		bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2867		    BUS_DMASYNC_POSTWRITE);
2868		bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2869
2870		ifp->if_opackets++;
2871		m_freem(txd->tx_m);
2872		txd->tx_m = NULL;
2873		STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2874		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2875		txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2876	}
2877	sc->ti_tx_saved_considx = idx;
2878
2879	ifp->if_timer = sc->ti_txcnt > 0 ? 5 : 0;
2880}
2881
2882static void
2883ti_intr(xsc)
2884	void			*xsc;
2885{
2886	struct ti_softc		*sc;
2887	struct ifnet		*ifp;
2888
2889	sc = xsc;
2890	TI_LOCK(sc);
2891	ifp = sc->ti_ifp;
2892
2893/*#ifdef notdef*/
2894	/* Avoid this for now -- checking this register is expensive. */
2895	/* Make sure this is really our interrupt. */
2896	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2897		TI_UNLOCK(sc);
2898		return;
2899	}
2900/*#endif*/
2901
2902	/* Ack interrupt and stop others from occuring. */
2903	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2904
2905	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2906		/* Check RX return ring producer/consumer */
2907		ti_rxeof(sc);
2908
2909		/* Check TX ring producer/consumer */
2910		ti_txeof(sc);
2911	}
2912
2913	ti_handle_events(sc);
2914
2915	/* Re-enable interrupts. */
2916	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2917
2918	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2919	    ifp->if_snd.ifq_head != NULL)
2920		ti_start_locked(ifp);
2921
2922	TI_UNLOCK(sc);
2923}
2924
2925static void
2926ti_stats_update(sc)
2927	struct ti_softc		*sc;
2928{
2929	struct ifnet		*ifp;
2930
2931	ifp = sc->ti_ifp;
2932
2933	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2934	    BUS_DMASYNC_POSTREAD);
2935
2936	ifp->if_collisions +=
2937	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2938	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2939	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2940	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2941	   ifp->if_collisions;
2942
2943	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2944	    BUS_DMASYNC_PREREAD);
2945}
2946
2947/*
2948 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2949 * pointers to descriptors.
2950 */
2951static int
2952ti_encap(sc, m_head)
2953	struct ti_softc		*sc;
2954	struct mbuf		**m_head;
2955{
2956	struct ti_txdesc	*txd;
2957	struct ti_tx_desc	*f;
2958	struct ti_tx_desc	txdesc;
2959	struct mbuf		*m;
2960	struct m_tag		*mtag;
2961	bus_dma_segment_t	txsegs[TI_MAXTXSEGS];
2962	u_int16_t		csum_flags;
2963	int			error, frag, i, nseg;
2964
2965	if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
2966		return (ENOBUFS);
2967
2968	error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2969	    *m_head, txsegs, &nseg, 0);
2970	if (error == EFBIG) {
2971		m = m_defrag(*m_head, M_DONTWAIT);
2972		if (m == NULL) {
2973			m_freem(*m_head);
2974			*m_head = NULL;
2975			return (ENOMEM);
2976		}
2977		*m_head = m;
2978		error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat,
2979		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2980		if (error) {
2981			m_freem(*m_head);
2982			*m_head = NULL;
2983			return (error);
2984		}
2985	} else if (error != 0)
2986		return (error);
2987	if (nseg == 0) {
2988		m_freem(*m_head);
2989		*m_head = NULL;
2990		return (EIO);
2991	}
2992
2993	if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
2994		bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2995		return (ENOBUFS);
2996	}
2997
2998	m = *m_head;
2999	csum_flags = 0;
3000	if (m->m_pkthdr.csum_flags) {
3001		if (m->m_pkthdr.csum_flags & CSUM_IP)
3002			csum_flags |= TI_BDFLAG_IP_CKSUM;
3003		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3004			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
3005		if (m->m_flags & M_LASTFRAG)
3006			csum_flags |= TI_BDFLAG_IP_FRAG_END;
3007		else if (m->m_flags & M_FRAG)
3008			csum_flags |= TI_BDFLAG_IP_FRAG;
3009	}
3010
3011	bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
3012	    BUS_DMASYNC_PREWRITE);
3013	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
3014	    BUS_DMASYNC_PREWRITE);
3015
3016	mtag = VLAN_OUTPUT_TAG(sc->ti_ifp, m);
3017	frag = sc->ti_tx_saved_prodidx;
3018	for (i = 0; i < nseg; i++) {
3019		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3020			bzero(&txdesc, sizeof(txdesc));
3021			f = &txdesc;
3022		} else
3023			f = &sc->ti_rdata->ti_tx_ring[frag];
3024		ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
3025		f->ti_len = txsegs[i].ds_len;
3026		f->ti_flags = csum_flags;
3027		if (mtag != NULL) {
3028			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
3029			f->ti_vlan_tag = VLAN_TAG_VALUE(mtag) & 0xfff;
3030		} else {
3031			f->ti_vlan_tag = 0;
3032		}
3033
3034		if (sc->ti_hwrev == TI_HWREV_TIGON)
3035			ti_mem_write(sc, TI_TX_RING_BASE + frag *
3036			    sizeof(txdesc), sizeof(txdesc), &txdesc);
3037		TI_INC(frag, TI_TX_RING_CNT);
3038	}
3039
3040	sc->ti_tx_saved_prodidx = frag;
3041	/* set TI_BDFLAG_END on the last descriptor */
3042	frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
3043	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3044		txdesc.ti_flags |= TI_BDFLAG_END;
3045		ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
3046		    sizeof(txdesc), &txdesc);
3047	} else
3048		sc->ti_rdata->ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3049
3050	STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3051	STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3052	txd->tx_m = m;
3053	sc->ti_txcnt += nseg;
3054
3055	return (0);
3056}
3057
3058static void
3059ti_start(ifp)
3060	struct ifnet		*ifp;
3061{
3062	struct ti_softc		*sc;
3063
3064	sc = ifp->if_softc;
3065	TI_LOCK(sc);
3066	ti_start_locked(ifp);
3067	TI_UNLOCK(sc);
3068}
3069
3070/*
3071 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3072 * to the mbuf data regions directly in the transmit descriptors.
3073 */
3074static void
3075ti_start_locked(ifp)
3076	struct ifnet		*ifp;
3077{
3078	struct ti_softc		*sc;
3079	struct mbuf		*m_head = NULL;
3080	int			enq = 0;
3081
3082	sc = ifp->if_softc;
3083
3084	for (; ifp->if_snd.ifq_head != NULL &&
3085	    sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3086		IF_DEQUEUE(&ifp->if_snd, m_head);
3087		if (m_head == NULL)
3088			break;
3089
3090		/*
3091		 * XXX
3092		 * safety overkill.  If this is a fragmented packet chain
3093		 * with delayed TCP/UDP checksums, then only encapsulate
3094		 * it if we have enough descriptors to handle the entire
3095		 * chain at once.
3096		 * (paranoia -- may not actually be needed)
3097		 */
3098		if (m_head->m_flags & M_FIRSTFRAG &&
3099		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3100			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
3101			    m_head->m_pkthdr.csum_data + 16) {
3102				IF_PREPEND(&ifp->if_snd, m_head);
3103				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3104				break;
3105			}
3106		}
3107
3108		/*
3109		 * Pack the data into the transmit ring. If we
3110		 * don't have room, set the OACTIVE flag and wait
3111		 * for the NIC to drain the ring.
3112		 */
3113		if (ti_encap(sc, &m_head)) {
3114			if (m_head == NULL)
3115				break;
3116			IF_PREPEND(&ifp->if_snd, m_head);
3117			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3118			break;
3119		}
3120
3121		enq++;
3122		/*
3123		 * If there's a BPF listener, bounce a copy of this frame
3124		 * to him.
3125		 */
3126		BPF_MTAP(ifp, m_head);
3127	}
3128
3129	if (enq > 0) {
3130		/* Transmit */
3131		CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3132
3133		/*
3134		 * Set a timeout in case the chip goes out to lunch.
3135		 */
3136		ifp->if_timer = 5;
3137	}
3138}
3139
3140static void
3141ti_init(xsc)
3142	void			*xsc;
3143{
3144	struct ti_softc		*sc;
3145
3146	sc = xsc;
3147	TI_LOCK(sc);
3148	ti_init_locked(sc);
3149	TI_UNLOCK(sc);
3150}
3151
3152static void
3153ti_init_locked(xsc)
3154	void			*xsc;
3155{
3156	struct ti_softc		*sc = xsc;
3157
3158	/* Cancel pending I/O and flush buffers. */
3159	ti_stop(sc);
3160
3161	/* Init the gen info block, ring control blocks and firmware. */
3162	if (ti_gibinit(sc)) {
3163		device_printf(sc->ti_dev, "initialization failure\n");
3164		return;
3165	}
3166}
3167
3168static void ti_init2(sc)
3169	struct ti_softc		*sc;
3170{
3171	struct ti_cmd_desc	cmd;
3172	struct ifnet		*ifp;
3173	u_int8_t		*ea;
3174	struct ifmedia		*ifm;
3175	int			tmp;
3176
3177	TI_LOCK_ASSERT(sc);
3178
3179	ifp = sc->ti_ifp;
3180
3181	/* Specify MTU and interface index. */
3182	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
3183	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3184	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3185	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3186
3187	/* Load our MAC address. */
3188	ea = IF_LLADDR(sc->ti_ifp);
3189	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3190	CSR_WRITE_4(sc, TI_GCR_PAR1,
3191	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3192	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3193
3194	/* Enable or disable promiscuous mode as needed. */
3195	if (ifp->if_flags & IFF_PROMISC) {
3196		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3197	} else {
3198		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3199	}
3200
3201	/* Program multicast filter. */
3202	ti_setmulti(sc);
3203
3204	/*
3205	 * If this is a Tigon 1, we should tell the
3206	 * firmware to use software packet filtering.
3207	 */
3208	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3209		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3210	}
3211
3212	/* Init RX ring. */
3213	ti_init_rx_ring_std(sc);
3214
3215	/* Init jumbo RX ring. */
3216	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3217		ti_init_rx_ring_jumbo(sc);
3218
3219	/*
3220	 * If this is a Tigon 2, we can also configure the
3221	 * mini ring.
3222	 */
3223	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
3224		ti_init_rx_ring_mini(sc);
3225
3226	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3227	sc->ti_rx_saved_considx = 0;
3228
3229	/* Init TX ring. */
3230	ti_init_tx_ring(sc);
3231
3232	/* Tell firmware we're alive. */
3233	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3234
3235	/* Enable host interrupts. */
3236	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3237
3238	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3239	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3240
3241	/*
3242	 * Make sure to set media properly. We have to do this
3243	 * here since we have to issue commands in order to set
3244	 * the link negotiation and we can't issue commands until
3245	 * the firmware is running.
3246	 */
3247	ifm = &sc->ifmedia;
3248	tmp = ifm->ifm_media;
3249	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3250	ti_ifmedia_upd(ifp);
3251	ifm->ifm_media = tmp;
3252}
3253
3254/*
3255 * Set media options.
3256 */
3257static int
3258ti_ifmedia_upd(ifp)
3259	struct ifnet		*ifp;
3260{
3261	struct ti_softc		*sc;
3262	struct ifmedia		*ifm;
3263	struct ti_cmd_desc	cmd;
3264	u_int32_t		flowctl;
3265
3266	sc = ifp->if_softc;
3267	ifm = &sc->ifmedia;
3268
3269	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3270		return (EINVAL);
3271
3272	flowctl = 0;
3273
3274	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3275	case IFM_AUTO:
3276		/*
3277		 * Transmit flow control doesn't work on the Tigon 1.
3278		 */
3279		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3280
3281		/*
3282		 * Transmit flow control can also cause problems on the
3283		 * Tigon 2, apparantly with both the copper and fiber
3284		 * boards.  The symptom is that the interface will just
3285		 * hang.  This was reproduced with Alteon 180 switches.
3286		 */
3287#if 0
3288		if (sc->ti_hwrev != TI_HWREV_TIGON)
3289			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3290#endif
3291
3292		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3293		    TI_GLNK_FULL_DUPLEX| flowctl |
3294		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3295
3296		flowctl = TI_LNK_RX_FLOWCTL_Y;
3297#if 0
3298		if (sc->ti_hwrev != TI_HWREV_TIGON)
3299			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3300#endif
3301
3302		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3303		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3304		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3305		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3306		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3307		break;
3308	case IFM_1000_SX:
3309	case IFM_1000_T:
3310		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3311#if 0
3312		if (sc->ti_hwrev != TI_HWREV_TIGON)
3313			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3314#endif
3315
3316		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3317		    flowctl |TI_GLNK_ENB);
3318		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3319		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3320			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3321		}
3322		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3323		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3324		break;
3325	case IFM_100_FX:
3326	case IFM_10_FL:
3327	case IFM_100_TX:
3328	case IFM_10_T:
3329		flowctl = TI_LNK_RX_FLOWCTL_Y;
3330#if 0
3331		if (sc->ti_hwrev != TI_HWREV_TIGON)
3332			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3333#endif
3334
3335		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3336		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3337		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3338		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3339			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3340		} else {
3341			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3342		}
3343		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3344			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3345		} else {
3346			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3347		}
3348		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3349		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3350		break;
3351	}
3352
3353	return (0);
3354}
3355
3356/*
3357 * Report current media status.
3358 */
3359static void
3360ti_ifmedia_sts(ifp, ifmr)
3361	struct ifnet		*ifp;
3362	struct ifmediareq	*ifmr;
3363{
3364	struct ti_softc		*sc;
3365	u_int32_t		media = 0;
3366
3367	sc = ifp->if_softc;
3368
3369	ifmr->ifm_status = IFM_AVALID;
3370	ifmr->ifm_active = IFM_ETHER;
3371
3372	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3373		return;
3374
3375	ifmr->ifm_status |= IFM_ACTIVE;
3376
3377	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3378		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3379		if (sc->ti_copper)
3380			ifmr->ifm_active |= IFM_1000_T;
3381		else
3382			ifmr->ifm_active |= IFM_1000_SX;
3383		if (media & TI_GLNK_FULL_DUPLEX)
3384			ifmr->ifm_active |= IFM_FDX;
3385		else
3386			ifmr->ifm_active |= IFM_HDX;
3387	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3388		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3389		if (sc->ti_copper) {
3390			if (media & TI_LNK_100MB)
3391				ifmr->ifm_active |= IFM_100_TX;
3392			if (media & TI_LNK_10MB)
3393				ifmr->ifm_active |= IFM_10_T;
3394		} else {
3395			if (media & TI_LNK_100MB)
3396				ifmr->ifm_active |= IFM_100_FX;
3397			if (media & TI_LNK_10MB)
3398				ifmr->ifm_active |= IFM_10_FL;
3399		}
3400		if (media & TI_LNK_FULL_DUPLEX)
3401			ifmr->ifm_active |= IFM_FDX;
3402		if (media & TI_LNK_HALF_DUPLEX)
3403			ifmr->ifm_active |= IFM_HDX;
3404	}
3405}
3406
3407static int
3408ti_ioctl(ifp, command, data)
3409	struct ifnet		*ifp;
3410	u_long			command;
3411	caddr_t			data;
3412{
3413	struct ti_softc		*sc = ifp->if_softc;
3414	struct ifreq		*ifr = (struct ifreq *) data;
3415	int			mask, error = 0;
3416	struct ti_cmd_desc	cmd;
3417
3418	switch (command) {
3419	case SIOCSIFMTU:
3420		TI_LOCK(sc);
3421		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3422			error = EINVAL;
3423		else {
3424			ifp->if_mtu = ifr->ifr_mtu;
3425			ti_init_locked(sc);
3426		}
3427		TI_UNLOCK(sc);
3428		break;
3429	case SIOCSIFFLAGS:
3430		TI_LOCK(sc);
3431		if (ifp->if_flags & IFF_UP) {
3432			/*
3433			 * If only the state of the PROMISC flag changed,
3434			 * then just use the 'set promisc mode' command
3435			 * instead of reinitializing the entire NIC. Doing
3436			 * a full re-init means reloading the firmware and
3437			 * waiting for it to start up, which may take a
3438			 * second or two.
3439			 */
3440			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3441			    ifp->if_flags & IFF_PROMISC &&
3442			    !(sc->ti_if_flags & IFF_PROMISC)) {
3443				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3444				    TI_CMD_CODE_PROMISC_ENB, 0);
3445			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3446			    !(ifp->if_flags & IFF_PROMISC) &&
3447			    sc->ti_if_flags & IFF_PROMISC) {
3448				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3449				    TI_CMD_CODE_PROMISC_DIS, 0);
3450			} else
3451				ti_init_locked(sc);
3452		} else {
3453			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3454				ti_stop(sc);
3455			}
3456		}
3457		sc->ti_if_flags = ifp->if_flags;
3458		TI_UNLOCK(sc);
3459		break;
3460	case SIOCADDMULTI:
3461	case SIOCDELMULTI:
3462		TI_LOCK(sc);
3463		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3464			ti_setmulti(sc);
3465		TI_UNLOCK(sc);
3466		break;
3467	case SIOCSIFMEDIA:
3468	case SIOCGIFMEDIA:
3469		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3470		break;
3471	case SIOCSIFCAP:
3472		TI_LOCK(sc);
3473		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3474		if (mask & IFCAP_HWCSUM) {
3475			if (IFCAP_HWCSUM & ifp->if_capenable)
3476				ifp->if_capenable &= ~IFCAP_HWCSUM;
3477			else
3478				ifp->if_capenable |= IFCAP_HWCSUM;
3479			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3480				ti_init_locked(sc);
3481		}
3482		TI_UNLOCK(sc);
3483		break;
3484	default:
3485		error = ether_ioctl(ifp, command, data);
3486		break;
3487	}
3488
3489	return (error);
3490}
3491
3492static int
3493ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3494{
3495	struct ti_softc *sc;
3496
3497	sc = dev->si_drv1;
3498	if (sc == NULL)
3499		return (ENODEV);
3500
3501	TI_LOCK(sc);
3502	sc->ti_flags |= TI_FLAG_DEBUGING;
3503	TI_UNLOCK(sc);
3504
3505	return (0);
3506}
3507
3508static int
3509ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3510{
3511	struct ti_softc *sc;
3512
3513	sc = dev->si_drv1;
3514	if (sc == NULL)
3515		return (ENODEV);
3516
3517	TI_LOCK(sc);
3518	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3519	TI_UNLOCK(sc);
3520
3521	return (0);
3522}
3523
3524/*
3525 * This ioctl routine goes along with the Tigon character device.
3526 */
3527static int
3528ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3529    struct thread *td)
3530{
3531	int error;
3532	struct ti_softc *sc;
3533
3534	sc = dev->si_drv1;
3535	if (sc == NULL)
3536		return (ENODEV);
3537
3538	error = 0;
3539
3540	switch (cmd) {
3541	case TIIOCGETSTATS:
3542	{
3543		struct ti_stats *outstats;
3544
3545		outstats = (struct ti_stats *)addr;
3546
3547		TI_LOCK(sc);
3548		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3549		      sizeof(struct ti_stats));
3550		TI_UNLOCK(sc);
3551		break;
3552	}
3553	case TIIOCGETPARAMS:
3554	{
3555		struct ti_params	*params;
3556
3557		params = (struct ti_params *)addr;
3558
3559		TI_LOCK(sc);
3560		params->ti_stat_ticks = sc->ti_stat_ticks;
3561		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3562		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3563		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3564		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3565		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3566		params->param_mask = TI_PARAM_ALL;
3567		TI_UNLOCK(sc);
3568
3569		error = 0;
3570
3571		break;
3572	}
3573	case TIIOCSETPARAMS:
3574	{
3575		struct ti_params *params;
3576
3577		params = (struct ti_params *)addr;
3578
3579		TI_LOCK(sc);
3580		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3581			sc->ti_stat_ticks = params->ti_stat_ticks;
3582			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3583		}
3584
3585		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3586			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3587			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3588				    sc->ti_rx_coal_ticks);
3589		}
3590
3591		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3592			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3593			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3594				    sc->ti_tx_coal_ticks);
3595		}
3596
3597		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3598			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3599			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3600				    sc->ti_rx_max_coal_bds);
3601		}
3602
3603		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3604			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3605			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3606				    sc->ti_tx_max_coal_bds);
3607		}
3608
3609		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3610			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3611			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3612				    sc->ti_tx_buf_ratio);
3613		}
3614		TI_UNLOCK(sc);
3615
3616		error = 0;
3617
3618		break;
3619	}
3620	case TIIOCSETTRACE: {
3621		ti_trace_type	trace_type;
3622
3623		trace_type = *(ti_trace_type *)addr;
3624
3625		/*
3626		 * Set tracing to whatever the user asked for.  Setting
3627		 * this register to 0 should have the effect of disabling
3628		 * tracing.
3629		 */
3630		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3631
3632		error = 0;
3633
3634		break;
3635	}
3636	case TIIOCGETTRACE: {
3637		struct ti_trace_buf	*trace_buf;
3638		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3639
3640		trace_buf = (struct ti_trace_buf *)addr;
3641
3642		TI_LOCK(sc);
3643		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3644		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3645		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3646
3647#if 0
3648		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3649		       "trace_len = %d\n", trace_start,
3650		       cur_trace_ptr, trace_len);
3651		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3652		       trace_buf->buf_len);
3653#endif
3654
3655		error = ti_copy_mem(sc, trace_start, min(trace_len,
3656				    trace_buf->buf_len),
3657				    (caddr_t)trace_buf->buf, 1, 1);
3658
3659		if (error == 0) {
3660			trace_buf->fill_len = min(trace_len,
3661						  trace_buf->buf_len);
3662			if (cur_trace_ptr < trace_start)
3663				trace_buf->cur_trace_ptr =
3664					trace_start - cur_trace_ptr;
3665			else
3666				trace_buf->cur_trace_ptr =
3667					cur_trace_ptr - trace_start;
3668		} else
3669			trace_buf->fill_len = 0;
3670		TI_UNLOCK(sc);
3671
3672		break;
3673	}
3674
3675	/*
3676	 * For debugging, five ioctls are needed:
3677	 * ALT_ATTACH
3678	 * ALT_READ_TG_REG
3679	 * ALT_WRITE_TG_REG
3680	 * ALT_READ_TG_MEM
3681	 * ALT_WRITE_TG_MEM
3682	 */
3683	case ALT_ATTACH:
3684		/*
3685		 * From what I can tell, Alteon's Solaris Tigon driver
3686		 * only has one character device, so you have to attach
3687		 * to the Tigon board you're interested in.  This seems
3688		 * like a not-so-good way to do things, since unless you
3689		 * subsequently specify the unit number of the device
3690		 * you're interested in in every ioctl, you'll only be
3691		 * able to debug one board at a time.
3692		 */
3693		error = 0;
3694		break;
3695	case ALT_READ_TG_MEM:
3696	case ALT_WRITE_TG_MEM:
3697	{
3698		struct tg_mem *mem_param;
3699		u_int32_t sram_end, scratch_end;
3700
3701		mem_param = (struct tg_mem *)addr;
3702
3703		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3704			sram_end = TI_END_SRAM_I;
3705			scratch_end = TI_END_SCRATCH_I;
3706		} else {
3707			sram_end = TI_END_SRAM_II;
3708			scratch_end = TI_END_SCRATCH_II;
3709		}
3710
3711		/*
3712		 * For now, we'll only handle accessing regular SRAM,
3713		 * nothing else.
3714		 */
3715		TI_LOCK(sc);
3716		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3717		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3718			/*
3719			 * In this instance, we always copy to/from user
3720			 * space, so the user space argument is set to 1.
3721			 */
3722			error = ti_copy_mem(sc, mem_param->tgAddr,
3723					    mem_param->len,
3724					    mem_param->userAddr, 1,
3725					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3726		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3727			&& (mem_param->tgAddr <= scratch_end)) {
3728			error = ti_copy_scratch(sc, mem_param->tgAddr,
3729						mem_param->len,
3730						mem_param->userAddr, 1,
3731						(cmd == ALT_READ_TG_MEM) ?
3732						1 : 0, TI_PROCESSOR_A);
3733		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3734			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3735			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3736				if_printf(sc->ti_ifp,
3737				    "invalid memory range for Tigon I\n");
3738				error = EINVAL;
3739				break;
3740			}
3741			error = ti_copy_scratch(sc, mem_param->tgAddr -
3742						TI_SCRATCH_DEBUG_OFF,
3743						mem_param->len,
3744						mem_param->userAddr, 1,
3745						(cmd == ALT_READ_TG_MEM) ?
3746						1 : 0, TI_PROCESSOR_B);
3747		} else {
3748			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3749			        "out of supported range\n",
3750			        mem_param->tgAddr, mem_param->len);
3751			error = EINVAL;
3752		}
3753		TI_UNLOCK(sc);
3754
3755		break;
3756	}
3757	case ALT_READ_TG_REG:
3758	case ALT_WRITE_TG_REG:
3759	{
3760		struct tg_reg	*regs;
3761		u_int32_t	tmpval;
3762
3763		regs = (struct tg_reg *)addr;
3764
3765		/*
3766		 * Make sure the address in question isn't out of range.
3767		 */
3768		if (regs->addr > TI_REG_MAX) {
3769			error = EINVAL;
3770			break;
3771		}
3772		TI_LOCK(sc);
3773		if (cmd == ALT_READ_TG_REG) {
3774			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3775						regs->addr, &tmpval, 1);
3776			regs->data = ntohl(tmpval);
3777#if 0
3778			if ((regs->addr == TI_CPU_STATE)
3779			 || (regs->addr == TI_CPU_CTL_B)) {
3780				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3781				       regs->addr, tmpval);
3782			}
3783#endif
3784		} else {
3785			tmpval = htonl(regs->data);
3786			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3787						 regs->addr, &tmpval, 1);
3788		}
3789		TI_UNLOCK(sc);
3790
3791		break;
3792	}
3793	default:
3794		error = ENOTTY;
3795		break;
3796	}
3797	return (error);
3798}
3799
3800static void
3801ti_watchdog(ifp)
3802	struct ifnet		*ifp;
3803{
3804	struct ti_softc		*sc;
3805
3806	sc = ifp->if_softc;
3807	TI_LOCK(sc);
3808
3809	/*
3810	 * When we're debugging, the chip is often stopped for long periods
3811	 * of time, and that would normally cause the watchdog timer to fire.
3812	 * Since that impedes debugging, we don't want to do that.
3813	 */
3814	if (sc->ti_flags & TI_FLAG_DEBUGING) {
3815		TI_UNLOCK(sc);
3816		return;
3817	}
3818
3819	if_printf(ifp, "watchdog timeout -- resetting\n");
3820	ti_stop(sc);
3821	ti_init_locked(sc);
3822
3823	ifp->if_oerrors++;
3824	TI_UNLOCK(sc);
3825}
3826
3827/*
3828 * Stop the adapter and free any mbufs allocated to the
3829 * RX and TX lists.
3830 */
3831static void
3832ti_stop(sc)
3833	struct ti_softc		*sc;
3834{
3835	struct ifnet		*ifp;
3836	struct ti_cmd_desc	cmd;
3837
3838	TI_LOCK_ASSERT(sc);
3839
3840	ifp = sc->ti_ifp;
3841
3842	/* Disable host interrupts. */
3843	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3844	/*
3845	 * Tell firmware we're shutting down.
3846	 */
3847	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3848
3849	/* Halt and reinitialize. */
3850	if (ti_chipinit(sc) != 0)
3851		return;
3852	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3853	if (ti_chipinit(sc) != 0)
3854		return;
3855
3856	/* Free the RX lists. */
3857	ti_free_rx_ring_std(sc);
3858
3859	/* Free jumbo RX list. */
3860	ti_free_rx_ring_jumbo(sc);
3861
3862	/* Free mini RX list. */
3863	ti_free_rx_ring_mini(sc);
3864
3865	/* Free TX buffers. */
3866	ti_free_tx_ring(sc);
3867
3868	sc->ti_ev_prodidx.ti_idx = 0;
3869	sc->ti_return_prodidx.ti_idx = 0;
3870	sc->ti_tx_considx.ti_idx = 0;
3871	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3872
3873	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3874}
3875
3876/*
3877 * Stop all chip I/O so that the kernel's probe routines don't
3878 * get confused by errant DMAs when rebooting.
3879 */
3880static void
3881ti_shutdown(dev)
3882	device_t		dev;
3883{
3884	struct ti_softc		*sc;
3885
3886	sc = device_get_softc(dev);
3887	TI_LOCK(sc);
3888	ti_chipinit(sc);
3889	TI_UNLOCK(sc);
3890}
3891