if_ti.c revision 153778
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35 * Manuals, sample driver and firmware source kits are available
36 * from http://www.alteon.com/support/openkits.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48 * filtering and jumbo (9014 byte) frames. The hardware is largely
49 * controlled by firmware, which must be loaded into the NIC during
50 * initialization.
51 *
52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53 * revision, which supports new features such as extended commands,
54 * extended jumbo receive ring desciptors and a mini receive ring.
55 *
56 * Alteon Networks is to be commended for releasing such a vast amount
57 * of development material for the Tigon NIC without requiring an NDA
58 * (although they really should have done it a long time ago). With
59 * any luck, the other vendors will finally wise up and follow Alteon's
60 * stellar example.
61 *
62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63 * this driver by #including it as a C header file. This bloats the
64 * driver somewhat, but it's the easiest method considering that the
65 * driver code and firmware code need to be kept in sync. The source
66 * for the firmware is not provided with the FreeBSD distribution since
67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68 *
69 * The following people deserve special thanks:
70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71 *   for testing
72 * - Raymond Lee of Netgear, for providing a pair of Netgear
73 *   GA620 Tigon 2 boards for testing
74 * - Ulf Zimmermann, for bringing the GA260 to my attention and
75 *   convincing me to write this driver.
76 * - Andrew Gallatin for providing FreeBSD/Alpha support.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/dev/ti/if_ti.c 153778 2005-12-28 08:36:32Z scottl $");
81
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/module.h>
91#include <sys/socket.h>
92#include <sys/queue.h>
93#include <sys/conf.h>
94#include <sys/sf_buf.h>
95
96#include <net/if.h>
97#include <net/if_arp.h>
98#include <net/ethernet.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101#include <net/if_types.h>
102#include <net/if_vlan_var.h>
103
104#include <net/bpf.h>
105
106#include <netinet/in_systm.h>
107#include <netinet/in.h>
108#include <netinet/ip.h>
109
110#include <machine/bus.h>
111#include <machine/resource.h>
112#include <sys/bus.h>
113#include <sys/rman.h>
114
115/* #define TI_PRIVATE_JUMBOS */
116#ifndef TI_PRIVATE_JUMBOS
117#include <vm/vm.h>
118#include <vm/vm_page.h>
119#endif
120
121#include <dev/pci/pcireg.h>
122#include <dev/pci/pcivar.h>
123
124#include <sys/tiio.h>
125#include <dev/ti/if_tireg.h>
126#include <dev/ti/ti_fw.h>
127#include <dev/ti/ti_fw2.h>
128
129#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
130/*
131 * We can only turn on header splitting if we're using extended receive
132 * BDs.
133 */
134#if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
135#error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
136#endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
137
138typedef enum {
139	TI_SWAP_HTON,
140	TI_SWAP_NTOH
141} ti_swap_type;
142
143
144/*
145 * Various supported device vendors/types and their names.
146 */
147
148static struct ti_type ti_devs[] = {
149	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
150		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
151	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
152		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
153	{ TC_VENDORID,	TC_DEVICEID_3C985,
154		"3Com 3c985-SX Gigabit Ethernet" },
155	{ NG_VENDORID, NG_DEVICEID_GA620,
156		"Netgear GA620 1000baseSX Gigabit Ethernet" },
157	{ NG_VENDORID, NG_DEVICEID_GA620T,
158		"Netgear GA620 1000baseT Gigabit Ethernet" },
159	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
160		"Silicon Graphics Gigabit Ethernet" },
161	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
162		"Farallon PN9000SX Gigabit Ethernet" },
163	{ 0, 0, NULL }
164};
165
166
167static	d_open_t	ti_open;
168static	d_close_t	ti_close;
169static	d_ioctl_t	ti_ioctl2;
170
171static struct cdevsw ti_cdevsw = {
172	.d_version =	D_VERSION,
173	.d_flags =	0,
174	.d_open =	ti_open,
175	.d_close =	ti_close,
176	.d_ioctl =	ti_ioctl2,
177	.d_name =	"ti",
178};
179
180static int ti_probe(device_t);
181static int ti_attach(device_t);
182static int ti_detach(device_t);
183static void ti_txeof(struct ti_softc *);
184static void ti_rxeof(struct ti_softc *);
185
186static void ti_stats_update(struct ti_softc *);
187static int ti_encap(struct ti_softc *, struct mbuf *, u_int32_t *);
188static void ti_encap_cb(void *arg, bus_dma_segment_t *segs, int nseg,
189    bus_size_t mapsize, int error);
190
191static void ti_intr(void *);
192static void ti_start(struct ifnet *);
193static void ti_start_locked(struct ifnet *);
194static int ti_ioctl(struct ifnet *, u_long, caddr_t);
195static void ti_init(void *);
196static void ti_init_locked(void *);
197static void ti_init2(struct ti_softc *);
198static void ti_stop(struct ti_softc *);
199static void ti_watchdog(struct ifnet *);
200static void ti_shutdown(device_t);
201static int ti_ifmedia_upd(struct ifnet *);
202static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
203
204static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
205static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
206static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
207
208static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
209static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
210static void ti_setmulti(struct ti_softc *);
211
212static void ti_mem_read(struct ti_softc *, u_int32_t, u_int32_t, void *);
213static void ti_mem_write(struct ti_softc *, u_int32_t, u_int32_t, void *);
214static void ti_mem_zero(struct ti_softc *, u_int32_t, u_int32_t);
215static int ti_copy_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t, int, int);
216static int ti_copy_scratch(struct ti_softc *, u_int32_t, u_int32_t, caddr_t,
217		int, int, int);
218static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
219static void ti_loadfw(struct ti_softc *);
220static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
221static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
222static void ti_handle_events(struct ti_softc *);
223static int ti_alloc_dmamaps(struct ti_softc *);
224static void ti_free_dmamaps(struct ti_softc *);
225static int ti_alloc_jumbo_mem(struct ti_softc *);
226#ifdef TI_PRIVATE_JUMBOS
227static void *ti_jalloc(struct ti_softc *);
228static void ti_jfree(void *, void *);
229#endif /* TI_PRIVATE_JUMBOS */
230static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
231static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
232static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
233static int ti_init_rx_ring_std(struct ti_softc *);
234static void ti_free_rx_ring_std(struct ti_softc *);
235static int ti_init_rx_ring_jumbo(struct ti_softc *);
236static void ti_free_rx_ring_jumbo(struct ti_softc *);
237static int ti_init_rx_ring_mini(struct ti_softc *);
238static void ti_free_rx_ring_mini(struct ti_softc *);
239static void ti_free_tx_ring(struct ti_softc *);
240static int ti_init_tx_ring(struct ti_softc *);
241
242static int ti_64bitslot_war(struct ti_softc *);
243static int ti_chipinit(struct ti_softc *);
244static int ti_gibinit(struct ti_softc *);
245
246#ifdef TI_JUMBO_HDRSPLIT
247static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
248					     int pkt_len, int idx);
249#endif /* TI_JUMBO_HDRSPLIT */
250
251static device_method_t ti_methods[] = {
252	/* Device interface */
253	DEVMETHOD(device_probe,		ti_probe),
254	DEVMETHOD(device_attach,	ti_attach),
255	DEVMETHOD(device_detach,	ti_detach),
256	DEVMETHOD(device_shutdown,	ti_shutdown),
257	{ 0, 0 }
258};
259
260static driver_t ti_driver = {
261	"ti",
262	ti_methods,
263	sizeof(struct ti_softc)
264};
265
266static devclass_t ti_devclass;
267
268DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
269MODULE_DEPEND(ti, pci, 1, 1, 1);
270MODULE_DEPEND(ti, ether, 1, 1, 1);
271
272/*
273 * Send an instruction or address to the EEPROM, check for ACK.
274 */
275static u_int32_t ti_eeprom_putbyte(sc, byte)
276	struct ti_softc		*sc;
277	int			byte;
278{
279	int			i, ack = 0;
280
281	/*
282	 * Make sure we're in TX mode.
283	 */
284	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
285
286	/*
287	 * Feed in each bit and stobe the clock.
288	 */
289	for (i = 0x80; i; i >>= 1) {
290		if (byte & i) {
291			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
292		} else {
293			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
294		}
295		DELAY(1);
296		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
297		DELAY(1);
298		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
299	}
300
301	/*
302	 * Turn off TX mode.
303	 */
304	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
305
306	/*
307	 * Check for ack.
308	 */
309	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
310	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
311	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
312
313	return (ack);
314}
315
316/*
317 * Read a byte of data stored in the EEPROM at address 'addr.'
318 * We have to send two address bytes since the EEPROM can hold
319 * more than 256 bytes of data.
320 */
321static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
322	struct ti_softc		*sc;
323	int			addr;
324	u_int8_t		*dest;
325{
326	int			i;
327	u_int8_t		byte = 0;
328
329	EEPROM_START;
330
331	/*
332	 * Send write control code to EEPROM.
333	 */
334	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
335		if_printf(sc->ti_ifp,
336		    "failed to send write command, status: %x\n",
337		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
338		return (1);
339	}
340
341	/*
342	 * Send first byte of address of byte we want to read.
343	 */
344	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
345		if_printf(sc->ti_ifp, "failed to send address, status: %x\n",
346		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
347		return (1);
348	}
349	/*
350	 * Send second byte address of byte we want to read.
351	 */
352	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
353		if_printf(sc->ti_ifp, "failed to send address, status: %x\n",
354		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
355		return (1);
356	}
357
358	EEPROM_STOP;
359	EEPROM_START;
360	/*
361	 * Send read control code to EEPROM.
362	 */
363	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
364		if_printf(sc->ti_ifp,
365		    "failed to send read command, status: %x\n",
366		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
367		return (1);
368	}
369
370	/*
371	 * Start reading bits from EEPROM.
372	 */
373	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
374	for (i = 0x80; i; i >>= 1) {
375		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
376		DELAY(1);
377		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
378			byte |= i;
379		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
380		DELAY(1);
381	}
382
383	EEPROM_STOP;
384
385	/*
386	 * No ACK generated for read, so just return byte.
387	 */
388
389	*dest = byte;
390
391	return (0);
392}
393
394/*
395 * Read a sequence of bytes from the EEPROM.
396 */
397static int
398ti_read_eeprom(sc, dest, off, cnt)
399	struct ti_softc		*sc;
400	caddr_t			dest;
401	int			off;
402	int			cnt;
403{
404	int			err = 0, i;
405	u_int8_t		byte = 0;
406
407	for (i = 0; i < cnt; i++) {
408		err = ti_eeprom_getbyte(sc, off + i, &byte);
409		if (err)
410			break;
411		*(dest + i) = byte;
412	}
413
414	return (err ? 1 : 0);
415}
416
417/*
418 * NIC memory read function.
419 * Can be used to copy data from NIC local memory.
420 */
421static void
422ti_mem_read(sc, addr, len, buf)
423	struct ti_softc		*sc;
424	u_int32_t		addr, len;
425	void			*buf;
426{
427	int			segptr, segsize, cnt;
428	char			*ptr;
429
430	segptr = addr;
431	cnt = len;
432	ptr = buf;
433
434	while (cnt) {
435		if (cnt < TI_WINLEN)
436			segsize = cnt;
437		else
438			segsize = TI_WINLEN - (segptr % TI_WINLEN);
439		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
440		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
441		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
442		    segsize / 4);
443		ptr += segsize;
444		segptr += segsize;
445		cnt -= segsize;
446	}
447}
448
449
450/*
451 * NIC memory write function.
452 * Can be used to copy data into NIC local memory.
453 */
454static void
455ti_mem_write(sc, addr, len, buf)
456	struct ti_softc		*sc;
457	u_int32_t		addr, len;
458	void			*buf;
459{
460	int			segptr, segsize, cnt;
461	char			*ptr;
462
463	segptr = addr;
464	cnt = len;
465	ptr = buf;
466
467	while (cnt) {
468		if (cnt < TI_WINLEN)
469			segsize = cnt;
470		else
471			segsize = TI_WINLEN - (segptr % TI_WINLEN);
472		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
473		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
474		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
475		    segsize / 4);
476		ptr += segsize;
477		segptr += segsize;
478		cnt -= segsize;
479	}
480}
481
482/*
483 * NIC memory read function.
484 * Can be used to clear a section of NIC local memory.
485 */
486static void
487ti_mem_zero(sc, addr, len)
488	struct ti_softc		*sc;
489	u_int32_t		addr, len;
490{
491	int			segptr, segsize, cnt;
492
493	segptr = addr;
494	cnt = len;
495
496	while (cnt) {
497		if (cnt < TI_WINLEN)
498			segsize = cnt;
499		else
500			segsize = TI_WINLEN - (segptr % TI_WINLEN);
501		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
502		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
503		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
504		segptr += segsize;
505		cnt -= segsize;
506	}
507}
508
509static int
510ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
511	struct ti_softc		*sc;
512	u_int32_t		tigon_addr, len;
513	caddr_t			buf;
514	int			useraddr, readdata;
515{
516	int		segptr, segsize, cnt;
517	caddr_t		ptr;
518	u_int32_t	origwin;
519	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
520	int		resid, segresid;
521	int		first_pass;
522
523	TI_LOCK_ASSERT(sc);
524
525	/*
526	 * At the moment, we don't handle non-aligned cases, we just bail.
527	 * If this proves to be a problem, it will be fixed.
528	 */
529	if ((readdata == 0)
530	 && (tigon_addr & 0x3)) {
531		if_printf(sc->ti_ifp, "ti_copy_mem: tigon address %#x isn't "
532		    "word-aligned\n", tigon_addr);
533		if_printf(sc->ti_ifp, "ti_copy_mem: unaligned writes aren't "
534		    "yet supported\n");
535		return (EINVAL);
536	}
537
538	segptr = tigon_addr & ~0x3;
539	segresid = tigon_addr - segptr;
540
541	/*
542	 * This is the non-aligned amount left over that we'll need to
543	 * copy.
544	 */
545	resid = len & 0x3;
546
547	/* Add in the left over amount at the front of the buffer */
548	resid += segresid;
549
550	cnt = len & ~0x3;
551	/*
552	 * If resid + segresid is >= 4, add multiples of 4 to the count and
553	 * decrease the residual by that much.
554	 */
555	cnt += resid & ~0x3;
556	resid -= resid & ~0x3;
557
558	ptr = buf;
559
560	first_pass = 1;
561
562	/*
563	 * Save the old window base value.
564	 */
565	origwin = CSR_READ_4(sc, TI_WINBASE);
566
567	while (cnt) {
568		bus_size_t ti_offset;
569
570		if (cnt < TI_WINLEN)
571			segsize = cnt;
572		else
573			segsize = TI_WINLEN - (segptr % TI_WINLEN);
574		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
575
576		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
577
578		if (readdata) {
579
580			bus_space_read_region_4(sc->ti_btag,
581						sc->ti_bhandle, ti_offset,
582						(u_int32_t *)tmparray,
583						segsize >> 2);
584			if (useraddr) {
585				/*
586				 * Yeah, this is a little on the kludgy
587				 * side, but at least this code is only
588				 * used for debugging.
589				 */
590				ti_bcopy_swap(tmparray, tmparray2, segsize,
591					      TI_SWAP_NTOH);
592
593				TI_UNLOCK(sc);
594				if (first_pass) {
595					copyout(&tmparray2[segresid], ptr,
596						segsize - segresid);
597					first_pass = 0;
598				} else
599					copyout(tmparray2, ptr, segsize);
600				TI_LOCK(sc);
601			} else {
602				if (first_pass) {
603
604					ti_bcopy_swap(tmparray, tmparray2,
605						      segsize, TI_SWAP_NTOH);
606					TI_UNLOCK(sc);
607					bcopy(&tmparray2[segresid], ptr,
608					      segsize - segresid);
609					TI_LOCK(sc);
610					first_pass = 0;
611				} else
612					ti_bcopy_swap(tmparray, ptr, segsize,
613						      TI_SWAP_NTOH);
614			}
615
616		} else {
617			if (useraddr) {
618				TI_UNLOCK(sc);
619				copyin(ptr, tmparray2, segsize);
620				TI_LOCK(sc);
621				ti_bcopy_swap(tmparray2, tmparray, segsize,
622					      TI_SWAP_HTON);
623			} else
624				ti_bcopy_swap(ptr, tmparray, segsize,
625					      TI_SWAP_HTON);
626
627			bus_space_write_region_4(sc->ti_btag,
628						 sc->ti_bhandle, ti_offset,
629						 (u_int32_t *)tmparray,
630						 segsize >> 2);
631		}
632		segptr += segsize;
633		ptr += segsize;
634		cnt -= segsize;
635	}
636
637	/*
638	 * Handle leftover, non-word-aligned bytes.
639	 */
640	if (resid != 0) {
641		u_int32_t	tmpval, tmpval2;
642		bus_size_t	ti_offset;
643
644		/*
645		 * Set the segment pointer.
646		 */
647		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
648
649		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
650
651		/*
652		 * First, grab whatever is in our source/destination.
653		 * We'll obviously need this for reads, but also for
654		 * writes, since we'll be doing read/modify/write.
655		 */
656		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
657					ti_offset, &tmpval, 1);
658
659		/*
660		 * Next, translate this from little-endian to big-endian
661		 * (at least on i386 boxes).
662		 */
663		tmpval2 = ntohl(tmpval);
664
665		if (readdata) {
666			/*
667			 * If we're reading, just copy the leftover number
668			 * of bytes from the host byte order buffer to
669			 * the user's buffer.
670			 */
671			if (useraddr) {
672				TI_UNLOCK(sc);
673				copyout(&tmpval2, ptr, resid);
674				TI_LOCK(sc);
675			} else
676				bcopy(&tmpval2, ptr, resid);
677		} else {
678			/*
679			 * If we're writing, first copy the bytes to be
680			 * written into the network byte order buffer,
681			 * leaving the rest of the buffer with whatever was
682			 * originally in there.  Then, swap the bytes
683			 * around into host order and write them out.
684			 *
685			 * XXX KDM the read side of this has been verified
686			 * to work, but the write side of it has not been
687			 * verified.  So user beware.
688			 */
689			if (useraddr) {
690				TI_UNLOCK(sc);
691				copyin(ptr, &tmpval2, resid);
692				TI_LOCK(sc);
693			} else
694				bcopy(ptr, &tmpval2, resid);
695
696			tmpval = htonl(tmpval2);
697
698			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
699						 ti_offset, &tmpval, 1);
700		}
701	}
702
703	CSR_WRITE_4(sc, TI_WINBASE, origwin);
704
705	return (0);
706}
707
708static int
709ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
710	struct ti_softc		*sc;
711	u_int32_t		tigon_addr, len;
712	caddr_t			buf;
713	int			useraddr, readdata;
714	int			cpu;
715{
716	u_int32_t	segptr;
717	int		cnt;
718	u_int32_t	tmpval, tmpval2;
719	caddr_t		ptr;
720
721	TI_LOCK_ASSERT(sc);
722
723	/*
724	 * At the moment, we don't handle non-aligned cases, we just bail.
725	 * If this proves to be a problem, it will be fixed.
726	 */
727	if (tigon_addr & 0x3) {
728		if_printf(sc->ti_ifp, "ti_copy_scratch: tigon address %#x "
729		    "isn't word-aligned\n", tigon_addr);
730		return (EINVAL);
731	}
732
733	if (len & 0x3) {
734		if_printf(sc->ti_ifp, "ti_copy_scratch: transfer length %d "
735		    "isn't word-aligned\n", len);
736		return (EINVAL);
737	}
738
739	segptr = tigon_addr;
740	cnt = len;
741	ptr = buf;
742
743	while (cnt) {
744		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
745
746		if (readdata) {
747			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
748
749			tmpval = ntohl(tmpval2);
750
751			/*
752			 * Note:  I've used this debugging interface
753			 * extensively with Alteon's 12.3.15 firmware,
754			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
755			 *
756			 * When you compile the firmware without
757			 * optimization, which is necessary sometimes in
758			 * order to properly step through it, you sometimes
759			 * read out a bogus value of 0xc0017c instead of
760			 * whatever was supposed to be in that scratchpad
761			 * location.  That value is on the stack somewhere,
762			 * but I've never been able to figure out what was
763			 * causing the problem.
764			 *
765			 * The address seems to pop up in random places,
766			 * often not in the same place on two subsequent
767			 * reads.
768			 *
769			 * In any case, the underlying data doesn't seem
770			 * to be affected, just the value read out.
771			 *
772			 * KDM, 3/7/2000
773			 */
774
775			if (tmpval2 == 0xc0017c)
776				if_printf(sc->ti_ifp, "found 0xc0017c at %#x "
777				       "(tmpval2)\n", segptr);
778
779			if (tmpval == 0xc0017c)
780				if_printf(sc->ti_ifp, "found 0xc0017c at %#x "
781				       "(tmpval)\n", segptr);
782
783			if (useraddr)
784				copyout(&tmpval, ptr, 4);
785			else
786				bcopy(&tmpval, ptr, 4);
787		} else {
788			if (useraddr)
789				copyin(ptr, &tmpval2, 4);
790			else
791				bcopy(ptr, &tmpval2, 4);
792
793			tmpval = htonl(tmpval2);
794
795			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
796		}
797
798		cnt -= 4;
799		segptr += 4;
800		ptr += 4;
801	}
802
803	return (0);
804}
805
806static int
807ti_bcopy_swap(src, dst, len, swap_type)
808	const void	*src;
809	void		*dst;
810	size_t		len;
811	ti_swap_type	swap_type;
812{
813	const u_int8_t *tmpsrc;
814	u_int8_t *tmpdst;
815	size_t tmplen;
816
817	if (len & 0x3) {
818		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
819		       len);
820		return (-1);
821	}
822
823	tmpsrc = src;
824	tmpdst = dst;
825	tmplen = len;
826
827	while (tmplen) {
828		if (swap_type == TI_SWAP_NTOH)
829			*(u_int32_t *)tmpdst =
830				ntohl(*(const u_int32_t *)tmpsrc);
831		else
832			*(u_int32_t *)tmpdst =
833				htonl(*(const u_int32_t *)tmpsrc);
834
835		tmpsrc += 4;
836		tmpdst += 4;
837		tmplen -= 4;
838	}
839
840	return (0);
841}
842
843/*
844 * Load firmware image into the NIC. Check that the firmware revision
845 * is acceptable and see if we want the firmware for the Tigon 1 or
846 * Tigon 2.
847 */
848static void
849ti_loadfw(sc)
850	struct ti_softc		*sc;
851{
852
853	TI_LOCK_ASSERT(sc);
854
855	switch (sc->ti_hwrev) {
856	case TI_HWREV_TIGON:
857		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
858		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
859		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
860			if_printf(sc->ti_ifp, "firmware revision mismatch; "
861			    "want %d.%d.%d, got %d.%d.%d\n",
862			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
863			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
864			    tigonFwReleaseMinor, tigonFwReleaseFix);
865			return;
866		}
867		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
868		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
869		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
870		    tigonFwRodata);
871		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
872		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
873		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
874		break;
875	case TI_HWREV_TIGON_II:
876		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
877		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
878		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
879			if_printf(sc->ti_ifp, "firmware revision mismatch; "
880			    "want %d.%d.%d, got %d.%d.%d\n",
881			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
882			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
883			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
884			return;
885		}
886		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
887		    tigon2FwText);
888		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
889		    tigon2FwData);
890		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
891		    tigon2FwRodata);
892		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
893		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
894		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
895		break;
896	default:
897		if_printf(sc->ti_ifp,
898		    "can't load firmware: unknown hardware rev\n");
899		break;
900	}
901}
902
903/*
904 * Send the NIC a command via the command ring.
905 */
906static void
907ti_cmd(sc, cmd)
908	struct ti_softc		*sc;
909	struct ti_cmd_desc	*cmd;
910{
911	u_int32_t		index;
912
913	index = sc->ti_cmd_saved_prodidx;
914	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
915	TI_INC(index, TI_CMD_RING_CNT);
916	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
917	sc->ti_cmd_saved_prodidx = index;
918}
919
920/*
921 * Send the NIC an extended command. The 'len' parameter specifies the
922 * number of command slots to include after the initial command.
923 */
924static void
925ti_cmd_ext(sc, cmd, arg, len)
926	struct ti_softc		*sc;
927	struct ti_cmd_desc	*cmd;
928	caddr_t			arg;
929	int			len;
930{
931	u_int32_t		index;
932	int			i;
933
934	index = sc->ti_cmd_saved_prodidx;
935	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
936	TI_INC(index, TI_CMD_RING_CNT);
937	for (i = 0; i < len; i++) {
938		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
939		    *(u_int32_t *)(&arg[i * 4]));
940		TI_INC(index, TI_CMD_RING_CNT);
941	}
942	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
943	sc->ti_cmd_saved_prodidx = index;
944}
945
946/*
947 * Handle events that have triggered interrupts.
948 */
949static void
950ti_handle_events(sc)
951	struct ti_softc		*sc;
952{
953	struct ti_event_desc	*e;
954
955	if (sc->ti_rdata->ti_event_ring == NULL)
956		return;
957
958	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
959		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
960		switch (TI_EVENT_EVENT(e)) {
961		case TI_EV_LINKSTAT_CHANGED:
962			sc->ti_linkstat = TI_EVENT_CODE(e);
963			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
964				if_printf(sc->ti_ifp, "10/100 link up\n");
965			else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
966				if_printf(sc->ti_ifp, "gigabit link up\n");
967			else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
968				if_printf(sc->ti_ifp, "link down\n");
969			break;
970		case TI_EV_ERROR:
971			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
972				if_printf(sc->ti_ifp, "invalid command\n");
973			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
974				if_printf(sc->ti_ifp, "unknown command\n");
975			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
976				if_printf(sc->ti_ifp, "bad config data\n");
977			break;
978		case TI_EV_FIRMWARE_UP:
979			ti_init2(sc);
980			break;
981		case TI_EV_STATS_UPDATED:
982			ti_stats_update(sc);
983			break;
984		case TI_EV_RESET_JUMBO_RING:
985		case TI_EV_MCAST_UPDATED:
986			/* Who cares. */
987			break;
988		default:
989			if_printf(sc->ti_ifp, "unknown event: %d\n",
990			    TI_EVENT_EVENT(e));
991			break;
992		}
993		/* Advance the consumer index. */
994		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
995		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
996	}
997}
998
999static int
1000ti_alloc_dmamaps(struct ti_softc *sc)
1001{
1002	int i;
1003
1004	for (i = 0; i < TI_TX_RING_CNT; i++) {
1005		if (bus_dmamap_create(sc->ti_mbuftx_dmat, 0,
1006				      &sc->ti_cdata.ti_tx_maps[i]))
1007			return (ENOBUFS);
1008	}
1009	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1010		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1011				      &sc->ti_cdata.ti_rx_std_maps[i]))
1012			return (ENOBUFS);
1013	}
1014
1015	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1016		if (bus_dmamap_create(sc->ti_jumbo_dmat, 0,
1017				      &sc->ti_cdata.ti_rx_jumbo_maps[i]))
1018			return (ENOBUFS);
1019	}
1020	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1021		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1022				      &sc->ti_cdata.ti_rx_mini_maps[i]))
1023			return (ENOBUFS);
1024	}
1025
1026	return (0);
1027}
1028
1029static void
1030ti_free_dmamaps(struct ti_softc *sc)
1031{
1032	int i;
1033
1034	if (sc->ti_mbuftx_dmat)
1035		for (i = 0; i < TI_TX_RING_CNT; i++)
1036			if (sc->ti_cdata.ti_tx_maps[i]) {
1037				bus_dmamap_destroy(sc->ti_mbuftx_dmat,
1038				    sc->ti_cdata.ti_tx_maps[i]);
1039				sc->ti_cdata.ti_tx_maps[i] = 0;
1040			}
1041
1042	if (sc->ti_mbufrx_dmat)
1043		for (i = 0; i < TI_STD_RX_RING_CNT; i++)
1044			if (sc->ti_cdata.ti_rx_std_maps[i]) {
1045				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1046				    sc->ti_cdata.ti_rx_std_maps[i]);
1047				sc->ti_cdata.ti_rx_std_maps[i] = 0;
1048			}
1049
1050	if (sc->ti_jumbo_dmat)
1051		for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++)
1052			if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1053				bus_dmamap_destroy(sc->ti_jumbo_dmat,
1054				    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1055				sc->ti_cdata.ti_rx_jumbo_maps[i] = 0;
1056			}
1057	if (sc->ti_mbufrx_dmat)
1058		for (i = 0; i < TI_MINI_RX_RING_CNT; i++)
1059			if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1060				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1061				    sc->ti_cdata.ti_rx_mini_maps[i]);
1062				sc->ti_cdata.ti_rx_mini_maps[i] = 0;
1063			}
1064}
1065
1066#ifdef TI_PRIVATE_JUMBOS
1067
1068/*
1069 * Memory management for the jumbo receive ring is a pain in the
1070 * butt. We need to allocate at least 9018 bytes of space per frame,
1071 * _and_ it has to be contiguous (unless you use the extended
1072 * jumbo descriptor format). Using malloc() all the time won't
1073 * work: malloc() allocates memory in powers of two, which means we
1074 * would end up wasting a considerable amount of space by allocating
1075 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
1076 * to do our own memory management.
1077 *
1078 * The driver needs to allocate a contiguous chunk of memory at boot
1079 * time. We then chop this up ourselves into 9K pieces and use them
1080 * as external mbuf storage.
1081 *
1082 * One issue here is how much memory to allocate. The jumbo ring has
1083 * 256 slots in it, but at 9K per slot than can consume over 2MB of
1084 * RAM. This is a bit much, especially considering we also need
1085 * RAM for the standard ring and mini ring (on the Tigon 2). To
1086 * save space, we only actually allocate enough memory for 64 slots
1087 * by default, which works out to between 500 and 600K. This can
1088 * be tuned by changing a #define in if_tireg.h.
1089 */
1090
1091static int
1092ti_alloc_jumbo_mem(sc)
1093	struct ti_softc		*sc;
1094{
1095	caddr_t			ptr;
1096	int			i;
1097	struct ti_jpool_entry   *entry;
1098
1099	/*
1100	 * Grab a big chunk o' storage.  Since we are chopping this pool up
1101	 * into ~9k chunks, there doesn't appear to be a need to use page
1102	 * alignment.
1103	 */
1104	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1105				1, 0,			/* algnmnt, boundary */
1106				BUS_SPACE_MAXADDR,	/* lowaddr */
1107				BUS_SPACE_MAXADDR,	/* highaddr */
1108				NULL, NULL,		/* filter, filterarg */
1109				TI_JMEM,		/* maxsize */
1110				1,			/* nsegments */
1111				TI_JMEM,		/* maxsegsize */
1112				0,			/* flags */
1113				NULL, NULL,		/* lockfunc, lockarg */
1114				&sc->ti_jumbo_dmat) != 0) {
1115		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1116		return (ENOBUFS);
1117	}
1118
1119	if (bus_dmamem_alloc(sc->ti_jumbo_dmat,
1120			     (void**)&sc->ti_cdata.ti_jumbo_buf,
1121			     BUS_DMA_NOWAIT, &sc->ti_jumbo_dmamap) != 0) {
1122		device_printf(sc->ti_dev, "Failed to allocate jumbo memory\n");
1123		return (ENOBUFS);
1124	}
1125
1126	SLIST_INIT(&sc->ti_jfree_listhead);
1127	SLIST_INIT(&sc->ti_jinuse_listhead);
1128
1129	/*
1130	 * Now divide it up into 9K pieces and save the addresses
1131	 * in an array.
1132	 */
1133	ptr = sc->ti_cdata.ti_jumbo_buf;
1134	for (i = 0; i < TI_JSLOTS; i++) {
1135		sc->ti_cdata.ti_jslots[i] = ptr;
1136		ptr += TI_JLEN;
1137		entry = malloc(sizeof(struct ti_jpool_entry),
1138			       M_DEVBUF, M_NOWAIT);
1139		if (entry == NULL) {
1140			device_printf(sc->ti_dev, "no memory for jumbo "
1141			    "buffer queue!\n");
1142			return (ENOBUFS);
1143		}
1144		entry->slot = i;
1145		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1146	}
1147
1148	return (0);
1149}
1150
1151/*
1152 * Allocate a jumbo buffer.
1153 */
1154static void *ti_jalloc(sc)
1155	struct ti_softc		*sc;
1156{
1157	struct ti_jpool_entry	*entry;
1158
1159	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1160
1161	if (entry == NULL) {
1162		if_printf(sc->ti_ifp, "no free jumbo buffers\n");
1163		return (NULL);
1164	}
1165
1166	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1167	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1168	return (sc->ti_cdata.ti_jslots[entry->slot]);
1169}
1170
1171/*
1172 * Release a jumbo buffer.
1173 */
1174static void
1175ti_jfree(buf, args)
1176	void			*buf;
1177	void			*args;
1178{
1179	struct ti_softc		*sc;
1180	int			i;
1181	struct ti_jpool_entry	*entry;
1182
1183	/* Extract the softc struct pointer. */
1184	sc = (struct ti_softc *)args;
1185
1186	if (sc == NULL)
1187		panic("ti_jfree: didn't get softc pointer!");
1188
1189	/* calculate the slot this buffer belongs to */
1190	i = ((vm_offset_t)buf
1191	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1192
1193	if ((i < 0) || (i >= TI_JSLOTS))
1194		panic("ti_jfree: asked to free buffer that we don't manage!");
1195
1196	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1197	if (entry == NULL)
1198		panic("ti_jfree: buffer not in use!");
1199	entry->slot = i;
1200	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1201	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1202}
1203
1204#else
1205
1206static int
1207ti_alloc_jumbo_mem(sc)
1208	struct ti_softc		*sc;
1209{
1210
1211	/*
1212	 * The VM system will take care of providing aligned pages.  Alignment
1213	 * is set to 1 here so that busdma resources won't be wasted.
1214	 */
1215	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1216				1, 0,			/* algnmnt, boundary */
1217				BUS_SPACE_MAXADDR,	/* lowaddr */
1218				BUS_SPACE_MAXADDR,	/* highaddr */
1219				NULL, NULL,		/* filter, filterarg */
1220				PAGE_SIZE * 4 /*XXX*/,	/* maxsize */
1221				4,			/* nsegments */
1222				PAGE_SIZE,		/* maxsegsize */
1223				0,			/* flags */
1224				NULL, NULL,		/* lockfunc, lockarg */
1225				&sc->ti_jumbo_dmat) != 0) {
1226		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1227		return (ENOBUFS);
1228	}
1229
1230	return (0);
1231}
1232
1233#endif /* TI_PRIVATE_JUMBOS */
1234
1235/*
1236 * Intialize a standard receive ring descriptor.
1237 */
1238static int
1239ti_newbuf_std(sc, i, m)
1240	struct ti_softc		*sc;
1241	int			i;
1242	struct mbuf		*m;
1243{
1244	bus_dmamap_t		map;
1245	bus_dma_segment_t	segs;
1246	struct mbuf		*m_new = NULL;
1247	struct ti_rx_desc	*r;
1248	int			nsegs;
1249
1250	nsegs = 0;
1251	if (m == NULL) {
1252		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1253		if (m_new == NULL)
1254			return (ENOBUFS);
1255
1256		MCLGET(m_new, M_DONTWAIT);
1257		if (!(m_new->m_flags & M_EXT)) {
1258			m_freem(m_new);
1259			return (ENOBUFS);
1260		}
1261		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1262	} else {
1263		m_new = m;
1264		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1265		m_new->m_data = m_new->m_ext.ext_buf;
1266	}
1267
1268	m_adj(m_new, ETHER_ALIGN);
1269	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1270	r = &sc->ti_rdata->ti_rx_std_ring[i];
1271	map = sc->ti_cdata.ti_rx_std_maps[i];
1272	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1273				    &nsegs, 0))
1274		return (ENOBUFS);
1275	if (nsegs != 1)
1276		return (ENOBUFS);
1277	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1278	r->ti_len = segs.ds_len;
1279	r->ti_type = TI_BDTYPE_RECV_BD;
1280	r->ti_flags = 0;
1281	if (sc->ti_ifp->if_hwassist)
1282		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1283	r->ti_idx = i;
1284
1285	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1286	return (0);
1287}
1288
1289/*
1290 * Intialize a mini receive ring descriptor. This only applies to
1291 * the Tigon 2.
1292 */
1293static int
1294ti_newbuf_mini(sc, i, m)
1295	struct ti_softc		*sc;
1296	int			i;
1297	struct mbuf		*m;
1298{
1299	bus_dma_segment_t	segs;
1300	bus_dmamap_t		map;
1301	struct mbuf		*m_new = NULL;
1302	struct ti_rx_desc	*r;
1303	int			nsegs;
1304
1305	nsegs = 0;
1306	if (m == NULL) {
1307		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1308		if (m_new == NULL) {
1309			return (ENOBUFS);
1310		}
1311		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1312	} else {
1313		m_new = m;
1314		m_new->m_data = m_new->m_pktdat;
1315		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1316	}
1317
1318	m_adj(m_new, ETHER_ALIGN);
1319	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1320	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1321	map = sc->ti_cdata.ti_rx_mini_maps[i];
1322	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1323				    &nsegs, 0))
1324		return (ENOBUFS);
1325	if (nsegs != 1)
1326		return (ENOBUFS);
1327	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1328	r->ti_len = segs.ds_len;
1329	r->ti_type = TI_BDTYPE_RECV_BD;
1330	r->ti_flags = TI_BDFLAG_MINI_RING;
1331	if (sc->ti_ifp->if_hwassist)
1332		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1333	r->ti_idx = i;
1334
1335	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1336	return (0);
1337}
1338
1339#ifdef TI_PRIVATE_JUMBOS
1340
1341/*
1342 * Initialize a jumbo receive ring descriptor. This allocates
1343 * a jumbo buffer from the pool managed internally by the driver.
1344 */
1345static int
1346ti_newbuf_jumbo(sc, i, m)
1347	struct ti_softc		*sc;
1348	int			i;
1349	struct mbuf		*m;
1350{
1351	bus_dmamap_t		map;
1352	struct mbuf		*m_new = NULL;
1353	struct ti_rx_desc	*r;
1354	int			nsegs;
1355	bus_dma_segment_t	segs;
1356
1357	if (m == NULL) {
1358		caddr_t			*buf = NULL;
1359
1360		/* Allocate the mbuf. */
1361		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1362		if (m_new == NULL) {
1363			return (ENOBUFS);
1364		}
1365
1366		/* Allocate the jumbo buffer */
1367		buf = ti_jalloc(sc);
1368		if (buf == NULL) {
1369			m_freem(m_new);
1370			if_printf(sc->ti_ifp, "jumbo allocation failed "
1371			    "-- packet dropped!\n");
1372			return (ENOBUFS);
1373		}
1374
1375		/* Attach the buffer to the mbuf. */
1376		m_new->m_data = (void *) buf;
1377		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1378		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1379		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1380	} else {
1381		m_new = m;
1382		m_new->m_data = m_new->m_ext.ext_buf;
1383		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1384	}
1385
1386	m_adj(m_new, ETHER_ALIGN);
1387	/* Set up the descriptor. */
1388	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1389	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1390	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1391	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, &segs,
1392				    &nsegs, 0))
1393		return (ENOBUFS);
1394	if (nsegs != 1)
1395		return (ENOBUFS);
1396	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1397	r->ti_len = segs.ds_len;
1398	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1399	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1400	if (sc->ti_ifp->if_hwassist)
1401		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1402	r->ti_idx = i;
1403
1404	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1405	return (0);
1406}
1407
1408#else
1409
1410#if (PAGE_SIZE == 4096)
1411#define NPAYLOAD 2
1412#else
1413#define NPAYLOAD 1
1414#endif
1415
1416#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1417#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1418#define NFS_HDR_LEN (UDP_HDR_LEN)
1419static int HDR_LEN =  TCP_HDR_LEN;
1420
1421
1422/*
1423 * Initialize a jumbo receive ring descriptor. This allocates
1424 * a jumbo buffer from the pool managed internally by the driver.
1425 */
1426static int
1427ti_newbuf_jumbo(sc, idx, m_old)
1428	struct ti_softc		*sc;
1429	int			idx;
1430	struct mbuf		*m_old;
1431{
1432	bus_dmamap_t		map;
1433	struct mbuf		*cur, *m_new = NULL;
1434	struct mbuf		*m[3] = {NULL, NULL, NULL};
1435	struct ti_rx_desc_ext	*r;
1436	vm_page_t		frame;
1437	static int		color;
1438				/* 1 extra buf to make nobufs easy*/
1439	struct sf_buf		*sf[3] = {NULL, NULL, NULL};
1440	int			i;
1441	bus_dma_segment_t	segs[4];
1442	int			nsegs;
1443
1444	if (m_old != NULL) {
1445		m_new = m_old;
1446		cur = m_old->m_next;
1447		for (i = 0; i <= NPAYLOAD; i++){
1448			m[i] = cur;
1449			cur = cur->m_next;
1450		}
1451	} else {
1452		/* Allocate the mbufs. */
1453		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1454		if (m_new == NULL) {
1455			if_printf(sc->ti_ifp, "mbuf allocation failed "
1456			    "-- packet dropped!\n");
1457			goto nobufs;
1458		}
1459		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1460		if (m[NPAYLOAD] == NULL) {
1461			if_printf(sc->ti_ifp, "cluster mbuf allocation failed "
1462			    "-- packet dropped!\n");
1463			goto nobufs;
1464		}
1465		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1466		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1467			if_printf(sc->ti_ifp, "mbuf allocation failed "
1468			    "-- packet dropped!\n");
1469			goto nobufs;
1470		}
1471		m[NPAYLOAD]->m_len = MCLBYTES;
1472
1473		for (i = 0; i < NPAYLOAD; i++){
1474			MGET(m[i], M_DONTWAIT, MT_DATA);
1475			if (m[i] == NULL) {
1476				if_printf(sc->ti_ifp, "mbuf allocation failed "
1477				    "-- packet dropped!\n");
1478				goto nobufs;
1479			}
1480			frame = vm_page_alloc(NULL, color++,
1481			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1482			    VM_ALLOC_WIRED);
1483			if (frame == NULL) {
1484				if_printf(sc->ti_ifp, "buffer allocation "
1485				    "failed -- packet dropped!\n");
1486				printf("      index %d page %d\n", idx, i);
1487				goto nobufs;
1488			}
1489			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1490			if (sf[i] == NULL) {
1491				vm_page_lock_queues();
1492				vm_page_unwire(frame, 0);
1493				vm_page_free(frame);
1494				vm_page_unlock_queues();
1495				if_printf(sc->ti_ifp, "buffer allocation "
1496				    "failed -- packet dropped!\n");
1497				printf("      index %d page %d\n", idx, i);
1498				goto nobufs;
1499			}
1500		}
1501		for (i = 0; i < NPAYLOAD; i++){
1502		/* Attach the buffer to the mbuf. */
1503			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1504			m[i]->m_len = PAGE_SIZE;
1505			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1506			    sf_buf_mext, sf[i], 0, EXT_DISPOSABLE);
1507			m[i]->m_next = m[i+1];
1508		}
1509		/* link the buffers to the header */
1510		m_new->m_next = m[0];
1511		m_new->m_data += ETHER_ALIGN;
1512		if (sc->ti_hdrsplit)
1513			m_new->m_len = MHLEN - ETHER_ALIGN;
1514		else
1515			m_new->m_len = HDR_LEN;
1516		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1517	}
1518
1519	/* Set up the descriptor. */
1520	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1521	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1522	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1523	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, segs,
1524				    &nsegs, 0))
1525		return (ENOBUFS);
1526	if ((nsegs < 1) || (nsegs > 4))
1527		return (ENOBUFS);
1528	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1529	r->ti_len0 = m_new->m_len;
1530
1531	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1532	r->ti_len1 = PAGE_SIZE;
1533
1534	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1535	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1536
1537	if (PAGE_SIZE == 4096) {
1538		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1539		r->ti_len3 = MCLBYTES;
1540	} else {
1541		r->ti_len3 = 0;
1542	}
1543	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1544
1545	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1546
1547	if (sc->ti_ifp->if_hwassist)
1548		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1549
1550	r->ti_idx = idx;
1551
1552	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1553	return (0);
1554
1555nobufs:
1556
1557	/*
1558	 * Warning! :
1559	 * This can only be called before the mbufs are strung together.
1560	 * If the mbufs are strung together, m_freem() will free the chain,
1561	 * so that the later mbufs will be freed multiple times.
1562	 */
1563	if (m_new)
1564		m_freem(m_new);
1565
1566	for (i = 0; i < 3; i++) {
1567		if (m[i])
1568			m_freem(m[i]);
1569		if (sf[i])
1570			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1571	}
1572	return (ENOBUFS);
1573}
1574#endif
1575
1576
1577
1578/*
1579 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1580 * that's 1MB or memory, which is a lot. For now, we fill only the first
1581 * 256 ring entries and hope that our CPU is fast enough to keep up with
1582 * the NIC.
1583 */
1584static int
1585ti_init_rx_ring_std(sc)
1586	struct ti_softc		*sc;
1587{
1588	int			i;
1589	struct ti_cmd_desc	cmd;
1590
1591	for (i = 0; i < TI_SSLOTS; i++) {
1592		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1593			return (ENOBUFS);
1594	};
1595
1596	TI_UPDATE_STDPROD(sc, i - 1);
1597	sc->ti_std = i - 1;
1598
1599	return (0);
1600}
1601
1602static void
1603ti_free_rx_ring_std(sc)
1604	struct ti_softc		*sc;
1605{
1606	bus_dmamap_t		map;
1607	int			i;
1608
1609	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1610		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1611			map = sc->ti_cdata.ti_rx_std_maps[i];
1612			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1613			    BUS_DMASYNC_POSTREAD);
1614			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1615			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1616			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1617		}
1618		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1619		    sizeof(struct ti_rx_desc));
1620	}
1621}
1622
1623static int
1624ti_init_rx_ring_jumbo(sc)
1625	struct ti_softc		*sc;
1626{
1627	int			i;
1628	struct ti_cmd_desc	cmd;
1629
1630	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1631		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1632			return (ENOBUFS);
1633	};
1634
1635	TI_UPDATE_JUMBOPROD(sc, i - 1);
1636	sc->ti_jumbo = i - 1;
1637
1638	return (0);
1639}
1640
1641static void
1642ti_free_rx_ring_jumbo(sc)
1643	struct ti_softc		*sc;
1644{
1645	bus_dmamap_t		map;
1646	int			i;
1647
1648	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1649		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1650			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1651			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
1652			    BUS_DMASYNC_POSTREAD);
1653			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
1654			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1655			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1656		}
1657		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1658		    sizeof(struct ti_rx_desc));
1659	}
1660}
1661
1662static int
1663ti_init_rx_ring_mini(sc)
1664	struct ti_softc		*sc;
1665{
1666	int			i;
1667
1668	for (i = 0; i < TI_MSLOTS; i++) {
1669		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1670			return (ENOBUFS);
1671	};
1672
1673	TI_UPDATE_MINIPROD(sc, i - 1);
1674	sc->ti_mini = i - 1;
1675
1676	return (0);
1677}
1678
1679static void
1680ti_free_rx_ring_mini(sc)
1681	struct ti_softc		*sc;
1682{
1683	bus_dmamap_t		map;
1684	int			i;
1685
1686	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1687		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1688			map = sc->ti_cdata.ti_rx_mini_maps[i];
1689			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1690			    BUS_DMASYNC_POSTREAD);
1691			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1692			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1693			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1694		}
1695		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1696		    sizeof(struct ti_rx_desc));
1697	}
1698}
1699
1700static void
1701ti_free_tx_ring(sc)
1702	struct ti_softc		*sc;
1703{
1704	bus_dmamap_t		map;
1705	int			i;
1706
1707	if (sc->ti_rdata->ti_tx_ring == NULL)
1708		return;
1709
1710	for (i = 0; i < TI_TX_RING_CNT; i++) {
1711		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1712			map = sc->ti_cdata.ti_tx_maps[i];
1713			bus_dmamap_sync(sc->ti_mbuftx_dmat, map,
1714			    BUS_DMASYNC_POSTWRITE);
1715			bus_dmamap_unload(sc->ti_mbuftx_dmat, map);
1716			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1717			sc->ti_cdata.ti_tx_chain[i] = NULL;
1718		}
1719		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1720		    sizeof(struct ti_tx_desc));
1721	}
1722}
1723
1724static int
1725ti_init_tx_ring(sc)
1726	struct ti_softc		*sc;
1727{
1728	sc->ti_txcnt = 0;
1729	sc->ti_tx_saved_considx = 0;
1730	sc->ti_tx_saved_prodidx = 0;
1731	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1732	return (0);
1733}
1734
1735/*
1736 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1737 * but we have to support the old way too so that Tigon 1 cards will
1738 * work.
1739 */
1740static void
1741ti_add_mcast(sc, addr)
1742	struct ti_softc		*sc;
1743	struct ether_addr	*addr;
1744{
1745	struct ti_cmd_desc	cmd;
1746	u_int16_t		*m;
1747	u_int32_t		ext[2] = {0, 0};
1748
1749	m = (u_int16_t *)&addr->octet[0];
1750
1751	switch (sc->ti_hwrev) {
1752	case TI_HWREV_TIGON:
1753		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1754		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1755		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1756		break;
1757	case TI_HWREV_TIGON_II:
1758		ext[0] = htons(m[0]);
1759		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1760		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1761		break;
1762	default:
1763		if_printf(sc->ti_ifp, "unknown hwrev\n");
1764		break;
1765	}
1766}
1767
1768static void
1769ti_del_mcast(sc, addr)
1770	struct ti_softc		*sc;
1771	struct ether_addr	*addr;
1772{
1773	struct ti_cmd_desc	cmd;
1774	u_int16_t		*m;
1775	u_int32_t		ext[2] = {0, 0};
1776
1777	m = (u_int16_t *)&addr->octet[0];
1778
1779	switch (sc->ti_hwrev) {
1780	case TI_HWREV_TIGON:
1781		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1782		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1783		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1784		break;
1785	case TI_HWREV_TIGON_II:
1786		ext[0] = htons(m[0]);
1787		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1788		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1789		break;
1790	default:
1791		if_printf(sc->ti_ifp, "unknown hwrev\n");
1792		break;
1793	}
1794}
1795
1796/*
1797 * Configure the Tigon's multicast address filter.
1798 *
1799 * The actual multicast table management is a bit of a pain, thanks to
1800 * slight brain damage on the part of both Alteon and us. With our
1801 * multicast code, we are only alerted when the multicast address table
1802 * changes and at that point we only have the current list of addresses:
1803 * we only know the current state, not the previous state, so we don't
1804 * actually know what addresses were removed or added. The firmware has
1805 * state, but we can't get our grubby mits on it, and there is no 'delete
1806 * all multicast addresses' command. Hence, we have to maintain our own
1807 * state so we know what addresses have been programmed into the NIC at
1808 * any given time.
1809 */
1810static void
1811ti_setmulti(sc)
1812	struct ti_softc		*sc;
1813{
1814	struct ifnet		*ifp;
1815	struct ifmultiaddr	*ifma;
1816	struct ti_cmd_desc	cmd;
1817	struct ti_mc_entry	*mc;
1818	u_int32_t		intrs;
1819
1820	TI_LOCK_ASSERT(sc);
1821
1822	ifp = sc->ti_ifp;
1823
1824	if (ifp->if_flags & IFF_ALLMULTI) {
1825		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1826		return;
1827	} else {
1828		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1829	}
1830
1831	/* Disable interrupts. */
1832	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1833	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1834
1835	/* First, zot all the existing filters. */
1836	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1837		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1838		ti_del_mcast(sc, &mc->mc_addr);
1839		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1840		free(mc, M_DEVBUF);
1841	}
1842
1843	/* Now program new ones. */
1844	IF_ADDR_LOCK(ifp);
1845	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1846		if (ifma->ifma_addr->sa_family != AF_LINK)
1847			continue;
1848		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1849		if (mc == NULL) {
1850			if_printf(ifp, "no memory for mcast filter entry\n");
1851			continue;
1852		}
1853		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1854		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1855		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1856		ti_add_mcast(sc, &mc->mc_addr);
1857	}
1858	IF_ADDR_UNLOCK(ifp);
1859
1860	/* Re-enable interrupts. */
1861	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1862}
1863
1864/*
1865 * Check to see if the BIOS has configured us for a 64 bit slot when
1866 * we aren't actually in one. If we detect this condition, we can work
1867 * around it on the Tigon 2 by setting a bit in the PCI state register,
1868 * but for the Tigon 1 we must give up and abort the interface attach.
1869 */
1870static int ti_64bitslot_war(sc)
1871	struct ti_softc		*sc;
1872{
1873	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1874		CSR_WRITE_4(sc, 0x600, 0);
1875		CSR_WRITE_4(sc, 0x604, 0);
1876		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1877		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1878			if (sc->ti_hwrev == TI_HWREV_TIGON)
1879				return (EINVAL);
1880			else {
1881				TI_SETBIT(sc, TI_PCI_STATE,
1882				    TI_PCISTATE_32BIT_BUS);
1883				return (0);
1884			}
1885		}
1886	}
1887
1888	return (0);
1889}
1890
1891/*
1892 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1893 * self-test results.
1894 */
1895static int
1896ti_chipinit(sc)
1897	struct ti_softc		*sc;
1898{
1899	u_int32_t		cacheline;
1900	u_int32_t		pci_writemax = 0;
1901	u_int32_t		hdrsplit;
1902
1903	/* Initialize link to down state. */
1904	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1905
1906	if (sc->ti_ifp->if_capenable & IFCAP_HWCSUM)
1907		sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
1908	else
1909		sc->ti_ifp->if_hwassist = 0;
1910
1911	/* Set endianness before we access any non-PCI registers. */
1912#if 0 && BYTE_ORDER == BIG_ENDIAN
1913	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1914	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1915#else
1916	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1917	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1918#endif
1919
1920	/* Check the ROM failed bit to see if self-tests passed. */
1921	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1922		if_printf(sc->ti_ifp, "board self-diagnostics failed!\n");
1923		return (ENODEV);
1924	}
1925
1926	/* Halt the CPU. */
1927	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1928
1929	/* Figure out the hardware revision. */
1930	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1931	case TI_REV_TIGON_I:
1932		sc->ti_hwrev = TI_HWREV_TIGON;
1933		break;
1934	case TI_REV_TIGON_II:
1935		sc->ti_hwrev = TI_HWREV_TIGON_II;
1936		break;
1937	default:
1938		if_printf(sc->ti_ifp, "unsupported chip revision\n");
1939		return (ENODEV);
1940	}
1941
1942	/* Do special setup for Tigon 2. */
1943	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1944		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1945		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1946		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1947	}
1948
1949	/*
1950	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1951	 * can't do header splitting.
1952	 */
1953#ifdef TI_JUMBO_HDRSPLIT
1954	if (sc->ti_hwrev != TI_HWREV_TIGON)
1955		sc->ti_hdrsplit = 1;
1956	else
1957		if_printf(sc->ti_ifp,
1958		    "can't do header splitting on a Tigon I board\n");
1959#endif /* TI_JUMBO_HDRSPLIT */
1960
1961	/* Set up the PCI state register. */
1962	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1963	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1964		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1965	}
1966
1967	/* Clear the read/write max DMA parameters. */
1968	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1969	    TI_PCISTATE_READ_MAXDMA));
1970
1971	/* Get cache line size. */
1972	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1973
1974	/*
1975	 * If the system has set enabled the PCI memory write
1976	 * and invalidate command in the command register, set
1977	 * the write max parameter accordingly. This is necessary
1978	 * to use MWI with the Tigon 2.
1979	 */
1980	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1981		switch (cacheline) {
1982		case 1:
1983		case 4:
1984		case 8:
1985		case 16:
1986		case 32:
1987		case 64:
1988			break;
1989		default:
1990		/* Disable PCI memory write and invalidate. */
1991			if (bootverbose)
1992				if_printf(sc->ti_ifp, "cache line size %d not "
1993				    "supported; disabling PCI MWI\n",
1994				    cacheline);
1995			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1996			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1997			break;
1998		}
1999	}
2000
2001#ifdef __brokenalpha__
2002	/*
2003	 * From the Alteon sample driver:
2004	 * Must insure that we do not cross an 8K (bytes) boundary
2005	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
2006	 * restriction on some ALPHA platforms with early revision
2007	 * 21174 PCI chipsets, such as the AlphaPC 164lx
2008	 */
2009	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
2010#else
2011	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2012#endif
2013
2014	/* This sets the min dma param all the way up (0xff). */
2015	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2016
2017	if (sc->ti_hdrsplit)
2018		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2019	else
2020		hdrsplit = 0;
2021
2022	/* Configure DMA variables. */
2023#if BYTE_ORDER == BIG_ENDIAN
2024	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2025	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2026	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2027	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2028#else /* BYTE_ORDER */
2029	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2030	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2031	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2032#endif /* BYTE_ORDER */
2033
2034	/*
2035	 * Only allow 1 DMA channel to be active at a time.
2036	 * I don't think this is a good idea, but without it
2037	 * the firmware racks up lots of nicDmaReadRingFull
2038	 * errors.  This is not compatible with hardware checksums.
2039	 */
2040	if (sc->ti_ifp->if_hwassist == 0)
2041		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2042
2043	/* Recommended settings from Tigon manual. */
2044	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2045	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2046
2047	if (ti_64bitslot_war(sc)) {
2048		if_printf(sc->ti_ifp, "bios thinks we're in a 64 bit slot, "
2049		    "but we aren't");
2050		return (EINVAL);
2051	}
2052
2053	return (0);
2054}
2055
2056/*
2057 * Initialize the general information block and firmware, and
2058 * start the CPU(s) running.
2059 */
2060static int
2061ti_gibinit(sc)
2062	struct ti_softc		*sc;
2063{
2064	struct ti_rcb		*rcb;
2065	int			i;
2066	struct ifnet		*ifp;
2067	uint32_t		rdphys;
2068
2069	TI_LOCK_ASSERT(sc);
2070
2071	ifp = sc->ti_ifp;
2072	rdphys = sc->ti_rdata_phys;
2073
2074	/* Disable interrupts for now. */
2075	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2076
2077	/*
2078	 * Tell the chip where to find the general information block.
2079	 * While this struct could go into >4GB memory, we allocate it in a
2080	 * single slab with the other descriptors, and those don't seem to
2081	 * support being located in a 64-bit region.
2082	 */
2083	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
2084	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
2085
2086	/* Load the firmware into SRAM. */
2087	ti_loadfw(sc);
2088
2089	/* Set up the contents of the general info and ring control blocks. */
2090
2091	/* Set up the event ring and producer pointer. */
2092	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
2093
2094	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
2095	rcb->ti_flags = 0;
2096	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
2097	    rdphys + TI_RD_OFF(ti_ev_prodidx_r);
2098	sc->ti_ev_prodidx.ti_idx = 0;
2099	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2100	sc->ti_ev_saved_considx = 0;
2101
2102	/* Set up the command ring and producer mailbox. */
2103	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
2104
2105	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
2106	rcb->ti_flags = 0;
2107	rcb->ti_max_len = 0;
2108	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2109		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2110	}
2111	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2112	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2113	sc->ti_cmd_saved_prodidx = 0;
2114
2115	/*
2116	 * Assign the address of the stats refresh buffer.
2117	 * We re-use the current stats buffer for this to
2118	 * conserve memory.
2119	 */
2120	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
2121	    rdphys + TI_RD_OFF(ti_info.ti_stats);
2122
2123	/* Set up the standard receive ring. */
2124	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
2125	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
2126	rcb->ti_max_len = TI_FRAMELEN;
2127	rcb->ti_flags = 0;
2128	if (sc->ti_ifp->if_hwassist)
2129		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2130		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2131	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2132
2133	/* Set up the jumbo receive ring. */
2134	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
2135	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
2136
2137#ifdef TI_PRIVATE_JUMBOS
2138	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
2139	rcb->ti_flags = 0;
2140#else
2141	rcb->ti_max_len = PAGE_SIZE;
2142	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2143#endif
2144	if (sc->ti_ifp->if_hwassist)
2145		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2146		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2147	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2148
2149	/*
2150	 * Set up the mini ring. Only activated on the
2151	 * Tigon 2 but the slot in the config block is
2152	 * still there on the Tigon 1.
2153	 */
2154	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
2155	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
2156	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2157	if (sc->ti_hwrev == TI_HWREV_TIGON)
2158		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2159	else
2160		rcb->ti_flags = 0;
2161	if (sc->ti_ifp->if_hwassist)
2162		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2163		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2164	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2165
2166	/*
2167	 * Set up the receive return ring.
2168	 */
2169	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
2170	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
2171	rcb->ti_flags = 0;
2172	rcb->ti_max_len = TI_RETURN_RING_CNT;
2173	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
2174	    rdphys + TI_RD_OFF(ti_return_prodidx_r);
2175
2176	/*
2177	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2178	 * of putting the transmit ring in the host's address space and
2179	 * letting the chip DMA it instead of leaving the ring in the NIC's
2180	 * memory and accessing it through the shared memory region. We
2181	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2182	 * so we have to revert to the shared memory scheme if we detect
2183	 * a Tigon 1 chip.
2184	 */
2185	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2186	bzero((char *)sc->ti_rdata->ti_tx_ring,
2187	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
2188	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
2189	if (sc->ti_hwrev == TI_HWREV_TIGON)
2190		rcb->ti_flags = 0;
2191	else
2192		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2193	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2194	if (sc->ti_ifp->if_hwassist)
2195		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2196		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2197	rcb->ti_max_len = TI_TX_RING_CNT;
2198	if (sc->ti_hwrev == TI_HWREV_TIGON)
2199		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
2200	else
2201		TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
2202	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
2203	    rdphys + TI_RD_OFF(ti_tx_considx_r);
2204
2205	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2206	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2207
2208	/* Set up tuneables */
2209#if 0
2210	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2211		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2212		    (sc->ti_rx_coal_ticks / 10));
2213	else
2214#endif
2215		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2216	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2217	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2218	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2219	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2220	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2221
2222	/* Turn interrupts on. */
2223	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2224	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2225
2226	/* Start CPU. */
2227	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2228
2229	return (0);
2230}
2231
2232static void
2233ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2234{
2235	struct ti_softc *sc;
2236
2237	sc = arg;
2238	if (error || nseg != 1)
2239		return;
2240
2241	/*
2242	 * All of the Tigon data structures need to live at <4GB.  This
2243	 * cast is fine since busdma was told about this constraint.
2244	 */
2245	sc->ti_rdata_phys = segs[0].ds_addr;
2246	return;
2247}
2248
2249/*
2250 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2251 * against our list and return its name if we find a match.
2252 */
2253static int
2254ti_probe(dev)
2255	device_t		dev;
2256{
2257	struct ti_type		*t;
2258
2259	t = ti_devs;
2260
2261	while (t->ti_name != NULL) {
2262		if ((pci_get_vendor(dev) == t->ti_vid) &&
2263		    (pci_get_device(dev) == t->ti_did)) {
2264			device_set_desc(dev, t->ti_name);
2265			return (BUS_PROBE_DEFAULT);
2266		}
2267		t++;
2268	}
2269
2270	return (ENXIO);
2271}
2272
2273static int
2274ti_attach(dev)
2275	device_t		dev;
2276{
2277	struct ifnet		*ifp;
2278	struct ti_softc		*sc;
2279	int			error = 0, rid;
2280	u_char			eaddr[6];
2281
2282	sc = device_get_softc(dev);
2283	sc->ti_unit = device_get_unit(dev);
2284	sc->ti_dev = dev;
2285
2286	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2287	    MTX_DEF);
2288	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2289	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2290	if (ifp == NULL) {
2291		device_printf(dev, "can not if_alloc()\n");
2292		error = ENOSPC;
2293		goto fail;
2294	}
2295	sc->ti_ifp->if_capabilities = IFCAP_HWCSUM |
2296	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2297	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2298
2299	/*
2300	 * Map control/status registers.
2301	 */
2302	pci_enable_busmaster(dev);
2303
2304	rid = TI_PCI_LOMEM;
2305	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2306	    RF_ACTIVE|PCI_RF_DENSE);
2307
2308	if (sc->ti_res == NULL) {
2309		device_printf(dev, "couldn't map memory\n");
2310		error = ENXIO;
2311		goto fail;
2312	}
2313
2314	sc->ti_btag = rman_get_bustag(sc->ti_res);
2315	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2316
2317	/* Allocate interrupt */
2318	rid = 0;
2319
2320	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2321	    RF_SHAREABLE | RF_ACTIVE);
2322
2323	if (sc->ti_irq == NULL) {
2324		device_printf(dev, "couldn't map interrupt\n");
2325		error = ENXIO;
2326		goto fail;
2327	}
2328
2329	if (ti_chipinit(sc)) {
2330		device_printf(dev, "chip initialization failed\n");
2331		error = ENXIO;
2332		goto fail;
2333	}
2334
2335	/* Zero out the NIC's on-board SRAM. */
2336	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2337
2338	/* Init again -- zeroing memory may have clobbered some registers. */
2339	if (ti_chipinit(sc)) {
2340		device_printf(dev, "chip initialization failed\n");
2341		error = ENXIO;
2342		goto fail;
2343	}
2344
2345	/*
2346	 * Get station address from the EEPROM. Note: the manual states
2347	 * that the MAC address is at offset 0x8c, however the data is
2348	 * stored as two longwords (since that's how it's loaded into
2349	 * the NIC). This means the MAC address is actually preceded
2350	 * by two zero bytes. We need to skip over those.
2351	 */
2352	if (ti_read_eeprom(sc, eaddr,
2353				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2354		device_printf(dev, "failed to read station address\n");
2355		error = ENXIO;
2356		goto fail;
2357	}
2358
2359	/* Allocate the general information block and ring buffers. */
2360	if (bus_dma_tag_create(NULL,			/* parent */
2361				1, 0,			/* algnmnt, boundary */
2362				BUS_SPACE_MAXADDR,	/* lowaddr */
2363				BUS_SPACE_MAXADDR,	/* highaddr */
2364				NULL, NULL,		/* filter, filterarg */
2365				BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2366				0,			/* nsegments */
2367				BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2368				0,			/* flags */
2369				NULL, NULL,		/* lockfunc, lockarg */
2370				&sc->ti_parent_dmat) != 0) {
2371		device_printf(dev, "Failed to allocate parent dmat\n");
2372		error = ENOMEM;
2373		goto fail;
2374	}
2375
2376	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2377				PAGE_SIZE, 0,		/* algnmnt, boundary */
2378				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2379				BUS_SPACE_MAXADDR,	/* highaddr */
2380				NULL, NULL,		/* filter, filterarg */
2381				sizeof(struct ti_ring_data),	/* maxsize */
2382				1,			/* nsegments */
2383				sizeof(struct ti_ring_data),	/* maxsegsize */
2384				0,			/* flags */
2385				NULL, NULL,		/* lockfunc, lockarg */
2386				&sc->ti_rdata_dmat) != 0) {
2387		device_printf(dev, "Failed to allocate rdata dmat\n");
2388		error = ENOMEM;
2389		goto fail;
2390	}
2391
2392	if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2393			     BUS_DMA_NOWAIT, &sc->ti_rdata_dmamap) != 0) {
2394		device_printf(dev, "Failed to allocate rdata memory\n");
2395		error = ENOMEM;
2396		goto fail;
2397	}
2398
2399	if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2400			    sc->ti_rdata, sizeof(struct ti_ring_data),
2401			    ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2402		device_printf(dev, "Failed to load rdata segments\n");
2403		error = ENOMEM;
2404		goto fail;
2405	}
2406
2407	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2408
2409	/* Try to allocate memory for jumbo buffers. */
2410	if (ti_alloc_jumbo_mem(sc)) {
2411		device_printf(dev, "jumbo buffer allocation failed\n");
2412		error = ENXIO;
2413		goto fail;
2414	}
2415
2416	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2417				1, 0,			/* algnmnt, boundary */
2418				BUS_SPACE_MAXADDR,	/* lowaddr */
2419				BUS_SPACE_MAXADDR,	/* highaddr */
2420				NULL, NULL,		/* filter, filterarg */
2421				MCLBYTES * TI_MAXTXSEGS,/* maxsize */
2422				TI_MAXTXSEGS,		/* nsegments */
2423				MCLBYTES,		/* maxsegsize */
2424				0,			/* flags */
2425				NULL, NULL,		/* lockfunc, lockarg */
2426				&sc->ti_mbuftx_dmat) != 0) {
2427		device_printf(dev, "Failed to allocate rdata dmat\n");
2428		error = ENOMEM;
2429		goto fail;
2430	}
2431
2432	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2433				1, 0,			/* algnmnt, boundary */
2434				BUS_SPACE_MAXADDR,	/* lowaddr */
2435				BUS_SPACE_MAXADDR,	/* highaddr */
2436				NULL, NULL,		/* filter, filterarg */
2437				MCLBYTES,		/* maxsize */
2438				1,			/* nsegments */
2439				MCLBYTES,		/* maxsegsize */
2440				0,			/* flags */
2441				NULL, NULL,		/* lockfunc, lockarg */
2442				&sc->ti_mbufrx_dmat) != 0) {
2443		device_printf(dev, "Failed to allocate rdata dmat\n");
2444		error = ENOMEM;
2445		goto fail;
2446	}
2447
2448	if (ti_alloc_dmamaps(sc)) {
2449		device_printf(dev, "dma map creation failed\n");
2450		error = ENXIO;
2451		goto fail;
2452	}
2453
2454	/*
2455	 * We really need a better way to tell a 1000baseTX card
2456	 * from a 1000baseSX one, since in theory there could be
2457	 * OEMed 1000baseTX cards from lame vendors who aren't
2458	 * clever enough to change the PCI ID. For the moment
2459	 * though, the AceNIC is the only copper card available.
2460	 */
2461	if (pci_get_vendor(dev) == ALT_VENDORID &&
2462	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2463		sc->ti_copper = 1;
2464	/* Ok, it's not the only copper card available. */
2465	if (pci_get_vendor(dev) == NG_VENDORID &&
2466	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2467		sc->ti_copper = 1;
2468
2469	/* Set default tuneable values. */
2470	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2471#if 0
2472	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2473#endif
2474	sc->ti_rx_coal_ticks = 170;
2475	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2476	sc->ti_rx_max_coal_bds = 64;
2477#if 0
2478	sc->ti_tx_max_coal_bds = 128;
2479#endif
2480	sc->ti_tx_max_coal_bds = 32;
2481	sc->ti_tx_buf_ratio = 21;
2482
2483	/* Set up ifnet structure */
2484	ifp->if_softc = sc;
2485	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2486	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2487	ifp->if_ioctl = ti_ioctl;
2488	ifp->if_start = ti_start;
2489	ifp->if_watchdog = ti_watchdog;
2490	ifp->if_init = ti_init;
2491	ifp->if_mtu = ETHERMTU;
2492	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2493
2494	/* Set up ifmedia support. */
2495	if (sc->ti_copper) {
2496		/*
2497		 * Copper cards allow manual 10/100 mode selection,
2498		 * but not manual 1000baseTX mode selection. Why?
2499		 * Becuase currently there's no way to specify the
2500		 * master/slave setting through the firmware interface,
2501		 * so Alteon decided to just bag it and handle it
2502		 * via autonegotiation.
2503		 */
2504		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2505		ifmedia_add(&sc->ifmedia,
2506		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2507		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2508		ifmedia_add(&sc->ifmedia,
2509		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2510		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2511		ifmedia_add(&sc->ifmedia,
2512		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2513	} else {
2514		/* Fiber cards don't support 10/100 modes. */
2515		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2516		ifmedia_add(&sc->ifmedia,
2517		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2518	}
2519	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2520	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2521
2522	/*
2523	 * We're assuming here that card initialization is a sequential
2524	 * thing.  If it isn't, multiple cards probing at the same time
2525	 * could stomp on the list of softcs here.
2526	 */
2527
2528	/* Register the device */
2529	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2530			   0600, "ti%d", sc->ti_unit);
2531	sc->dev->si_drv1 = sc;
2532
2533	/*
2534	 * Call MI attach routine.
2535	 */
2536	ether_ifattach(ifp, eaddr);
2537
2538	/* Hook interrupt last to avoid having to lock softc */
2539	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2540	   ti_intr, sc, &sc->ti_intrhand);
2541
2542	if (error) {
2543		device_printf(dev, "couldn't set up irq\n");
2544		goto fail;
2545	}
2546
2547fail:
2548	if (error)
2549		ti_detach(dev);
2550
2551	return (error);
2552}
2553
2554/*
2555 * Shutdown hardware and free up resources. This can be called any
2556 * time after the mutex has been initialized. It is called in both
2557 * the error case in attach and the normal detach case so it needs
2558 * to be careful about only freeing resources that have actually been
2559 * allocated.
2560 */
2561static int
2562ti_detach(dev)
2563	device_t		dev;
2564{
2565	struct ti_softc		*sc;
2566	struct ifnet		*ifp;
2567	int			attached;
2568
2569	sc = device_get_softc(dev);
2570	if (sc->dev)
2571		destroy_dev(sc->dev);
2572	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2573	attached = device_is_attached(dev);
2574	TI_LOCK(sc);
2575	ifp = sc->ti_ifp;
2576	if (attached)
2577		ti_stop(sc);
2578	TI_UNLOCK(sc);
2579	if (attached)
2580		ether_ifdetach(ifp);
2581
2582	/* These should only be active if attach succeeded */
2583	if (attached)
2584		bus_generic_detach(dev);
2585	ti_free_dmamaps(sc);
2586	ifmedia_removeall(&sc->ifmedia);
2587
2588#ifdef TI_PRIVATE_JUMBOS
2589	if (sc->ti_cdata.ti_jumbo_buf)
2590		bus_dmamem_free(sc->ti_jumbo_dmat, sc->ti_cdata.ti_jumbo_buf,
2591		    sc->ti_jumbo_dmamap);
2592#endif
2593	if (sc->ti_jumbo_dmat)
2594		bus_dma_tag_destroy(sc->ti_jumbo_dmat);
2595	if (sc->ti_mbuftx_dmat)
2596		bus_dma_tag_destroy(sc->ti_mbuftx_dmat);
2597	if (sc->ti_mbufrx_dmat)
2598		bus_dma_tag_destroy(sc->ti_mbufrx_dmat);
2599	if (sc->ti_rdata)
2600		bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2601				sc->ti_rdata_dmamap);
2602	if (sc->ti_rdata_dmat)
2603		bus_dma_tag_destroy(sc->ti_rdata_dmat);
2604	if (sc->ti_parent_dmat)
2605		bus_dma_tag_destroy(sc->ti_parent_dmat);
2606	if (sc->ti_intrhand)
2607		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2608	if (sc->ti_irq)
2609		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2610	if (sc->ti_res) {
2611		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2612		    sc->ti_res);
2613	}
2614	if (ifp)
2615		if_free(ifp);
2616
2617	mtx_destroy(&sc->ti_mtx);
2618
2619	return (0);
2620}
2621
2622#ifdef TI_JUMBO_HDRSPLIT
2623/*
2624 * If hdr_len is 0, that means that header splitting wasn't done on
2625 * this packet for some reason.  The two most likely reasons are that
2626 * the protocol isn't a supported protocol for splitting, or this
2627 * packet had a fragment offset that wasn't 0.
2628 *
2629 * The header length, if it is non-zero, will always be the length of
2630 * the headers on the packet, but that length could be longer than the
2631 * first mbuf.  So we take the minimum of the two as the actual
2632 * length.
2633 */
2634static __inline void
2635ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2636{
2637	int i = 0;
2638	int lengths[4] = {0, 0, 0, 0};
2639	struct mbuf *m, *mp;
2640
2641	if (hdr_len != 0)
2642		top->m_len = min(hdr_len, top->m_len);
2643	pkt_len -= top->m_len;
2644	lengths[i++] = top->m_len;
2645
2646	mp = top;
2647	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2648		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2649		pkt_len -= m->m_len;
2650		lengths[i++] = m->m_len;
2651		mp = m;
2652	}
2653
2654#if 0
2655	if (hdr_len != 0)
2656		printf("got split packet: ");
2657	else
2658		printf("got non-split packet: ");
2659
2660	printf("%d,%d,%d,%d = %d\n", lengths[0],
2661	    lengths[1], lengths[2], lengths[3],
2662	    lengths[0] + lengths[1] + lengths[2] +
2663	    lengths[3]);
2664#endif
2665
2666	if (pkt_len)
2667		panic("header splitting didn't");
2668
2669	if (m) {
2670		m_freem(m);
2671		mp->m_next = NULL;
2672
2673	}
2674	if (mp->m_next != NULL)
2675		panic("ti_hdr_split: last mbuf in chain should be null");
2676}
2677#endif /* TI_JUMBO_HDRSPLIT */
2678
2679/*
2680 * Frame reception handling. This is called if there's a frame
2681 * on the receive return list.
2682 *
2683 * Note: we have to be able to handle three possibilities here:
2684 * 1) the frame is from the mini receive ring (can only happen)
2685 *    on Tigon 2 boards)
2686 * 2) the frame is from the jumbo recieve ring
2687 * 3) the frame is from the standard receive ring
2688 */
2689
2690static void
2691ti_rxeof(sc)
2692	struct ti_softc		*sc;
2693{
2694	bus_dmamap_t		map;
2695	struct ifnet		*ifp;
2696	struct ti_cmd_desc	cmd;
2697
2698	TI_LOCK_ASSERT(sc);
2699
2700	ifp = sc->ti_ifp;
2701
2702	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2703		struct ti_rx_desc	*cur_rx;
2704		u_int32_t		rxidx;
2705		struct mbuf		*m = NULL;
2706		u_int16_t		vlan_tag = 0;
2707		int			have_tag = 0;
2708
2709		cur_rx =
2710		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2711		rxidx = cur_rx->ti_idx;
2712		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2713
2714		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2715			have_tag = 1;
2716			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2717		}
2718
2719		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2720
2721			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2722			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2723			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2724			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2725			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
2726			    BUS_DMASYNC_POSTREAD);
2727			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
2728			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2729				ifp->if_ierrors++;
2730				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2731				continue;
2732			}
2733			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2734				ifp->if_ierrors++;
2735				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2736				continue;
2737			}
2738#ifdef TI_PRIVATE_JUMBOS
2739			m->m_len = cur_rx->ti_len;
2740#else /* TI_PRIVATE_JUMBOS */
2741#ifdef TI_JUMBO_HDRSPLIT
2742			if (sc->ti_hdrsplit)
2743				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2744					     cur_rx->ti_len, rxidx);
2745			else
2746#endif /* TI_JUMBO_HDRSPLIT */
2747			m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2748#endif /* TI_PRIVATE_JUMBOS */
2749		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2750			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2751			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2752			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2753			map = sc->ti_cdata.ti_rx_mini_maps[rxidx];
2754			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2755			    BUS_DMASYNC_POSTREAD);
2756			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2757			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2758				ifp->if_ierrors++;
2759				ti_newbuf_mini(sc, sc->ti_mini, m);
2760				continue;
2761			}
2762			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2763				ifp->if_ierrors++;
2764				ti_newbuf_mini(sc, sc->ti_mini, m);
2765				continue;
2766			}
2767			m->m_len = cur_rx->ti_len;
2768		} else {
2769			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2770			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2771			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2772			map = sc->ti_cdata.ti_rx_std_maps[rxidx];
2773			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2774			    BUS_DMASYNC_POSTREAD);
2775			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2776			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2777				ifp->if_ierrors++;
2778				ti_newbuf_std(sc, sc->ti_std, m);
2779				continue;
2780			}
2781			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2782				ifp->if_ierrors++;
2783				ti_newbuf_std(sc, sc->ti_std, m);
2784				continue;
2785			}
2786			m->m_len = cur_rx->ti_len;
2787		}
2788
2789		m->m_pkthdr.len = cur_rx->ti_len;
2790		ifp->if_ipackets++;
2791		m->m_pkthdr.rcvif = ifp;
2792
2793		if (ifp->if_hwassist) {
2794			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2795			    CSUM_DATA_VALID;
2796			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2797				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2798			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2799		}
2800
2801		/*
2802		 * If we received a packet with a vlan tag,
2803		 * tag it before passing the packet upward.
2804		 */
2805		if (have_tag) {
2806			VLAN_INPUT_TAG(ifp, m, vlan_tag);
2807			if (m == NULL)
2808				continue;
2809		}
2810		TI_UNLOCK(sc);
2811		(*ifp->if_input)(ifp, m);
2812		TI_LOCK(sc);
2813	}
2814
2815	/* Only necessary on the Tigon 1. */
2816	if (sc->ti_hwrev == TI_HWREV_TIGON)
2817		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2818		    sc->ti_rx_saved_considx);
2819
2820	TI_UPDATE_STDPROD(sc, sc->ti_std);
2821	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2822	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2823}
2824
2825static void
2826ti_txeof(sc)
2827	struct ti_softc		*sc;
2828{
2829	struct ti_tx_desc	*cur_tx = NULL;
2830	struct ifnet		*ifp;
2831	bus_dmamap_t		map;
2832
2833	ifp = sc->ti_ifp;
2834
2835	/*
2836	 * Go through our tx ring and free mbufs for those
2837	 * frames that have been sent.
2838	 */
2839	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2840		u_int32_t		idx = 0;
2841		struct ti_tx_desc	txdesc;
2842
2843		idx = sc->ti_tx_saved_considx;
2844		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2845			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2846			    sizeof(txdesc), &txdesc);
2847			cur_tx = &txdesc;
2848		} else
2849			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2850		if (cur_tx->ti_flags & TI_BDFLAG_END)
2851			ifp->if_opackets++;
2852		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2853			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2854			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2855			map = sc->ti_cdata.ti_tx_maps[idx];
2856			bus_dmamap_sync(sc->ti_mbuftx_dmat, map,
2857			    BUS_DMASYNC_POSTWRITE);
2858			bus_dmamap_unload(sc->ti_mbuftx_dmat, map);
2859		}
2860		sc->ti_txcnt--;
2861		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2862		ifp->if_timer = 0;
2863	}
2864
2865	if (cur_tx != NULL)
2866		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2867}
2868
2869static void
2870ti_intr(xsc)
2871	void			*xsc;
2872{
2873	struct ti_softc		*sc;
2874	struct ifnet		*ifp;
2875
2876	sc = xsc;
2877	TI_LOCK(sc);
2878	ifp = sc->ti_ifp;
2879
2880/*#ifdef notdef*/
2881	/* Avoid this for now -- checking this register is expensive. */
2882	/* Make sure this is really our interrupt. */
2883	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2884		TI_UNLOCK(sc);
2885		return;
2886	}
2887/*#endif*/
2888
2889	/* Ack interrupt and stop others from occuring. */
2890	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2891
2892	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2893		/* Check RX return ring producer/consumer */
2894		ti_rxeof(sc);
2895
2896		/* Check TX ring producer/consumer */
2897		ti_txeof(sc);
2898	}
2899
2900	ti_handle_events(sc);
2901
2902	/* Re-enable interrupts. */
2903	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2904
2905	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2906	    ifp->if_snd.ifq_head != NULL)
2907		ti_start_locked(ifp);
2908
2909	TI_UNLOCK(sc);
2910}
2911
2912static void
2913ti_stats_update(sc)
2914	struct ti_softc		*sc;
2915{
2916	struct ifnet		*ifp;
2917
2918	ifp = sc->ti_ifp;
2919
2920	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2921	    BUS_DMASYNC_POSTREAD);
2922
2923	ifp->if_collisions +=
2924	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2925	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2926	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2927	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2928	   ifp->if_collisions;
2929
2930	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2931	    BUS_DMASYNC_PREREAD);
2932}
2933
2934struct ti_dmamap_arg {
2935	struct ti_softc	*sc;
2936	struct m_tag	*mtag;
2937	struct mbuf	*m_head;
2938	u_int16_t	csum_flags;
2939	int		idx;
2940	int		error;
2941};
2942
2943static void
2944ti_encap_cb(arg, segs, nseg, mapsize, error)
2945	void *arg;
2946	bus_dma_segment_t *segs;
2947	int nseg;
2948	bus_size_t mapsize;
2949	int error;
2950{
2951	struct ti_softc		*sc;
2952	struct ti_dmamap_arg	*ctx;
2953	struct ti_tx_desc	*f = NULL;
2954	struct ti_tx_desc	txdesc;
2955	struct m_tag		*mtag;
2956	u_int32_t		frag, cur, cnt = 0;
2957	u_int16_t		csum_flags;
2958
2959	if (error)
2960		return;
2961
2962	ctx = (struct ti_dmamap_arg *)arg;
2963	sc = ctx->sc;
2964	cur = frag = ctx->idx;
2965	mtag = ctx->mtag;
2966	csum_flags = ctx->csum_flags;
2967
2968	/*
2969	 * Sanity check: avoid coming within 16 descriptors
2970	 * of the end of the ring.
2971	 */
2972	if ((TI_TX_RING_CNT - (sc->ti_txcnt + nseg)) < 16) {
2973		ctx->error = ENOBUFS;
2974		return;
2975	}
2976
2977	/*
2978	 * Start packing the mbufs in this chain into
2979	 * the fragment pointers. Stop when we run out
2980	 * of fragments or hit the end of the mbuf chain.
2981	 */
2982	while (nseg-- > 0) {
2983		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2984			bzero(&txdesc, sizeof(txdesc));
2985			f = &txdesc;
2986		} else
2987			f = &sc->ti_rdata->ti_tx_ring[frag];
2988		if (sc->ti_cdata.ti_tx_chain[frag] != NULL) {
2989			ctx->error = ENOBUFS;
2990			return;
2991		}
2992		ti_hostaddr64(&f->ti_addr, segs[cnt].ds_addr);
2993		f->ti_len = segs[cnt].ds_len;
2994		f->ti_flags = csum_flags;
2995
2996		if (mtag != NULL) {
2997			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2998			f->ti_vlan_tag = VLAN_TAG_VALUE(mtag) & 0xfff;
2999		} else {
3000			f->ti_vlan_tag = 0;
3001		}
3002
3003		if (sc->ti_hwrev == TI_HWREV_TIGON)
3004			ti_mem_write(sc, TI_TX_RING_BASE + frag *
3005			    sizeof(txdesc), sizeof(txdesc), &txdesc);
3006		cur = frag;
3007		TI_INC(frag, TI_TX_RING_CNT);
3008		cnt++;
3009	}
3010
3011	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3012		txdesc.ti_flags |= TI_BDFLAG_END;
3013		ti_mem_write(sc, TI_TX_RING_BASE + cur * sizeof(txdesc),
3014		    sizeof(txdesc), &txdesc);
3015	} else
3016		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
3017	sc->ti_cdata.ti_tx_chain[cur] = ctx->m_head;
3018	sc->ti_txcnt += cnt;
3019
3020	ctx->idx = frag;
3021	ctx->error = 0;
3022}
3023
3024/*
3025 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3026 * pointers to descriptors.
3027 */
3028static int
3029ti_encap(sc, m_head, txidx)
3030	struct ti_softc		*sc;
3031	struct mbuf		*m_head;
3032	u_int32_t		*txidx;
3033{
3034	bus_dmamap_t		map;
3035	struct ti_dmamap_arg	ctx;
3036	u_int32_t		frag, cnt;
3037	u_int16_t		csum_flags = 0;
3038	int			error;
3039
3040	frag = *txidx;
3041
3042	if (m_head->m_pkthdr.csum_flags) {
3043		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3044			csum_flags |= TI_BDFLAG_IP_CKSUM;
3045		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3046			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
3047		if (m_head->m_flags & M_LASTFRAG)
3048			csum_flags |= TI_BDFLAG_IP_FRAG_END;
3049		else if (m_head->m_flags & M_FRAG)
3050			csum_flags |= TI_BDFLAG_IP_FRAG;
3051	}
3052
3053	ctx.sc = sc;
3054	ctx.idx = frag;
3055	ctx.csum_flags = csum_flags;
3056	ctx.mtag = VLAN_OUTPUT_TAG(sc->ti_ifp, m_head);
3057	ctx.m_head = m_head;
3058
3059	map = sc->ti_cdata.ti_tx_maps[frag];
3060	error = bus_dmamap_load_mbuf(sc->ti_mbuftx_dmat, map, m_head,
3061	    ti_encap_cb, &ctx, 0);
3062	if (error)
3063		return (ENOBUFS);
3064
3065	cnt = ctx.idx - frag;
3066	frag = ctx.idx;
3067
3068	if ((ctx.error != 0) || (frag == sc->ti_tx_saved_considx)) {
3069		bus_dmamap_unload(sc->ti_mbuftx_dmat, map);
3070		return (ENOBUFS);
3071	}
3072
3073	bus_dmamap_sync(sc->ti_mbuftx_dmat, map, BUS_DMASYNC_PREWRITE);
3074	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
3075	    BUS_DMASYNC_PREWRITE);
3076	*txidx = frag;
3077	return (0);
3078}
3079
3080static void
3081ti_start(ifp)
3082	struct ifnet		*ifp;
3083{
3084	struct ti_softc		*sc;
3085
3086	sc = ifp->if_softc;
3087	TI_LOCK(sc);
3088	ti_start_locked(ifp);
3089	TI_UNLOCK(sc);
3090}
3091
3092/*
3093 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3094 * to the mbuf data regions directly in the transmit descriptors.
3095 */
3096static void
3097ti_start_locked(ifp)
3098	struct ifnet		*ifp;
3099{
3100	struct ti_softc		*sc;
3101	struct mbuf		*m_head = NULL;
3102	u_int32_t		prodidx = 0;
3103
3104	sc = ifp->if_softc;
3105
3106	prodidx = sc->ti_tx_saved_prodidx;
3107
3108	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
3109		IF_DEQUEUE(&ifp->if_snd, m_head);
3110		if (m_head == NULL)
3111			break;
3112
3113		/*
3114		 * XXX
3115		 * safety overkill.  If this is a fragmented packet chain
3116		 * with delayed TCP/UDP checksums, then only encapsulate
3117		 * it if we have enough descriptors to handle the entire
3118		 * chain at once.
3119		 * (paranoia -- may not actually be needed)
3120		 */
3121		if (m_head->m_flags & M_FIRSTFRAG &&
3122		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3123			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
3124			    m_head->m_pkthdr.csum_data + 16) {
3125				IF_PREPEND(&ifp->if_snd, m_head);
3126				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3127				break;
3128			}
3129		}
3130
3131		/*
3132		 * Pack the data into the transmit ring. If we
3133		 * don't have room, set the OACTIVE flag and wait
3134		 * for the NIC to drain the ring.
3135		 */
3136		if (ti_encap(sc, m_head, &prodidx)) {
3137			IF_PREPEND(&ifp->if_snd, m_head);
3138			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3139			break;
3140		}
3141
3142		/*
3143		 * If there's a BPF listener, bounce a copy of this frame
3144		 * to him.
3145		 */
3146		BPF_MTAP(ifp, m_head);
3147	}
3148
3149	/* Transmit */
3150	sc->ti_tx_saved_prodidx = prodidx;
3151	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
3152
3153	/*
3154	 * Set a timeout in case the chip goes out to lunch.
3155	 */
3156	ifp->if_timer = 5;
3157}
3158
3159static void
3160ti_init(xsc)
3161	void			*xsc;
3162{
3163	struct ti_softc		*sc;
3164
3165	sc = xsc;
3166	TI_LOCK(sc);
3167	ti_init_locked(sc);
3168	TI_UNLOCK(sc);
3169}
3170
3171static void
3172ti_init_locked(xsc)
3173	void			*xsc;
3174{
3175	struct ti_softc		*sc = xsc;
3176
3177	/* Cancel pending I/O and flush buffers. */
3178	ti_stop(sc);
3179
3180	/* Init the gen info block, ring control blocks and firmware. */
3181	if (ti_gibinit(sc)) {
3182		if_printf(sc->ti_ifp, "initialization failure\n");
3183		return;
3184	}
3185}
3186
3187static void ti_init2(sc)
3188	struct ti_softc		*sc;
3189{
3190	struct ti_cmd_desc	cmd;
3191	struct ifnet		*ifp;
3192	u_int8_t		*ea;
3193	struct ifmedia		*ifm;
3194	int			tmp;
3195
3196	TI_LOCK_ASSERT(sc);
3197
3198	ifp = sc->ti_ifp;
3199
3200	/* Specify MTU and interface index. */
3201	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
3202	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3203	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3204	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3205
3206	/* Load our MAC address. */
3207	ea = IF_LLADDR(sc->ti_ifp);
3208	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3209	CSR_WRITE_4(sc, TI_GCR_PAR1,
3210	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3211	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3212
3213	/* Enable or disable promiscuous mode as needed. */
3214	if (ifp->if_flags & IFF_PROMISC) {
3215		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3216	} else {
3217		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3218	}
3219
3220	/* Program multicast filter. */
3221	ti_setmulti(sc);
3222
3223	/*
3224	 * If this is a Tigon 1, we should tell the
3225	 * firmware to use software packet filtering.
3226	 */
3227	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3228		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3229	}
3230
3231	/* Init RX ring. */
3232	ti_init_rx_ring_std(sc);
3233
3234	/* Init jumbo RX ring. */
3235	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3236		ti_init_rx_ring_jumbo(sc);
3237
3238	/*
3239	 * If this is a Tigon 2, we can also configure the
3240	 * mini ring.
3241	 */
3242	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
3243		ti_init_rx_ring_mini(sc);
3244
3245	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3246	sc->ti_rx_saved_considx = 0;
3247
3248	/* Init TX ring. */
3249	ti_init_tx_ring(sc);
3250
3251	/* Tell firmware we're alive. */
3252	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3253
3254	/* Enable host interrupts. */
3255	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3256
3257	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3258	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3259
3260	/*
3261	 * Make sure to set media properly. We have to do this
3262	 * here since we have to issue commands in order to set
3263	 * the link negotiation and we can't issue commands until
3264	 * the firmware is running.
3265	 */
3266	ifm = &sc->ifmedia;
3267	tmp = ifm->ifm_media;
3268	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3269	ti_ifmedia_upd(ifp);
3270	ifm->ifm_media = tmp;
3271}
3272
3273/*
3274 * Set media options.
3275 */
3276static int
3277ti_ifmedia_upd(ifp)
3278	struct ifnet		*ifp;
3279{
3280	struct ti_softc		*sc;
3281	struct ifmedia		*ifm;
3282	struct ti_cmd_desc	cmd;
3283	u_int32_t		flowctl;
3284
3285	sc = ifp->if_softc;
3286	ifm = &sc->ifmedia;
3287
3288	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3289		return (EINVAL);
3290
3291	flowctl = 0;
3292
3293	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3294	case IFM_AUTO:
3295		/*
3296		 * Transmit flow control doesn't work on the Tigon 1.
3297		 */
3298		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3299
3300		/*
3301		 * Transmit flow control can also cause problems on the
3302		 * Tigon 2, apparantly with both the copper and fiber
3303		 * boards.  The symptom is that the interface will just
3304		 * hang.  This was reproduced with Alteon 180 switches.
3305		 */
3306#if 0
3307		if (sc->ti_hwrev != TI_HWREV_TIGON)
3308			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3309#endif
3310
3311		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3312		    TI_GLNK_FULL_DUPLEX| flowctl |
3313		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3314
3315		flowctl = TI_LNK_RX_FLOWCTL_Y;
3316#if 0
3317		if (sc->ti_hwrev != TI_HWREV_TIGON)
3318			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3319#endif
3320
3321		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3322		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3323		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3324		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3325		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3326		break;
3327	case IFM_1000_SX:
3328	case IFM_1000_T:
3329		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3330#if 0
3331		if (sc->ti_hwrev != TI_HWREV_TIGON)
3332			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3333#endif
3334
3335		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3336		    flowctl |TI_GLNK_ENB);
3337		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3338		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3339			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3340		}
3341		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3342		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3343		break;
3344	case IFM_100_FX:
3345	case IFM_10_FL:
3346	case IFM_100_TX:
3347	case IFM_10_T:
3348		flowctl = TI_LNK_RX_FLOWCTL_Y;
3349#if 0
3350		if (sc->ti_hwrev != TI_HWREV_TIGON)
3351			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3352#endif
3353
3354		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3355		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3356		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3357		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3358			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3359		} else {
3360			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3361		}
3362		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3363			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3364		} else {
3365			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3366		}
3367		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3368		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3369		break;
3370	}
3371
3372	return (0);
3373}
3374
3375/*
3376 * Report current media status.
3377 */
3378static void
3379ti_ifmedia_sts(ifp, ifmr)
3380	struct ifnet		*ifp;
3381	struct ifmediareq	*ifmr;
3382{
3383	struct ti_softc		*sc;
3384	u_int32_t		media = 0;
3385
3386	sc = ifp->if_softc;
3387
3388	ifmr->ifm_status = IFM_AVALID;
3389	ifmr->ifm_active = IFM_ETHER;
3390
3391	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3392		return;
3393
3394	ifmr->ifm_status |= IFM_ACTIVE;
3395
3396	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3397		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3398		if (sc->ti_copper)
3399			ifmr->ifm_active |= IFM_1000_T;
3400		else
3401			ifmr->ifm_active |= IFM_1000_SX;
3402		if (media & TI_GLNK_FULL_DUPLEX)
3403			ifmr->ifm_active |= IFM_FDX;
3404		else
3405			ifmr->ifm_active |= IFM_HDX;
3406	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3407		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3408		if (sc->ti_copper) {
3409			if (media & TI_LNK_100MB)
3410				ifmr->ifm_active |= IFM_100_TX;
3411			if (media & TI_LNK_10MB)
3412				ifmr->ifm_active |= IFM_10_T;
3413		} else {
3414			if (media & TI_LNK_100MB)
3415				ifmr->ifm_active |= IFM_100_FX;
3416			if (media & TI_LNK_10MB)
3417				ifmr->ifm_active |= IFM_10_FL;
3418		}
3419		if (media & TI_LNK_FULL_DUPLEX)
3420			ifmr->ifm_active |= IFM_FDX;
3421		if (media & TI_LNK_HALF_DUPLEX)
3422			ifmr->ifm_active |= IFM_HDX;
3423	}
3424}
3425
3426static int
3427ti_ioctl(ifp, command, data)
3428	struct ifnet		*ifp;
3429	u_long			command;
3430	caddr_t			data;
3431{
3432	struct ti_softc		*sc = ifp->if_softc;
3433	struct ifreq		*ifr = (struct ifreq *) data;
3434	int			mask, error = 0;
3435	struct ti_cmd_desc	cmd;
3436
3437	switch (command) {
3438	case SIOCSIFMTU:
3439		TI_LOCK(sc);
3440		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3441			error = EINVAL;
3442		else {
3443			ifp->if_mtu = ifr->ifr_mtu;
3444			ti_init_locked(sc);
3445		}
3446		TI_UNLOCK(sc);
3447		break;
3448	case SIOCSIFFLAGS:
3449		TI_LOCK(sc);
3450		if (ifp->if_flags & IFF_UP) {
3451			/*
3452			 * If only the state of the PROMISC flag changed,
3453			 * then just use the 'set promisc mode' command
3454			 * instead of reinitializing the entire NIC. Doing
3455			 * a full re-init means reloading the firmware and
3456			 * waiting for it to start up, which may take a
3457			 * second or two.
3458			 */
3459			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3460			    ifp->if_flags & IFF_PROMISC &&
3461			    !(sc->ti_if_flags & IFF_PROMISC)) {
3462				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3463				    TI_CMD_CODE_PROMISC_ENB, 0);
3464			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3465			    !(ifp->if_flags & IFF_PROMISC) &&
3466			    sc->ti_if_flags & IFF_PROMISC) {
3467				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3468				    TI_CMD_CODE_PROMISC_DIS, 0);
3469			} else
3470				ti_init_locked(sc);
3471		} else {
3472			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3473				ti_stop(sc);
3474			}
3475		}
3476		sc->ti_if_flags = ifp->if_flags;
3477		TI_UNLOCK(sc);
3478		break;
3479	case SIOCADDMULTI:
3480	case SIOCDELMULTI:
3481		TI_LOCK(sc);
3482		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3483			ti_setmulti(sc);
3484		TI_UNLOCK(sc);
3485		break;
3486	case SIOCSIFMEDIA:
3487	case SIOCGIFMEDIA:
3488		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3489		break;
3490	case SIOCSIFCAP:
3491		TI_LOCK(sc);
3492		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3493		if (mask & IFCAP_HWCSUM) {
3494			if (IFCAP_HWCSUM & ifp->if_capenable)
3495				ifp->if_capenable &= ~IFCAP_HWCSUM;
3496			else
3497				ifp->if_capenable |= IFCAP_HWCSUM;
3498			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3499				ti_init_locked(sc);
3500		}
3501		TI_UNLOCK(sc);
3502		break;
3503	default:
3504		error = ether_ioctl(ifp, command, data);
3505		break;
3506	}
3507
3508	return (error);
3509}
3510
3511static int
3512ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3513{
3514	struct ti_softc *sc;
3515
3516	sc = dev->si_drv1;
3517	if (sc == NULL)
3518		return (ENODEV);
3519
3520	TI_LOCK(sc);
3521	sc->ti_flags |= TI_FLAG_DEBUGING;
3522	TI_UNLOCK(sc);
3523
3524	return (0);
3525}
3526
3527static int
3528ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3529{
3530	struct ti_softc *sc;
3531
3532	sc = dev->si_drv1;
3533	if (sc == NULL)
3534		return (ENODEV);
3535
3536	TI_LOCK(sc);
3537	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3538	TI_UNLOCK(sc);
3539
3540	return (0);
3541}
3542
3543/*
3544 * This ioctl routine goes along with the Tigon character device.
3545 */
3546static int
3547ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3548    struct thread *td)
3549{
3550	int error;
3551	struct ti_softc *sc;
3552
3553	sc = dev->si_drv1;
3554	if (sc == NULL)
3555		return (ENODEV);
3556
3557	error = 0;
3558
3559	switch (cmd) {
3560	case TIIOCGETSTATS:
3561	{
3562		struct ti_stats *outstats;
3563
3564		outstats = (struct ti_stats *)addr;
3565
3566		TI_LOCK(sc);
3567		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3568		      sizeof(struct ti_stats));
3569		TI_UNLOCK(sc);
3570		break;
3571	}
3572	case TIIOCGETPARAMS:
3573	{
3574		struct ti_params	*params;
3575
3576		params = (struct ti_params *)addr;
3577
3578		TI_LOCK(sc);
3579		params->ti_stat_ticks = sc->ti_stat_ticks;
3580		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3581		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3582		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3583		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3584		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3585		params->param_mask = TI_PARAM_ALL;
3586		TI_UNLOCK(sc);
3587
3588		error = 0;
3589
3590		break;
3591	}
3592	case TIIOCSETPARAMS:
3593	{
3594		struct ti_params *params;
3595
3596		params = (struct ti_params *)addr;
3597
3598		TI_LOCK(sc);
3599		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3600			sc->ti_stat_ticks = params->ti_stat_ticks;
3601			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3602		}
3603
3604		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3605			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3606			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3607				    sc->ti_rx_coal_ticks);
3608		}
3609
3610		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3611			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3612			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3613				    sc->ti_tx_coal_ticks);
3614		}
3615
3616		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3617			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3618			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3619				    sc->ti_rx_max_coal_bds);
3620		}
3621
3622		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3623			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3624			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3625				    sc->ti_tx_max_coal_bds);
3626		}
3627
3628		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3629			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3630			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3631				    sc->ti_tx_buf_ratio);
3632		}
3633		TI_UNLOCK(sc);
3634
3635		error = 0;
3636
3637		break;
3638	}
3639	case TIIOCSETTRACE: {
3640		ti_trace_type	trace_type;
3641
3642		trace_type = *(ti_trace_type *)addr;
3643
3644		/*
3645		 * Set tracing to whatever the user asked for.  Setting
3646		 * this register to 0 should have the effect of disabling
3647		 * tracing.
3648		 */
3649		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3650
3651		error = 0;
3652
3653		break;
3654	}
3655	case TIIOCGETTRACE: {
3656		struct ti_trace_buf	*trace_buf;
3657		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3658
3659		trace_buf = (struct ti_trace_buf *)addr;
3660
3661		TI_LOCK(sc);
3662		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3663		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3664		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3665
3666#if 0
3667		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3668		       "trace_len = %d\n", trace_start,
3669		       cur_trace_ptr, trace_len);
3670		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3671		       trace_buf->buf_len);
3672#endif
3673
3674		error = ti_copy_mem(sc, trace_start, min(trace_len,
3675				    trace_buf->buf_len),
3676				    (caddr_t)trace_buf->buf, 1, 1);
3677
3678		if (error == 0) {
3679			trace_buf->fill_len = min(trace_len,
3680						  trace_buf->buf_len);
3681			if (cur_trace_ptr < trace_start)
3682				trace_buf->cur_trace_ptr =
3683					trace_start - cur_trace_ptr;
3684			else
3685				trace_buf->cur_trace_ptr =
3686					cur_trace_ptr - trace_start;
3687		} else
3688			trace_buf->fill_len = 0;
3689		TI_UNLOCK(sc);
3690
3691		break;
3692	}
3693
3694	/*
3695	 * For debugging, five ioctls are needed:
3696	 * ALT_ATTACH
3697	 * ALT_READ_TG_REG
3698	 * ALT_WRITE_TG_REG
3699	 * ALT_READ_TG_MEM
3700	 * ALT_WRITE_TG_MEM
3701	 */
3702	case ALT_ATTACH:
3703		/*
3704		 * From what I can tell, Alteon's Solaris Tigon driver
3705		 * only has one character device, so you have to attach
3706		 * to the Tigon board you're interested in.  This seems
3707		 * like a not-so-good way to do things, since unless you
3708		 * subsequently specify the unit number of the device
3709		 * you're interested in in every ioctl, you'll only be
3710		 * able to debug one board at a time.
3711		 */
3712		error = 0;
3713		break;
3714	case ALT_READ_TG_MEM:
3715	case ALT_WRITE_TG_MEM:
3716	{
3717		struct tg_mem *mem_param;
3718		u_int32_t sram_end, scratch_end;
3719
3720		mem_param = (struct tg_mem *)addr;
3721
3722		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3723			sram_end = TI_END_SRAM_I;
3724			scratch_end = TI_END_SCRATCH_I;
3725		} else {
3726			sram_end = TI_END_SRAM_II;
3727			scratch_end = TI_END_SCRATCH_II;
3728		}
3729
3730		/*
3731		 * For now, we'll only handle accessing regular SRAM,
3732		 * nothing else.
3733		 */
3734		TI_LOCK(sc);
3735		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3736		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3737			/*
3738			 * In this instance, we always copy to/from user
3739			 * space, so the user space argument is set to 1.
3740			 */
3741			error = ti_copy_mem(sc, mem_param->tgAddr,
3742					    mem_param->len,
3743					    mem_param->userAddr, 1,
3744					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3745		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3746			&& (mem_param->tgAddr <= scratch_end)) {
3747			error = ti_copy_scratch(sc, mem_param->tgAddr,
3748						mem_param->len,
3749						mem_param->userAddr, 1,
3750						(cmd == ALT_READ_TG_MEM) ?
3751						1 : 0, TI_PROCESSOR_A);
3752		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3753			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3754			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3755				if_printf(sc->ti_ifp,
3756				    "invalid memory range for Tigon I\n");
3757				error = EINVAL;
3758				break;
3759			}
3760			error = ti_copy_scratch(sc, mem_param->tgAddr -
3761						TI_SCRATCH_DEBUG_OFF,
3762						mem_param->len,
3763						mem_param->userAddr, 1,
3764						(cmd == ALT_READ_TG_MEM) ?
3765						1 : 0, TI_PROCESSOR_B);
3766		} else {
3767			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3768			        "out of supported range\n",
3769			        mem_param->tgAddr, mem_param->len);
3770			error = EINVAL;
3771		}
3772		TI_UNLOCK(sc);
3773
3774		break;
3775	}
3776	case ALT_READ_TG_REG:
3777	case ALT_WRITE_TG_REG:
3778	{
3779		struct tg_reg	*regs;
3780		u_int32_t	tmpval;
3781
3782		regs = (struct tg_reg *)addr;
3783
3784		/*
3785		 * Make sure the address in question isn't out of range.
3786		 */
3787		if (regs->addr > TI_REG_MAX) {
3788			error = EINVAL;
3789			break;
3790		}
3791		TI_LOCK(sc);
3792		if (cmd == ALT_READ_TG_REG) {
3793			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3794						regs->addr, &tmpval, 1);
3795			regs->data = ntohl(tmpval);
3796#if 0
3797			if ((regs->addr == TI_CPU_STATE)
3798			 || (regs->addr == TI_CPU_CTL_B)) {
3799				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3800				       regs->addr, tmpval);
3801			}
3802#endif
3803		} else {
3804			tmpval = htonl(regs->data);
3805			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3806						 regs->addr, &tmpval, 1);
3807		}
3808		TI_UNLOCK(sc);
3809
3810		break;
3811	}
3812	default:
3813		error = ENOTTY;
3814		break;
3815	}
3816	return (error);
3817}
3818
3819static void
3820ti_watchdog(ifp)
3821	struct ifnet		*ifp;
3822{
3823	struct ti_softc		*sc;
3824
3825	sc = ifp->if_softc;
3826	TI_LOCK(sc);
3827
3828	/*
3829	 * When we're debugging, the chip is often stopped for long periods
3830	 * of time, and that would normally cause the watchdog timer to fire.
3831	 * Since that impedes debugging, we don't want to do that.
3832	 */
3833	if (sc->ti_flags & TI_FLAG_DEBUGING) {
3834		TI_UNLOCK(sc);
3835		return;
3836	}
3837
3838	if_printf(ifp, "watchdog timeout -- resetting\n");
3839	ti_stop(sc);
3840	ti_init_locked(sc);
3841
3842	ifp->if_oerrors++;
3843	TI_UNLOCK(sc);
3844}
3845
3846/*
3847 * Stop the adapter and free any mbufs allocated to the
3848 * RX and TX lists.
3849 */
3850static void
3851ti_stop(sc)
3852	struct ti_softc		*sc;
3853{
3854	struct ifnet		*ifp;
3855	struct ti_cmd_desc	cmd;
3856
3857	TI_LOCK_ASSERT(sc);
3858
3859	ifp = sc->ti_ifp;
3860
3861	/* Disable host interrupts. */
3862	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3863	/*
3864	 * Tell firmware we're shutting down.
3865	 */
3866	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3867
3868	/* Halt and reinitialize. */
3869	if (ti_chipinit(sc) != 0)
3870		return;
3871	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3872	if (ti_chipinit(sc) != 0)
3873		return;
3874
3875	/* Free the RX lists. */
3876	ti_free_rx_ring_std(sc);
3877
3878	/* Free jumbo RX list. */
3879	ti_free_rx_ring_jumbo(sc);
3880
3881	/* Free mini RX list. */
3882	ti_free_rx_ring_mini(sc);
3883
3884	/* Free TX buffers. */
3885	ti_free_tx_ring(sc);
3886
3887	sc->ti_ev_prodidx.ti_idx = 0;
3888	sc->ti_return_prodidx.ti_idx = 0;
3889	sc->ti_tx_considx.ti_idx = 0;
3890	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3891
3892	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3893}
3894
3895/*
3896 * Stop all chip I/O so that the kernel's probe routines don't
3897 * get confused by errant DMAs when rebooting.
3898 */
3899static void
3900ti_shutdown(dev)
3901	device_t		dev;
3902{
3903	struct ti_softc		*sc;
3904
3905	sc = device_get_softc(dev);
3906	TI_LOCK(sc);
3907	ti_chipinit(sc);
3908	TI_UNLOCK(sc);
3909}
3910