if_ti.c revision 153770
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35 * Manuals, sample driver and firmware source kits are available
36 * from http://www.alteon.com/support/openkits.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48 * filtering and jumbo (9014 byte) frames. The hardware is largely
49 * controlled by firmware, which must be loaded into the NIC during
50 * initialization.
51 *
52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53 * revision, which supports new features such as extended commands,
54 * extended jumbo receive ring desciptors and a mini receive ring.
55 *
56 * Alteon Networks is to be commended for releasing such a vast amount
57 * of development material for the Tigon NIC without requiring an NDA
58 * (although they really should have done it a long time ago). With
59 * any luck, the other vendors will finally wise up and follow Alteon's
60 * stellar example.
61 *
62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63 * this driver by #including it as a C header file. This bloats the
64 * driver somewhat, but it's the easiest method considering that the
65 * driver code and firmware code need to be kept in sync. The source
66 * for the firmware is not provided with the FreeBSD distribution since
67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68 *
69 * The following people deserve special thanks:
70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71 *   for testing
72 * - Raymond Lee of Netgear, for providing a pair of Netgear
73 *   GA620 Tigon 2 boards for testing
74 * - Ulf Zimmermann, for bringing the GA260 to my attention and
75 *   convincing me to write this driver.
76 * - Andrew Gallatin for providing FreeBSD/Alpha support.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/dev/ti/if_ti.c 153770 2005-12-28 02:57:19Z yongari $");
81
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/module.h>
91#include <sys/socket.h>
92#include <sys/queue.h>
93#include <sys/conf.h>
94#include <sys/sf_buf.h>
95
96#include <net/if.h>
97#include <net/if_arp.h>
98#include <net/ethernet.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101#include <net/if_types.h>
102#include <net/if_vlan_var.h>
103
104#include <net/bpf.h>
105
106#include <netinet/in_systm.h>
107#include <netinet/in.h>
108#include <netinet/ip.h>
109
110#include <machine/bus.h>
111#include <machine/resource.h>
112#include <sys/bus.h>
113#include <sys/rman.h>
114
115/* #define TI_PRIVATE_JUMBOS */
116#ifndef TI_PRIVATE_JUMBOS
117#include <vm/vm.h>
118#include <vm/vm_page.h>
119#endif
120
121#include <dev/pci/pcireg.h>
122#include <dev/pci/pcivar.h>
123
124#include <sys/tiio.h>
125#include <dev/ti/if_tireg.h>
126#include <dev/ti/ti_fw.h>
127#include <dev/ti/ti_fw2.h>
128
129#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
130/*
131 * We can only turn on header splitting if we're using extended receive
132 * BDs.
133 */
134#if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
135#error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
136#endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
137
138typedef enum {
139	TI_SWAP_HTON,
140	TI_SWAP_NTOH
141} ti_swap_type;
142
143
144/*
145 * Various supported device vendors/types and their names.
146 */
147
148static struct ti_type ti_devs[] = {
149	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
150		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
151	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
152		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
153	{ TC_VENDORID,	TC_DEVICEID_3C985,
154		"3Com 3c985-SX Gigabit Ethernet" },
155	{ NG_VENDORID, NG_DEVICEID_GA620,
156		"Netgear GA620 1000baseSX Gigabit Ethernet" },
157	{ NG_VENDORID, NG_DEVICEID_GA620T,
158		"Netgear GA620 1000baseT Gigabit Ethernet" },
159	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
160		"Silicon Graphics Gigabit Ethernet" },
161	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
162		"Farallon PN9000SX Gigabit Ethernet" },
163	{ 0, 0, NULL }
164};
165
166
167static	d_open_t	ti_open;
168static	d_close_t	ti_close;
169static	d_ioctl_t	ti_ioctl2;
170
171static struct cdevsw ti_cdevsw = {
172	.d_version =	D_VERSION,
173	.d_flags =	0,
174	.d_open =	ti_open,
175	.d_close =	ti_close,
176	.d_ioctl =	ti_ioctl2,
177	.d_name =	"ti",
178};
179
180static int ti_probe(device_t);
181static int ti_attach(device_t);
182static int ti_detach(device_t);
183static void ti_txeof(struct ti_softc *);
184static void ti_rxeof(struct ti_softc *);
185
186static void ti_stats_update(struct ti_softc *);
187static int ti_encap(struct ti_softc *, struct mbuf *, u_int32_t *);
188static void ti_encap_cb(void *arg, bus_dma_segment_t *segs, int nseg,
189    bus_size_t mapsize, int error);
190
191static void ti_intr(void *);
192static void ti_start(struct ifnet *);
193static void ti_start_locked(struct ifnet *);
194static int ti_ioctl(struct ifnet *, u_long, caddr_t);
195static void ti_init(void *);
196static void ti_init_locked(void *);
197static void ti_init2(struct ti_softc *);
198static void ti_stop(struct ti_softc *);
199static void ti_watchdog(struct ifnet *);
200static void ti_shutdown(device_t);
201static int ti_ifmedia_upd(struct ifnet *);
202static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
203
204static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
205static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
206static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
207
208static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
209static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
210static void ti_setmulti(struct ti_softc *);
211
212static void ti_mem_read(struct ti_softc *, u_int32_t, u_int32_t, void *);
213static void ti_mem_write(struct ti_softc *, u_int32_t, u_int32_t, void *);
214static void ti_mem_zero(struct ti_softc *, u_int32_t, u_int32_t);
215static int ti_copy_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t, int, int);
216static int ti_copy_scratch(struct ti_softc *, u_int32_t, u_int32_t, caddr_t,
217		int, int, int);
218static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
219static void ti_loadfw(struct ti_softc *);
220static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
221static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
222static void ti_handle_events(struct ti_softc *);
223static int ti_alloc_dmamaps(struct ti_softc *);
224static void ti_free_dmamaps(struct ti_softc *);
225static int ti_alloc_jumbo_mem(struct ti_softc *);
226#ifdef TI_PRIVATE_JUMBOS
227static void *ti_jalloc(struct ti_softc *);
228static void ti_jfree(void *, void *);
229#endif /* TI_PRIVATE_JUMBOS */
230static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
231static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
232static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
233static int ti_init_rx_ring_std(struct ti_softc *);
234static void ti_free_rx_ring_std(struct ti_softc *);
235static int ti_init_rx_ring_jumbo(struct ti_softc *);
236static void ti_free_rx_ring_jumbo(struct ti_softc *);
237static int ti_init_rx_ring_mini(struct ti_softc *);
238static void ti_free_rx_ring_mini(struct ti_softc *);
239static void ti_free_tx_ring(struct ti_softc *);
240static int ti_init_tx_ring(struct ti_softc *);
241
242static int ti_64bitslot_war(struct ti_softc *);
243static int ti_chipinit(struct ti_softc *);
244static int ti_gibinit(struct ti_softc *);
245
246#ifdef TI_JUMBO_HDRSPLIT
247static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
248					     int pkt_len, int idx);
249#endif /* TI_JUMBO_HDRSPLIT */
250
251static device_method_t ti_methods[] = {
252	/* Device interface */
253	DEVMETHOD(device_probe,		ti_probe),
254	DEVMETHOD(device_attach,	ti_attach),
255	DEVMETHOD(device_detach,	ti_detach),
256	DEVMETHOD(device_shutdown,	ti_shutdown),
257	{ 0, 0 }
258};
259
260static driver_t ti_driver = {
261	"ti",
262	ti_methods,
263	sizeof(struct ti_softc)
264};
265
266static devclass_t ti_devclass;
267
268DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
269MODULE_DEPEND(ti, pci, 1, 1, 1);
270MODULE_DEPEND(ti, ether, 1, 1, 1);
271
272/*
273 * Send an instruction or address to the EEPROM, check for ACK.
274 */
275static u_int32_t ti_eeprom_putbyte(sc, byte)
276	struct ti_softc		*sc;
277	int			byte;
278{
279	int			i, ack = 0;
280
281	/*
282	 * Make sure we're in TX mode.
283	 */
284	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
285
286	/*
287	 * Feed in each bit and stobe the clock.
288	 */
289	for (i = 0x80; i; i >>= 1) {
290		if (byte & i) {
291			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
292		} else {
293			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
294		}
295		DELAY(1);
296		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
297		DELAY(1);
298		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
299	}
300
301	/*
302	 * Turn off TX mode.
303	 */
304	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
305
306	/*
307	 * Check for ack.
308	 */
309	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
310	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
311	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
312
313	return (ack);
314}
315
316/*
317 * Read a byte of data stored in the EEPROM at address 'addr.'
318 * We have to send two address bytes since the EEPROM can hold
319 * more than 256 bytes of data.
320 */
321static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
322	struct ti_softc		*sc;
323	int			addr;
324	u_int8_t		*dest;
325{
326	int			i;
327	u_int8_t		byte = 0;
328
329	EEPROM_START;
330
331	/*
332	 * Send write control code to EEPROM.
333	 */
334	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
335		if_printf(sc->ti_ifp,
336		    "failed to send write command, status: %x\n",
337		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
338		return (1);
339	}
340
341	/*
342	 * Send first byte of address of byte we want to read.
343	 */
344	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
345		if_printf(sc->ti_ifp, "failed to send address, status: %x\n",
346		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
347		return (1);
348	}
349	/*
350	 * Send second byte address of byte we want to read.
351	 */
352	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
353		if_printf(sc->ti_ifp, "failed to send address, status: %x\n",
354		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
355		return (1);
356	}
357
358	EEPROM_STOP;
359	EEPROM_START;
360	/*
361	 * Send read control code to EEPROM.
362	 */
363	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
364		if_printf(sc->ti_ifp,
365		    "failed to send read command, status: %x\n",
366		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
367		return (1);
368	}
369
370	/*
371	 * Start reading bits from EEPROM.
372	 */
373	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
374	for (i = 0x80; i; i >>= 1) {
375		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
376		DELAY(1);
377		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
378			byte |= i;
379		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
380		DELAY(1);
381	}
382
383	EEPROM_STOP;
384
385	/*
386	 * No ACK generated for read, so just return byte.
387	 */
388
389	*dest = byte;
390
391	return (0);
392}
393
394/*
395 * Read a sequence of bytes from the EEPROM.
396 */
397static int
398ti_read_eeprom(sc, dest, off, cnt)
399	struct ti_softc		*sc;
400	caddr_t			dest;
401	int			off;
402	int			cnt;
403{
404	int			err = 0, i;
405	u_int8_t		byte = 0;
406
407	for (i = 0; i < cnt; i++) {
408		err = ti_eeprom_getbyte(sc, off + i, &byte);
409		if (err)
410			break;
411		*(dest + i) = byte;
412	}
413
414	return (err ? 1 : 0);
415}
416
417/*
418 * NIC memory read function.
419 * Can be used to copy data from NIC local memory.
420 */
421static void
422ti_mem_read(sc, addr, len, buf)
423	struct ti_softc		*sc;
424	u_int32_t		addr, len;
425	void			*buf;
426{
427	int			segptr, segsize, cnt;
428	char			*ptr;
429
430	segptr = addr;
431	cnt = len;
432	ptr = buf;
433
434	while (cnt) {
435		if (cnt < TI_WINLEN)
436			segsize = cnt;
437		else
438			segsize = TI_WINLEN - (segptr % TI_WINLEN);
439		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
440		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
441		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
442		    segsize / 4);
443		ptr += segsize;
444		segptr += segsize;
445		cnt -= segsize;
446	}
447}
448
449
450/*
451 * NIC memory write function.
452 * Can be used to copy data into NIC local memory.
453 */
454static void
455ti_mem_write(sc, addr, len, buf)
456	struct ti_softc		*sc;
457	u_int32_t		addr, len;
458	void			*buf;
459{
460	int			segptr, segsize, cnt;
461	char			*ptr;
462
463	segptr = addr;
464	cnt = len;
465	ptr = buf;
466
467	while (cnt) {
468		if (cnt < TI_WINLEN)
469			segsize = cnt;
470		else
471			segsize = TI_WINLEN - (segptr % TI_WINLEN);
472		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
473		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
474		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
475		    segsize / 4);
476		ptr += segsize;
477		segptr += segsize;
478		cnt -= segsize;
479	}
480}
481
482/*
483 * NIC memory read function.
484 * Can be used to clear a section of NIC local memory.
485 */
486static void
487ti_mem_zero(sc, addr, len)
488	struct ti_softc		*sc;
489	u_int32_t		addr, len;
490{
491	int			segptr, segsize, cnt;
492
493	segptr = addr;
494	cnt = len;
495
496	while (cnt) {
497		if (cnt < TI_WINLEN)
498			segsize = cnt;
499		else
500			segsize = TI_WINLEN - (segptr % TI_WINLEN);
501		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
502		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
503		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
504		segptr += segsize;
505		cnt -= segsize;
506	}
507}
508
509static int
510ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
511	struct ti_softc		*sc;
512	u_int32_t		tigon_addr, len;
513	caddr_t			buf;
514	int			useraddr, readdata;
515{
516	int		segptr, segsize, cnt;
517	caddr_t		ptr;
518	u_int32_t	origwin;
519	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
520	int		resid, segresid;
521	int		first_pass;
522
523	TI_LOCK_ASSERT(sc);
524
525	/*
526	 * At the moment, we don't handle non-aligned cases, we just bail.
527	 * If this proves to be a problem, it will be fixed.
528	 */
529	if ((readdata == 0)
530	 && (tigon_addr & 0x3)) {
531		if_printf(sc->ti_ifp, "ti_copy_mem: tigon address %#x isn't "
532		    "word-aligned\n", tigon_addr);
533		if_printf(sc->ti_ifp, "ti_copy_mem: unaligned writes aren't "
534		    "yet supported\n");
535		return (EINVAL);
536	}
537
538	segptr = tigon_addr & ~0x3;
539	segresid = tigon_addr - segptr;
540
541	/*
542	 * This is the non-aligned amount left over that we'll need to
543	 * copy.
544	 */
545	resid = len & 0x3;
546
547	/* Add in the left over amount at the front of the buffer */
548	resid += segresid;
549
550	cnt = len & ~0x3;
551	/*
552	 * If resid + segresid is >= 4, add multiples of 4 to the count and
553	 * decrease the residual by that much.
554	 */
555	cnt += resid & ~0x3;
556	resid -= resid & ~0x3;
557
558	ptr = buf;
559
560	first_pass = 1;
561
562	/*
563	 * Save the old window base value.
564	 */
565	origwin = CSR_READ_4(sc, TI_WINBASE);
566
567	while (cnt) {
568		bus_size_t ti_offset;
569
570		if (cnt < TI_WINLEN)
571			segsize = cnt;
572		else
573			segsize = TI_WINLEN - (segptr % TI_WINLEN);
574		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
575
576		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
577
578		if (readdata) {
579
580			bus_space_read_region_4(sc->ti_btag,
581						sc->ti_bhandle, ti_offset,
582						(u_int32_t *)tmparray,
583						segsize >> 2);
584			if (useraddr) {
585				/*
586				 * Yeah, this is a little on the kludgy
587				 * side, but at least this code is only
588				 * used for debugging.
589				 */
590				ti_bcopy_swap(tmparray, tmparray2, segsize,
591					      TI_SWAP_NTOH);
592
593				TI_UNLOCK(sc);
594				if (first_pass) {
595					copyout(&tmparray2[segresid], ptr,
596						segsize - segresid);
597					first_pass = 0;
598				} else
599					copyout(tmparray2, ptr, segsize);
600				TI_LOCK(sc);
601			} else {
602				if (first_pass) {
603
604					ti_bcopy_swap(tmparray, tmparray2,
605						      segsize, TI_SWAP_NTOH);
606					TI_UNLOCK(sc);
607					bcopy(&tmparray2[segresid], ptr,
608					      segsize - segresid);
609					TI_LOCK(sc);
610					first_pass = 0;
611				} else
612					ti_bcopy_swap(tmparray, ptr, segsize,
613						      TI_SWAP_NTOH);
614			}
615
616		} else {
617			if (useraddr) {
618				TI_UNLOCK(sc);
619				copyin(ptr, tmparray2, segsize);
620				TI_LOCK(sc);
621				ti_bcopy_swap(tmparray2, tmparray, segsize,
622					      TI_SWAP_HTON);
623			} else
624				ti_bcopy_swap(ptr, tmparray, segsize,
625					      TI_SWAP_HTON);
626
627			bus_space_write_region_4(sc->ti_btag,
628						 sc->ti_bhandle, ti_offset,
629						 (u_int32_t *)tmparray,
630						 segsize >> 2);
631		}
632		segptr += segsize;
633		ptr += segsize;
634		cnt -= segsize;
635	}
636
637	/*
638	 * Handle leftover, non-word-aligned bytes.
639	 */
640	if (resid != 0) {
641		u_int32_t	tmpval, tmpval2;
642		bus_size_t	ti_offset;
643
644		/*
645		 * Set the segment pointer.
646		 */
647		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
648
649		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
650
651		/*
652		 * First, grab whatever is in our source/destination.
653		 * We'll obviously need this for reads, but also for
654		 * writes, since we'll be doing read/modify/write.
655		 */
656		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
657					ti_offset, &tmpval, 1);
658
659		/*
660		 * Next, translate this from little-endian to big-endian
661		 * (at least on i386 boxes).
662		 */
663		tmpval2 = ntohl(tmpval);
664
665		if (readdata) {
666			/*
667			 * If we're reading, just copy the leftover number
668			 * of bytes from the host byte order buffer to
669			 * the user's buffer.
670			 */
671			if (useraddr) {
672				TI_UNLOCK(sc);
673				copyout(&tmpval2, ptr, resid);
674				TI_LOCK(sc);
675			} else
676				bcopy(&tmpval2, ptr, resid);
677		} else {
678			/*
679			 * If we're writing, first copy the bytes to be
680			 * written into the network byte order buffer,
681			 * leaving the rest of the buffer with whatever was
682			 * originally in there.  Then, swap the bytes
683			 * around into host order and write them out.
684			 *
685			 * XXX KDM the read side of this has been verified
686			 * to work, but the write side of it has not been
687			 * verified.  So user beware.
688			 */
689			if (useraddr) {
690				TI_UNLOCK(sc);
691				copyin(ptr, &tmpval2, resid);
692				TI_LOCK(sc);
693			} else
694				bcopy(ptr, &tmpval2, resid);
695
696			tmpval = htonl(tmpval2);
697
698			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
699						 ti_offset, &tmpval, 1);
700		}
701	}
702
703	CSR_WRITE_4(sc, TI_WINBASE, origwin);
704
705	return (0);
706}
707
708static int
709ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
710	struct ti_softc		*sc;
711	u_int32_t		tigon_addr, len;
712	caddr_t			buf;
713	int			useraddr, readdata;
714	int			cpu;
715{
716	u_int32_t	segptr;
717	int		cnt;
718	u_int32_t	tmpval, tmpval2;
719	caddr_t		ptr;
720
721	TI_LOCK_ASSERT(sc);
722
723	/*
724	 * At the moment, we don't handle non-aligned cases, we just bail.
725	 * If this proves to be a problem, it will be fixed.
726	 */
727	if (tigon_addr & 0x3) {
728		if_printf(sc->ti_ifp, "ti_copy_scratch: tigon address %#x "
729		    "isn't word-aligned\n", tigon_addr);
730		return (EINVAL);
731	}
732
733	if (len & 0x3) {
734		if_printf(sc->ti_ifp, "ti_copy_scratch: transfer length %d "
735		    "isn't word-aligned\n", len);
736		return (EINVAL);
737	}
738
739	segptr = tigon_addr;
740	cnt = len;
741	ptr = buf;
742
743	while (cnt) {
744		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
745
746		if (readdata) {
747			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
748
749			tmpval = ntohl(tmpval2);
750
751			/*
752			 * Note:  I've used this debugging interface
753			 * extensively with Alteon's 12.3.15 firmware,
754			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
755			 *
756			 * When you compile the firmware without
757			 * optimization, which is necessary sometimes in
758			 * order to properly step through it, you sometimes
759			 * read out a bogus value of 0xc0017c instead of
760			 * whatever was supposed to be in that scratchpad
761			 * location.  That value is on the stack somewhere,
762			 * but I've never been able to figure out what was
763			 * causing the problem.
764			 *
765			 * The address seems to pop up in random places,
766			 * often not in the same place on two subsequent
767			 * reads.
768			 *
769			 * In any case, the underlying data doesn't seem
770			 * to be affected, just the value read out.
771			 *
772			 * KDM, 3/7/2000
773			 */
774
775			if (tmpval2 == 0xc0017c)
776				if_printf(sc->ti_ifp, "found 0xc0017c at %#x "
777				       "(tmpval2)\n", segptr);
778
779			if (tmpval == 0xc0017c)
780				if_printf(sc->ti_ifp, "found 0xc0017c at %#x "
781				       "(tmpval)\n", segptr);
782
783			if (useraddr)
784				copyout(&tmpval, ptr, 4);
785			else
786				bcopy(&tmpval, ptr, 4);
787		} else {
788			if (useraddr)
789				copyin(ptr, &tmpval2, 4);
790			else
791				bcopy(ptr, &tmpval2, 4);
792
793			tmpval = htonl(tmpval2);
794
795			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
796		}
797
798		cnt -= 4;
799		segptr += 4;
800		ptr += 4;
801	}
802
803	return (0);
804}
805
806static int
807ti_bcopy_swap(src, dst, len, swap_type)
808	const void	*src;
809	void		*dst;
810	size_t		len;
811	ti_swap_type	swap_type;
812{
813	const u_int8_t *tmpsrc;
814	u_int8_t *tmpdst;
815	size_t tmplen;
816
817	if (len & 0x3) {
818		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
819		       len);
820		return (-1);
821	}
822
823	tmpsrc = src;
824	tmpdst = dst;
825	tmplen = len;
826
827	while (tmplen) {
828		if (swap_type == TI_SWAP_NTOH)
829			*(u_int32_t *)tmpdst =
830				ntohl(*(const u_int32_t *)tmpsrc);
831		else
832			*(u_int32_t *)tmpdst =
833				htonl(*(const u_int32_t *)tmpsrc);
834
835		tmpsrc += 4;
836		tmpdst += 4;
837		tmplen -= 4;
838	}
839
840	return (0);
841}
842
843/*
844 * Load firmware image into the NIC. Check that the firmware revision
845 * is acceptable and see if we want the firmware for the Tigon 1 or
846 * Tigon 2.
847 */
848static void
849ti_loadfw(sc)
850	struct ti_softc		*sc;
851{
852
853	TI_LOCK_ASSERT(sc);
854
855	switch (sc->ti_hwrev) {
856	case TI_HWREV_TIGON:
857		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
858		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
859		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
860			if_printf(sc->ti_ifp, "firmware revision mismatch; "
861			    "want %d.%d.%d, got %d.%d.%d\n",
862			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
863			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
864			    tigonFwReleaseMinor, tigonFwReleaseFix);
865			return;
866		}
867		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
868		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
869		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
870		    tigonFwRodata);
871		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
872		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
873		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
874		break;
875	case TI_HWREV_TIGON_II:
876		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
877		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
878		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
879			if_printf(sc->ti_ifp, "firmware revision mismatch; "
880			    "want %d.%d.%d, got %d.%d.%d\n",
881			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
882			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
883			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
884			return;
885		}
886		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
887		    tigon2FwText);
888		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
889		    tigon2FwData);
890		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
891		    tigon2FwRodata);
892		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
893		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
894		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
895		break;
896	default:
897		if_printf(sc->ti_ifp,
898		    "can't load firmware: unknown hardware rev\n");
899		break;
900	}
901}
902
903/*
904 * Send the NIC a command via the command ring.
905 */
906static void
907ti_cmd(sc, cmd)
908	struct ti_softc		*sc;
909	struct ti_cmd_desc	*cmd;
910{
911	u_int32_t		index;
912
913	index = sc->ti_cmd_saved_prodidx;
914	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
915	TI_INC(index, TI_CMD_RING_CNT);
916	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
917	sc->ti_cmd_saved_prodidx = index;
918}
919
920/*
921 * Send the NIC an extended command. The 'len' parameter specifies the
922 * number of command slots to include after the initial command.
923 */
924static void
925ti_cmd_ext(sc, cmd, arg, len)
926	struct ti_softc		*sc;
927	struct ti_cmd_desc	*cmd;
928	caddr_t			arg;
929	int			len;
930{
931	u_int32_t		index;
932	int			i;
933
934	index = sc->ti_cmd_saved_prodidx;
935	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
936	TI_INC(index, TI_CMD_RING_CNT);
937	for (i = 0; i < len; i++) {
938		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
939		    *(u_int32_t *)(&arg[i * 4]));
940		TI_INC(index, TI_CMD_RING_CNT);
941	}
942	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
943	sc->ti_cmd_saved_prodidx = index;
944}
945
946/*
947 * Handle events that have triggered interrupts.
948 */
949static void
950ti_handle_events(sc)
951	struct ti_softc		*sc;
952{
953	struct ti_event_desc	*e;
954
955	if (sc->ti_rdata->ti_event_ring == NULL)
956		return;
957
958	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
959		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
960		switch (TI_EVENT_EVENT(e)) {
961		case TI_EV_LINKSTAT_CHANGED:
962			sc->ti_linkstat = TI_EVENT_CODE(e);
963			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
964				if_printf(sc->ti_ifp, "10/100 link up\n");
965			else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
966				if_printf(sc->ti_ifp, "gigabit link up\n");
967			else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
968				if_printf(sc->ti_ifp, "link down\n");
969			break;
970		case TI_EV_ERROR:
971			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
972				if_printf(sc->ti_ifp, "invalid command\n");
973			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
974				if_printf(sc->ti_ifp, "unknown command\n");
975			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
976				if_printf(sc->ti_ifp, "bad config data\n");
977			break;
978		case TI_EV_FIRMWARE_UP:
979			ti_init2(sc);
980			break;
981		case TI_EV_STATS_UPDATED:
982			ti_stats_update(sc);
983			break;
984		case TI_EV_RESET_JUMBO_RING:
985		case TI_EV_MCAST_UPDATED:
986			/* Who cares. */
987			break;
988		default:
989			if_printf(sc->ti_ifp, "unknown event: %d\n",
990			    TI_EVENT_EVENT(e));
991			break;
992		}
993		/* Advance the consumer index. */
994		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
995		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
996	}
997}
998
999static int
1000ti_alloc_dmamaps(struct ti_softc *sc)
1001{
1002	int i;
1003
1004	for (i = 0; i < TI_TX_RING_CNT; i++) {
1005		if (bus_dmamap_create(sc->ti_mbuftx_dmat, 0,
1006				      &sc->ti_cdata.ti_tx_maps[i]))
1007			return (ENOBUFS);
1008	}
1009	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1010		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1011				      &sc->ti_cdata.ti_rx_std_maps[i]))
1012			return (ENOBUFS);
1013	}
1014
1015	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1016		if (bus_dmamap_create(sc->ti_jumbo_dmat, 0,
1017				      &sc->ti_cdata.ti_rx_jumbo_maps[i]))
1018			return (ENOBUFS);
1019	}
1020	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1021		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1022				      &sc->ti_cdata.ti_rx_mini_maps[i]))
1023			return (ENOBUFS);
1024	}
1025
1026	return (0);
1027}
1028
1029static void
1030ti_free_dmamaps(struct ti_softc *sc)
1031{
1032	int i;
1033
1034	if (sc->ti_mbuftx_dmat)
1035		for (i = 0; i < TI_TX_RING_CNT; i++)
1036			if (sc->ti_cdata.ti_tx_maps[i]) {
1037				bus_dmamap_destroy(sc->ti_mbuftx_dmat,
1038				    sc->ti_cdata.ti_tx_maps[i]);
1039				sc->ti_cdata.ti_tx_maps[i] = 0;
1040			}
1041
1042	if (sc->ti_mbufrx_dmat)
1043		for (i = 0; i < TI_STD_RX_RING_CNT; i++)
1044			if (sc->ti_cdata.ti_rx_std_maps[i]) {
1045				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1046				    sc->ti_cdata.ti_rx_std_maps[i]);
1047				sc->ti_cdata.ti_rx_std_maps[i] = 0;
1048			}
1049
1050	if (sc->ti_jumbo_dmat)
1051		for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++)
1052			if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1053				bus_dmamap_destroy(sc->ti_jumbo_dmat,
1054				    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1055				sc->ti_cdata.ti_rx_jumbo_maps[i] = 0;
1056			}
1057	if (sc->ti_mbufrx_dmat)
1058		for (i = 0; i < TI_MINI_RX_RING_CNT; i++)
1059			if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1060				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1061				    sc->ti_cdata.ti_rx_mini_maps[i]);
1062				sc->ti_cdata.ti_rx_mini_maps[i] = 0;
1063			}
1064}
1065
1066#ifdef TI_PRIVATE_JUMBOS
1067
1068/*
1069 * Memory management for the jumbo receive ring is a pain in the
1070 * butt. We need to allocate at least 9018 bytes of space per frame,
1071 * _and_ it has to be contiguous (unless you use the extended
1072 * jumbo descriptor format). Using malloc() all the time won't
1073 * work: malloc() allocates memory in powers of two, which means we
1074 * would end up wasting a considerable amount of space by allocating
1075 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
1076 * to do our own memory management.
1077 *
1078 * The driver needs to allocate a contiguous chunk of memory at boot
1079 * time. We then chop this up ourselves into 9K pieces and use them
1080 * as external mbuf storage.
1081 *
1082 * One issue here is how much memory to allocate. The jumbo ring has
1083 * 256 slots in it, but at 9K per slot than can consume over 2MB of
1084 * RAM. This is a bit much, especially considering we also need
1085 * RAM for the standard ring and mini ring (on the Tigon 2). To
1086 * save space, we only actually allocate enough memory for 64 slots
1087 * by default, which works out to between 500 and 600K. This can
1088 * be tuned by changing a #define in if_tireg.h.
1089 */
1090
1091static int
1092ti_alloc_jumbo_mem(sc)
1093	struct ti_softc		*sc;
1094{
1095	caddr_t			ptr;
1096	int			i;
1097	struct ti_jpool_entry   *entry;
1098
1099	/*
1100	 * Grab a big chunk o' storage.  Since we are chopping this pool up
1101	 * into ~9k chunks, there doesn't appear to be a need to use page
1102	 * alignment.
1103	 */
1104	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1105				1, 0,			/* algnmnt, boundary */
1106				BUS_SPACE_MAXADDR,	/* lowaddr */
1107				BUS_SPACE_MAXADDR,	/* highaddr */
1108				NULL, NULL,		/* filter, filterarg */
1109				TI_JMEM,		/* maxsize */
1110				1,			/* nsegments */
1111				TI_JMEM,		/* maxsegsize */
1112				0,			/* flags */
1113				NULL, NULL,		/* lockfunc, lockarg */
1114				&sc->ti_jumbo_dmat) != 0) {
1115		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1116		return (ENOBUFS);
1117	}
1118
1119	if (bus_dmamem_alloc(sc->ti_jumbo_dmat,
1120			     (void**)&sc->ti_cdata.ti_jumbo_buf,
1121			     BUS_DMA_NOWAIT, &sc->ti_jumbo_dmamap) != 0) {
1122		device_printf(sc->ti_dev, "Failed to allocate jumbo memory\n");
1123		return (ENOBUFS);
1124	}
1125
1126	SLIST_INIT(&sc->ti_jfree_listhead);
1127	SLIST_INIT(&sc->ti_jinuse_listhead);
1128
1129	/*
1130	 * Now divide it up into 9K pieces and save the addresses
1131	 * in an array.
1132	 */
1133	ptr = sc->ti_cdata.ti_jumbo_buf;
1134	for (i = 0; i < TI_JSLOTS; i++) {
1135		sc->ti_cdata.ti_jslots[i] = ptr;
1136		ptr += TI_JLEN;
1137		entry = malloc(sizeof(struct ti_jpool_entry),
1138			       M_DEVBUF, M_NOWAIT);
1139		if (entry == NULL) {
1140			device_printf(sc->ti_dev, "no memory for jumbo "
1141			    "buffer queue!\n");
1142			return (ENOBUFS);
1143		}
1144		entry->slot = i;
1145		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1146	}
1147
1148	return (0);
1149}
1150
1151/*
1152 * Allocate a jumbo buffer.
1153 */
1154static void *ti_jalloc(sc)
1155	struct ti_softc		*sc;
1156{
1157	struct ti_jpool_entry	*entry;
1158
1159	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1160
1161	if (entry == NULL) {
1162		if_printf(sc->ti_ifp, "no free jumbo buffers\n");
1163		return (NULL);
1164	}
1165
1166	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1167	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1168	return (sc->ti_cdata.ti_jslots[entry->slot]);
1169}
1170
1171/*
1172 * Release a jumbo buffer.
1173 */
1174static void
1175ti_jfree(buf, args)
1176	void			*buf;
1177	void			*args;
1178{
1179	struct ti_softc		*sc;
1180	int			i;
1181	struct ti_jpool_entry	*entry;
1182
1183	/* Extract the softc struct pointer. */
1184	sc = (struct ti_softc *)args;
1185
1186	if (sc == NULL)
1187		panic("ti_jfree: didn't get softc pointer!");
1188
1189	/* calculate the slot this buffer belongs to */
1190	i = ((vm_offset_t)buf
1191	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1192
1193	if ((i < 0) || (i >= TI_JSLOTS))
1194		panic("ti_jfree: asked to free buffer that we don't manage!");
1195
1196	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1197	if (entry == NULL)
1198		panic("ti_jfree: buffer not in use!");
1199	entry->slot = i;
1200	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1201	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1202}
1203
1204#else
1205
1206static int
1207ti_alloc_jumbo_mem(sc)
1208	struct ti_softc		*sc;
1209{
1210
1211	/*
1212	 * The VM system will take care of providing aligned pages.  Alignment
1213	 * is set to 1 here so that busdma resources won't be wasted.
1214	 */
1215	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1216				1, 0,			/* algnmnt, boundary */
1217				BUS_SPACE_MAXADDR,	/* lowaddr */
1218				BUS_SPACE_MAXADDR,	/* highaddr */
1219				NULL, NULL,		/* filter, filterarg */
1220				PAGE_SIZE * 4 /*XXX*/,	/* maxsize */
1221				4,			/* nsegments */
1222				PAGE_SIZE,		/* maxsegsize */
1223				0,			/* flags */
1224				NULL, NULL,		/* lockfunc, lockarg */
1225				&sc->ti_jumbo_dmat) != 0) {
1226		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1227		return (ENOBUFS);
1228	}
1229
1230	return (0);
1231}
1232
1233#endif /* TI_PRIVATE_JUMBOS */
1234
1235/*
1236 * Intialize a standard receive ring descriptor.
1237 */
1238static int
1239ti_newbuf_std(sc, i, m)
1240	struct ti_softc		*sc;
1241	int			i;
1242	struct mbuf		*m;
1243{
1244	bus_dmamap_t		map;
1245	bus_dma_segment_t	segs;
1246	struct mbuf		*m_new = NULL;
1247	struct ti_rx_desc	*r;
1248	int			nsegs;
1249
1250	nsegs = 0;
1251	if (m == NULL) {
1252		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1253		if (m_new == NULL)
1254			return (ENOBUFS);
1255
1256		MCLGET(m_new, M_DONTWAIT);
1257		if (!(m_new->m_flags & M_EXT)) {
1258			m_freem(m_new);
1259			return (ENOBUFS);
1260		}
1261		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1262	} else {
1263		m_new = m;
1264		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1265		m_new->m_data = m_new->m_ext.ext_buf;
1266	}
1267
1268	m_adj(m_new, ETHER_ALIGN);
1269	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1270	r = &sc->ti_rdata->ti_rx_std_ring[i];
1271	map = sc->ti_cdata.ti_rx_std_maps[i];
1272	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1273				    &nsegs, 0))
1274		return (ENOBUFS);
1275	if (nsegs != 1)
1276		return (ENOBUFS);
1277	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1278	r->ti_len = segs.ds_len;
1279	r->ti_type = TI_BDTYPE_RECV_BD;
1280	r->ti_flags = 0;
1281	if (sc->ti_ifp->if_hwassist)
1282		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1283	r->ti_idx = i;
1284
1285	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1286	return (0);
1287}
1288
1289/*
1290 * Intialize a mini receive ring descriptor. This only applies to
1291 * the Tigon 2.
1292 */
1293static int
1294ti_newbuf_mini(sc, i, m)
1295	struct ti_softc		*sc;
1296	int			i;
1297	struct mbuf		*m;
1298{
1299	bus_dma_segment_t	segs;
1300	bus_dmamap_t		map;
1301	struct mbuf		*m_new = NULL;
1302	struct ti_rx_desc	*r;
1303	int			nsegs;
1304
1305	nsegs = 0;
1306	if (m == NULL) {
1307		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1308		if (m_new == NULL) {
1309			return (ENOBUFS);
1310		}
1311		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1312	} else {
1313		m_new = m;
1314		m_new->m_data = m_new->m_pktdat;
1315		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1316	}
1317
1318	m_adj(m_new, ETHER_ALIGN);
1319	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1320	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1321	map = sc->ti_cdata.ti_rx_mini_maps[i];
1322	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1323				    &nsegs, 0))
1324		return (ENOBUFS);
1325	if (nsegs != 1)
1326		return (ENOBUFS);
1327	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1328	r->ti_len = segs.ds_len;
1329	r->ti_type = TI_BDTYPE_RECV_BD;
1330	r->ti_flags = TI_BDFLAG_MINI_RING;
1331	if (sc->ti_ifp->if_hwassist)
1332		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1333	r->ti_idx = i;
1334
1335	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1336	return (0);
1337}
1338
1339#ifdef TI_PRIVATE_JUMBOS
1340
1341/*
1342 * Initialize a jumbo receive ring descriptor. This allocates
1343 * a jumbo buffer from the pool managed internally by the driver.
1344 */
1345static int
1346ti_newbuf_jumbo(sc, i, m)
1347	struct ti_softc		*sc;
1348	int			i;
1349	struct mbuf		*m;
1350{
1351	bus_dmamap_t		map;
1352	struct mbuf		*m_new = NULL;
1353	struct ti_rx_desc	*r;
1354	int			nsegs;
1355	bus_dma_segment_t	segs;
1356
1357	if (m == NULL) {
1358		caddr_t			*buf = NULL;
1359
1360		/* Allocate the mbuf. */
1361		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1362		if (m_new == NULL) {
1363			return (ENOBUFS);
1364		}
1365
1366		/* Allocate the jumbo buffer */
1367		buf = ti_jalloc(sc);
1368		if (buf == NULL) {
1369			m_freem(m_new);
1370			if_printf(sc->ti_ifp, "jumbo allocation failed "
1371			    "-- packet dropped!\n");
1372			return (ENOBUFS);
1373		}
1374
1375		/* Attach the buffer to the mbuf. */
1376		m_new->m_data = (void *) buf;
1377		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1378		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1379		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1380	} else {
1381		m_new = m;
1382		m_new->m_data = m_new->m_ext.ext_buf;
1383		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1384	}
1385
1386	m_adj(m_new, ETHER_ALIGN);
1387	/* Set up the descriptor. */
1388	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1389	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1390	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1391	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, &segs,
1392				    &nsegs, 0))
1393		return (ENOBUFS);
1394	if (nsegs != 1)
1395		return (ENOBUFS);
1396	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1397	r->ti_len = segs.ds_len;
1398	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1399	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1400	if (sc->ti_ifp->if_hwassist)
1401		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1402	r->ti_idx = i;
1403
1404	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1405	return (0);
1406}
1407
1408#else
1409
1410#if (PAGE_SIZE == 4096)
1411#define NPAYLOAD 2
1412#else
1413#define NPAYLOAD 1
1414#endif
1415
1416#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1417#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1418#define NFS_HDR_LEN (UDP_HDR_LEN)
1419static int HDR_LEN =  TCP_HDR_LEN;
1420
1421
1422/*
1423 * Initialize a jumbo receive ring descriptor. This allocates
1424 * a jumbo buffer from the pool managed internally by the driver.
1425 */
1426static int
1427ti_newbuf_jumbo(sc, idx, m_old)
1428	struct ti_softc		*sc;
1429	int			idx;
1430	struct mbuf		*m_old;
1431{
1432	bus_dmamap_t		map;
1433	struct mbuf		*cur, *m_new = NULL;
1434	struct mbuf		*m[3] = {NULL, NULL, NULL};
1435	struct ti_rx_desc_ext	*r;
1436	vm_page_t		frame;
1437	static int		color;
1438				/* 1 extra buf to make nobufs easy*/
1439	struct sf_buf		*sf[3] = {NULL, NULL, NULL};
1440	int			i;
1441	bus_dma_segment_t	segs[4];
1442	int			nsegs;
1443
1444	if (m_old != NULL) {
1445		m_new = m_old;
1446		cur = m_old->m_next;
1447		for (i = 0; i <= NPAYLOAD; i++){
1448			m[i] = cur;
1449			cur = cur->m_next;
1450		}
1451	} else {
1452		/* Allocate the mbufs. */
1453		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1454		if (m_new == NULL) {
1455			if_printf(sc->ti_ifp, "mbuf allocation failed "
1456			    "-- packet dropped!\n");
1457			goto nobufs;
1458		}
1459		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1460		if (m[NPAYLOAD] == NULL) {
1461			if_printf(sc->ti_ifp, "cluster mbuf allocation failed "
1462			    "-- packet dropped!\n");
1463			goto nobufs;
1464		}
1465		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1466		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1467			if_printf(sc->ti_ifp, "mbuf allocation failed "
1468			    "-- packet dropped!\n");
1469			goto nobufs;
1470		}
1471		m[NPAYLOAD]->m_len = MCLBYTES;
1472
1473		for (i = 0; i < NPAYLOAD; i++){
1474			MGET(m[i], M_DONTWAIT, MT_DATA);
1475			if (m[i] == NULL) {
1476				if_printf(sc->ti_ifp, "mbuf allocation failed "
1477				    "-- packet dropped!\n");
1478				goto nobufs;
1479			}
1480			frame = vm_page_alloc(NULL, color++,
1481			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1482			    VM_ALLOC_WIRED);
1483			if (frame == NULL) {
1484				if_printf(sc->ti_ifp, "buffer allocation "
1485				    "failed -- packet dropped!\n");
1486				printf("      index %d page %d\n", idx, i);
1487				goto nobufs;
1488			}
1489			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1490			if (sf[i] == NULL) {
1491				vm_page_lock_queues();
1492				vm_page_unwire(frame, 0);
1493				vm_page_free(frame);
1494				vm_page_unlock_queues();
1495				if_printf(sc->ti_ifp, "buffer allocation "
1496				    "failed -- packet dropped!\n");
1497				printf("      index %d page %d\n", idx, i);
1498				goto nobufs;
1499			}
1500		}
1501		for (i = 0; i < NPAYLOAD; i++){
1502		/* Attach the buffer to the mbuf. */
1503			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1504			m[i]->m_len = PAGE_SIZE;
1505			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1506			    sf_buf_mext, sf[i], 0, EXT_DISPOSABLE);
1507			m[i]->m_next = m[i+1];
1508		}
1509		/* link the buffers to the header */
1510		m_new->m_next = m[0];
1511		m_new->m_data += ETHER_ALIGN;
1512		if (sc->ti_hdrsplit)
1513			m_new->m_len = MHLEN - ETHER_ALIGN;
1514		else
1515			m_new->m_len = HDR_LEN;
1516		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1517	}
1518
1519	/* Set up the descriptor. */
1520	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1521	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1522	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1523	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, segs,
1524				    &nsegs, 0))
1525		return (ENOBUFS);
1526	if ((nsegs < 1) || (nsegs > 4))
1527		return (ENOBUFS);
1528	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1529	r->ti_len0 = m_new->m_len;
1530
1531	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1532	r->ti_len1 = PAGE_SIZE;
1533
1534	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1535	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1536
1537	if (PAGE_SIZE == 4096) {
1538		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1539		r->ti_len3 = MCLBYTES;
1540	} else {
1541		r->ti_len3 = 0;
1542	}
1543	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1544
1545	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1546
1547	if (sc->ti_ifp->if_hwassist)
1548		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1549
1550	r->ti_idx = idx;
1551
1552	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1553	return (0);
1554
1555nobufs:
1556
1557	/*
1558	 * Warning! :
1559	 * This can only be called before the mbufs are strung together.
1560	 * If the mbufs are strung together, m_freem() will free the chain,
1561	 * so that the later mbufs will be freed multiple times.
1562	 */
1563	if (m_new)
1564		m_freem(m_new);
1565
1566	for (i = 0; i < 3; i++) {
1567		if (m[i])
1568			m_freem(m[i]);
1569		if (sf[i])
1570			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1571	}
1572	return (ENOBUFS);
1573}
1574#endif
1575
1576
1577
1578/*
1579 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1580 * that's 1MB or memory, which is a lot. For now, we fill only the first
1581 * 256 ring entries and hope that our CPU is fast enough to keep up with
1582 * the NIC.
1583 */
1584static int
1585ti_init_rx_ring_std(sc)
1586	struct ti_softc		*sc;
1587{
1588	int			i;
1589	struct ti_cmd_desc	cmd;
1590
1591	for (i = 0; i < TI_SSLOTS; i++) {
1592		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1593			return (ENOBUFS);
1594	};
1595
1596	TI_UPDATE_STDPROD(sc, i - 1);
1597	sc->ti_std = i - 1;
1598
1599	return (0);
1600}
1601
1602static void
1603ti_free_rx_ring_std(sc)
1604	struct ti_softc		*sc;
1605{
1606	bus_dmamap_t		map;
1607	int			i;
1608
1609	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1610		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1611			map = sc->ti_cdata.ti_rx_std_maps[i];
1612			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1613			    BUS_DMASYNC_POSTREAD);
1614			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1615			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1616			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1617		}
1618		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1619		    sizeof(struct ti_rx_desc));
1620	}
1621}
1622
1623static int
1624ti_init_rx_ring_jumbo(sc)
1625	struct ti_softc		*sc;
1626{
1627	int			i;
1628	struct ti_cmd_desc	cmd;
1629
1630	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1631		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1632			return (ENOBUFS);
1633	};
1634
1635	TI_UPDATE_JUMBOPROD(sc, i - 1);
1636	sc->ti_jumbo = i - 1;
1637
1638	return (0);
1639}
1640
1641static void
1642ti_free_rx_ring_jumbo(sc)
1643	struct ti_softc		*sc;
1644{
1645	bus_dmamap_t		map;
1646	int			i;
1647
1648	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1649		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1650			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1651			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
1652			    BUS_DMASYNC_POSTREAD);
1653			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
1654			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1655			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1656		}
1657		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1658		    sizeof(struct ti_rx_desc));
1659	}
1660}
1661
1662static int
1663ti_init_rx_ring_mini(sc)
1664	struct ti_softc		*sc;
1665{
1666	int			i;
1667
1668	for (i = 0; i < TI_MSLOTS; i++) {
1669		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1670			return (ENOBUFS);
1671	};
1672
1673	TI_UPDATE_MINIPROD(sc, i - 1);
1674	sc->ti_mini = i - 1;
1675
1676	return (0);
1677}
1678
1679static void
1680ti_free_rx_ring_mini(sc)
1681	struct ti_softc		*sc;
1682{
1683	bus_dmamap_t		map;
1684	int			i;
1685
1686	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1687		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1688			map = sc->ti_cdata.ti_rx_mini_maps[i];
1689			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1690			    BUS_DMASYNC_POSTREAD);
1691			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1692			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1693			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1694		}
1695		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1696		    sizeof(struct ti_rx_desc));
1697	}
1698}
1699
1700static void
1701ti_free_tx_ring(sc)
1702	struct ti_softc		*sc;
1703{
1704	bus_dmamap_t		map;
1705	int			i;
1706
1707	if (sc->ti_rdata->ti_tx_ring == NULL)
1708		return;
1709
1710	for (i = 0; i < TI_TX_RING_CNT; i++) {
1711		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1712			map = sc->ti_cdata.ti_tx_maps[i];
1713			bus_dmamap_sync(sc->ti_mbuftx_dmat, map,
1714			    BUS_DMASYNC_POSTWRITE);
1715			bus_dmamap_unload(sc->ti_mbuftx_dmat, map);
1716			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1717			sc->ti_cdata.ti_tx_chain[i] = NULL;
1718		}
1719		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1720		    sizeof(struct ti_tx_desc));
1721	}
1722}
1723
1724static int
1725ti_init_tx_ring(sc)
1726	struct ti_softc		*sc;
1727{
1728	sc->ti_txcnt = 0;
1729	sc->ti_tx_saved_considx = 0;
1730	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1731	return (0);
1732}
1733
1734/*
1735 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1736 * but we have to support the old way too so that Tigon 1 cards will
1737 * work.
1738 */
1739static void
1740ti_add_mcast(sc, addr)
1741	struct ti_softc		*sc;
1742	struct ether_addr	*addr;
1743{
1744	struct ti_cmd_desc	cmd;
1745	u_int16_t		*m;
1746	u_int32_t		ext[2] = {0, 0};
1747
1748	m = (u_int16_t *)&addr->octet[0];
1749
1750	switch (sc->ti_hwrev) {
1751	case TI_HWREV_TIGON:
1752		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1753		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1754		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1755		break;
1756	case TI_HWREV_TIGON_II:
1757		ext[0] = htons(m[0]);
1758		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1759		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1760		break;
1761	default:
1762		if_printf(sc->ti_ifp, "unknown hwrev\n");
1763		break;
1764	}
1765}
1766
1767static void
1768ti_del_mcast(sc, addr)
1769	struct ti_softc		*sc;
1770	struct ether_addr	*addr;
1771{
1772	struct ti_cmd_desc	cmd;
1773	u_int16_t		*m;
1774	u_int32_t		ext[2] = {0, 0};
1775
1776	m = (u_int16_t *)&addr->octet[0];
1777
1778	switch (sc->ti_hwrev) {
1779	case TI_HWREV_TIGON:
1780		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1781		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1782		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1783		break;
1784	case TI_HWREV_TIGON_II:
1785		ext[0] = htons(m[0]);
1786		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1787		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1788		break;
1789	default:
1790		if_printf(sc->ti_ifp, "unknown hwrev\n");
1791		break;
1792	}
1793}
1794
1795/*
1796 * Configure the Tigon's multicast address filter.
1797 *
1798 * The actual multicast table management is a bit of a pain, thanks to
1799 * slight brain damage on the part of both Alteon and us. With our
1800 * multicast code, we are only alerted when the multicast address table
1801 * changes and at that point we only have the current list of addresses:
1802 * we only know the current state, not the previous state, so we don't
1803 * actually know what addresses were removed or added. The firmware has
1804 * state, but we can't get our grubby mits on it, and there is no 'delete
1805 * all multicast addresses' command. Hence, we have to maintain our own
1806 * state so we know what addresses have been programmed into the NIC at
1807 * any given time.
1808 */
1809static void
1810ti_setmulti(sc)
1811	struct ti_softc		*sc;
1812{
1813	struct ifnet		*ifp;
1814	struct ifmultiaddr	*ifma;
1815	struct ti_cmd_desc	cmd;
1816	struct ti_mc_entry	*mc;
1817	u_int32_t		intrs;
1818
1819	TI_LOCK_ASSERT(sc);
1820
1821	ifp = sc->ti_ifp;
1822
1823	if (ifp->if_flags & IFF_ALLMULTI) {
1824		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1825		return;
1826	} else {
1827		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1828	}
1829
1830	/* Disable interrupts. */
1831	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1832	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1833
1834	/* First, zot all the existing filters. */
1835	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1836		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1837		ti_del_mcast(sc, &mc->mc_addr);
1838		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1839		free(mc, M_DEVBUF);
1840	}
1841
1842	/* Now program new ones. */
1843	IF_ADDR_LOCK(ifp);
1844	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1845		if (ifma->ifma_addr->sa_family != AF_LINK)
1846			continue;
1847		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1848		if (mc == NULL) {
1849			if_printf(ifp, "no memory for mcast filter entry\n");
1850			continue;
1851		}
1852		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1853		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1854		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1855		ti_add_mcast(sc, &mc->mc_addr);
1856	}
1857	IF_ADDR_UNLOCK(ifp);
1858
1859	/* Re-enable interrupts. */
1860	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1861}
1862
1863/*
1864 * Check to see if the BIOS has configured us for a 64 bit slot when
1865 * we aren't actually in one. If we detect this condition, we can work
1866 * around it on the Tigon 2 by setting a bit in the PCI state register,
1867 * but for the Tigon 1 we must give up and abort the interface attach.
1868 */
1869static int ti_64bitslot_war(sc)
1870	struct ti_softc		*sc;
1871{
1872	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1873		CSR_WRITE_4(sc, 0x600, 0);
1874		CSR_WRITE_4(sc, 0x604, 0);
1875		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1876		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1877			if (sc->ti_hwrev == TI_HWREV_TIGON)
1878				return (EINVAL);
1879			else {
1880				TI_SETBIT(sc, TI_PCI_STATE,
1881				    TI_PCISTATE_32BIT_BUS);
1882				return (0);
1883			}
1884		}
1885	}
1886
1887	return (0);
1888}
1889
1890/*
1891 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1892 * self-test results.
1893 */
1894static int
1895ti_chipinit(sc)
1896	struct ti_softc		*sc;
1897{
1898	u_int32_t		cacheline;
1899	u_int32_t		pci_writemax = 0;
1900	u_int32_t		hdrsplit;
1901
1902	/* Initialize link to down state. */
1903	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1904
1905	if (sc->ti_ifp->if_capenable & IFCAP_HWCSUM)
1906		sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
1907	else
1908		sc->ti_ifp->if_hwassist = 0;
1909
1910	/* Set endianness before we access any non-PCI registers. */
1911#if 0 && BYTE_ORDER == BIG_ENDIAN
1912	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1913	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1914#else
1915	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1916	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1917#endif
1918
1919	/* Check the ROM failed bit to see if self-tests passed. */
1920	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1921		if_printf(sc->ti_ifp, "board self-diagnostics failed!\n");
1922		return (ENODEV);
1923	}
1924
1925	/* Halt the CPU. */
1926	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1927
1928	/* Figure out the hardware revision. */
1929	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1930	case TI_REV_TIGON_I:
1931		sc->ti_hwrev = TI_HWREV_TIGON;
1932		break;
1933	case TI_REV_TIGON_II:
1934		sc->ti_hwrev = TI_HWREV_TIGON_II;
1935		break;
1936	default:
1937		if_printf(sc->ti_ifp, "unsupported chip revision\n");
1938		return (ENODEV);
1939	}
1940
1941	/* Do special setup for Tigon 2. */
1942	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1943		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1944		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1945		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1946	}
1947
1948	/*
1949	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1950	 * can't do header splitting.
1951	 */
1952#ifdef TI_JUMBO_HDRSPLIT
1953	if (sc->ti_hwrev != TI_HWREV_TIGON)
1954		sc->ti_hdrsplit = 1;
1955	else
1956		if_printf(sc->ti_ifp,
1957		    "can't do header splitting on a Tigon I board\n");
1958#endif /* TI_JUMBO_HDRSPLIT */
1959
1960	/* Set up the PCI state register. */
1961	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1962	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1963		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1964	}
1965
1966	/* Clear the read/write max DMA parameters. */
1967	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1968	    TI_PCISTATE_READ_MAXDMA));
1969
1970	/* Get cache line size. */
1971	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1972
1973	/*
1974	 * If the system has set enabled the PCI memory write
1975	 * and invalidate command in the command register, set
1976	 * the write max parameter accordingly. This is necessary
1977	 * to use MWI with the Tigon 2.
1978	 */
1979	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1980		switch (cacheline) {
1981		case 1:
1982		case 4:
1983		case 8:
1984		case 16:
1985		case 32:
1986		case 64:
1987			break;
1988		default:
1989		/* Disable PCI memory write and invalidate. */
1990			if (bootverbose)
1991				if_printf(sc->ti_ifp, "cache line size %d not "
1992				    "supported; disabling PCI MWI\n",
1993				    cacheline);
1994			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1995			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1996			break;
1997		}
1998	}
1999
2000#ifdef __brokenalpha__
2001	/*
2002	 * From the Alteon sample driver:
2003	 * Must insure that we do not cross an 8K (bytes) boundary
2004	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
2005	 * restriction on some ALPHA platforms with early revision
2006	 * 21174 PCI chipsets, such as the AlphaPC 164lx
2007	 */
2008	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
2009#else
2010	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2011#endif
2012
2013	/* This sets the min dma param all the way up (0xff). */
2014	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2015
2016	if (sc->ti_hdrsplit)
2017		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2018	else
2019		hdrsplit = 0;
2020
2021	/* Configure DMA variables. */
2022#if BYTE_ORDER == BIG_ENDIAN
2023	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2024	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2025	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2026	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2027#else /* BYTE_ORDER */
2028	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2029	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2030	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2031#endif /* BYTE_ORDER */
2032
2033	/*
2034	 * Only allow 1 DMA channel to be active at a time.
2035	 * I don't think this is a good idea, but without it
2036	 * the firmware racks up lots of nicDmaReadRingFull
2037	 * errors.  This is not compatible with hardware checksums.
2038	 */
2039	if (sc->ti_ifp->if_hwassist == 0)
2040		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2041
2042	/* Recommended settings from Tigon manual. */
2043	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2044	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2045
2046	if (ti_64bitslot_war(sc)) {
2047		if_printf(sc->ti_ifp, "bios thinks we're in a 64 bit slot, "
2048		    "but we aren't");
2049		return (EINVAL);
2050	}
2051
2052	return (0);
2053}
2054
2055/*
2056 * Initialize the general information block and firmware, and
2057 * start the CPU(s) running.
2058 */
2059static int
2060ti_gibinit(sc)
2061	struct ti_softc		*sc;
2062{
2063	struct ti_rcb		*rcb;
2064	int			i;
2065	struct ifnet		*ifp;
2066	uint32_t		rdphys;
2067
2068	TI_LOCK_ASSERT(sc);
2069
2070	ifp = sc->ti_ifp;
2071	rdphys = sc->ti_rdata_phys;
2072
2073	/* Disable interrupts for now. */
2074	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2075
2076	/*
2077	 * Tell the chip where to find the general information block.
2078	 * While this struct could go into >4GB memory, we allocate it in a
2079	 * single slab with the other descriptors, and those don't seem to
2080	 * support being located in a 64-bit region.
2081	 */
2082	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
2083	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
2084
2085	/* Load the firmware into SRAM. */
2086	ti_loadfw(sc);
2087
2088	/* Set up the contents of the general info and ring control blocks. */
2089
2090	/* Set up the event ring and producer pointer. */
2091	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
2092
2093	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
2094	rcb->ti_flags = 0;
2095	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
2096	    rdphys + TI_RD_OFF(ti_ev_prodidx_r);
2097	sc->ti_ev_prodidx.ti_idx = 0;
2098	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2099	sc->ti_ev_saved_considx = 0;
2100
2101	/* Set up the command ring and producer mailbox. */
2102	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
2103
2104	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
2105	rcb->ti_flags = 0;
2106	rcb->ti_max_len = 0;
2107	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2108		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2109	}
2110	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2111	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2112	sc->ti_cmd_saved_prodidx = 0;
2113
2114	/*
2115	 * Assign the address of the stats refresh buffer.
2116	 * We re-use the current stats buffer for this to
2117	 * conserve memory.
2118	 */
2119	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
2120	    rdphys + TI_RD_OFF(ti_info.ti_stats);
2121
2122	/* Set up the standard receive ring. */
2123	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
2124	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
2125	rcb->ti_max_len = TI_FRAMELEN;
2126	rcb->ti_flags = 0;
2127	if (sc->ti_ifp->if_hwassist)
2128		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2129		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2130	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2131
2132	/* Set up the jumbo receive ring. */
2133	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
2134	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
2135
2136#ifdef TI_PRIVATE_JUMBOS
2137	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
2138	rcb->ti_flags = 0;
2139#else
2140	rcb->ti_max_len = PAGE_SIZE;
2141	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2142#endif
2143	if (sc->ti_ifp->if_hwassist)
2144		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2145		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2146	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2147
2148	/*
2149	 * Set up the mini ring. Only activated on the
2150	 * Tigon 2 but the slot in the config block is
2151	 * still there on the Tigon 1.
2152	 */
2153	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
2154	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
2155	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2156	if (sc->ti_hwrev == TI_HWREV_TIGON)
2157		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2158	else
2159		rcb->ti_flags = 0;
2160	if (sc->ti_ifp->if_hwassist)
2161		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2162		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2163	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2164
2165	/*
2166	 * Set up the receive return ring.
2167	 */
2168	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
2169	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
2170	rcb->ti_flags = 0;
2171	rcb->ti_max_len = TI_RETURN_RING_CNT;
2172	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
2173	    rdphys + TI_RD_OFF(ti_return_prodidx_r);
2174
2175	/*
2176	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2177	 * of putting the transmit ring in the host's address space and
2178	 * letting the chip DMA it instead of leaving the ring in the NIC's
2179	 * memory and accessing it through the shared memory region. We
2180	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2181	 * so we have to revert to the shared memory scheme if we detect
2182	 * a Tigon 1 chip.
2183	 */
2184	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2185	bzero((char *)sc->ti_rdata->ti_tx_ring,
2186	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
2187	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
2188	if (sc->ti_hwrev == TI_HWREV_TIGON)
2189		rcb->ti_flags = 0;
2190	else
2191		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2192	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2193	if (sc->ti_ifp->if_hwassist)
2194		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2195		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2196	rcb->ti_max_len = TI_TX_RING_CNT;
2197	if (sc->ti_hwrev == TI_HWREV_TIGON)
2198		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
2199	else
2200		TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
2201	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
2202	    rdphys + TI_RD_OFF(ti_tx_considx_r);
2203
2204	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2205	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2206
2207	/* Set up tuneables */
2208#if 0
2209	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2210		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2211		    (sc->ti_rx_coal_ticks / 10));
2212	else
2213#endif
2214		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2215	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2216	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2217	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2218	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2219	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2220
2221	/* Turn interrupts on. */
2222	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2223	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2224
2225	/* Start CPU. */
2226	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2227
2228	return (0);
2229}
2230
2231static void
2232ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2233{
2234	struct ti_softc *sc;
2235
2236	sc = arg;
2237	if (error || nseg != 1)
2238		return;
2239
2240	/*
2241	 * All of the Tigon data structures need to live at <4GB.  This
2242	 * cast is fine since busdma was told about this constraint.
2243	 */
2244	sc->ti_rdata_phys = segs[0].ds_addr;
2245	return;
2246}
2247
2248/*
2249 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2250 * against our list and return its name if we find a match.
2251 */
2252static int
2253ti_probe(dev)
2254	device_t		dev;
2255{
2256	struct ti_type		*t;
2257
2258	t = ti_devs;
2259
2260	while (t->ti_name != NULL) {
2261		if ((pci_get_vendor(dev) == t->ti_vid) &&
2262		    (pci_get_device(dev) == t->ti_did)) {
2263			device_set_desc(dev, t->ti_name);
2264			return (BUS_PROBE_DEFAULT);
2265		}
2266		t++;
2267	}
2268
2269	return (ENXIO);
2270}
2271
2272static int
2273ti_attach(dev)
2274	device_t		dev;
2275{
2276	struct ifnet		*ifp;
2277	struct ti_softc		*sc;
2278	int			error = 0, rid;
2279	u_char			eaddr[6];
2280
2281	sc = device_get_softc(dev);
2282	sc->ti_unit = device_get_unit(dev);
2283	sc->ti_dev = dev;
2284
2285	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2286	    MTX_DEF);
2287	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2288	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2289	if (ifp == NULL) {
2290		device_printf(dev, "can not if_alloc()\n");
2291		error = ENOSPC;
2292		goto fail;
2293	}
2294	sc->ti_ifp->if_capabilities = IFCAP_HWCSUM |
2295	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2296	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2297
2298	/*
2299	 * Map control/status registers.
2300	 */
2301	pci_enable_busmaster(dev);
2302
2303	rid = TI_PCI_LOMEM;
2304	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2305	    RF_ACTIVE|PCI_RF_DENSE);
2306
2307	if (sc->ti_res == NULL) {
2308		device_printf(dev, "couldn't map memory\n");
2309		error = ENXIO;
2310		goto fail;
2311	}
2312
2313	sc->ti_btag = rman_get_bustag(sc->ti_res);
2314	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2315
2316	/* Allocate interrupt */
2317	rid = 0;
2318
2319	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2320	    RF_SHAREABLE | RF_ACTIVE);
2321
2322	if (sc->ti_irq == NULL) {
2323		device_printf(dev, "couldn't map interrupt\n");
2324		error = ENXIO;
2325		goto fail;
2326	}
2327
2328	if (ti_chipinit(sc)) {
2329		device_printf(dev, "chip initialization failed\n");
2330		error = ENXIO;
2331		goto fail;
2332	}
2333
2334	/* Zero out the NIC's on-board SRAM. */
2335	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2336
2337	/* Init again -- zeroing memory may have clobbered some registers. */
2338	if (ti_chipinit(sc)) {
2339		device_printf(dev, "chip initialization failed\n");
2340		error = ENXIO;
2341		goto fail;
2342	}
2343
2344	/*
2345	 * Get station address from the EEPROM. Note: the manual states
2346	 * that the MAC address is at offset 0x8c, however the data is
2347	 * stored as two longwords (since that's how it's loaded into
2348	 * the NIC). This means the MAC address is actually preceded
2349	 * by two zero bytes. We need to skip over those.
2350	 */
2351	if (ti_read_eeprom(sc, eaddr,
2352				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2353		device_printf(dev, "failed to read station address\n");
2354		error = ENXIO;
2355		goto fail;
2356	}
2357
2358	/* Allocate the general information block and ring buffers. */
2359	if (bus_dma_tag_create(NULL,			/* parent */
2360				1, 0,			/* algnmnt, boundary */
2361				BUS_SPACE_MAXADDR,	/* lowaddr */
2362				BUS_SPACE_MAXADDR,	/* highaddr */
2363				NULL, NULL,		/* filter, filterarg */
2364				BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2365				0,			/* nsegments */
2366				BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2367				0,			/* flags */
2368				NULL, NULL,		/* lockfunc, lockarg */
2369				&sc->ti_parent_dmat) != 0) {
2370		device_printf(dev, "Failed to allocate parent dmat\n");
2371		error = ENOMEM;
2372		goto fail;
2373	}
2374
2375	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2376				PAGE_SIZE, 0,		/* algnmnt, boundary */
2377				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2378				BUS_SPACE_MAXADDR,	/* highaddr */
2379				NULL, NULL,		/* filter, filterarg */
2380				sizeof(struct ti_ring_data),	/* maxsize */
2381				1,			/* nsegments */
2382				sizeof(struct ti_ring_data),	/* maxsegsize */
2383				0,			/* flags */
2384				NULL, NULL,		/* lockfunc, lockarg */
2385				&sc->ti_rdata_dmat) != 0) {
2386		device_printf(dev, "Failed to allocate rdata dmat\n");
2387		error = ENOMEM;
2388		goto fail;
2389	}
2390
2391	if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2392			     BUS_DMA_NOWAIT, &sc->ti_rdata_dmamap) != 0) {
2393		device_printf(dev, "Failed to allocate rdata memory\n");
2394		error = ENOMEM;
2395		goto fail;
2396	}
2397
2398	if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2399			    sc->ti_rdata, sizeof(struct ti_ring_data),
2400			    ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2401		device_printf(dev, "Failed to load rdata segments\n");
2402		error = ENOMEM;
2403		goto fail;
2404	}
2405
2406	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2407
2408	/* Try to allocate memory for jumbo buffers. */
2409	if (ti_alloc_jumbo_mem(sc)) {
2410		device_printf(dev, "jumbo buffer allocation failed\n");
2411		error = ENXIO;
2412		goto fail;
2413	}
2414
2415	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2416				1, 0,			/* algnmnt, boundary */
2417				BUS_SPACE_MAXADDR,	/* lowaddr */
2418				BUS_SPACE_MAXADDR,	/* highaddr */
2419				NULL, NULL,		/* filter, filterarg */
2420				MCLBYTES * TI_MAXTXSEGS,/* maxsize */
2421				TI_MAXTXSEGS,		/* nsegments */
2422				MCLBYTES,		/* maxsegsize */
2423				0,			/* flags */
2424				NULL, NULL,		/* lockfunc, lockarg */
2425				&sc->ti_mbuftx_dmat) != 0) {
2426		device_printf(dev, "Failed to allocate rdata dmat\n");
2427		error = ENOMEM;
2428		goto fail;
2429	}
2430
2431	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2432				1, 0,			/* algnmnt, boundary */
2433				BUS_SPACE_MAXADDR,	/* lowaddr */
2434				BUS_SPACE_MAXADDR,	/* highaddr */
2435				NULL, NULL,		/* filter, filterarg */
2436				MCLBYTES,		/* maxsize */
2437				1,			/* nsegments */
2438				MCLBYTES,		/* maxsegsize */
2439				0,			/* flags */
2440				NULL, NULL,		/* lockfunc, lockarg */
2441				&sc->ti_mbufrx_dmat) != 0) {
2442		device_printf(dev, "Failed to allocate rdata dmat\n");
2443		error = ENOMEM;
2444		goto fail;
2445	}
2446
2447	if (ti_alloc_dmamaps(sc)) {
2448		device_printf(dev, "dma map creation failed\n");
2449		error = ENXIO;
2450		goto fail;
2451	}
2452
2453	/*
2454	 * We really need a better way to tell a 1000baseTX card
2455	 * from a 1000baseSX one, since in theory there could be
2456	 * OEMed 1000baseTX cards from lame vendors who aren't
2457	 * clever enough to change the PCI ID. For the moment
2458	 * though, the AceNIC is the only copper card available.
2459	 */
2460	if (pci_get_vendor(dev) == ALT_VENDORID &&
2461	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2462		sc->ti_copper = 1;
2463	/* Ok, it's not the only copper card available. */
2464	if (pci_get_vendor(dev) == NG_VENDORID &&
2465	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2466		sc->ti_copper = 1;
2467
2468	/* Set default tuneable values. */
2469	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2470#if 0
2471	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2472#endif
2473	sc->ti_rx_coal_ticks = 170;
2474	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2475	sc->ti_rx_max_coal_bds = 64;
2476#if 0
2477	sc->ti_tx_max_coal_bds = 128;
2478#endif
2479	sc->ti_tx_max_coal_bds = 32;
2480	sc->ti_tx_buf_ratio = 21;
2481
2482	/* Set up ifnet structure */
2483	ifp->if_softc = sc;
2484	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2485	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2486	ifp->if_ioctl = ti_ioctl;
2487	ifp->if_start = ti_start;
2488	ifp->if_watchdog = ti_watchdog;
2489	ifp->if_init = ti_init;
2490	ifp->if_mtu = ETHERMTU;
2491	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2492
2493	/* Set up ifmedia support. */
2494	if (sc->ti_copper) {
2495		/*
2496		 * Copper cards allow manual 10/100 mode selection,
2497		 * but not manual 1000baseTX mode selection. Why?
2498		 * Becuase currently there's no way to specify the
2499		 * master/slave setting through the firmware interface,
2500		 * so Alteon decided to just bag it and handle it
2501		 * via autonegotiation.
2502		 */
2503		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2504		ifmedia_add(&sc->ifmedia,
2505		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2506		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2507		ifmedia_add(&sc->ifmedia,
2508		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2509		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2510		ifmedia_add(&sc->ifmedia,
2511		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2512	} else {
2513		/* Fiber cards don't support 10/100 modes. */
2514		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2515		ifmedia_add(&sc->ifmedia,
2516		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2517	}
2518	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2519	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2520
2521	/*
2522	 * We're assuming here that card initialization is a sequential
2523	 * thing.  If it isn't, multiple cards probing at the same time
2524	 * could stomp on the list of softcs here.
2525	 */
2526
2527	/* Register the device */
2528	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2529			   0600, "ti%d", sc->ti_unit);
2530	sc->dev->si_drv1 = sc;
2531
2532	/*
2533	 * Call MI attach routine.
2534	 */
2535	ether_ifattach(ifp, eaddr);
2536
2537	/* Hook interrupt last to avoid having to lock softc */
2538	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2539	   ti_intr, sc, &sc->ti_intrhand);
2540
2541	if (error) {
2542		device_printf(dev, "couldn't set up irq\n");
2543		goto fail;
2544	}
2545
2546fail:
2547	if (error)
2548		ti_detach(dev);
2549
2550	return (error);
2551}
2552
2553/*
2554 * Shutdown hardware and free up resources. This can be called any
2555 * time after the mutex has been initialized. It is called in both
2556 * the error case in attach and the normal detach case so it needs
2557 * to be careful about only freeing resources that have actually been
2558 * allocated.
2559 */
2560static int
2561ti_detach(dev)
2562	device_t		dev;
2563{
2564	struct ti_softc		*sc;
2565	struct ifnet		*ifp;
2566	int			attached;
2567
2568	sc = device_get_softc(dev);
2569	if (sc->dev)
2570		destroy_dev(sc->dev);
2571	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2572	attached = device_is_attached(dev);
2573	TI_LOCK(sc);
2574	ifp = sc->ti_ifp;
2575	if (attached)
2576		ti_stop(sc);
2577	TI_UNLOCK(sc);
2578	if (attached)
2579		ether_ifdetach(ifp);
2580
2581	/* These should only be active if attach succeeded */
2582	if (attached)
2583		bus_generic_detach(dev);
2584	ti_free_dmamaps(sc);
2585	ifmedia_removeall(&sc->ifmedia);
2586
2587#ifdef TI_PRIVATE_JUMBOS
2588	if (sc->ti_cdata.ti_jumbo_buf)
2589		bus_dmamem_free(sc->ti_jumbo_dmat, sc->ti_cdata.ti_jumbo_buf,
2590		    sc->ti_jumbo_dmamap);
2591#endif
2592	if (sc->ti_jumbo_dmat)
2593		bus_dma_tag_destroy(sc->ti_jumbo_dmat);
2594	if (sc->ti_mbuftx_dmat)
2595		bus_dma_tag_destroy(sc->ti_mbuftx_dmat);
2596	if (sc->ti_mbufrx_dmat)
2597		bus_dma_tag_destroy(sc->ti_mbufrx_dmat);
2598	if (sc->ti_rdata)
2599		bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2600				sc->ti_rdata_dmamap);
2601	if (sc->ti_rdata_dmat)
2602		bus_dma_tag_destroy(sc->ti_rdata_dmat);
2603	if (sc->ti_parent_dmat)
2604		bus_dma_tag_destroy(sc->ti_parent_dmat);
2605	if (sc->ti_intrhand)
2606		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2607	if (sc->ti_irq)
2608		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2609	if (sc->ti_res) {
2610		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2611		    sc->ti_res);
2612	}
2613	if (ifp)
2614		if_free(ifp);
2615
2616	mtx_destroy(&sc->ti_mtx);
2617
2618	return (0);
2619}
2620
2621#ifdef TI_JUMBO_HDRSPLIT
2622/*
2623 * If hdr_len is 0, that means that header splitting wasn't done on
2624 * this packet for some reason.  The two most likely reasons are that
2625 * the protocol isn't a supported protocol for splitting, or this
2626 * packet had a fragment offset that wasn't 0.
2627 *
2628 * The header length, if it is non-zero, will always be the length of
2629 * the headers on the packet, but that length could be longer than the
2630 * first mbuf.  So we take the minimum of the two as the actual
2631 * length.
2632 */
2633static __inline void
2634ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2635{
2636	int i = 0;
2637	int lengths[4] = {0, 0, 0, 0};
2638	struct mbuf *m, *mp;
2639
2640	if (hdr_len != 0)
2641		top->m_len = min(hdr_len, top->m_len);
2642	pkt_len -= top->m_len;
2643	lengths[i++] = top->m_len;
2644
2645	mp = top;
2646	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2647		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2648		pkt_len -= m->m_len;
2649		lengths[i++] = m->m_len;
2650		mp = m;
2651	}
2652
2653#if 0
2654	if (hdr_len != 0)
2655		printf("got split packet: ");
2656	else
2657		printf("got non-split packet: ");
2658
2659	printf("%d,%d,%d,%d = %d\n", lengths[0],
2660	    lengths[1], lengths[2], lengths[3],
2661	    lengths[0] + lengths[1] + lengths[2] +
2662	    lengths[3]);
2663#endif
2664
2665	if (pkt_len)
2666		panic("header splitting didn't");
2667
2668	if (m) {
2669		m_freem(m);
2670		mp->m_next = NULL;
2671
2672	}
2673	if (mp->m_next != NULL)
2674		panic("ti_hdr_split: last mbuf in chain should be null");
2675}
2676#endif /* TI_JUMBO_HDRSPLIT */
2677
2678/*
2679 * Frame reception handling. This is called if there's a frame
2680 * on the receive return list.
2681 *
2682 * Note: we have to be able to handle three possibilities here:
2683 * 1) the frame is from the mini receive ring (can only happen)
2684 *    on Tigon 2 boards)
2685 * 2) the frame is from the jumbo recieve ring
2686 * 3) the frame is from the standard receive ring
2687 */
2688
2689static void
2690ti_rxeof(sc)
2691	struct ti_softc		*sc;
2692{
2693	bus_dmamap_t		map;
2694	struct ifnet		*ifp;
2695	struct ti_cmd_desc	cmd;
2696
2697	TI_LOCK_ASSERT(sc);
2698
2699	ifp = sc->ti_ifp;
2700
2701	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2702		struct ti_rx_desc	*cur_rx;
2703		u_int32_t		rxidx;
2704		struct mbuf		*m = NULL;
2705		u_int16_t		vlan_tag = 0;
2706		int			have_tag = 0;
2707
2708		cur_rx =
2709		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2710		rxidx = cur_rx->ti_idx;
2711		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2712
2713		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2714			have_tag = 1;
2715			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2716		}
2717
2718		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2719
2720			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2721			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2722			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2723			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2724			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
2725			    BUS_DMASYNC_POSTREAD);
2726			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
2727			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2728				ifp->if_ierrors++;
2729				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2730				continue;
2731			}
2732			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2733				ifp->if_ierrors++;
2734				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2735				continue;
2736			}
2737#ifdef TI_PRIVATE_JUMBOS
2738			m->m_len = cur_rx->ti_len;
2739#else /* TI_PRIVATE_JUMBOS */
2740#ifdef TI_JUMBO_HDRSPLIT
2741			if (sc->ti_hdrsplit)
2742				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2743					     cur_rx->ti_len, rxidx);
2744			else
2745#endif /* TI_JUMBO_HDRSPLIT */
2746			m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2747#endif /* TI_PRIVATE_JUMBOS */
2748		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2749			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2750			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2751			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2752			map = sc->ti_cdata.ti_rx_mini_maps[rxidx];
2753			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2754			    BUS_DMASYNC_POSTREAD);
2755			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2756			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2757				ifp->if_ierrors++;
2758				ti_newbuf_mini(sc, sc->ti_mini, m);
2759				continue;
2760			}
2761			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2762				ifp->if_ierrors++;
2763				ti_newbuf_mini(sc, sc->ti_mini, m);
2764				continue;
2765			}
2766			m->m_len = cur_rx->ti_len;
2767		} else {
2768			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2769			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2770			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2771			map = sc->ti_cdata.ti_rx_std_maps[rxidx];
2772			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2773			    BUS_DMASYNC_POSTREAD);
2774			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2775			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2776				ifp->if_ierrors++;
2777				ti_newbuf_std(sc, sc->ti_std, m);
2778				continue;
2779			}
2780			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2781				ifp->if_ierrors++;
2782				ti_newbuf_std(sc, sc->ti_std, m);
2783				continue;
2784			}
2785			m->m_len = cur_rx->ti_len;
2786		}
2787
2788		m->m_pkthdr.len = cur_rx->ti_len;
2789		ifp->if_ipackets++;
2790		m->m_pkthdr.rcvif = ifp;
2791
2792		if (ifp->if_hwassist) {
2793			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2794			    CSUM_DATA_VALID;
2795			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2796				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2797			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2798		}
2799
2800		/*
2801		 * If we received a packet with a vlan tag,
2802		 * tag it before passing the packet upward.
2803		 */
2804		if (have_tag) {
2805			VLAN_INPUT_TAG(ifp, m, vlan_tag);
2806			if (m == NULL)
2807				continue;
2808		}
2809		TI_UNLOCK(sc);
2810		(*ifp->if_input)(ifp, m);
2811		TI_LOCK(sc);
2812	}
2813
2814	/* Only necessary on the Tigon 1. */
2815	if (sc->ti_hwrev == TI_HWREV_TIGON)
2816		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2817		    sc->ti_rx_saved_considx);
2818
2819	TI_UPDATE_STDPROD(sc, sc->ti_std);
2820	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2821	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2822}
2823
2824static void
2825ti_txeof(sc)
2826	struct ti_softc		*sc;
2827{
2828	struct ti_tx_desc	*cur_tx = NULL;
2829	struct ifnet		*ifp;
2830	bus_dmamap_t		map;
2831
2832	ifp = sc->ti_ifp;
2833
2834	/*
2835	 * Go through our tx ring and free mbufs for those
2836	 * frames that have been sent.
2837	 */
2838	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2839		u_int32_t		idx = 0;
2840		struct ti_tx_desc	txdesc;
2841
2842		idx = sc->ti_tx_saved_considx;
2843		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2844			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2845			    sizeof(txdesc), &txdesc);
2846			cur_tx = &txdesc;
2847		} else
2848			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2849		if (cur_tx->ti_flags & TI_BDFLAG_END)
2850			ifp->if_opackets++;
2851		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2852			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2853			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2854			map = sc->ti_cdata.ti_tx_maps[idx];
2855			bus_dmamap_sync(sc->ti_mbuftx_dmat, map,
2856			    BUS_DMASYNC_POSTWRITE);
2857			bus_dmamap_unload(sc->ti_mbuftx_dmat, map);
2858		}
2859		sc->ti_txcnt--;
2860		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2861		ifp->if_timer = 0;
2862	}
2863
2864	if (cur_tx != NULL)
2865		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2866}
2867
2868static void
2869ti_intr(xsc)
2870	void			*xsc;
2871{
2872	struct ti_softc		*sc;
2873	struct ifnet		*ifp;
2874
2875	sc = xsc;
2876	TI_LOCK(sc);
2877	ifp = sc->ti_ifp;
2878
2879/*#ifdef notdef*/
2880	/* Avoid this for now -- checking this register is expensive. */
2881	/* Make sure this is really our interrupt. */
2882	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2883		TI_UNLOCK(sc);
2884		return;
2885	}
2886/*#endif*/
2887
2888	/* Ack interrupt and stop others from occuring. */
2889	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2890
2891	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2892		/* Check RX return ring producer/consumer */
2893		ti_rxeof(sc);
2894
2895		/* Check TX ring producer/consumer */
2896		ti_txeof(sc);
2897	}
2898
2899	ti_handle_events(sc);
2900
2901	/* Re-enable interrupts. */
2902	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2903
2904	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2905	    ifp->if_snd.ifq_head != NULL)
2906		ti_start_locked(ifp);
2907
2908	TI_UNLOCK(sc);
2909}
2910
2911static void
2912ti_stats_update(sc)
2913	struct ti_softc		*sc;
2914{
2915	struct ifnet		*ifp;
2916
2917	ifp = sc->ti_ifp;
2918
2919	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2920	    BUS_DMASYNC_POSTREAD);
2921
2922	ifp->if_collisions +=
2923	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2924	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2925	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2926	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2927	   ifp->if_collisions;
2928
2929	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2930	    BUS_DMASYNC_PREREAD);
2931}
2932
2933struct ti_dmamap_arg {
2934	struct ti_softc	*sc;
2935	struct m_tag	*mtag;
2936	struct mbuf	*m_head;
2937	u_int16_t	csum_flags;
2938	int idx;
2939};
2940
2941static void
2942ti_encap_cb(arg, segs, nseg, mapsize, error)
2943	void *arg;
2944	bus_dma_segment_t *segs;
2945	int nseg;
2946	bus_size_t mapsize;
2947	int error;
2948{
2949	struct ti_softc		*sc;
2950	struct ti_dmamap_arg	*ctx;
2951	struct ti_tx_desc	*f = NULL;
2952	struct ti_tx_desc	txdesc;
2953	struct m_tag		*mtag;
2954	u_int32_t		frag, cur, cnt = 0;
2955	u_int16_t		csum_flags;
2956
2957	if (error)
2958		return;
2959
2960	ctx = (struct ti_dmamap_arg *)arg;
2961	sc = ctx->sc;
2962	cur = frag = ctx->idx;
2963	mtag = ctx->mtag;
2964	csum_flags = ctx->csum_flags;
2965
2966	/*
2967	 * Start packing the mbufs in this chain into
2968	 * the fragment pointers. Stop when we run out
2969	 * of fragments or hit the end of the mbuf chain.
2970	 */
2971	while (nseg-- > 0) {
2972		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2973			bzero(&txdesc, sizeof(txdesc));
2974			f = &txdesc;
2975		} else
2976			f = &sc->ti_rdata->ti_tx_ring[frag];
2977		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2978			break;
2979		ti_hostaddr64(&f->ti_addr, segs[cnt].ds_addr);
2980		f->ti_len = segs[cnt].ds_len;
2981		f->ti_flags = csum_flags;
2982
2983		if (mtag != NULL) {
2984			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2985			f->ti_vlan_tag = VLAN_TAG_VALUE(mtag) & 0xfff;
2986		} else {
2987			f->ti_vlan_tag = 0;
2988		}
2989
2990		if (sc->ti_hwrev == TI_HWREV_TIGON)
2991			ti_mem_write(sc, TI_TX_RING_BASE + frag *
2992			    sizeof(txdesc), sizeof(txdesc), &txdesc);
2993		cur = frag;
2994		TI_INC(frag, TI_TX_RING_CNT);
2995		cnt++;
2996	}
2997
2998	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2999		txdesc.ti_flags |= TI_BDFLAG_END;
3000		ti_mem_write(sc, TI_TX_RING_BASE + cur * sizeof(txdesc),
3001		    sizeof(txdesc), &txdesc);
3002	} else
3003		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
3004	sc->ti_cdata.ti_tx_chain[cur] = ctx->m_head;
3005	sc->ti_txcnt += cnt;
3006
3007	ctx->idx = frag;
3008
3009}
3010
3011/*
3012 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3013 * pointers to descriptors.
3014 */
3015static int
3016ti_encap(sc, m_head, txidx)
3017	struct ti_softc		*sc;
3018	struct mbuf		*m_head;
3019	u_int32_t		*txidx;
3020{
3021	bus_dmamap_t		map;
3022	struct ti_dmamap_arg	ctx;
3023	u_int32_t		frag, cnt;
3024	u_int16_t		csum_flags = 0;
3025	int			error;
3026
3027	frag = *txidx;
3028
3029	if (m_head->m_pkthdr.csum_flags) {
3030		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3031			csum_flags |= TI_BDFLAG_IP_CKSUM;
3032		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3033			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
3034		if (m_head->m_flags & M_LASTFRAG)
3035			csum_flags |= TI_BDFLAG_IP_FRAG_END;
3036		else if (m_head->m_flags & M_FRAG)
3037			csum_flags |= TI_BDFLAG_IP_FRAG;
3038	}
3039
3040	ctx.sc = sc;
3041	ctx.idx = frag;
3042	ctx.csum_flags = csum_flags;
3043	ctx.mtag = VLAN_OUTPUT_TAG(sc->ti_ifp, m_head);
3044	ctx.m_head = m_head;
3045
3046	map = sc->ti_cdata.ti_tx_maps[frag];
3047	error = bus_dmamap_load_mbuf(sc->ti_mbuftx_dmat, map, m_head,
3048	    ti_encap_cb, &ctx, 0);
3049	if (error)
3050		return (ENOBUFS);
3051
3052	cnt = ctx.idx - frag;
3053	frag = ctx.idx;
3054
3055	/*
3056	 * Sanity check: avoid coming within 16 descriptors
3057	 * of the end of the ring.
3058	 */
3059	if (((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16) ||
3060	    (frag == sc->ti_tx_saved_considx)) {
3061		bus_dmamap_unload(sc->ti_mbuftx_dmat, map);
3062		return (ENOBUFS);
3063	}
3064
3065	bus_dmamap_sync(sc->ti_mbuftx_dmat, map, BUS_DMASYNC_PREWRITE);
3066	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
3067	    BUS_DMASYNC_PREWRITE);
3068	*txidx = frag;
3069	return (0);
3070}
3071
3072static void
3073ti_start(ifp)
3074	struct ifnet		*ifp;
3075{
3076	struct ti_softc		*sc;
3077
3078	sc = ifp->if_softc;
3079	TI_LOCK(sc);
3080	ti_start_locked(ifp);
3081	TI_UNLOCK(sc);
3082}
3083
3084/*
3085 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3086 * to the mbuf data regions directly in the transmit descriptors.
3087 */
3088static void
3089ti_start_locked(ifp)
3090	struct ifnet		*ifp;
3091{
3092	struct ti_softc		*sc;
3093	struct mbuf		*m_head = NULL;
3094	u_int32_t		prodidx = 0;
3095
3096	sc = ifp->if_softc;
3097
3098	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
3099
3100	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
3101		IF_DEQUEUE(&ifp->if_snd, m_head);
3102		if (m_head == NULL)
3103			break;
3104
3105		/*
3106		 * XXX
3107		 * safety overkill.  If this is a fragmented packet chain
3108		 * with delayed TCP/UDP checksums, then only encapsulate
3109		 * it if we have enough descriptors to handle the entire
3110		 * chain at once.
3111		 * (paranoia -- may not actually be needed)
3112		 */
3113		if (m_head->m_flags & M_FIRSTFRAG &&
3114		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3115			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
3116			    m_head->m_pkthdr.csum_data + 16) {
3117				IF_PREPEND(&ifp->if_snd, m_head);
3118				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3119				break;
3120			}
3121		}
3122
3123		/*
3124		 * Pack the data into the transmit ring. If we
3125		 * don't have room, set the OACTIVE flag and wait
3126		 * for the NIC to drain the ring.
3127		 */
3128		if (ti_encap(sc, m_head, &prodidx)) {
3129			IF_PREPEND(&ifp->if_snd, m_head);
3130			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3131			break;
3132		}
3133
3134		/*
3135		 * If there's a BPF listener, bounce a copy of this frame
3136		 * to him.
3137		 */
3138		BPF_MTAP(ifp, m_head);
3139	}
3140
3141	/* Transmit */
3142	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
3143
3144	/*
3145	 * Set a timeout in case the chip goes out to lunch.
3146	 */
3147	ifp->if_timer = 5;
3148}
3149
3150static void
3151ti_init(xsc)
3152	void			*xsc;
3153{
3154	struct ti_softc		*sc;
3155
3156	sc = xsc;
3157	TI_LOCK(sc);
3158	ti_init_locked(sc);
3159	TI_UNLOCK(sc);
3160}
3161
3162static void
3163ti_init_locked(xsc)
3164	void			*xsc;
3165{
3166	struct ti_softc		*sc = xsc;
3167
3168	/* Cancel pending I/O and flush buffers. */
3169	ti_stop(sc);
3170
3171	/* Init the gen info block, ring control blocks and firmware. */
3172	if (ti_gibinit(sc)) {
3173		if_printf(sc->ti_ifp, "initialization failure\n");
3174		return;
3175	}
3176}
3177
3178static void ti_init2(sc)
3179	struct ti_softc		*sc;
3180{
3181	struct ti_cmd_desc	cmd;
3182	struct ifnet		*ifp;
3183	u_int8_t		*ea;
3184	struct ifmedia		*ifm;
3185	int			tmp;
3186
3187	TI_LOCK_ASSERT(sc);
3188
3189	ifp = sc->ti_ifp;
3190
3191	/* Specify MTU and interface index. */
3192	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
3193	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3194	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3195	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3196
3197	/* Load our MAC address. */
3198	ea = IF_LLADDR(sc->ti_ifp);
3199	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3200	CSR_WRITE_4(sc, TI_GCR_PAR1,
3201	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3202	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3203
3204	/* Enable or disable promiscuous mode as needed. */
3205	if (ifp->if_flags & IFF_PROMISC) {
3206		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3207	} else {
3208		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3209	}
3210
3211	/* Program multicast filter. */
3212	ti_setmulti(sc);
3213
3214	/*
3215	 * If this is a Tigon 1, we should tell the
3216	 * firmware to use software packet filtering.
3217	 */
3218	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3219		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3220	}
3221
3222	/* Init RX ring. */
3223	ti_init_rx_ring_std(sc);
3224
3225	/* Init jumbo RX ring. */
3226	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3227		ti_init_rx_ring_jumbo(sc);
3228
3229	/*
3230	 * If this is a Tigon 2, we can also configure the
3231	 * mini ring.
3232	 */
3233	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
3234		ti_init_rx_ring_mini(sc);
3235
3236	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3237	sc->ti_rx_saved_considx = 0;
3238
3239	/* Init TX ring. */
3240	ti_init_tx_ring(sc);
3241
3242	/* Tell firmware we're alive. */
3243	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3244
3245	/* Enable host interrupts. */
3246	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3247
3248	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3249	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3250
3251	/*
3252	 * Make sure to set media properly. We have to do this
3253	 * here since we have to issue commands in order to set
3254	 * the link negotiation and we can't issue commands until
3255	 * the firmware is running.
3256	 */
3257	ifm = &sc->ifmedia;
3258	tmp = ifm->ifm_media;
3259	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3260	ti_ifmedia_upd(ifp);
3261	ifm->ifm_media = tmp;
3262}
3263
3264/*
3265 * Set media options.
3266 */
3267static int
3268ti_ifmedia_upd(ifp)
3269	struct ifnet		*ifp;
3270{
3271	struct ti_softc		*sc;
3272	struct ifmedia		*ifm;
3273	struct ti_cmd_desc	cmd;
3274	u_int32_t		flowctl;
3275
3276	sc = ifp->if_softc;
3277	ifm = &sc->ifmedia;
3278
3279	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3280		return (EINVAL);
3281
3282	flowctl = 0;
3283
3284	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3285	case IFM_AUTO:
3286		/*
3287		 * Transmit flow control doesn't work on the Tigon 1.
3288		 */
3289		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3290
3291		/*
3292		 * Transmit flow control can also cause problems on the
3293		 * Tigon 2, apparantly with both the copper and fiber
3294		 * boards.  The symptom is that the interface will just
3295		 * hang.  This was reproduced with Alteon 180 switches.
3296		 */
3297#if 0
3298		if (sc->ti_hwrev != TI_HWREV_TIGON)
3299			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3300#endif
3301
3302		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3303		    TI_GLNK_FULL_DUPLEX| flowctl |
3304		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3305
3306		flowctl = TI_LNK_RX_FLOWCTL_Y;
3307#if 0
3308		if (sc->ti_hwrev != TI_HWREV_TIGON)
3309			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3310#endif
3311
3312		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3313		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3314		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3315		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3316		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3317		break;
3318	case IFM_1000_SX:
3319	case IFM_1000_T:
3320		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3321#if 0
3322		if (sc->ti_hwrev != TI_HWREV_TIGON)
3323			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3324#endif
3325
3326		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3327		    flowctl |TI_GLNK_ENB);
3328		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3329		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3330			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3331		}
3332		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3333		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3334		break;
3335	case IFM_100_FX:
3336	case IFM_10_FL:
3337	case IFM_100_TX:
3338	case IFM_10_T:
3339		flowctl = TI_LNK_RX_FLOWCTL_Y;
3340#if 0
3341		if (sc->ti_hwrev != TI_HWREV_TIGON)
3342			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3343#endif
3344
3345		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3346		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3347		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3348		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3349			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3350		} else {
3351			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3352		}
3353		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3354			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3355		} else {
3356			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3357		}
3358		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3359		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3360		break;
3361	}
3362
3363	return (0);
3364}
3365
3366/*
3367 * Report current media status.
3368 */
3369static void
3370ti_ifmedia_sts(ifp, ifmr)
3371	struct ifnet		*ifp;
3372	struct ifmediareq	*ifmr;
3373{
3374	struct ti_softc		*sc;
3375	u_int32_t		media = 0;
3376
3377	sc = ifp->if_softc;
3378
3379	ifmr->ifm_status = IFM_AVALID;
3380	ifmr->ifm_active = IFM_ETHER;
3381
3382	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3383		return;
3384
3385	ifmr->ifm_status |= IFM_ACTIVE;
3386
3387	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3388		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3389		if (sc->ti_copper)
3390			ifmr->ifm_active |= IFM_1000_T;
3391		else
3392			ifmr->ifm_active |= IFM_1000_SX;
3393		if (media & TI_GLNK_FULL_DUPLEX)
3394			ifmr->ifm_active |= IFM_FDX;
3395		else
3396			ifmr->ifm_active |= IFM_HDX;
3397	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3398		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3399		if (sc->ti_copper) {
3400			if (media & TI_LNK_100MB)
3401				ifmr->ifm_active |= IFM_100_TX;
3402			if (media & TI_LNK_10MB)
3403				ifmr->ifm_active |= IFM_10_T;
3404		} else {
3405			if (media & TI_LNK_100MB)
3406				ifmr->ifm_active |= IFM_100_FX;
3407			if (media & TI_LNK_10MB)
3408				ifmr->ifm_active |= IFM_10_FL;
3409		}
3410		if (media & TI_LNK_FULL_DUPLEX)
3411			ifmr->ifm_active |= IFM_FDX;
3412		if (media & TI_LNK_HALF_DUPLEX)
3413			ifmr->ifm_active |= IFM_HDX;
3414	}
3415}
3416
3417static int
3418ti_ioctl(ifp, command, data)
3419	struct ifnet		*ifp;
3420	u_long			command;
3421	caddr_t			data;
3422{
3423	struct ti_softc		*sc = ifp->if_softc;
3424	struct ifreq		*ifr = (struct ifreq *) data;
3425	int			mask, error = 0;
3426	struct ti_cmd_desc	cmd;
3427
3428	switch (command) {
3429	case SIOCSIFMTU:
3430		TI_LOCK(sc);
3431		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3432			error = EINVAL;
3433		else {
3434			ifp->if_mtu = ifr->ifr_mtu;
3435			ti_init_locked(sc);
3436		}
3437		TI_UNLOCK(sc);
3438		break;
3439	case SIOCSIFFLAGS:
3440		TI_LOCK(sc);
3441		if (ifp->if_flags & IFF_UP) {
3442			/*
3443			 * If only the state of the PROMISC flag changed,
3444			 * then just use the 'set promisc mode' command
3445			 * instead of reinitializing the entire NIC. Doing
3446			 * a full re-init means reloading the firmware and
3447			 * waiting for it to start up, which may take a
3448			 * second or two.
3449			 */
3450			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3451			    ifp->if_flags & IFF_PROMISC &&
3452			    !(sc->ti_if_flags & IFF_PROMISC)) {
3453				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3454				    TI_CMD_CODE_PROMISC_ENB, 0);
3455			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3456			    !(ifp->if_flags & IFF_PROMISC) &&
3457			    sc->ti_if_flags & IFF_PROMISC) {
3458				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3459				    TI_CMD_CODE_PROMISC_DIS, 0);
3460			} else
3461				ti_init_locked(sc);
3462		} else {
3463			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3464				ti_stop(sc);
3465			}
3466		}
3467		sc->ti_if_flags = ifp->if_flags;
3468		TI_UNLOCK(sc);
3469		break;
3470	case SIOCADDMULTI:
3471	case SIOCDELMULTI:
3472		TI_LOCK(sc);
3473		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3474			ti_setmulti(sc);
3475		TI_UNLOCK(sc);
3476		break;
3477	case SIOCSIFMEDIA:
3478	case SIOCGIFMEDIA:
3479		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3480		break;
3481	case SIOCSIFCAP:
3482		TI_LOCK(sc);
3483		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3484		if (mask & IFCAP_HWCSUM) {
3485			if (IFCAP_HWCSUM & ifp->if_capenable)
3486				ifp->if_capenable &= ~IFCAP_HWCSUM;
3487			else
3488				ifp->if_capenable |= IFCAP_HWCSUM;
3489			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3490				ti_init_locked(sc);
3491		}
3492		TI_UNLOCK(sc);
3493		break;
3494	default:
3495		error = ether_ioctl(ifp, command, data);
3496		break;
3497	}
3498
3499	return (error);
3500}
3501
3502static int
3503ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3504{
3505	struct ti_softc *sc;
3506
3507	sc = dev->si_drv1;
3508	if (sc == NULL)
3509		return (ENODEV);
3510
3511	TI_LOCK(sc);
3512	sc->ti_flags |= TI_FLAG_DEBUGING;
3513	TI_UNLOCK(sc);
3514
3515	return (0);
3516}
3517
3518static int
3519ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3520{
3521	struct ti_softc *sc;
3522
3523	sc = dev->si_drv1;
3524	if (sc == NULL)
3525		return (ENODEV);
3526
3527	TI_LOCK(sc);
3528	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3529	TI_UNLOCK(sc);
3530
3531	return (0);
3532}
3533
3534/*
3535 * This ioctl routine goes along with the Tigon character device.
3536 */
3537static int
3538ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3539    struct thread *td)
3540{
3541	int error;
3542	struct ti_softc *sc;
3543
3544	sc = dev->si_drv1;
3545	if (sc == NULL)
3546		return (ENODEV);
3547
3548	error = 0;
3549
3550	switch (cmd) {
3551	case TIIOCGETSTATS:
3552	{
3553		struct ti_stats *outstats;
3554
3555		outstats = (struct ti_stats *)addr;
3556
3557		TI_LOCK(sc);
3558		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3559		      sizeof(struct ti_stats));
3560		TI_UNLOCK(sc);
3561		break;
3562	}
3563	case TIIOCGETPARAMS:
3564	{
3565		struct ti_params	*params;
3566
3567		params = (struct ti_params *)addr;
3568
3569		TI_LOCK(sc);
3570		params->ti_stat_ticks = sc->ti_stat_ticks;
3571		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3572		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3573		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3574		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3575		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3576		params->param_mask = TI_PARAM_ALL;
3577		TI_UNLOCK(sc);
3578
3579		error = 0;
3580
3581		break;
3582	}
3583	case TIIOCSETPARAMS:
3584	{
3585		struct ti_params *params;
3586
3587		params = (struct ti_params *)addr;
3588
3589		TI_LOCK(sc);
3590		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3591			sc->ti_stat_ticks = params->ti_stat_ticks;
3592			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3593		}
3594
3595		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3596			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3597			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3598				    sc->ti_rx_coal_ticks);
3599		}
3600
3601		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3602			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3603			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3604				    sc->ti_tx_coal_ticks);
3605		}
3606
3607		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3608			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3609			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3610				    sc->ti_rx_max_coal_bds);
3611		}
3612
3613		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3614			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3615			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3616				    sc->ti_tx_max_coal_bds);
3617		}
3618
3619		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3620			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3621			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3622				    sc->ti_tx_buf_ratio);
3623		}
3624		TI_UNLOCK(sc);
3625
3626		error = 0;
3627
3628		break;
3629	}
3630	case TIIOCSETTRACE: {
3631		ti_trace_type	trace_type;
3632
3633		trace_type = *(ti_trace_type *)addr;
3634
3635		/*
3636		 * Set tracing to whatever the user asked for.  Setting
3637		 * this register to 0 should have the effect of disabling
3638		 * tracing.
3639		 */
3640		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3641
3642		error = 0;
3643
3644		break;
3645	}
3646	case TIIOCGETTRACE: {
3647		struct ti_trace_buf	*trace_buf;
3648		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3649
3650		trace_buf = (struct ti_trace_buf *)addr;
3651
3652		TI_LOCK(sc);
3653		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3654		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3655		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3656
3657#if 0
3658		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3659		       "trace_len = %d\n", trace_start,
3660		       cur_trace_ptr, trace_len);
3661		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3662		       trace_buf->buf_len);
3663#endif
3664
3665		error = ti_copy_mem(sc, trace_start, min(trace_len,
3666				    trace_buf->buf_len),
3667				    (caddr_t)trace_buf->buf, 1, 1);
3668
3669		if (error == 0) {
3670			trace_buf->fill_len = min(trace_len,
3671						  trace_buf->buf_len);
3672			if (cur_trace_ptr < trace_start)
3673				trace_buf->cur_trace_ptr =
3674					trace_start - cur_trace_ptr;
3675			else
3676				trace_buf->cur_trace_ptr =
3677					cur_trace_ptr - trace_start;
3678		} else
3679			trace_buf->fill_len = 0;
3680		TI_UNLOCK(sc);
3681
3682		break;
3683	}
3684
3685	/*
3686	 * For debugging, five ioctls are needed:
3687	 * ALT_ATTACH
3688	 * ALT_READ_TG_REG
3689	 * ALT_WRITE_TG_REG
3690	 * ALT_READ_TG_MEM
3691	 * ALT_WRITE_TG_MEM
3692	 */
3693	case ALT_ATTACH:
3694		/*
3695		 * From what I can tell, Alteon's Solaris Tigon driver
3696		 * only has one character device, so you have to attach
3697		 * to the Tigon board you're interested in.  This seems
3698		 * like a not-so-good way to do things, since unless you
3699		 * subsequently specify the unit number of the device
3700		 * you're interested in in every ioctl, you'll only be
3701		 * able to debug one board at a time.
3702		 */
3703		error = 0;
3704		break;
3705	case ALT_READ_TG_MEM:
3706	case ALT_WRITE_TG_MEM:
3707	{
3708		struct tg_mem *mem_param;
3709		u_int32_t sram_end, scratch_end;
3710
3711		mem_param = (struct tg_mem *)addr;
3712
3713		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3714			sram_end = TI_END_SRAM_I;
3715			scratch_end = TI_END_SCRATCH_I;
3716		} else {
3717			sram_end = TI_END_SRAM_II;
3718			scratch_end = TI_END_SCRATCH_II;
3719		}
3720
3721		/*
3722		 * For now, we'll only handle accessing regular SRAM,
3723		 * nothing else.
3724		 */
3725		TI_LOCK(sc);
3726		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3727		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3728			/*
3729			 * In this instance, we always copy to/from user
3730			 * space, so the user space argument is set to 1.
3731			 */
3732			error = ti_copy_mem(sc, mem_param->tgAddr,
3733					    mem_param->len,
3734					    mem_param->userAddr, 1,
3735					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3736		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3737			&& (mem_param->tgAddr <= scratch_end)) {
3738			error = ti_copy_scratch(sc, mem_param->tgAddr,
3739						mem_param->len,
3740						mem_param->userAddr, 1,
3741						(cmd == ALT_READ_TG_MEM) ?
3742						1 : 0, TI_PROCESSOR_A);
3743		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3744			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3745			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3746				if_printf(sc->ti_ifp,
3747				    "invalid memory range for Tigon I\n");
3748				error = EINVAL;
3749				break;
3750			}
3751			error = ti_copy_scratch(sc, mem_param->tgAddr -
3752						TI_SCRATCH_DEBUG_OFF,
3753						mem_param->len,
3754						mem_param->userAddr, 1,
3755						(cmd == ALT_READ_TG_MEM) ?
3756						1 : 0, TI_PROCESSOR_B);
3757		} else {
3758			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3759			        "out of supported range\n",
3760			        mem_param->tgAddr, mem_param->len);
3761			error = EINVAL;
3762		}
3763		TI_UNLOCK(sc);
3764
3765		break;
3766	}
3767	case ALT_READ_TG_REG:
3768	case ALT_WRITE_TG_REG:
3769	{
3770		struct tg_reg	*regs;
3771		u_int32_t	tmpval;
3772
3773		regs = (struct tg_reg *)addr;
3774
3775		/*
3776		 * Make sure the address in question isn't out of range.
3777		 */
3778		if (regs->addr > TI_REG_MAX) {
3779			error = EINVAL;
3780			break;
3781		}
3782		TI_LOCK(sc);
3783		if (cmd == ALT_READ_TG_REG) {
3784			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3785						regs->addr, &tmpval, 1);
3786			regs->data = ntohl(tmpval);
3787#if 0
3788			if ((regs->addr == TI_CPU_STATE)
3789			 || (regs->addr == TI_CPU_CTL_B)) {
3790				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3791				       regs->addr, tmpval);
3792			}
3793#endif
3794		} else {
3795			tmpval = htonl(regs->data);
3796			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3797						 regs->addr, &tmpval, 1);
3798		}
3799		TI_UNLOCK(sc);
3800
3801		break;
3802	}
3803	default:
3804		error = ENOTTY;
3805		break;
3806	}
3807	return (error);
3808}
3809
3810static void
3811ti_watchdog(ifp)
3812	struct ifnet		*ifp;
3813{
3814	struct ti_softc		*sc;
3815
3816	sc = ifp->if_softc;
3817	TI_LOCK(sc);
3818
3819	/*
3820	 * When we're debugging, the chip is often stopped for long periods
3821	 * of time, and that would normally cause the watchdog timer to fire.
3822	 * Since that impedes debugging, we don't want to do that.
3823	 */
3824	if (sc->ti_flags & TI_FLAG_DEBUGING) {
3825		TI_UNLOCK(sc);
3826		return;
3827	}
3828
3829	if_printf(ifp, "watchdog timeout -- resetting\n");
3830	ti_stop(sc);
3831	ti_init_locked(sc);
3832
3833	ifp->if_oerrors++;
3834	TI_UNLOCK(sc);
3835}
3836
3837/*
3838 * Stop the adapter and free any mbufs allocated to the
3839 * RX and TX lists.
3840 */
3841static void
3842ti_stop(sc)
3843	struct ti_softc		*sc;
3844{
3845	struct ifnet		*ifp;
3846	struct ti_cmd_desc	cmd;
3847
3848	TI_LOCK_ASSERT(sc);
3849
3850	ifp = sc->ti_ifp;
3851
3852	/* Disable host interrupts. */
3853	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3854	/*
3855	 * Tell firmware we're shutting down.
3856	 */
3857	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3858
3859	/* Halt and reinitialize. */
3860	if (ti_chipinit(sc) != 0)
3861		return;
3862	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3863	if (ti_chipinit(sc) != 0)
3864		return;
3865
3866	/* Free the RX lists. */
3867	ti_free_rx_ring_std(sc);
3868
3869	/* Free jumbo RX list. */
3870	ti_free_rx_ring_jumbo(sc);
3871
3872	/* Free mini RX list. */
3873	ti_free_rx_ring_mini(sc);
3874
3875	/* Free TX buffers. */
3876	ti_free_tx_ring(sc);
3877
3878	sc->ti_ev_prodidx.ti_idx = 0;
3879	sc->ti_return_prodidx.ti_idx = 0;
3880	sc->ti_tx_considx.ti_idx = 0;
3881	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3882
3883	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3884}
3885
3886/*
3887 * Stop all chip I/O so that the kernel's probe routines don't
3888 * get confused by errant DMAs when rebooting.
3889 */
3890static void
3891ti_shutdown(dev)
3892	device_t		dev;
3893{
3894	struct ti_softc		*sc;
3895
3896	sc = device_get_softc(dev);
3897	TI_LOCK(sc);
3898	ti_chipinit(sc);
3899	TI_UNLOCK(sc);
3900}
3901