if_ti.c revision 147256
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35 * Manuals, sample driver and firmware source kits are available
36 * from http://www.alteon.com/support/openkits.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48 * filtering and jumbo (9014 byte) frames. The hardware is largely
49 * controlled by firmware, which must be loaded into the NIC during
50 * initialization.
51 *
52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53 * revision, which supports new features such as extended commands,
54 * extended jumbo receive ring desciptors and a mini receive ring.
55 *
56 * Alteon Networks is to be commended for releasing such a vast amount
57 * of development material for the Tigon NIC without requiring an NDA
58 * (although they really should have done it a long time ago). With
59 * any luck, the other vendors will finally wise up and follow Alteon's
60 * stellar example.
61 *
62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63 * this driver by #including it as a C header file. This bloats the
64 * driver somewhat, but it's the easiest method considering that the
65 * driver code and firmware code need to be kept in sync. The source
66 * for the firmware is not provided with the FreeBSD distribution since
67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68 *
69 * The following people deserve special thanks:
70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71 *   for testing
72 * - Raymond Lee of Netgear, for providing a pair of Netgear
73 *   GA620 Tigon 2 boards for testing
74 * - Ulf Zimmermann, for bringing the GA260 to my attention and
75 *   convincing me to write this driver.
76 * - Andrew Gallatin for providing FreeBSD/Alpha support.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/dev/ti/if_ti.c 147256 2005-06-10 16:49:24Z brooks $");
81
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/module.h>
91#include <sys/socket.h>
92#include <sys/queue.h>
93#include <sys/conf.h>
94
95#include <net/if.h>
96#include <net/if_arp.h>
97#include <net/ethernet.h>
98#include <net/if_dl.h>
99#include <net/if_media.h>
100#include <net/if_types.h>
101#include <net/if_vlan_var.h>
102
103#include <net/bpf.h>
104
105#include <netinet/in_systm.h>
106#include <netinet/in.h>
107#include <netinet/ip.h>
108
109#include <vm/vm.h>		/* for vtophys */
110#include <vm/pmap.h>		/* for vtophys */
111#include <machine/bus.h>
112#include <machine/resource.h>
113#include <sys/bus.h>
114#include <sys/rman.h>
115
116/* #define TI_PRIVATE_JUMBOS */
117
118#if !defined(TI_PRIVATE_JUMBOS)
119#include <sys/sockio.h>
120#include <sys/uio.h>
121#include <sys/lock.h>
122#include <sys/sf_buf.h>
123#include <vm/vm_extern.h>
124#include <vm/pmap.h>
125#include <vm/vm_map.h>
126#include <vm/vm_map.h>
127#include <vm/vm_param.h>
128#include <vm/vm_pageout.h>
129#include <sys/vmmeter.h>
130#include <vm/vm_page.h>
131#include <vm/vm_object.h>
132#include <vm/vm_kern.h>
133#include <sys/proc.h>
134#endif /* !TI_PRIVATE_JUMBOS */
135
136#include <dev/pci/pcireg.h>
137#include <dev/pci/pcivar.h>
138
139#include <sys/tiio.h>
140#include <pci/if_tireg.h>
141#include <pci/ti_fw.h>
142#include <pci/ti_fw2.h>
143
144#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
145/*
146 * We can only turn on header splitting if we're using extended receive
147 * BDs.
148 */
149#if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
150#error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
151#endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
152
153struct ti_softc *tis[8];
154
155typedef enum {
156	TI_SWAP_HTON,
157	TI_SWAP_NTOH
158} ti_swap_type;
159
160
161/*
162 * Various supported device vendors/types and their names.
163 */
164
165static struct ti_type ti_devs[] = {
166	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
167		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
168	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
169		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
170	{ TC_VENDORID,	TC_DEVICEID_3C985,
171		"3Com 3c985-SX Gigabit Ethernet" },
172	{ NG_VENDORID, NG_DEVICEID_GA620,
173		"Netgear GA620 1000baseSX Gigabit Ethernet" },
174	{ NG_VENDORID, NG_DEVICEID_GA620T,
175		"Netgear GA620 1000baseT Gigabit Ethernet" },
176	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
177		"Silicon Graphics Gigabit Ethernet" },
178	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
179		"Farallon PN9000SX Gigabit Ethernet" },
180	{ 0, 0, NULL }
181};
182
183
184static	d_open_t	ti_open;
185static	d_close_t	ti_close;
186static	d_ioctl_t	ti_ioctl2;
187
188static struct cdevsw ti_cdevsw = {
189	.d_version =	D_VERSION,
190	.d_flags =	D_NEEDGIANT,
191	.d_open =	ti_open,
192	.d_close =	ti_close,
193	.d_ioctl =	ti_ioctl2,
194	.d_name =	"ti",
195};
196
197static int ti_probe(device_t);
198static int ti_attach(device_t);
199static int ti_detach(device_t);
200static void ti_txeof(struct ti_softc *);
201static void ti_rxeof(struct ti_softc *);
202
203static void ti_stats_update(struct ti_softc *);
204static int ti_encap(struct ti_softc *, struct mbuf *, u_int32_t *);
205
206static void ti_intr(void *);
207static void ti_start(struct ifnet *);
208static int ti_ioctl(struct ifnet *, u_long, caddr_t);
209static void ti_init(void *);
210static void ti_init2(struct ti_softc *);
211static void ti_stop(struct ti_softc *);
212static void ti_watchdog(struct ifnet *);
213static void ti_shutdown(device_t);
214static int ti_ifmedia_upd(struct ifnet *);
215static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216
217static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
218static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
219static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
220
221static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
222static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
223static void ti_setmulti(struct ti_softc *);
224
225static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t);
226static int ti_copy_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t, int, int);
227static int ti_copy_scratch(struct ti_softc *, u_int32_t, u_int32_t, caddr_t,
228		int, int, int);
229static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
230static void ti_loadfw(struct ti_softc *);
231static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
232static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
233static void ti_handle_events(struct ti_softc *);
234#ifdef TI_PRIVATE_JUMBOS
235static int ti_alloc_jumbo_mem(struct ti_softc *);
236static void *ti_jalloc(struct ti_softc *);
237static void ti_jfree(void *, void *);
238#endif /* TI_PRIVATE_JUMBOS */
239static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
240static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
241static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
242static int ti_init_rx_ring_std(struct ti_softc *);
243static void ti_free_rx_ring_std(struct ti_softc *);
244static int ti_init_rx_ring_jumbo(struct ti_softc *);
245static void ti_free_rx_ring_jumbo(struct ti_softc *);
246static int ti_init_rx_ring_mini(struct ti_softc *);
247static void ti_free_rx_ring_mini(struct ti_softc *);
248static void ti_free_tx_ring(struct ti_softc *);
249static int ti_init_tx_ring(struct ti_softc *);
250
251static int ti_64bitslot_war(struct ti_softc *);
252static int ti_chipinit(struct ti_softc *);
253static int ti_gibinit(struct ti_softc *);
254
255#ifdef TI_JUMBO_HDRSPLIT
256static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
257					     int pkt_len, int idx);
258#endif /* TI_JUMBO_HDRSPLIT */
259
260static device_method_t ti_methods[] = {
261	/* Device interface */
262	DEVMETHOD(device_probe,		ti_probe),
263	DEVMETHOD(device_attach,	ti_attach),
264	DEVMETHOD(device_detach,	ti_detach),
265	DEVMETHOD(device_shutdown,	ti_shutdown),
266	{ 0, 0 }
267};
268
269static driver_t ti_driver = {
270	"ti",
271	ti_methods,
272	sizeof(struct ti_softc)
273};
274
275static devclass_t ti_devclass;
276
277DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
278MODULE_DEPEND(ti, pci, 1, 1, 1);
279MODULE_DEPEND(ti, ether, 1, 1, 1);
280
281/*
282 * Send an instruction or address to the EEPROM, check for ACK.
283 */
284static u_int32_t ti_eeprom_putbyte(sc, byte)
285	struct ti_softc		*sc;
286	int			byte;
287{
288	register int		i, ack = 0;
289
290	/*
291	 * Make sure we're in TX mode.
292	 */
293	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
294
295	/*
296	 * Feed in each bit and stobe the clock.
297	 */
298	for (i = 0x80; i; i >>= 1) {
299		if (byte & i) {
300			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
301		} else {
302			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
303		}
304		DELAY(1);
305		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
306		DELAY(1);
307		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
308	}
309
310	/*
311	 * Turn off TX mode.
312	 */
313	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
314
315	/*
316	 * Check for ack.
317	 */
318	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
319	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
320	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
321
322	return (ack);
323}
324
325/*
326 * Read a byte of data stored in the EEPROM at address 'addr.'
327 * We have to send two address bytes since the EEPROM can hold
328 * more than 256 bytes of data.
329 */
330static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
331	struct ti_softc		*sc;
332	int			addr;
333	u_int8_t		*dest;
334{
335	register int		i;
336	u_int8_t		byte = 0;
337
338	EEPROM_START;
339
340	/*
341	 * Send write control code to EEPROM.
342	 */
343	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
344		printf("ti%d: failed to send write command, status: %x\n",
345		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
346		return (1);
347	}
348
349	/*
350	 * Send first byte of address of byte we want to read.
351	 */
352	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
353		printf("ti%d: failed to send address, status: %x\n",
354		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
355		return (1);
356	}
357	/*
358	 * Send second byte address of byte we want to read.
359	 */
360	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
361		printf("ti%d: failed to send address, status: %x\n",
362		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
363		return (1);
364	}
365
366	EEPROM_STOP;
367	EEPROM_START;
368	/*
369	 * Send read control code to EEPROM.
370	 */
371	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
372		printf("ti%d: failed to send read command, status: %x\n",
373		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
374		return (1);
375	}
376
377	/*
378	 * Start reading bits from EEPROM.
379	 */
380	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
381	for (i = 0x80; i; i >>= 1) {
382		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
383		DELAY(1);
384		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
385			byte |= i;
386		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
387		DELAY(1);
388	}
389
390	EEPROM_STOP;
391
392	/*
393	 * No ACK generated for read, so just return byte.
394	 */
395
396	*dest = byte;
397
398	return (0);
399}
400
401/*
402 * Read a sequence of bytes from the EEPROM.
403 */
404static int
405ti_read_eeprom(sc, dest, off, cnt)
406	struct ti_softc		*sc;
407	caddr_t			dest;
408	int			off;
409	int			cnt;
410{
411	int			err = 0, i;
412	u_int8_t		byte = 0;
413
414	for (i = 0; i < cnt; i++) {
415		err = ti_eeprom_getbyte(sc, off + i, &byte);
416		if (err)
417			break;
418		*(dest + i) = byte;
419	}
420
421	return (err ? 1 : 0);
422}
423
424/*
425 * NIC memory access function. Can be used to either clear a section
426 * of NIC local memory or (if buf is non-NULL) copy data into it.
427 */
428static void
429ti_mem(sc, addr, len, buf)
430	struct ti_softc		*sc;
431	u_int32_t		addr, len;
432	caddr_t			buf;
433{
434	int			segptr, segsize, cnt;
435	caddr_t			ti_winbase, ptr;
436
437	segptr = addr;
438	cnt = len;
439	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
440	ptr = buf;
441
442	while (cnt) {
443		if (cnt < TI_WINLEN)
444			segsize = cnt;
445		else
446			segsize = TI_WINLEN - (segptr % TI_WINLEN);
447		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
448		if (buf == NULL)
449			bzero((char *)ti_winbase + (segptr &
450			    (TI_WINLEN - 1)), segsize);
451		else {
452			bcopy((char *)ptr, (char *)ti_winbase +
453			    (segptr & (TI_WINLEN - 1)), segsize);
454			ptr += segsize;
455		}
456		segptr += segsize;
457		cnt -= segsize;
458	}
459}
460
461static int
462ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
463	struct ti_softc		*sc;
464	u_int32_t		tigon_addr, len;
465	caddr_t			buf;
466	int			useraddr, readdata;
467{
468	int		segptr, segsize, cnt;
469	caddr_t		ptr;
470	u_int32_t	origwin;
471	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
472	int		resid, segresid;
473	int		first_pass;
474
475	/*
476	 * At the moment, we don't handle non-aligned cases, we just bail.
477	 * If this proves to be a problem, it will be fixed.
478	 */
479	if ((readdata == 0)
480	 && (tigon_addr & 0x3)) {
481		printf("ti%d: ti_copy_mem: tigon address %#x isn't "
482		       "word-aligned\n", sc->ti_unit, tigon_addr);
483		printf("ti%d: ti_copy_mem: unaligned writes aren't yet "
484		       "supported\n", sc->ti_unit);
485		return (EINVAL);
486	}
487
488	segptr = tigon_addr & ~0x3;
489	segresid = tigon_addr - segptr;
490
491	/*
492	 * This is the non-aligned amount left over that we'll need to
493	 * copy.
494	 */
495	resid = len & 0x3;
496
497	/* Add in the left over amount at the front of the buffer */
498	resid += segresid;
499
500	cnt = len & ~0x3;
501	/*
502	 * If resid + segresid is >= 4, add multiples of 4 to the count and
503	 * decrease the residual by that much.
504	 */
505	cnt += resid & ~0x3;
506	resid -= resid & ~0x3;
507
508	ptr = buf;
509
510	first_pass = 1;
511
512	/*
513	 * Make sure we aren't interrupted while we're changing the window
514	 * pointer.
515	 */
516	TI_LOCK(sc);
517
518	/*
519	 * Save the old window base value.
520	 */
521	origwin = CSR_READ_4(sc, TI_WINBASE);
522
523	while (cnt) {
524		bus_size_t ti_offset;
525
526		if (cnt < TI_WINLEN)
527			segsize = cnt;
528		else
529			segsize = TI_WINLEN - (segptr % TI_WINLEN);
530		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
531
532		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
533
534		if (readdata) {
535
536			bus_space_read_region_4(sc->ti_btag,
537						sc->ti_bhandle, ti_offset,
538						(u_int32_t *)tmparray,
539						segsize >> 2);
540			if (useraddr) {
541				/*
542				 * Yeah, this is a little on the kludgy
543				 * side, but at least this code is only
544				 * used for debugging.
545				 */
546				ti_bcopy_swap(tmparray, tmparray2, segsize,
547					      TI_SWAP_NTOH);
548
549				if (first_pass) {
550					copyout(&tmparray2[segresid], ptr,
551						segsize - segresid);
552					first_pass = 0;
553				} else
554					copyout(tmparray2, ptr, segsize);
555			} else {
556				if (first_pass) {
557
558					ti_bcopy_swap(tmparray, tmparray2,
559						      segsize, TI_SWAP_NTOH);
560					bcopy(&tmparray2[segresid], ptr,
561					      segsize - segresid);
562					first_pass = 0;
563				} else
564					ti_bcopy_swap(tmparray, ptr, segsize,
565						      TI_SWAP_NTOH);
566			}
567
568		} else {
569			if (useraddr) {
570				copyin(ptr, tmparray2, segsize);
571				ti_bcopy_swap(tmparray2, tmparray, segsize,
572					      TI_SWAP_HTON);
573			} else
574				ti_bcopy_swap(ptr, tmparray, segsize,
575					      TI_SWAP_HTON);
576
577			bus_space_write_region_4(sc->ti_btag,
578						 sc->ti_bhandle, ti_offset,
579						 (u_int32_t *)tmparray,
580						 segsize >> 2);
581		}
582		segptr += segsize;
583		ptr += segsize;
584		cnt -= segsize;
585	}
586
587	/*
588	 * Handle leftover, non-word-aligned bytes.
589	 */
590	if (resid != 0) {
591		u_int32_t	tmpval, tmpval2;
592		bus_size_t	ti_offset;
593
594		/*
595		 * Set the segment pointer.
596		 */
597		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
598
599		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
600
601		/*
602		 * First, grab whatever is in our source/destination.
603		 * We'll obviously need this for reads, but also for
604		 * writes, since we'll be doing read/modify/write.
605		 */
606		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
607					ti_offset, &tmpval, 1);
608
609		/*
610		 * Next, translate this from little-endian to big-endian
611		 * (at least on i386 boxes).
612		 */
613		tmpval2 = ntohl(tmpval);
614
615		if (readdata) {
616			/*
617			 * If we're reading, just copy the leftover number
618			 * of bytes from the host byte order buffer to
619			 * the user's buffer.
620			 */
621			if (useraddr)
622				copyout(&tmpval2, ptr, resid);
623			else
624				bcopy(&tmpval2, ptr, resid);
625		} else {
626			/*
627			 * If we're writing, first copy the bytes to be
628			 * written into the network byte order buffer,
629			 * leaving the rest of the buffer with whatever was
630			 * originally in there.  Then, swap the bytes
631			 * around into host order and write them out.
632			 *
633			 * XXX KDM the read side of this has been verified
634			 * to work, but the write side of it has not been
635			 * verified.  So user beware.
636			 */
637			if (useraddr)
638				copyin(ptr, &tmpval2, resid);
639			else
640				bcopy(ptr, &tmpval2, resid);
641
642			tmpval = htonl(tmpval2);
643
644			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
645						 ti_offset, &tmpval, 1);
646		}
647	}
648
649	CSR_WRITE_4(sc, TI_WINBASE, origwin);
650
651	TI_UNLOCK(sc);
652
653	return (0);
654}
655
656static int
657ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
658	struct ti_softc		*sc;
659	u_int32_t		tigon_addr, len;
660	caddr_t			buf;
661	int			useraddr, readdata;
662	int			cpu;
663{
664	u_int32_t	segptr;
665	int		cnt;
666	u_int32_t	tmpval, tmpval2;
667	caddr_t		ptr;
668
669	/*
670	 * At the moment, we don't handle non-aligned cases, we just bail.
671	 * If this proves to be a problem, it will be fixed.
672	 */
673	if (tigon_addr & 0x3) {
674		printf("ti%d: ti_copy_scratch: tigon address %#x isn't "
675		       "word-aligned\n", sc->ti_unit, tigon_addr);
676		return (EINVAL);
677	}
678
679	if (len & 0x3) {
680		printf("ti%d: ti_copy_scratch: transfer length %d isn't "
681		       "word-aligned\n", sc->ti_unit, len);
682		return (EINVAL);
683	}
684
685	segptr = tigon_addr;
686	cnt = len;
687	ptr = buf;
688
689	TI_LOCK(sc);
690
691	while (cnt) {
692		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
693
694		if (readdata) {
695			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
696
697			tmpval = ntohl(tmpval2);
698
699			/*
700			 * Note:  I've used this debugging interface
701			 * extensively with Alteon's 12.3.15 firmware,
702			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
703			 *
704			 * When you compile the firmware without
705			 * optimization, which is necessary sometimes in
706			 * order to properly step through it, you sometimes
707			 * read out a bogus value of 0xc0017c instead of
708			 * whatever was supposed to be in that scratchpad
709			 * location.  That value is on the stack somewhere,
710			 * but I've never been able to figure out what was
711			 * causing the problem.
712			 *
713			 * The address seems to pop up in random places,
714			 * often not in the same place on two subsequent
715			 * reads.
716			 *
717			 * In any case, the underlying data doesn't seem
718			 * to be affected, just the value read out.
719			 *
720			 * KDM, 3/7/2000
721			 */
722
723			if (tmpval2 == 0xc0017c)
724				printf("ti%d: found 0xc0017c at %#x "
725				       "(tmpval2)\n", sc->ti_unit, segptr);
726
727			if (tmpval == 0xc0017c)
728				printf("ti%d: found 0xc0017c at %#x "
729				       "(tmpval)\n", sc->ti_unit, segptr);
730
731			if (useraddr)
732				copyout(&tmpval, ptr, 4);
733			else
734				bcopy(&tmpval, ptr, 4);
735		} else {
736			if (useraddr)
737				copyin(ptr, &tmpval2, 4);
738			else
739				bcopy(ptr, &tmpval2, 4);
740
741			tmpval = htonl(tmpval2);
742
743			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
744		}
745
746		cnt -= 4;
747		segptr += 4;
748		ptr += 4;
749	}
750
751	TI_UNLOCK(sc);
752
753	return (0);
754}
755
756static int
757ti_bcopy_swap(src, dst, len, swap_type)
758	const void	*src;
759	void		*dst;
760	size_t		len;
761	ti_swap_type	swap_type;
762{
763	const u_int8_t *tmpsrc;
764	u_int8_t *tmpdst;
765	size_t tmplen;
766
767	if (len & 0x3) {
768		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
769		       len);
770		return (-1);
771	}
772
773	tmpsrc = src;
774	tmpdst = dst;
775	tmplen = len;
776
777	while (tmplen) {
778		if (swap_type == TI_SWAP_NTOH)
779			*(u_int32_t *)tmpdst =
780				ntohl(*(const u_int32_t *)tmpsrc);
781		else
782			*(u_int32_t *)tmpdst =
783				htonl(*(const u_int32_t *)tmpsrc);
784
785		tmpsrc += 4;
786		tmpdst += 4;
787		tmplen -= 4;
788	}
789
790	return (0);
791}
792
793/*
794 * Load firmware image into the NIC. Check that the firmware revision
795 * is acceptable and see if we want the firmware for the Tigon 1 or
796 * Tigon 2.
797 */
798static void
799ti_loadfw(sc)
800	struct ti_softc		*sc;
801{
802	switch (sc->ti_hwrev) {
803	case TI_HWREV_TIGON:
804		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
805		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
806		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
807			printf("ti%d: firmware revision mismatch; want "
808			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
809			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
810			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
811			    tigonFwReleaseMinor, tigonFwReleaseFix);
812			return;
813		}
814		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
815		    (caddr_t)tigonFwText);
816		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
817		    (caddr_t)tigonFwData);
818		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
819		    (caddr_t)tigonFwRodata);
820		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
821		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
822		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
823		break;
824	case TI_HWREV_TIGON_II:
825		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
826		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
827		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
828			printf("ti%d: firmware revision mismatch; want "
829			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
830			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
831			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
832			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
833			return;
834		}
835		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
836		    (caddr_t)tigon2FwText);
837		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
838		    (caddr_t)tigon2FwData);
839		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
840		    (caddr_t)tigon2FwRodata);
841		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
842		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
843		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
844		break;
845	default:
846		printf("ti%d: can't load firmware: unknown hardware rev\n",
847		    sc->ti_unit);
848		break;
849	}
850}
851
852/*
853 * Send the NIC a command via the command ring.
854 */
855static void
856ti_cmd(sc, cmd)
857	struct ti_softc		*sc;
858	struct ti_cmd_desc	*cmd;
859{
860	u_int32_t		index;
861
862	if (sc->ti_rdata->ti_cmd_ring == NULL)
863		return;
864
865	index = sc->ti_cmd_saved_prodidx;
866	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
867	TI_INC(index, TI_CMD_RING_CNT);
868	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
869	sc->ti_cmd_saved_prodidx = index;
870}
871
872/*
873 * Send the NIC an extended command. The 'len' parameter specifies the
874 * number of command slots to include after the initial command.
875 */
876static void
877ti_cmd_ext(sc, cmd, arg, len)
878	struct ti_softc		*sc;
879	struct ti_cmd_desc	*cmd;
880	caddr_t			arg;
881	int			len;
882{
883	u_int32_t		index;
884	register int		i;
885
886	if (sc->ti_rdata->ti_cmd_ring == NULL)
887		return;
888
889	index = sc->ti_cmd_saved_prodidx;
890	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
891	TI_INC(index, TI_CMD_RING_CNT);
892	for (i = 0; i < len; i++) {
893		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
894		    *(u_int32_t *)(&arg[i * 4]));
895		TI_INC(index, TI_CMD_RING_CNT);
896	}
897	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
898	sc->ti_cmd_saved_prodidx = index;
899}
900
901/*
902 * Handle events that have triggered interrupts.
903 */
904static void
905ti_handle_events(sc)
906	struct ti_softc		*sc;
907{
908	struct ti_event_desc	*e;
909
910	if (sc->ti_rdata->ti_event_ring == NULL)
911		return;
912
913	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
914		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
915		switch (e->ti_event) {
916		case TI_EV_LINKSTAT_CHANGED:
917			sc->ti_linkstat = e->ti_code;
918			if (e->ti_code == TI_EV_CODE_LINK_UP)
919				printf("ti%d: 10/100 link up\n", sc->ti_unit);
920			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
921				printf("ti%d: gigabit link up\n", sc->ti_unit);
922			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
923				printf("ti%d: link down\n", sc->ti_unit);
924			break;
925		case TI_EV_ERROR:
926			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
927				printf("ti%d: invalid command\n", sc->ti_unit);
928			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
929				printf("ti%d: unknown command\n", sc->ti_unit);
930			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
931				printf("ti%d: bad config data\n", sc->ti_unit);
932			break;
933		case TI_EV_FIRMWARE_UP:
934			ti_init2(sc);
935			break;
936		case TI_EV_STATS_UPDATED:
937			ti_stats_update(sc);
938			break;
939		case TI_EV_RESET_JUMBO_RING:
940		case TI_EV_MCAST_UPDATED:
941			/* Who cares. */
942			break;
943		default:
944			printf("ti%d: unknown event: %d\n",
945			    sc->ti_unit, e->ti_event);
946			break;
947		}
948		/* Advance the consumer index. */
949		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
950		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
951	}
952}
953
954#ifdef TI_PRIVATE_JUMBOS
955
956/*
957 * Memory management for the jumbo receive ring is a pain in the
958 * butt. We need to allocate at least 9018 bytes of space per frame,
959 * _and_ it has to be contiguous (unless you use the extended
960 * jumbo descriptor format). Using malloc() all the time won't
961 * work: malloc() allocates memory in powers of two, which means we
962 * would end up wasting a considerable amount of space by allocating
963 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
964 * to do our own memory management.
965 *
966 * The driver needs to allocate a contiguous chunk of memory at boot
967 * time. We then chop this up ourselves into 9K pieces and use them
968 * as external mbuf storage.
969 *
970 * One issue here is how much memory to allocate. The jumbo ring has
971 * 256 slots in it, but at 9K per slot than can consume over 2MB of
972 * RAM. This is a bit much, especially considering we also need
973 * RAM for the standard ring and mini ring (on the Tigon 2). To
974 * save space, we only actually allocate enough memory for 64 slots
975 * by default, which works out to between 500 and 600K. This can
976 * be tuned by changing a #define in if_tireg.h.
977 */
978
979static int
980ti_alloc_jumbo_mem(sc)
981	struct ti_softc		*sc;
982{
983	caddr_t			ptr;
984	register int		i;
985	struct ti_jpool_entry   *entry;
986
987	/* Grab a big chunk o' storage. */
988	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
989		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
990
991	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
992		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
993		return (ENOBUFS);
994	}
995
996	SLIST_INIT(&sc->ti_jfree_listhead);
997	SLIST_INIT(&sc->ti_jinuse_listhead);
998
999	/*
1000	 * Now divide it up into 9K pieces and save the addresses
1001	 * in an array.
1002	 */
1003	ptr = sc->ti_cdata.ti_jumbo_buf;
1004	for (i = 0; i < TI_JSLOTS; i++) {
1005		sc->ti_cdata.ti_jslots[i] = ptr;
1006		ptr += TI_JLEN;
1007		entry = malloc(sizeof(struct ti_jpool_entry),
1008			       M_DEVBUF, M_NOWAIT);
1009		if (entry == NULL) {
1010			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
1011			           M_DEVBUF);
1012			sc->ti_cdata.ti_jumbo_buf = NULL;
1013			printf("ti%d: no memory for jumbo "
1014			    "buffer queue!\n", sc->ti_unit);
1015			return (ENOBUFS);
1016		}
1017		entry->slot = i;
1018		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1019	}
1020
1021	return (0);
1022}
1023
1024/*
1025 * Allocate a jumbo buffer.
1026 */
1027static void *ti_jalloc(sc)
1028	struct ti_softc		*sc;
1029{
1030	struct ti_jpool_entry	*entry;
1031
1032	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1033
1034	if (entry == NULL) {
1035		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
1036		return (NULL);
1037	}
1038
1039	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1040	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1041	return (sc->ti_cdata.ti_jslots[entry->slot]);
1042}
1043
1044/*
1045 * Release a jumbo buffer.
1046 */
1047static void
1048ti_jfree(buf, args)
1049	void			*buf;
1050	void			*args;
1051{
1052	struct ti_softc		*sc;
1053	int			i;
1054	struct ti_jpool_entry	*entry;
1055
1056	/* Extract the softc struct pointer. */
1057	sc = (struct ti_softc *)args;
1058
1059	if (sc == NULL)
1060		panic("ti_jfree: didn't get softc pointer!");
1061
1062	/* calculate the slot this buffer belongs to */
1063	i = ((vm_offset_t)buf
1064	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1065
1066	if ((i < 0) || (i >= TI_JSLOTS))
1067		panic("ti_jfree: asked to free buffer that we don't manage!");
1068
1069	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1070	if (entry == NULL)
1071		panic("ti_jfree: buffer not in use!");
1072	entry->slot = i;
1073	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1074	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1075}
1076
1077#endif /* TI_PRIVATE_JUMBOS */
1078
1079/*
1080 * Intialize a standard receive ring descriptor.
1081 */
1082static int
1083ti_newbuf_std(sc, i, m)
1084	struct ti_softc		*sc;
1085	int			i;
1086	struct mbuf		*m;
1087{
1088	struct mbuf		*m_new = NULL;
1089	struct ti_rx_desc	*r;
1090
1091	if (m == NULL) {
1092		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1093		if (m_new == NULL)
1094			return (ENOBUFS);
1095
1096		MCLGET(m_new, M_DONTWAIT);
1097		if (!(m_new->m_flags & M_EXT)) {
1098			m_freem(m_new);
1099			return (ENOBUFS);
1100		}
1101		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1102	} else {
1103		m_new = m;
1104		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1105		m_new->m_data = m_new->m_ext.ext_buf;
1106	}
1107
1108	m_adj(m_new, ETHER_ALIGN);
1109	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1110	r = &sc->ti_rdata->ti_rx_std_ring[i];
1111	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1112	r->ti_type = TI_BDTYPE_RECV_BD;
1113	r->ti_flags = 0;
1114	if (sc->ti_ifp->if_hwassist)
1115		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1116	r->ti_len = m_new->m_len;
1117	r->ti_idx = i;
1118
1119	return (0);
1120}
1121
1122/*
1123 * Intialize a mini receive ring descriptor. This only applies to
1124 * the Tigon 2.
1125 */
1126static int
1127ti_newbuf_mini(sc, i, m)
1128	struct ti_softc		*sc;
1129	int			i;
1130	struct mbuf		*m;
1131{
1132	struct mbuf		*m_new = NULL;
1133	struct ti_rx_desc	*r;
1134
1135	if (m == NULL) {
1136		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1137		if (m_new == NULL) {
1138			return (ENOBUFS);
1139		}
1140		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1141	} else {
1142		m_new = m;
1143		m_new->m_data = m_new->m_pktdat;
1144		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1145	}
1146
1147	m_adj(m_new, ETHER_ALIGN);
1148	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1149	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1150	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1151	r->ti_type = TI_BDTYPE_RECV_BD;
1152	r->ti_flags = TI_BDFLAG_MINI_RING;
1153	if (sc->ti_ifp->if_hwassist)
1154		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1155	r->ti_len = m_new->m_len;
1156	r->ti_idx = i;
1157
1158	return (0);
1159}
1160
1161#ifdef TI_PRIVATE_JUMBOS
1162
1163/*
1164 * Initialize a jumbo receive ring descriptor. This allocates
1165 * a jumbo buffer from the pool managed internally by the driver.
1166 */
1167static int
1168ti_newbuf_jumbo(sc, i, m)
1169	struct ti_softc		*sc;
1170	int			i;
1171	struct mbuf		*m;
1172{
1173	struct mbuf		*m_new = NULL;
1174	struct ti_rx_desc	*r;
1175
1176	if (m == NULL) {
1177		caddr_t			*buf = NULL;
1178
1179		/* Allocate the mbuf. */
1180		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1181		if (m_new == NULL) {
1182			return (ENOBUFS);
1183		}
1184
1185		/* Allocate the jumbo buffer */
1186		buf = ti_jalloc(sc);
1187		if (buf == NULL) {
1188			m_freem(m_new);
1189			printf("ti%d: jumbo allocation failed "
1190			    "-- packet dropped!\n", sc->ti_unit);
1191			return (ENOBUFS);
1192		}
1193
1194		/* Attach the buffer to the mbuf. */
1195		m_new->m_data = (void *) buf;
1196		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1197		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1198		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1199	} else {
1200		m_new = m;
1201		m_new->m_data = m_new->m_ext.ext_buf;
1202		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1203	}
1204
1205	m_adj(m_new, ETHER_ALIGN);
1206	/* Set up the descriptor. */
1207	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1208	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1209	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1210	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1211	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1212	if (sc->ti_ifp->if_hwassist)
1213		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1214	r->ti_len = m_new->m_len;
1215	r->ti_idx = i;
1216
1217	return (0);
1218}
1219
1220#else
1221#include <vm/vm_page.h>
1222
1223#if (PAGE_SIZE == 4096)
1224#define NPAYLOAD 2
1225#else
1226#define NPAYLOAD 1
1227#endif
1228
1229#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1230#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1231#define NFS_HDR_LEN (UDP_HDR_LEN)
1232static int HDR_LEN =  TCP_HDR_LEN;
1233
1234
1235/*
1236 * Initialize a jumbo receive ring descriptor. This allocates
1237 * a jumbo buffer from the pool managed internally by the driver.
1238 */
1239static int
1240ti_newbuf_jumbo(sc, idx, m_old)
1241	struct ti_softc		*sc;
1242	int			idx;
1243	struct mbuf		*m_old;
1244{
1245	struct mbuf		*cur, *m_new = NULL;
1246	struct mbuf		*m[3] = {NULL, NULL, NULL};
1247	struct ti_rx_desc_ext	*r;
1248	vm_page_t		frame;
1249	static int		color;
1250				/* 1 extra buf to make nobufs easy*/
1251	struct sf_buf		*sf[3] = {NULL, NULL, NULL};
1252	int			i;
1253
1254	if (m_old != NULL) {
1255		m_new = m_old;
1256		cur = m_old->m_next;
1257		for (i = 0; i <= NPAYLOAD; i++){
1258			m[i] = cur;
1259			cur = cur->m_next;
1260		}
1261	} else {
1262		/* Allocate the mbufs. */
1263		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1264		if (m_new == NULL) {
1265			printf("ti%d: mbuf allocation failed "
1266			       "-- packet dropped!\n", sc->ti_unit);
1267			goto nobufs;
1268		}
1269		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1270		if (m[NPAYLOAD] == NULL) {
1271			printf("ti%d: cluster mbuf allocation failed "
1272			       "-- packet dropped!\n", sc->ti_unit);
1273			goto nobufs;
1274		}
1275		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1276		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1277			printf("ti%d: mbuf allocation failed "
1278			       "-- packet dropped!\n", sc->ti_unit);
1279			goto nobufs;
1280		}
1281		m[NPAYLOAD]->m_len = MCLBYTES;
1282
1283		for (i = 0; i < NPAYLOAD; i++){
1284			MGET(m[i], M_DONTWAIT, MT_DATA);
1285			if (m[i] == NULL) {
1286				printf("ti%d: mbuf allocation failed "
1287				       "-- packet dropped!\n", sc->ti_unit);
1288				goto nobufs;
1289			}
1290			frame = vm_page_alloc(NULL, color++,
1291			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1292			    VM_ALLOC_WIRED);
1293			if (frame == NULL) {
1294				printf("ti%d: buffer allocation failed "
1295				       "-- packet dropped!\n", sc->ti_unit);
1296				printf("      index %d page %d\n", idx, i);
1297				goto nobufs;
1298			}
1299			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1300			if (sf[i] == NULL) {
1301				vm_page_lock_queues();
1302				vm_page_unwire(frame, 0);
1303				vm_page_free(frame);
1304				vm_page_unlock_queues();
1305				printf("ti%d: buffer allocation failed "
1306				       "-- packet dropped!\n", sc->ti_unit);
1307				printf("      index %d page %d\n", idx, i);
1308				goto nobufs;
1309			}
1310		}
1311		for (i = 0; i < NPAYLOAD; i++){
1312		/* Attach the buffer to the mbuf. */
1313			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1314			m[i]->m_len = PAGE_SIZE;
1315			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1316			    sf_buf_mext, sf[i], 0, EXT_DISPOSABLE);
1317			m[i]->m_next = m[i+1];
1318		}
1319		/* link the buffers to the header */
1320		m_new->m_next = m[0];
1321		m_new->m_data += ETHER_ALIGN;
1322		if (sc->ti_hdrsplit)
1323			m_new->m_len = MHLEN - ETHER_ALIGN;
1324		else
1325			m_new->m_len = HDR_LEN;
1326		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1327	}
1328
1329	/* Set up the descriptor. */
1330	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1331	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1332	TI_HOSTADDR(r->ti_addr0) = vtophys(mtod(m_new, caddr_t));
1333	r->ti_len0 = m_new->m_len;
1334
1335	TI_HOSTADDR(r->ti_addr1) = vtophys(mtod(m[0], caddr_t));
1336	r->ti_len1 = PAGE_SIZE;
1337
1338	TI_HOSTADDR(r->ti_addr2) = vtophys(mtod(m[1], caddr_t));
1339	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1340
1341	if (PAGE_SIZE == 4096) {
1342		TI_HOSTADDR(r->ti_addr3) = vtophys(mtod(m[2], caddr_t));
1343		r->ti_len3 = MCLBYTES;
1344	} else {
1345		r->ti_len3 = 0;
1346	}
1347	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1348
1349	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1350
1351	if (sc->ti_ifp->if_hwassist)
1352		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1353
1354	r->ti_idx = idx;
1355
1356	return (0);
1357
1358nobufs:
1359
1360	/*
1361	 * Warning! :
1362	 * This can only be called before the mbufs are strung together.
1363	 * If the mbufs are strung together, m_freem() will free the chain,
1364	 * so that the later mbufs will be freed multiple times.
1365	 */
1366	if (m_new)
1367		m_freem(m_new);
1368
1369	for (i = 0; i < 3; i++) {
1370		if (m[i])
1371			m_freem(m[i]);
1372		if (sf[i])
1373			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1374	}
1375	return (ENOBUFS);
1376}
1377#endif
1378
1379
1380
1381/*
1382 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1383 * that's 1MB or memory, which is a lot. For now, we fill only the first
1384 * 256 ring entries and hope that our CPU is fast enough to keep up with
1385 * the NIC.
1386 */
1387static int
1388ti_init_rx_ring_std(sc)
1389	struct ti_softc		*sc;
1390{
1391	register int		i;
1392	struct ti_cmd_desc	cmd;
1393
1394	for (i = 0; i < TI_SSLOTS; i++) {
1395		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1396			return (ENOBUFS);
1397	};
1398
1399	TI_UPDATE_STDPROD(sc, i - 1);
1400	sc->ti_std = i - 1;
1401
1402	return (0);
1403}
1404
1405static void
1406ti_free_rx_ring_std(sc)
1407	struct ti_softc		*sc;
1408{
1409	register int		i;
1410
1411	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1412		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1413			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1414			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1415		}
1416		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1417		    sizeof(struct ti_rx_desc));
1418	}
1419}
1420
1421static int
1422ti_init_rx_ring_jumbo(sc)
1423	struct ti_softc		*sc;
1424{
1425	register int		i;
1426	struct ti_cmd_desc	cmd;
1427
1428	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1429		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1430			return (ENOBUFS);
1431	};
1432
1433	TI_UPDATE_JUMBOPROD(sc, i - 1);
1434	sc->ti_jumbo = i - 1;
1435
1436	return (0);
1437}
1438
1439static void
1440ti_free_rx_ring_jumbo(sc)
1441	struct ti_softc		*sc;
1442{
1443	register int		i;
1444
1445	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1446		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1447			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1448			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1449		}
1450		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1451		    sizeof(struct ti_rx_desc));
1452	}
1453}
1454
1455static int
1456ti_init_rx_ring_mini(sc)
1457	struct ti_softc		*sc;
1458{
1459	register int		i;
1460
1461	for (i = 0; i < TI_MSLOTS; i++) {
1462		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1463			return (ENOBUFS);
1464	};
1465
1466	TI_UPDATE_MINIPROD(sc, i - 1);
1467	sc->ti_mini = i - 1;
1468
1469	return (0);
1470}
1471
1472static void
1473ti_free_rx_ring_mini(sc)
1474	struct ti_softc		*sc;
1475{
1476	register int		i;
1477
1478	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1479		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1480			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1481			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1482		}
1483		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1484		    sizeof(struct ti_rx_desc));
1485	}
1486}
1487
1488static void
1489ti_free_tx_ring(sc)
1490	struct ti_softc		*sc;
1491{
1492	register int		i;
1493
1494	if (sc->ti_rdata->ti_tx_ring == NULL)
1495		return;
1496
1497	for (i = 0; i < TI_TX_RING_CNT; i++) {
1498		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1499			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1500			sc->ti_cdata.ti_tx_chain[i] = NULL;
1501		}
1502		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1503		    sizeof(struct ti_tx_desc));
1504	}
1505}
1506
1507static int
1508ti_init_tx_ring(sc)
1509	struct ti_softc		*sc;
1510{
1511	sc->ti_txcnt = 0;
1512	sc->ti_tx_saved_considx = 0;
1513	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1514	return (0);
1515}
1516
1517/*
1518 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1519 * but we have to support the old way too so that Tigon 1 cards will
1520 * work.
1521 */
1522static void
1523ti_add_mcast(sc, addr)
1524	struct ti_softc		*sc;
1525	struct ether_addr	*addr;
1526{
1527	struct ti_cmd_desc	cmd;
1528	u_int16_t		*m;
1529	u_int32_t		ext[2] = {0, 0};
1530
1531	m = (u_int16_t *)&addr->octet[0];
1532
1533	switch (sc->ti_hwrev) {
1534	case TI_HWREV_TIGON:
1535		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1536		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1537		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1538		break;
1539	case TI_HWREV_TIGON_II:
1540		ext[0] = htons(m[0]);
1541		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1542		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1543		break;
1544	default:
1545		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1546		break;
1547	}
1548}
1549
1550static void
1551ti_del_mcast(sc, addr)
1552	struct ti_softc		*sc;
1553	struct ether_addr	*addr;
1554{
1555	struct ti_cmd_desc	cmd;
1556	u_int16_t		*m;
1557	u_int32_t		ext[2] = {0, 0};
1558
1559	m = (u_int16_t *)&addr->octet[0];
1560
1561	switch (sc->ti_hwrev) {
1562	case TI_HWREV_TIGON:
1563		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1564		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1565		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1566		break;
1567	case TI_HWREV_TIGON_II:
1568		ext[0] = htons(m[0]);
1569		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1570		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1571		break;
1572	default:
1573		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1574		break;
1575	}
1576}
1577
1578/*
1579 * Configure the Tigon's multicast address filter.
1580 *
1581 * The actual multicast table management is a bit of a pain, thanks to
1582 * slight brain damage on the part of both Alteon and us. With our
1583 * multicast code, we are only alerted when the multicast address table
1584 * changes and at that point we only have the current list of addresses:
1585 * we only know the current state, not the previous state, so we don't
1586 * actually know what addresses were removed or added. The firmware has
1587 * state, but we can't get our grubby mits on it, and there is no 'delete
1588 * all multicast addresses' command. Hence, we have to maintain our own
1589 * state so we know what addresses have been programmed into the NIC at
1590 * any given time.
1591 */
1592static void
1593ti_setmulti(sc)
1594	struct ti_softc		*sc;
1595{
1596	struct ifnet		*ifp;
1597	struct ifmultiaddr	*ifma;
1598	struct ti_cmd_desc	cmd;
1599	struct ti_mc_entry	*mc;
1600	u_int32_t		intrs;
1601
1602	ifp = sc->ti_ifp;
1603
1604	if (ifp->if_flags & IFF_ALLMULTI) {
1605		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1606		return;
1607	} else {
1608		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1609	}
1610
1611	/* Disable interrupts. */
1612	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1613	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1614
1615	/* First, zot all the existing filters. */
1616	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1617		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1618		ti_del_mcast(sc, &mc->mc_addr);
1619		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1620		free(mc, M_DEVBUF);
1621	}
1622
1623	/* Now program new ones. */
1624	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1625		if (ifma->ifma_addr->sa_family != AF_LINK)
1626			continue;
1627		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1628		if (mc == NULL) {
1629			if_printf(ifp, "no memory for mcast filter entry\n");
1630			continue;
1631		}
1632		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1633		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1634		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1635		ti_add_mcast(sc, &mc->mc_addr);
1636	}
1637
1638	/* Re-enable interrupts. */
1639	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1640}
1641
1642/*
1643 * Check to see if the BIOS has configured us for a 64 bit slot when
1644 * we aren't actually in one. If we detect this condition, we can work
1645 * around it on the Tigon 2 by setting a bit in the PCI state register,
1646 * but for the Tigon 1 we must give up and abort the interface attach.
1647 */
1648static int ti_64bitslot_war(sc)
1649	struct ti_softc		*sc;
1650{
1651	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1652		CSR_WRITE_4(sc, 0x600, 0);
1653		CSR_WRITE_4(sc, 0x604, 0);
1654		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1655		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1656			if (sc->ti_hwrev == TI_HWREV_TIGON)
1657				return (EINVAL);
1658			else {
1659				TI_SETBIT(sc, TI_PCI_STATE,
1660				    TI_PCISTATE_32BIT_BUS);
1661				return (0);
1662			}
1663		}
1664	}
1665
1666	return (0);
1667}
1668
1669/*
1670 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1671 * self-test results.
1672 */
1673static int
1674ti_chipinit(sc)
1675	struct ti_softc		*sc;
1676{
1677	u_int32_t		cacheline;
1678	u_int32_t		pci_writemax = 0;
1679	u_int32_t		hdrsplit;
1680
1681	/* Initialize link to down state. */
1682	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1683
1684	if (sc->ti_ifp->if_capenable & IFCAP_HWCSUM)
1685		sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
1686	else
1687		sc->ti_ifp->if_hwassist = 0;
1688
1689	/* Set endianness before we access any non-PCI registers. */
1690#if BYTE_ORDER == BIG_ENDIAN
1691	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1692	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1693#else
1694	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1695	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1696#endif
1697
1698	/* Check the ROM failed bit to see if self-tests passed. */
1699	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1700		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1701		return (ENODEV);
1702	}
1703
1704	/* Halt the CPU. */
1705	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1706
1707	/* Figure out the hardware revision. */
1708	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1709	case TI_REV_TIGON_I:
1710		sc->ti_hwrev = TI_HWREV_TIGON;
1711		break;
1712	case TI_REV_TIGON_II:
1713		sc->ti_hwrev = TI_HWREV_TIGON_II;
1714		break;
1715	default:
1716		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1717		return (ENODEV);
1718	}
1719
1720	/* Do special setup for Tigon 2. */
1721	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1722		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1723		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1724		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1725	}
1726
1727	/*
1728	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1729	 * can't do header splitting.
1730	 */
1731#ifdef TI_JUMBO_HDRSPLIT
1732	if (sc->ti_hwrev != TI_HWREV_TIGON)
1733		sc->ti_hdrsplit = 1;
1734	else
1735		printf("ti%d: can't do header splitting on a Tigon I board\n",
1736		       sc->ti_unit);
1737#endif /* TI_JUMBO_HDRSPLIT */
1738
1739	/* Set up the PCI state register. */
1740	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1741	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1742		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1743	}
1744
1745	/* Clear the read/write max DMA parameters. */
1746	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1747	    TI_PCISTATE_READ_MAXDMA));
1748
1749	/* Get cache line size. */
1750	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1751
1752	/*
1753	 * If the system has set enabled the PCI memory write
1754	 * and invalidate command in the command register, set
1755	 * the write max parameter accordingly. This is necessary
1756	 * to use MWI with the Tigon 2.
1757	 */
1758	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1759		switch (cacheline) {
1760		case 1:
1761		case 4:
1762		case 8:
1763		case 16:
1764		case 32:
1765		case 64:
1766			break;
1767		default:
1768		/* Disable PCI memory write and invalidate. */
1769			if (bootverbose)
1770				printf("ti%d: cache line size %d not "
1771				    "supported; disabling PCI MWI\n",
1772				    sc->ti_unit, cacheline);
1773			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1774			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1775			break;
1776		}
1777	}
1778
1779#ifdef __brokenalpha__
1780	/*
1781	 * From the Alteon sample driver:
1782	 * Must insure that we do not cross an 8K (bytes) boundary
1783	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1784	 * restriction on some ALPHA platforms with early revision
1785	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1786	 */
1787	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1788#else
1789	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1790#endif
1791
1792	/* This sets the min dma param all the way up (0xff). */
1793	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1794
1795	if (sc->ti_hdrsplit)
1796		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1797	else
1798		hdrsplit = 0;
1799
1800	/* Configure DMA variables. */
1801#if BYTE_ORDER == BIG_ENDIAN
1802	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1803	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1804	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1805	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1806#else /* BYTE_ORDER */
1807	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1808	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1809	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1810#endif /* BYTE_ORDER */
1811
1812	/*
1813	 * Only allow 1 DMA channel to be active at a time.
1814	 * I don't think this is a good idea, but without it
1815	 * the firmware racks up lots of nicDmaReadRingFull
1816	 * errors.  This is not compatible with hardware checksums.
1817	 */
1818	if (sc->ti_ifp->if_hwassist == 0)
1819		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1820
1821	/* Recommended settings from Tigon manual. */
1822	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1823	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1824
1825	if (ti_64bitslot_war(sc)) {
1826		printf("ti%d: bios thinks we're in a 64 bit slot, "
1827		    "but we aren't", sc->ti_unit);
1828		return (EINVAL);
1829	}
1830
1831	return (0);
1832}
1833
1834#define	TI_RD_OFF(x)	offsetof(struct ti_ring_data, x)
1835
1836/*
1837 * Initialize the general information block and firmware, and
1838 * start the CPU(s) running.
1839 */
1840static int
1841ti_gibinit(sc)
1842	struct ti_softc		*sc;
1843{
1844	struct ti_rcb		*rcb;
1845	int			i;
1846	struct ifnet		*ifp;
1847	uint32_t		rdphys;
1848
1849	ifp = sc->ti_ifp;
1850	rdphys = sc->ti_rdata_phys;
1851
1852	/* Disable interrupts for now. */
1853	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1854
1855	/*
1856	 * Tell the chip where to find the general information block.
1857	 * While this struct could go into >4GB memory, we allocate it in a
1858	 * single slab with the other descriptors, and those don't seem to
1859	 * support being located in a 64-bit region.
1860	 */
1861	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1862	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
1863
1864	/* Load the firmware into SRAM. */
1865	ti_loadfw(sc);
1866
1867	/* Set up the contents of the general info and ring control blocks. */
1868
1869	/* Set up the event ring and producer pointer. */
1870	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1871
1872	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
1873	rcb->ti_flags = 0;
1874	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1875	    rdphys + TI_RD_OFF(ti_ev_prodidx_r);
1876	sc->ti_ev_prodidx.ti_idx = 0;
1877	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1878	sc->ti_ev_saved_considx = 0;
1879
1880	/* Set up the command ring and producer mailbox. */
1881	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1882
1883	sc->ti_rdata->ti_cmd_ring =
1884	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1885	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1886	rcb->ti_flags = 0;
1887	rcb->ti_max_len = 0;
1888	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1889		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1890	}
1891	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1892	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1893	sc->ti_cmd_saved_prodidx = 0;
1894
1895	/*
1896	 * Assign the address of the stats refresh buffer.
1897	 * We re-use the current stats buffer for this to
1898	 * conserve memory.
1899	 */
1900	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1901	    rdphys + TI_RD_OFF(ti_info.ti_stats);
1902
1903	/* Set up the standard receive ring. */
1904	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1905	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
1906	rcb->ti_max_len = TI_FRAMELEN;
1907	rcb->ti_flags = 0;
1908	if (sc->ti_ifp->if_hwassist)
1909		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1910		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1911	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1912
1913	/* Set up the jumbo receive ring. */
1914	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1915	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
1916
1917#ifdef TI_PRIVATE_JUMBOS
1918	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1919	rcb->ti_flags = 0;
1920#else
1921	rcb->ti_max_len = PAGE_SIZE;
1922	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
1923#endif
1924	if (sc->ti_ifp->if_hwassist)
1925		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1926		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1927	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1928
1929	/*
1930	 * Set up the mini ring. Only activated on the
1931	 * Tigon 2 but the slot in the config block is
1932	 * still there on the Tigon 1.
1933	 */
1934	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1935	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
1936	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1937	if (sc->ti_hwrev == TI_HWREV_TIGON)
1938		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1939	else
1940		rcb->ti_flags = 0;
1941	if (sc->ti_ifp->if_hwassist)
1942		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1943		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1944	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1945
1946	/*
1947	 * Set up the receive return ring.
1948	 */
1949	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1950	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
1951	rcb->ti_flags = 0;
1952	rcb->ti_max_len = TI_RETURN_RING_CNT;
1953	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1954	    rdphys + TI_RD_OFF(ti_return_prodidx_r);
1955
1956	/*
1957	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1958	 * of putting the transmit ring in the host's address space and
1959	 * letting the chip DMA it instead of leaving the ring in the NIC's
1960	 * memory and accessing it through the shared memory region. We
1961	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1962	 * so we have to revert to the shared memory scheme if we detect
1963	 * a Tigon 1 chip.
1964	 */
1965	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1966	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1967		sc->ti_rdata->ti_tx_ring_nic =
1968		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1969	}
1970	bzero((char *)sc->ti_rdata->ti_tx_ring,
1971	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1972	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1973	if (sc->ti_hwrev == TI_HWREV_TIGON)
1974		rcb->ti_flags = 0;
1975	else
1976		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1977	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1978	if (sc->ti_ifp->if_hwassist)
1979		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1980		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1981	rcb->ti_max_len = TI_TX_RING_CNT;
1982	if (sc->ti_hwrev == TI_HWREV_TIGON)
1983		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1984	else
1985		TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
1986	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1987	    rdphys + TI_RD_OFF(ti_tx_considx_r);
1988
1989	/* Set up tuneables */
1990#if 0
1991	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1992		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1993		    (sc->ti_rx_coal_ticks / 10));
1994	else
1995#endif
1996		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1997	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1998	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1999	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2000	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2001	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2002
2003	/* Turn interrupts on. */
2004	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2005	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2006
2007	/* Start CPU. */
2008	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2009
2010	return (0);
2011}
2012
2013static void
2014ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2015{
2016	struct ti_softc *sc;
2017
2018	sc = arg;
2019	if (error || nseg != 1)
2020		return;
2021
2022	/*
2023	 * All of the Tigon data structures need to live at <4GB.  This
2024	 * cast is fine since busdma was told about this constraint.
2025	 */
2026	sc->ti_rdata_phys = (uint32_t)segs[0].ds_addr;
2027	return;
2028}
2029
2030/*
2031 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2032 * against our list and return its name if we find a match.
2033 */
2034static int
2035ti_probe(dev)
2036	device_t		dev;
2037{
2038	struct ti_type		*t;
2039
2040	t = ti_devs;
2041
2042	while (t->ti_name != NULL) {
2043		if ((pci_get_vendor(dev) == t->ti_vid) &&
2044		    (pci_get_device(dev) == t->ti_did)) {
2045			device_set_desc(dev, t->ti_name);
2046			return (BUS_PROBE_DEFAULT);
2047		}
2048		t++;
2049	}
2050
2051	return (ENXIO);
2052}
2053
2054static int
2055ti_attach(dev)
2056	device_t		dev;
2057{
2058	struct ifnet		*ifp;
2059	struct ti_softc		*sc;
2060	int			unit, error = 0, rid;
2061	u_char			eaddr[6];
2062
2063	sc = device_get_softc(dev);
2064	unit = device_get_unit(dev);
2065
2066	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2067	    MTX_DEF | MTX_RECURSE);
2068	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2069	sc->ti_ifp->if_capabilities = IFCAP_HWCSUM |
2070	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2071	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2072
2073	/*
2074	 * Map control/status registers.
2075	 */
2076	pci_enable_busmaster(dev);
2077
2078	rid = TI_PCI_LOMEM;
2079	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2080	    RF_ACTIVE|PCI_RF_DENSE);
2081
2082	if (sc->ti_res == NULL) {
2083		printf ("ti%d: couldn't map memory\n", unit);
2084		error = ENXIO;
2085		goto fail;
2086	}
2087
2088	sc->ti_btag = rman_get_bustag(sc->ti_res);
2089	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2090	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
2091
2092	/* Allocate interrupt */
2093	rid = 0;
2094
2095	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2096	    RF_SHAREABLE | RF_ACTIVE);
2097
2098	if (sc->ti_irq == NULL) {
2099		printf("ti%d: couldn't map interrupt\n", unit);
2100		error = ENXIO;
2101		goto fail;
2102	}
2103
2104	sc->ti_unit = unit;
2105
2106	if (ti_chipinit(sc)) {
2107		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2108		error = ENXIO;
2109		goto fail;
2110	}
2111
2112	/* Zero out the NIC's on-board SRAM. */
2113	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
2114
2115	/* Init again -- zeroing memory may have clobbered some registers. */
2116	if (ti_chipinit(sc)) {
2117		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2118		error = ENXIO;
2119		goto fail;
2120	}
2121
2122	/*
2123	 * Get station address from the EEPROM. Note: the manual states
2124	 * that the MAC address is at offset 0x8c, however the data is
2125	 * stored as two longwords (since that's how it's loaded into
2126	 * the NIC). This means the MAC address is actually preceded
2127	 * by two zero bytes. We need to skip over those.
2128	 */
2129	if (ti_read_eeprom(sc, eaddr,
2130				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2131		printf("ti%d: failed to read station address\n", unit);
2132		error = ENXIO;
2133		goto fail;
2134	}
2135
2136	/* Allocate the general information block and ring buffers. */
2137	if (bus_dma_tag_create(NULL,			/* parent */
2138				1, 0,			/* algnmnt, boundary */
2139				BUS_SPACE_MAXADDR,	/* lowaddr */
2140				BUS_SPACE_MAXADDR,	/* highaddr */
2141				NULL, NULL,		/* filter, filterarg */
2142				BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2143				0,			/* nsegments */
2144				BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2145				0,			/* flags */
2146				NULL, NULL,		/* lockfunc, lockarg */
2147				&sc->ti_parent_dmat) != 0) {
2148		printf("ti%d: Failed to allocate parent dmat\n", sc->ti_unit);
2149		error = ENOMEM;
2150		goto fail;
2151	}
2152
2153	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2154				PAGE_SIZE, 0,		/* algnmnt, boundary */
2155				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2156				BUS_SPACE_MAXADDR,	/* highaddr */
2157				NULL, NULL,		/* filter, filterarg */
2158				sizeof(struct ti_ring_data),	/* maxsize */
2159				1,			/* nsegments */
2160				sizeof(struct ti_ring_data),	/* maxsegsize */
2161				0,			/* flags */
2162				NULL, NULL,		/* lockfunc, lockarg */
2163				&sc->ti_rdata_dmat) != 0) {
2164		printf("ti%d: Failed to allocate rdata dmat\n", sc->ti_unit);
2165		error = ENOMEM;
2166		goto fail;
2167	}
2168
2169	if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2170			     BUS_DMA_NOWAIT, &sc->ti_rdata_dmamap) != 0) {
2171		printf("ti%d: Failed to allocate rdata memory\n", sc->ti_unit);
2172		error = ENOMEM;
2173		goto fail;
2174	}
2175
2176	if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2177			    sc->ti_rdata, sizeof(struct ti_ring_data),
2178			    ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2179		printf("ti%d: Failed to load rdata segments\n", sc->ti_unit);
2180		error = ENOMEM;
2181		goto fail;
2182	}
2183
2184	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2185
2186	/* Try to allocate memory for jumbo buffers. */
2187#ifdef TI_PRIVATE_JUMBOS
2188	if (ti_alloc_jumbo_mem(sc)) {
2189		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
2190		error = ENXIO;
2191		goto fail;
2192	}
2193#endif
2194
2195	/*
2196	 * We really need a better way to tell a 1000baseTX card
2197	 * from a 1000baseSX one, since in theory there could be
2198	 * OEMed 1000baseTX cards from lame vendors who aren't
2199	 * clever enough to change the PCI ID. For the moment
2200	 * though, the AceNIC is the only copper card available.
2201	 */
2202	if (pci_get_vendor(dev) == ALT_VENDORID &&
2203	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2204		sc->ti_copper = 1;
2205	/* Ok, it's not the only copper card available. */
2206	if (pci_get_vendor(dev) == NG_VENDORID &&
2207	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2208		sc->ti_copper = 1;
2209
2210	/* Set default tuneable values. */
2211	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2212#if 0
2213	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2214#endif
2215	sc->ti_rx_coal_ticks = 170;
2216	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2217	sc->ti_rx_max_coal_bds = 64;
2218#if 0
2219	sc->ti_tx_max_coal_bds = 128;
2220#endif
2221	sc->ti_tx_max_coal_bds = 32;
2222	sc->ti_tx_buf_ratio = 21;
2223
2224	/* Set up ifnet structure */
2225	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2226	if (ifp == NULL) {
2227		printf("ti%d: can not if_alloc()\n", sc->ti_unit);
2228		error = ENOSPC;
2229		goto fail;
2230	}
2231	ifp->if_softc = sc;
2232	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2233	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
2234	    IFF_NEEDSGIANT;
2235	tis[unit] = sc;
2236	ifp->if_ioctl = ti_ioctl;
2237	ifp->if_start = ti_start;
2238	ifp->if_watchdog = ti_watchdog;
2239	ifp->if_init = ti_init;
2240	ifp->if_mtu = ETHERMTU;
2241	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2242
2243	/* Set up ifmedia support. */
2244	if (sc->ti_copper) {
2245		/*
2246		 * Copper cards allow manual 10/100 mode selection,
2247		 * but not manual 1000baseTX mode selection. Why?
2248		 * Becuase currently there's no way to specify the
2249		 * master/slave setting through the firmware interface,
2250		 * so Alteon decided to just bag it and handle it
2251		 * via autonegotiation.
2252		 */
2253		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2254		ifmedia_add(&sc->ifmedia,
2255		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2256		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2257		ifmedia_add(&sc->ifmedia,
2258		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2259		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2260		ifmedia_add(&sc->ifmedia,
2261		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2262	} else {
2263		/* Fiber cards don't support 10/100 modes. */
2264		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2265		ifmedia_add(&sc->ifmedia,
2266		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2267	}
2268	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2269	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2270
2271	/*
2272	 * We're assuming here that card initialization is a sequential
2273	 * thing.  If it isn't, multiple cards probing at the same time
2274	 * could stomp on the list of softcs here.
2275	 */
2276
2277	/* Register the device */
2278	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2279			   0600, "ti%d", sc->ti_unit);
2280	sc->dev->si_drv1 = sc;
2281
2282	/*
2283	 * Call MI attach routine.
2284	 */
2285	ether_ifattach(ifp, eaddr);
2286
2287	/* Hook interrupt last to avoid having to lock softc */
2288	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
2289	   ti_intr, sc, &sc->ti_intrhand);
2290
2291	if (error) {
2292		printf("ti%d: couldn't set up irq\n", unit);
2293		ether_ifdetach(ifp);
2294		if_free(ifp);
2295		goto fail;
2296	}
2297
2298fail:
2299	if (sc && error)
2300		ti_detach(dev);
2301
2302	return (error);
2303}
2304
2305/*
2306 * Shutdown hardware and free up resources. This can be called any
2307 * time after the mutex has been initialized. It is called in both
2308 * the error case in attach and the normal detach case so it needs
2309 * to be careful about only freeing resources that have actually been
2310 * allocated.
2311 */
2312static int
2313ti_detach(dev)
2314	device_t		dev;
2315{
2316	struct ti_softc		*sc;
2317	struct ifnet		*ifp;
2318
2319	sc = device_get_softc(dev);
2320	if (sc->dev)
2321		destroy_dev(sc->dev);
2322	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2323	TI_LOCK(sc);
2324	ifp = sc->ti_ifp;
2325
2326	/* These should only be active if attach succeeded */
2327	if (device_is_attached(dev)) {
2328		ti_stop(sc);
2329		ether_ifdetach(ifp);
2330		if_free(ifp);
2331		bus_generic_detach(dev);
2332	}
2333	ifmedia_removeall(&sc->ifmedia);
2334
2335	if (sc->ti_rdata)
2336		bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2337				sc->ti_rdata_dmamap);
2338	if (sc->ti_rdata_dmat)
2339		bus_dma_tag_destroy(sc->ti_rdata_dmat);
2340	if (sc->ti_parent_dmat)
2341		bus_dma_tag_destroy(sc->ti_parent_dmat);
2342	if (sc->ti_intrhand)
2343		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2344	if (sc->ti_irq)
2345		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2346	if (sc->ti_res) {
2347		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2348		    sc->ti_res);
2349	}
2350
2351#ifdef TI_PRIVATE_JUMBOS
2352	if (sc->ti_cdata.ti_jumbo_buf)
2353		contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
2354#endif
2355	if (sc->ti_rdata)
2356		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
2357
2358	TI_UNLOCK(sc);
2359	mtx_destroy(&sc->ti_mtx);
2360
2361	return (0);
2362}
2363
2364#ifdef TI_JUMBO_HDRSPLIT
2365/*
2366 * If hdr_len is 0, that means that header splitting wasn't done on
2367 * this packet for some reason.  The two most likely reasons are that
2368 * the protocol isn't a supported protocol for splitting, or this
2369 * packet had a fragment offset that wasn't 0.
2370 *
2371 * The header length, if it is non-zero, will always be the length of
2372 * the headers on the packet, but that length could be longer than the
2373 * first mbuf.  So we take the minimum of the two as the actual
2374 * length.
2375 */
2376static __inline void
2377ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2378{
2379	int i = 0;
2380	int lengths[4] = {0, 0, 0, 0};
2381	struct mbuf *m, *mp;
2382
2383	if (hdr_len != 0)
2384		top->m_len = min(hdr_len, top->m_len);
2385	pkt_len -= top->m_len;
2386	lengths[i++] = top->m_len;
2387
2388	mp = top;
2389	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2390		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2391		pkt_len -= m->m_len;
2392		lengths[i++] = m->m_len;
2393		mp = m;
2394	}
2395
2396#if 0
2397	if (hdr_len != 0)
2398		printf("got split packet: ");
2399	else
2400		printf("got non-split packet: ");
2401
2402	printf("%d,%d,%d,%d = %d\n", lengths[0],
2403	    lengths[1], lengths[2], lengths[3],
2404	    lengths[0] + lengths[1] + lengths[2] +
2405	    lengths[3]);
2406#endif
2407
2408	if (pkt_len)
2409		panic("header splitting didn't");
2410
2411	if (m) {
2412		m_freem(m);
2413		mp->m_next = NULL;
2414
2415	}
2416	if (mp->m_next != NULL)
2417		panic("ti_hdr_split: last mbuf in chain should be null");
2418}
2419#endif /* TI_JUMBO_HDRSPLIT */
2420
2421/*
2422 * Frame reception handling. This is called if there's a frame
2423 * on the receive return list.
2424 *
2425 * Note: we have to be able to handle three possibilities here:
2426 * 1) the frame is from the mini receive ring (can only happen)
2427 *    on Tigon 2 boards)
2428 * 2) the frame is from the jumbo recieve ring
2429 * 3) the frame is from the standard receive ring
2430 */
2431
2432static void
2433ti_rxeof(sc)
2434	struct ti_softc		*sc;
2435{
2436	struct ifnet		*ifp;
2437	struct ti_cmd_desc	cmd;
2438
2439	TI_LOCK_ASSERT(sc);
2440
2441	ifp = sc->ti_ifp;
2442
2443	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2444		struct ti_rx_desc	*cur_rx;
2445		u_int32_t		rxidx;
2446		struct mbuf		*m = NULL;
2447		u_int16_t		vlan_tag = 0;
2448		int			have_tag = 0;
2449
2450		cur_rx =
2451		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2452		rxidx = cur_rx->ti_idx;
2453		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2454
2455		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2456			have_tag = 1;
2457			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2458		}
2459
2460		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2461
2462			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2463			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2464			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2465			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2466				ifp->if_ierrors++;
2467				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2468				continue;
2469			}
2470			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2471				ifp->if_ierrors++;
2472				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2473				continue;
2474			}
2475#ifdef TI_PRIVATE_JUMBOS
2476			m->m_len = cur_rx->ti_len;
2477#else /* TI_PRIVATE_JUMBOS */
2478#ifdef TI_JUMBO_HDRSPLIT
2479			if (sc->ti_hdrsplit)
2480				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2481					     cur_rx->ti_len, rxidx);
2482			else
2483#endif /* TI_JUMBO_HDRSPLIT */
2484			m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2485#endif /* TI_PRIVATE_JUMBOS */
2486		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2487			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2488			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2489			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2490			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2491				ifp->if_ierrors++;
2492				ti_newbuf_mini(sc, sc->ti_mini, m);
2493				continue;
2494			}
2495			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2496				ifp->if_ierrors++;
2497				ti_newbuf_mini(sc, sc->ti_mini, m);
2498				continue;
2499			}
2500			m->m_len = cur_rx->ti_len;
2501		} else {
2502			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2503			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2504			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2505			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2506				ifp->if_ierrors++;
2507				ti_newbuf_std(sc, sc->ti_std, m);
2508				continue;
2509			}
2510			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2511				ifp->if_ierrors++;
2512				ti_newbuf_std(sc, sc->ti_std, m);
2513				continue;
2514			}
2515			m->m_len = cur_rx->ti_len;
2516		}
2517
2518		m->m_pkthdr.len = cur_rx->ti_len;
2519		ifp->if_ipackets++;
2520		m->m_pkthdr.rcvif = ifp;
2521
2522		if (ifp->if_hwassist) {
2523			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2524			    CSUM_DATA_VALID;
2525			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2526				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2527			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2528		}
2529
2530		/*
2531		 * If we received a packet with a vlan tag,
2532		 * tag it before passing the packet upward.
2533		 */
2534		if (have_tag)
2535			VLAN_INPUT_TAG(ifp, m, vlan_tag, continue);
2536		TI_UNLOCK(sc);
2537		(*ifp->if_input)(ifp, m);
2538		TI_LOCK(sc);
2539	}
2540
2541	/* Only necessary on the Tigon 1. */
2542	if (sc->ti_hwrev == TI_HWREV_TIGON)
2543		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2544		    sc->ti_rx_saved_considx);
2545
2546	TI_UPDATE_STDPROD(sc, sc->ti_std);
2547	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2548	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2549}
2550
2551static void
2552ti_txeof(sc)
2553	struct ti_softc		*sc;
2554{
2555	struct ti_tx_desc	*cur_tx = NULL;
2556	struct ifnet		*ifp;
2557
2558	ifp = sc->ti_ifp;
2559
2560	/*
2561	 * Go through our tx ring and free mbufs for those
2562	 * frames that have been sent.
2563	 */
2564	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2565		u_int32_t		idx = 0;
2566
2567		idx = sc->ti_tx_saved_considx;
2568		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2569			if (idx > 383)
2570				CSR_WRITE_4(sc, TI_WINBASE,
2571				    TI_TX_RING_BASE + 6144);
2572			else if (idx > 255)
2573				CSR_WRITE_4(sc, TI_WINBASE,
2574				    TI_TX_RING_BASE + 4096);
2575			else if (idx > 127)
2576				CSR_WRITE_4(sc, TI_WINBASE,
2577				    TI_TX_RING_BASE + 2048);
2578			else
2579				CSR_WRITE_4(sc, TI_WINBASE,
2580				    TI_TX_RING_BASE);
2581			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2582		} else
2583			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2584		if (cur_tx->ti_flags & TI_BDFLAG_END)
2585			ifp->if_opackets++;
2586		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2587			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2588			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2589		}
2590		sc->ti_txcnt--;
2591		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2592		ifp->if_timer = 0;
2593	}
2594
2595	if (cur_tx != NULL)
2596		ifp->if_flags &= ~IFF_OACTIVE;
2597}
2598
2599static void
2600ti_intr(xsc)
2601	void			*xsc;
2602{
2603	struct ti_softc		*sc;
2604	struct ifnet		*ifp;
2605
2606	sc = xsc;
2607	TI_LOCK(sc);
2608	ifp = sc->ti_ifp;
2609
2610/*#ifdef notdef*/
2611	/* Avoid this for now -- checking this register is expensive. */
2612	/* Make sure this is really our interrupt. */
2613	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2614		TI_UNLOCK(sc);
2615		return;
2616	}
2617/*#endif*/
2618
2619	/* Ack interrupt and stop others from occuring. */
2620	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2621
2622	if (ifp->if_flags & IFF_RUNNING) {
2623		/* Check RX return ring producer/consumer */
2624		ti_rxeof(sc);
2625
2626		/* Check TX ring producer/consumer */
2627		ti_txeof(sc);
2628	}
2629
2630	ti_handle_events(sc);
2631
2632	/* Re-enable interrupts. */
2633	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2634
2635	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2636		ti_start(ifp);
2637
2638	TI_UNLOCK(sc);
2639}
2640
2641static void
2642ti_stats_update(sc)
2643	struct ti_softc		*sc;
2644{
2645	struct ifnet		*ifp;
2646
2647	ifp = sc->ti_ifp;
2648
2649	ifp->if_collisions +=
2650	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2651	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2652	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2653	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2654	   ifp->if_collisions;
2655}
2656
2657/*
2658 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2659 * pointers to descriptors.
2660 */
2661static int
2662ti_encap(sc, m_head, txidx)
2663	struct ti_softc		*sc;
2664	struct mbuf		*m_head;
2665	u_int32_t		*txidx;
2666{
2667	struct ti_tx_desc	*f = NULL;
2668	struct mbuf		*m;
2669	u_int32_t		frag, cur, cnt = 0;
2670	u_int16_t		csum_flags = 0;
2671	struct m_tag		*mtag;
2672
2673	m = m_head;
2674	cur = frag = *txidx;
2675
2676	if (m_head->m_pkthdr.csum_flags) {
2677		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2678			csum_flags |= TI_BDFLAG_IP_CKSUM;
2679		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2680			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2681		if (m_head->m_flags & M_LASTFRAG)
2682			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2683		else if (m_head->m_flags & M_FRAG)
2684			csum_flags |= TI_BDFLAG_IP_FRAG;
2685	}
2686
2687	mtag = VLAN_OUTPUT_TAG(sc->ti_ifp, m);
2688
2689	/*
2690	 * Start packing the mbufs in this chain into
2691	 * the fragment pointers. Stop when we run out
2692	 * of fragments or hit the end of the mbuf chain.
2693	 */
2694	for (m = m_head; m != NULL; m = m->m_next) {
2695		if (m->m_len != 0) {
2696			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2697				if (frag > 383)
2698					CSR_WRITE_4(sc, TI_WINBASE,
2699					    TI_TX_RING_BASE + 6144);
2700				else if (frag > 255)
2701					CSR_WRITE_4(sc, TI_WINBASE,
2702					    TI_TX_RING_BASE + 4096);
2703				else if (frag > 127)
2704					CSR_WRITE_4(sc, TI_WINBASE,
2705					    TI_TX_RING_BASE + 2048);
2706				else
2707					CSR_WRITE_4(sc, TI_WINBASE,
2708					    TI_TX_RING_BASE);
2709				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2710			} else
2711				f = &sc->ti_rdata->ti_tx_ring[frag];
2712			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2713				break;
2714			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2715			f->ti_len = m->m_len;
2716			f->ti_flags = csum_flags;
2717
2718			if (mtag != NULL) {
2719				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2720				f->ti_vlan_tag = VLAN_TAG_VALUE(mtag) & 0xfff;
2721			} else {
2722				f->ti_vlan_tag = 0;
2723			}
2724
2725			/*
2726			 * Sanity check: avoid coming within 16 descriptors
2727			 * of the end of the ring.
2728			 */
2729			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2730				return (ENOBUFS);
2731			cur = frag;
2732			TI_INC(frag, TI_TX_RING_CNT);
2733			cnt++;
2734		}
2735	}
2736
2737	if (m != NULL)
2738		return (ENOBUFS);
2739
2740	if (frag == sc->ti_tx_saved_considx)
2741		return (ENOBUFS);
2742
2743	if (sc->ti_hwrev == TI_HWREV_TIGON)
2744		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2745	            TI_BDFLAG_END;
2746	else
2747		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2748	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2749	sc->ti_txcnt += cnt;
2750
2751	*txidx = frag;
2752
2753	return (0);
2754}
2755
2756/*
2757 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2758 * to the mbuf data regions directly in the transmit descriptors.
2759 */
2760static void
2761ti_start(ifp)
2762	struct ifnet		*ifp;
2763{
2764	struct ti_softc		*sc;
2765	struct mbuf		*m_head = NULL;
2766	u_int32_t		prodidx = 0;
2767
2768	sc = ifp->if_softc;
2769	TI_LOCK(sc);
2770
2771	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2772
2773	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2774		IF_DEQUEUE(&ifp->if_snd, m_head);
2775		if (m_head == NULL)
2776			break;
2777
2778		/*
2779		 * XXX
2780		 * safety overkill.  If this is a fragmented packet chain
2781		 * with delayed TCP/UDP checksums, then only encapsulate
2782		 * it if we have enough descriptors to handle the entire
2783		 * chain at once.
2784		 * (paranoia -- may not actually be needed)
2785		 */
2786		if (m_head->m_flags & M_FIRSTFRAG &&
2787		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2788			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2789			    m_head->m_pkthdr.csum_data + 16) {
2790				IF_PREPEND(&ifp->if_snd, m_head);
2791				ifp->if_flags |= IFF_OACTIVE;
2792				break;
2793			}
2794		}
2795
2796		/*
2797		 * Pack the data into the transmit ring. If we
2798		 * don't have room, set the OACTIVE flag and wait
2799		 * for the NIC to drain the ring.
2800		 */
2801		if (ti_encap(sc, m_head, &prodidx)) {
2802			IF_PREPEND(&ifp->if_snd, m_head);
2803			ifp->if_flags |= IFF_OACTIVE;
2804			break;
2805		}
2806
2807		/*
2808		 * If there's a BPF listener, bounce a copy of this frame
2809		 * to him.
2810		 */
2811		BPF_MTAP(ifp, m_head);
2812	}
2813
2814	/* Transmit */
2815	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2816
2817	/*
2818	 * Set a timeout in case the chip goes out to lunch.
2819	 */
2820	ifp->if_timer = 5;
2821	TI_UNLOCK(sc);
2822}
2823
2824static void
2825ti_init(xsc)
2826	void			*xsc;
2827{
2828	struct ti_softc		*sc = xsc;
2829
2830	/* Cancel pending I/O and flush buffers. */
2831	ti_stop(sc);
2832
2833	TI_LOCK(sc);
2834	/* Init the gen info block, ring control blocks and firmware. */
2835	if (ti_gibinit(sc)) {
2836		printf("ti%d: initialization failure\n", sc->ti_unit);
2837		TI_UNLOCK(sc);
2838		return;
2839	}
2840
2841	TI_UNLOCK(sc);
2842}
2843
2844static void ti_init2(sc)
2845	struct ti_softc		*sc;
2846{
2847	struct ti_cmd_desc	cmd;
2848	struct ifnet		*ifp;
2849	u_int16_t		*m;
2850	struct ifmedia		*ifm;
2851	int			tmp;
2852
2853	ifp = sc->ti_ifp;
2854
2855	/* Specify MTU and interface index. */
2856	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
2857	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2858	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
2859	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2860
2861	/* Load our MAC address. */
2862	m = (u_int16_t *)&IFP2ENADDR(sc->ti_ifp)[0];
2863	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2864	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2865	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2866
2867	/* Enable or disable promiscuous mode as needed. */
2868	if (ifp->if_flags & IFF_PROMISC) {
2869		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2870	} else {
2871		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2872	}
2873
2874	/* Program multicast filter. */
2875	ti_setmulti(sc);
2876
2877	/*
2878	 * If this is a Tigon 1, we should tell the
2879	 * firmware to use software packet filtering.
2880	 */
2881	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2882		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2883	}
2884
2885	/* Init RX ring. */
2886	ti_init_rx_ring_std(sc);
2887
2888	/* Init jumbo RX ring. */
2889	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2890		ti_init_rx_ring_jumbo(sc);
2891
2892	/*
2893	 * If this is a Tigon 2, we can also configure the
2894	 * mini ring.
2895	 */
2896	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2897		ti_init_rx_ring_mini(sc);
2898
2899	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2900	sc->ti_rx_saved_considx = 0;
2901
2902	/* Init TX ring. */
2903	ti_init_tx_ring(sc);
2904
2905	/* Tell firmware we're alive. */
2906	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2907
2908	/* Enable host interrupts. */
2909	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2910
2911	ifp->if_flags |= IFF_RUNNING;
2912	ifp->if_flags &= ~IFF_OACTIVE;
2913
2914	/*
2915	 * Make sure to set media properly. We have to do this
2916	 * here since we have to issue commands in order to set
2917	 * the link negotiation and we can't issue commands until
2918	 * the firmware is running.
2919	 */
2920	ifm = &sc->ifmedia;
2921	tmp = ifm->ifm_media;
2922	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2923	ti_ifmedia_upd(ifp);
2924	ifm->ifm_media = tmp;
2925}
2926
2927/*
2928 * Set media options.
2929 */
2930static int
2931ti_ifmedia_upd(ifp)
2932	struct ifnet		*ifp;
2933{
2934	struct ti_softc		*sc;
2935	struct ifmedia		*ifm;
2936	struct ti_cmd_desc	cmd;
2937	u_int32_t		flowctl;
2938
2939	sc = ifp->if_softc;
2940	ifm = &sc->ifmedia;
2941
2942	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2943		return (EINVAL);
2944
2945	flowctl = 0;
2946
2947	switch (IFM_SUBTYPE(ifm->ifm_media)) {
2948	case IFM_AUTO:
2949		/*
2950		 * Transmit flow control doesn't work on the Tigon 1.
2951		 */
2952		flowctl = TI_GLNK_RX_FLOWCTL_Y;
2953
2954		/*
2955		 * Transmit flow control can also cause problems on the
2956		 * Tigon 2, apparantly with both the copper and fiber
2957		 * boards.  The symptom is that the interface will just
2958		 * hang.  This was reproduced with Alteon 180 switches.
2959		 */
2960#if 0
2961		if (sc->ti_hwrev != TI_HWREV_TIGON)
2962			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
2963#endif
2964
2965		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2966		    TI_GLNK_FULL_DUPLEX| flowctl |
2967		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2968
2969		flowctl = TI_LNK_RX_FLOWCTL_Y;
2970#if 0
2971		if (sc->ti_hwrev != TI_HWREV_TIGON)
2972			flowctl |= TI_LNK_TX_FLOWCTL_Y;
2973#endif
2974
2975		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2976		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
2977		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2978		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2979		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2980		break;
2981	case IFM_1000_SX:
2982	case IFM_1000_T:
2983		flowctl = TI_GLNK_RX_FLOWCTL_Y;
2984#if 0
2985		if (sc->ti_hwrev != TI_HWREV_TIGON)
2986			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
2987#endif
2988
2989		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2990		    flowctl |TI_GLNK_ENB);
2991		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2992		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2993			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2994		}
2995		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2996		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2997		break;
2998	case IFM_100_FX:
2999	case IFM_10_FL:
3000	case IFM_100_TX:
3001	case IFM_10_T:
3002		flowctl = TI_LNK_RX_FLOWCTL_Y;
3003#if 0
3004		if (sc->ti_hwrev != TI_HWREV_TIGON)
3005			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3006#endif
3007
3008		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3009		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3010		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3011		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3012			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3013		} else {
3014			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3015		}
3016		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3017			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3018		} else {
3019			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3020		}
3021		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3022		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3023		break;
3024	}
3025
3026	return (0);
3027}
3028
3029/*
3030 * Report current media status.
3031 */
3032static void
3033ti_ifmedia_sts(ifp, ifmr)
3034	struct ifnet		*ifp;
3035	struct ifmediareq	*ifmr;
3036{
3037	struct ti_softc		*sc;
3038	u_int32_t		media = 0;
3039
3040	sc = ifp->if_softc;
3041
3042	ifmr->ifm_status = IFM_AVALID;
3043	ifmr->ifm_active = IFM_ETHER;
3044
3045	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3046		return;
3047
3048	ifmr->ifm_status |= IFM_ACTIVE;
3049
3050	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3051		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3052		if (sc->ti_copper)
3053			ifmr->ifm_active |= IFM_1000_T;
3054		else
3055			ifmr->ifm_active |= IFM_1000_SX;
3056		if (media & TI_GLNK_FULL_DUPLEX)
3057			ifmr->ifm_active |= IFM_FDX;
3058		else
3059			ifmr->ifm_active |= IFM_HDX;
3060	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3061		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3062		if (sc->ti_copper) {
3063			if (media & TI_LNK_100MB)
3064				ifmr->ifm_active |= IFM_100_TX;
3065			if (media & TI_LNK_10MB)
3066				ifmr->ifm_active |= IFM_10_T;
3067		} else {
3068			if (media & TI_LNK_100MB)
3069				ifmr->ifm_active |= IFM_100_FX;
3070			if (media & TI_LNK_10MB)
3071				ifmr->ifm_active |= IFM_10_FL;
3072		}
3073		if (media & TI_LNK_FULL_DUPLEX)
3074			ifmr->ifm_active |= IFM_FDX;
3075		if (media & TI_LNK_HALF_DUPLEX)
3076			ifmr->ifm_active |= IFM_HDX;
3077	}
3078}
3079
3080static int
3081ti_ioctl(ifp, command, data)
3082	struct ifnet		*ifp;
3083	u_long			command;
3084	caddr_t			data;
3085{
3086	struct ti_softc		*sc = ifp->if_softc;
3087	struct ifreq		*ifr = (struct ifreq *) data;
3088	int			mask, error = 0;
3089	struct ti_cmd_desc	cmd;
3090
3091	TI_LOCK(sc);
3092
3093	switch (command) {
3094	case SIOCSIFMTU:
3095		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3096			error = EINVAL;
3097		else {
3098			ifp->if_mtu = ifr->ifr_mtu;
3099			ti_init(sc);
3100		}
3101		break;
3102	case SIOCSIFFLAGS:
3103		if (ifp->if_flags & IFF_UP) {
3104			/*
3105			 * If only the state of the PROMISC flag changed,
3106			 * then just use the 'set promisc mode' command
3107			 * instead of reinitializing the entire NIC. Doing
3108			 * a full re-init means reloading the firmware and
3109			 * waiting for it to start up, which may take a
3110			 * second or two.
3111			 */
3112			if (ifp->if_flags & IFF_RUNNING &&
3113			    ifp->if_flags & IFF_PROMISC &&
3114			    !(sc->ti_if_flags & IFF_PROMISC)) {
3115				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3116				    TI_CMD_CODE_PROMISC_ENB, 0);
3117			} else if (ifp->if_flags & IFF_RUNNING &&
3118			    !(ifp->if_flags & IFF_PROMISC) &&
3119			    sc->ti_if_flags & IFF_PROMISC) {
3120				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3121				    TI_CMD_CODE_PROMISC_DIS, 0);
3122			} else
3123				ti_init(sc);
3124		} else {
3125			if (ifp->if_flags & IFF_RUNNING) {
3126				ti_stop(sc);
3127			}
3128		}
3129		sc->ti_if_flags = ifp->if_flags;
3130		error = 0;
3131		break;
3132	case SIOCADDMULTI:
3133	case SIOCDELMULTI:
3134		if (ifp->if_flags & IFF_RUNNING) {
3135			ti_setmulti(sc);
3136			error = 0;
3137		}
3138		break;
3139	case SIOCSIFMEDIA:
3140	case SIOCGIFMEDIA:
3141		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3142		break;
3143	case SIOCSIFCAP:
3144		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3145		if (mask & IFCAP_HWCSUM) {
3146			if (IFCAP_HWCSUM & ifp->if_capenable)
3147				ifp->if_capenable &= ~IFCAP_HWCSUM;
3148			else
3149				ifp->if_capenable |= IFCAP_HWCSUM;
3150			if (ifp->if_flags & IFF_RUNNING)
3151				ti_init(sc);
3152		}
3153		error = 0;
3154		break;
3155	default:
3156		error = ether_ioctl(ifp, command, data);
3157		break;
3158	}
3159
3160	TI_UNLOCK(sc);
3161
3162	return (error);
3163}
3164
3165static int
3166ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3167{
3168	struct ti_softc *sc;
3169
3170	sc = dev->si_drv1;
3171	if (sc == NULL)
3172		return (ENODEV);
3173
3174	TI_LOCK(sc);
3175	sc->ti_flags |= TI_FLAG_DEBUGING;
3176	TI_UNLOCK(sc);
3177
3178	return (0);
3179}
3180
3181static int
3182ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3183{
3184	struct ti_softc *sc;
3185
3186	sc = dev->si_drv1;
3187	if (sc == NULL)
3188		return (ENODEV);
3189
3190	TI_LOCK(sc);
3191	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3192	TI_UNLOCK(sc);
3193
3194	return (0);
3195}
3196
3197/*
3198 * This ioctl routine goes along with the Tigon character device.
3199 */
3200static int
3201ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
3202{
3203	int error;
3204	struct ti_softc *sc;
3205
3206	sc = dev->si_drv1;
3207	if (sc == NULL)
3208		return (ENODEV);
3209
3210	error = 0;
3211
3212	switch (cmd) {
3213	case TIIOCGETSTATS:
3214	{
3215		struct ti_stats *outstats;
3216
3217		outstats = (struct ti_stats *)addr;
3218
3219		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3220		      sizeof(struct ti_stats));
3221		break;
3222	}
3223	case TIIOCGETPARAMS:
3224	{
3225		struct ti_params	*params;
3226
3227		params = (struct ti_params *)addr;
3228
3229		params->ti_stat_ticks = sc->ti_stat_ticks;
3230		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3231		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3232		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3233		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3234		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3235		params->param_mask = TI_PARAM_ALL;
3236
3237		error = 0;
3238
3239		break;
3240	}
3241	case TIIOCSETPARAMS:
3242	{
3243		struct ti_params *params;
3244
3245		params = (struct ti_params *)addr;
3246
3247		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3248			sc->ti_stat_ticks = params->ti_stat_ticks;
3249			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3250		}
3251
3252		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3253			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3254			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3255				    sc->ti_rx_coal_ticks);
3256		}
3257
3258		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3259			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3260			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3261				    sc->ti_tx_coal_ticks);
3262		}
3263
3264		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3265			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3266			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3267				    sc->ti_rx_max_coal_bds);
3268		}
3269
3270		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3271			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3272			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3273				    sc->ti_tx_max_coal_bds);
3274		}
3275
3276		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3277			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3278			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3279				    sc->ti_tx_buf_ratio);
3280		}
3281
3282		error = 0;
3283
3284		break;
3285	}
3286	case TIIOCSETTRACE: {
3287		ti_trace_type	trace_type;
3288
3289		trace_type = *(ti_trace_type *)addr;
3290
3291		/*
3292		 * Set tracing to whatever the user asked for.  Setting
3293		 * this register to 0 should have the effect of disabling
3294		 * tracing.
3295		 */
3296		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3297
3298		error = 0;
3299
3300		break;
3301	}
3302	case TIIOCGETTRACE: {
3303		struct ti_trace_buf	*trace_buf;
3304		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3305
3306		trace_buf = (struct ti_trace_buf *)addr;
3307
3308		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3309		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3310		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3311
3312#if 0
3313		printf("ti%d: trace_start = %#x, cur_trace_ptr = %#x, "
3314		       "trace_len = %d\n", sc->ti_unit, trace_start,
3315		       cur_trace_ptr, trace_len);
3316		printf("ti%d: trace_buf->buf_len = %d\n", sc->ti_unit,
3317		       trace_buf->buf_len);
3318#endif
3319
3320		error = ti_copy_mem(sc, trace_start, min(trace_len,
3321				    trace_buf->buf_len),
3322				    (caddr_t)trace_buf->buf, 1, 1);
3323
3324		if (error == 0) {
3325			trace_buf->fill_len = min(trace_len,
3326						  trace_buf->buf_len);
3327			if (cur_trace_ptr < trace_start)
3328				trace_buf->cur_trace_ptr =
3329					trace_start - cur_trace_ptr;
3330			else
3331				trace_buf->cur_trace_ptr =
3332					cur_trace_ptr - trace_start;
3333		} else
3334			trace_buf->fill_len = 0;
3335
3336		break;
3337	}
3338
3339	/*
3340	 * For debugging, five ioctls are needed:
3341	 * ALT_ATTACH
3342	 * ALT_READ_TG_REG
3343	 * ALT_WRITE_TG_REG
3344	 * ALT_READ_TG_MEM
3345	 * ALT_WRITE_TG_MEM
3346	 */
3347	case ALT_ATTACH:
3348		/*
3349		 * From what I can tell, Alteon's Solaris Tigon driver
3350		 * only has one character device, so you have to attach
3351		 * to the Tigon board you're interested in.  This seems
3352		 * like a not-so-good way to do things, since unless you
3353		 * subsequently specify the unit number of the device
3354		 * you're interested in in every ioctl, you'll only be
3355		 * able to debug one board at a time.
3356		 */
3357		error = 0;
3358		break;
3359	case ALT_READ_TG_MEM:
3360	case ALT_WRITE_TG_MEM:
3361	{
3362		struct tg_mem *mem_param;
3363		u_int32_t sram_end, scratch_end;
3364
3365		mem_param = (struct tg_mem *)addr;
3366
3367		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3368			sram_end = TI_END_SRAM_I;
3369			scratch_end = TI_END_SCRATCH_I;
3370		} else {
3371			sram_end = TI_END_SRAM_II;
3372			scratch_end = TI_END_SCRATCH_II;
3373		}
3374
3375		/*
3376		 * For now, we'll only handle accessing regular SRAM,
3377		 * nothing else.
3378		 */
3379		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3380		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3381			/*
3382			 * In this instance, we always copy to/from user
3383			 * space, so the user space argument is set to 1.
3384			 */
3385			error = ti_copy_mem(sc, mem_param->tgAddr,
3386					    mem_param->len,
3387					    mem_param->userAddr, 1,
3388					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3389		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3390			&& (mem_param->tgAddr <= scratch_end)) {
3391			error = ti_copy_scratch(sc, mem_param->tgAddr,
3392						mem_param->len,
3393						mem_param->userAddr, 1,
3394						(cmd == ALT_READ_TG_MEM) ?
3395						1 : 0, TI_PROCESSOR_A);
3396		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3397			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3398			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3399				printf("ti%d:  invalid memory range for "
3400				       "Tigon I\n", sc->ti_unit);
3401				error = EINVAL;
3402				break;
3403			}
3404			error = ti_copy_scratch(sc, mem_param->tgAddr -
3405						TI_SCRATCH_DEBUG_OFF,
3406						mem_param->len,
3407						mem_param->userAddr, 1,
3408						(cmd == ALT_READ_TG_MEM) ?
3409						1 : 0, TI_PROCESSOR_B);
3410		} else {
3411			printf("ti%d: memory address %#x len %d is out of "
3412			       "supported range\n", sc->ti_unit,
3413			        mem_param->tgAddr, mem_param->len);
3414			error = EINVAL;
3415		}
3416
3417		break;
3418	}
3419	case ALT_READ_TG_REG:
3420	case ALT_WRITE_TG_REG:
3421	{
3422		struct tg_reg	*regs;
3423		u_int32_t	tmpval;
3424
3425		regs = (struct tg_reg *)addr;
3426
3427		/*
3428		 * Make sure the address in question isn't out of range.
3429		 */
3430		if (regs->addr > TI_REG_MAX) {
3431			error = EINVAL;
3432			break;
3433		}
3434		if (cmd == ALT_READ_TG_REG) {
3435			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3436						regs->addr, &tmpval, 1);
3437			regs->data = ntohl(tmpval);
3438#if 0
3439			if ((regs->addr == TI_CPU_STATE)
3440			 || (regs->addr == TI_CPU_CTL_B)) {
3441				printf("ti%d: register %#x = %#x\n",
3442				       sc->ti_unit, regs->addr, tmpval);
3443			}
3444#endif
3445		} else {
3446			tmpval = htonl(regs->data);
3447			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3448						 regs->addr, &tmpval, 1);
3449		}
3450
3451		break;
3452	}
3453	default:
3454		error = ENOTTY;
3455		break;
3456	}
3457	return (error);
3458}
3459
3460static void
3461ti_watchdog(ifp)
3462	struct ifnet		*ifp;
3463{
3464	struct ti_softc		*sc;
3465
3466	sc = ifp->if_softc;
3467	TI_LOCK(sc);
3468
3469	/*
3470	 * When we're debugging, the chip is often stopped for long periods
3471	 * of time, and that would normally cause the watchdog timer to fire.
3472	 * Since that impedes debugging, we don't want to do that.
3473	 */
3474	if (sc->ti_flags & TI_FLAG_DEBUGING) {
3475		TI_UNLOCK(sc);
3476		return;
3477	}
3478
3479	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
3480	ti_stop(sc);
3481	ti_init(sc);
3482
3483	ifp->if_oerrors++;
3484	TI_UNLOCK(sc);
3485}
3486
3487/*
3488 * Stop the adapter and free any mbufs allocated to the
3489 * RX and TX lists.
3490 */
3491static void
3492ti_stop(sc)
3493	struct ti_softc		*sc;
3494{
3495	struct ifnet		*ifp;
3496	struct ti_cmd_desc	cmd;
3497
3498	TI_LOCK(sc);
3499
3500	ifp = sc->ti_ifp;
3501
3502	/* Disable host interrupts. */
3503	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3504	/*
3505	 * Tell firmware we're shutting down.
3506	 */
3507	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3508
3509	/* Halt and reinitialize. */
3510	ti_chipinit(sc);
3511	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
3512	ti_chipinit(sc);
3513
3514	/* Free the RX lists. */
3515	ti_free_rx_ring_std(sc);
3516
3517	/* Free jumbo RX list. */
3518	ti_free_rx_ring_jumbo(sc);
3519
3520	/* Free mini RX list. */
3521	ti_free_rx_ring_mini(sc);
3522
3523	/* Free TX buffers. */
3524	ti_free_tx_ring(sc);
3525
3526	sc->ti_ev_prodidx.ti_idx = 0;
3527	sc->ti_return_prodidx.ti_idx = 0;
3528	sc->ti_tx_considx.ti_idx = 0;
3529	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3530
3531	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3532	TI_UNLOCK(sc);
3533}
3534
3535/*
3536 * Stop all chip I/O so that the kernel's probe routines don't
3537 * get confused by errant DMAs when rebooting.
3538 */
3539static void
3540ti_shutdown(dev)
3541	device_t		dev;
3542{
3543	struct ti_softc		*sc;
3544
3545	sc = device_get_softc(dev);
3546	TI_LOCK(sc);
3547	ti_chipinit(sc);
3548	TI_UNLOCK(sc);
3549}
3550