if_ti.c revision 111815
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/ti/if_ti.c 111815 2003-03-03 12:15:54Z phk $
33 */
34
35/*
36 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37 * Manuals, sample driver and firmware source kits are available
38 * from http://www.alteon.com/support/openkits.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Electrical Engineering Department
42 * Columbia University, New York City
43 */
44
45/*
46 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50 * filtering and jumbo (9014 byte) frames. The hardware is largely
51 * controlled by firmware, which must be loaded into the NIC during
52 * initialization.
53 *
54 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55 * revision, which supports new features such as extended commands,
56 * extended jumbo receive ring desciptors and a mini receive ring.
57 *
58 * Alteon Networks is to be commended for releasing such a vast amount
59 * of development material for the Tigon NIC without requiring an NDA
60 * (although they really should have done it a long time ago). With
61 * any luck, the other vendors will finally wise up and follow Alteon's
62 * stellar example.
63 *
64 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65 * this driver by #including it as a C header file. This bloats the
66 * driver somewhat, but it's the easiest method considering that the
67 * driver code and firmware code need to be kept in sync. The source
68 * for the firmware is not provided with the FreeBSD distribution since
69 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70 *
71 * The following people deserve special thanks:
72 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73 *   for testing
74 * - Raymond Lee of Netgear, for providing a pair of Netgear
75 *   GA620 Tigon 2 boards for testing
76 * - Ulf Zimmermann, for bringing the GA260 to my attention and
77 *   convincing me to write this driver.
78 * - Andrew Gallatin for providing FreeBSD/Alpha support.
79 */
80
81#include "opt_ti.h"
82
83#include <sys/param.h>
84#include <sys/systm.h>
85#include <sys/sockio.h>
86#include <sys/mbuf.h>
87#include <sys/malloc.h>
88#include <sys/kernel.h>
89#include <sys/socket.h>
90#include <sys/queue.h>
91#include <sys/conf.h>
92
93#include <net/if.h>
94#include <net/if_arp.h>
95#include <net/ethernet.h>
96#include <net/if_dl.h>
97#include <net/if_media.h>
98#include <net/if_types.h>
99#include <net/if_vlan_var.h>
100
101#include <net/bpf.h>
102
103#include <netinet/in_systm.h>
104#include <netinet/in.h>
105#include <netinet/ip.h>
106
107#include <vm/vm.h>              /* for vtophys */
108#include <vm/pmap.h>            /* for vtophys */
109#include <machine/bus_memio.h>
110#include <machine/bus.h>
111#include <machine/resource.h>
112#include <sys/bus.h>
113#include <sys/rman.h>
114
115/* #define TI_PRIVATE_JUMBOS */
116
117#if !defined(TI_PRIVATE_JUMBOS)
118#include <sys/sockio.h>
119#include <sys/uio.h>
120#include <sys/lock.h>
121#include <vm/vm_extern.h>
122#include <vm/pmap.h>
123#include <vm/vm_map.h>
124#include <vm/vm_map.h>
125#include <vm/vm_param.h>
126#include <vm/vm_pageout.h>
127#include <sys/vmmeter.h>
128#include <vm/vm_page.h>
129#include <vm/vm_object.h>
130#include <vm/vm_kern.h>
131#include <sys/proc.h>
132#include <sys/jumbo.h>
133#endif /* !TI_PRIVATE_JUMBOS */
134#include <sys/vnode.h> /* for vfindev, vgone */
135
136#include <pci/pcireg.h>
137#include <pci/pcivar.h>
138
139#include <sys/tiio.h>
140#include <pci/if_tireg.h>
141#include <pci/ti_fw.h>
142#include <pci/ti_fw2.h>
143
144#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
145/*
146 * We can only turn on header splitting if we're using extended receive
147 * BDs.
148 */
149#if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
150#error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
151#endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
152
153#if !defined(lint)
154static const char rcsid[] =
155  "$FreeBSD: head/sys/dev/ti/if_ti.c 111815 2003-03-03 12:15:54Z phk $";
156#endif
157
158struct ti_softc *tis[8];
159
160typedef enum {
161	TI_SWAP_HTON,
162	TI_SWAP_NTOH
163} ti_swap_type;
164
165
166/*
167 * Various supported device vendors/types and their names.
168 */
169
170static struct ti_type ti_devs[] = {
171	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
172		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
173	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
174		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
175	{ TC_VENDORID,	TC_DEVICEID_3C985,
176		"3Com 3c985-SX Gigabit Ethernet" },
177	{ NG_VENDORID, NG_DEVICEID_GA620,
178		"Netgear GA620 1000baseSX Gigabit Ethernet" },
179	{ NG_VENDORID, NG_DEVICEID_GA620T,
180		"Netgear GA620 1000baseT Gigabit Ethernet" },
181	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
182		"Silicon Graphics Gigabit Ethernet" },
183	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
184		"Farallon PN9000SX Gigabit Ethernet" },
185	{ 0, 0, NULL }
186};
187
188#define	TI_CDEV_MAJOR	153
189
190static	d_open_t	ti_open;
191static	d_close_t	ti_close;
192static	d_ioctl_t	ti_ioctl2;
193
194static struct cdevsw ti_cdevsw = {
195	.d_open =	ti_open,
196	.d_close =	ti_close,
197	.d_ioctl =	ti_ioctl2,
198	.d_name =	"ti",
199	.d_maj =	TI_CDEV_MAJOR,
200};
201
202static int ti_probe		(device_t);
203static int ti_attach		(device_t);
204static int ti_detach		(device_t);
205static void ti_txeof		(struct ti_softc *);
206static void ti_rxeof		(struct ti_softc *);
207
208static void ti_stats_update	(struct ti_softc *);
209static int ti_encap		(struct ti_softc *, struct mbuf *, u_int32_t *);
210
211static void ti_intr		(void *);
212static void ti_start		(struct ifnet *);
213static int ti_ioctl		(struct ifnet *, u_long, caddr_t);
214static void ti_init		(void *);
215static void ti_init2		(struct ti_softc *);
216static void ti_stop		(struct ti_softc *);
217static void ti_watchdog		(struct ifnet *);
218static void ti_shutdown		(device_t);
219static int ti_ifmedia_upd	(struct ifnet *);
220static void ti_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
221
222static u_int32_t ti_eeprom_putbyte	(struct ti_softc *, int);
223static u_int8_t	ti_eeprom_getbyte	(struct ti_softc *, int, u_int8_t *);
224static int ti_read_eeprom	(struct ti_softc *, caddr_t, int, int);
225
226static void ti_add_mcast	(struct ti_softc *, struct ether_addr *);
227static void ti_del_mcast	(struct ti_softc *, struct ether_addr *);
228static void ti_setmulti		(struct ti_softc *);
229
230static void ti_mem		(struct ti_softc *, u_int32_t,
231					u_int32_t, caddr_t);
232static int ti_copy_mem		(struct ti_softc *, u_int32_t,
233					u_int32_t, caddr_t, int, int);
234static int ti_copy_scratch	(struct ti_softc *, u_int32_t,
235					u_int32_t, caddr_t, int, int, int);
236static int ti_bcopy_swap	(const void *, void *, size_t,
237					ti_swap_type);
238static void ti_loadfw		(struct ti_softc *);
239static void ti_cmd		(struct ti_softc *, struct ti_cmd_desc *);
240static void ti_cmd_ext		(struct ti_softc *, struct ti_cmd_desc *,
241					caddr_t, int);
242static void ti_handle_events	(struct ti_softc *);
243#ifdef TI_PRIVATE_JUMBOS
244static int ti_alloc_jumbo_mem	(struct ti_softc *);
245static void *ti_jalloc		(struct ti_softc *);
246static void ti_jfree		(void *, void *);
247#endif /* TI_PRIVATE_JUMBOS */
248static int ti_newbuf_std	(struct ti_softc *, int, struct mbuf *);
249static int ti_newbuf_mini	(struct ti_softc *, int, struct mbuf *);
250static int ti_newbuf_jumbo	(struct ti_softc *, int, struct mbuf *);
251static int ti_init_rx_ring_std	(struct ti_softc *);
252static void ti_free_rx_ring_std	(struct ti_softc *);
253static int ti_init_rx_ring_jumbo	(struct ti_softc *);
254static void ti_free_rx_ring_jumbo	(struct ti_softc *);
255static int ti_init_rx_ring_mini	(struct ti_softc *);
256static void ti_free_rx_ring_mini	(struct ti_softc *);
257static void ti_free_tx_ring	(struct ti_softc *);
258static int ti_init_tx_ring	(struct ti_softc *);
259
260static int ti_64bitslot_war	(struct ti_softc *);
261static int ti_chipinit		(struct ti_softc *);
262static int ti_gibinit		(struct ti_softc *);
263
264#ifdef TI_JUMBO_HDRSPLIT
265static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
266					     int pkt_len, int idx);
267#endif /* TI_JUMBO_HDRSPLIT */
268
269static device_method_t ti_methods[] = {
270	/* Device interface */
271	DEVMETHOD(device_probe,		ti_probe),
272	DEVMETHOD(device_attach,	ti_attach),
273	DEVMETHOD(device_detach,	ti_detach),
274	DEVMETHOD(device_shutdown,	ti_shutdown),
275	{ 0, 0 }
276};
277
278static driver_t ti_driver = {
279	"ti",
280	ti_methods,
281	sizeof(struct ti_softc)
282};
283
284static devclass_t ti_devclass;
285
286DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
287
288/* List of Tigon softcs */
289static STAILQ_HEAD(ti_softc_list, ti_softc) ti_sc_list;
290
291static struct ti_softc *
292ti_lookup_softc(int unit)
293{
294	struct ti_softc *sc;
295	for (sc = STAILQ_FIRST(&ti_sc_list); sc != NULL;
296	     sc = STAILQ_NEXT(sc, ti_links))
297		if (sc->ti_unit == unit)
298			return(sc);
299	return(NULL);
300}
301
302/*
303 * Send an instruction or address to the EEPROM, check for ACK.
304 */
305static u_int32_t ti_eeprom_putbyte(sc, byte)
306	struct ti_softc		*sc;
307	int			byte;
308{
309	register int		i, ack = 0;
310
311	/*
312	 * Make sure we're in TX mode.
313	 */
314	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
315
316	/*
317	 * Feed in each bit and stobe the clock.
318	 */
319	for (i = 0x80; i; i >>= 1) {
320		if (byte & i) {
321			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
322		} else {
323			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
324		}
325		DELAY(1);
326		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
327		DELAY(1);
328		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
329	}
330
331	/*
332	 * Turn off TX mode.
333	 */
334	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
335
336	/*
337	 * Check for ack.
338	 */
339	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
340	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
341	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
342
343	return(ack);
344}
345
346/*
347 * Read a byte of data stored in the EEPROM at address 'addr.'
348 * We have to send two address bytes since the EEPROM can hold
349 * more than 256 bytes of data.
350 */
351static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
352	struct ti_softc		*sc;
353	int			addr;
354	u_int8_t		*dest;
355{
356	register int		i;
357	u_int8_t		byte = 0;
358
359	EEPROM_START;
360
361	/*
362	 * Send write control code to EEPROM.
363	 */
364	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
365		printf("ti%d: failed to send write command, status: %x\n",
366		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
367		return(1);
368	}
369
370	/*
371	 * Send first byte of address of byte we want to read.
372	 */
373	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
374		printf("ti%d: failed to send address, status: %x\n",
375		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
376		return(1);
377	}
378	/*
379	 * Send second byte address of byte we want to read.
380	 */
381	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
382		printf("ti%d: failed to send address, status: %x\n",
383		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
384		return(1);
385	}
386
387	EEPROM_STOP;
388	EEPROM_START;
389	/*
390	 * Send read control code to EEPROM.
391	 */
392	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
393		printf("ti%d: failed to send read command, status: %x\n",
394		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
395		return(1);
396	}
397
398	/*
399	 * Start reading bits from EEPROM.
400	 */
401	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
402	for (i = 0x80; i; i >>= 1) {
403		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
404		DELAY(1);
405		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
406			byte |= i;
407		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
408		DELAY(1);
409	}
410
411	EEPROM_STOP;
412
413	/*
414	 * No ACK generated for read, so just return byte.
415	 */
416
417	*dest = byte;
418
419	return(0);
420}
421
422/*
423 * Read a sequence of bytes from the EEPROM.
424 */
425static int
426ti_read_eeprom(sc, dest, off, cnt)
427	struct ti_softc		*sc;
428	caddr_t			dest;
429	int			off;
430	int			cnt;
431{
432	int			err = 0, i;
433	u_int8_t		byte = 0;
434
435	for (i = 0; i < cnt; i++) {
436		err = ti_eeprom_getbyte(sc, off + i, &byte);
437		if (err)
438			break;
439		*(dest + i) = byte;
440	}
441
442	return(err ? 1 : 0);
443}
444
445/*
446 * NIC memory access function. Can be used to either clear a section
447 * of NIC local memory or (if buf is non-NULL) copy data into it.
448 */
449static void
450ti_mem(sc, addr, len, buf)
451	struct ti_softc		*sc;
452	u_int32_t		addr, len;
453	caddr_t			buf;
454{
455	int			segptr, segsize, cnt;
456	caddr_t			ti_winbase, ptr;
457
458	segptr = addr;
459	cnt = len;
460	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
461	ptr = buf;
462
463	while(cnt) {
464		if (cnt < TI_WINLEN)
465			segsize = cnt;
466		else
467			segsize = TI_WINLEN - (segptr % TI_WINLEN);
468		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
469		if (buf == NULL)
470			bzero((char *)ti_winbase + (segptr &
471			    (TI_WINLEN - 1)), segsize);
472		else {
473			bcopy((char *)ptr, (char *)ti_winbase +
474			    (segptr & (TI_WINLEN - 1)), segsize);
475			ptr += segsize;
476		}
477		segptr += segsize;
478		cnt -= segsize;
479	}
480
481	return;
482}
483
484static int
485ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
486	struct ti_softc		*sc;
487	u_int32_t		tigon_addr, len;
488	caddr_t			buf;
489	int			useraddr, readdata;
490{
491	int		segptr, segsize, cnt;
492	caddr_t		ptr;
493	u_int32_t	origwin;
494	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
495	int		resid, segresid;
496	int		first_pass;
497
498	/*
499	 * At the moment, we don't handle non-aligned cases, we just bail.
500	 * If this proves to be a problem, it will be fixed.
501	 */
502	if ((readdata == 0)
503	 && (tigon_addr & 0x3)) {
504		printf("ti%d: ti_copy_mem: tigon address %#x isn't "
505		       "word-aligned\n", sc->ti_unit, tigon_addr);
506		printf("ti%d: ti_copy_mem: unaligned writes aren't yet "
507		       "supported\n", sc->ti_unit);
508		return(EINVAL);
509	}
510
511	segptr = tigon_addr & ~0x3;
512	segresid = tigon_addr - segptr;
513
514	/*
515	 * This is the non-aligned amount left over that we'll need to
516	 * copy.
517	 */
518	resid = len & 0x3;
519
520	/* Add in the left over amount at the front of the buffer */
521	resid += segresid;
522
523	cnt = len & ~0x3;
524	/*
525	 * If resid + segresid is >= 4, add multiples of 4 to the count and
526	 * decrease the residual by that much.
527	 */
528	cnt += resid & ~0x3;
529	resid -= resid & ~0x3;
530
531	ptr = buf;
532
533	first_pass = 1;
534
535	/*
536	 * Make sure we aren't interrupted while we're changing the window
537	 * pointer.
538	 */
539	TI_LOCK(sc);
540
541	/*
542	 * Save the old window base value.
543	 */
544	origwin = CSR_READ_4(sc, TI_WINBASE);
545
546	while(cnt) {
547		bus_size_t ti_offset;
548
549		if (cnt < TI_WINLEN)
550			segsize = cnt;
551		else
552			segsize = TI_WINLEN - (segptr % TI_WINLEN);
553		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
554
555		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
556
557		if (readdata) {
558
559			bus_space_read_region_4(sc->ti_btag,
560						sc->ti_bhandle, ti_offset,
561						(u_int32_t *)tmparray,
562						segsize >> 2);
563			if (useraddr) {
564				/*
565				 * Yeah, this is a little on the kludgy
566				 * side, but at least this code is only
567				 * used for debugging.
568				 */
569				ti_bcopy_swap(tmparray, tmparray2, segsize,
570					      TI_SWAP_NTOH);
571
572				if (first_pass) {
573					copyout(&tmparray2[segresid], ptr,
574						segsize - segresid);
575					first_pass = 0;
576				} else
577					copyout(tmparray2, ptr, segsize);
578			} else {
579				if (first_pass) {
580
581					ti_bcopy_swap(tmparray, tmparray2,
582						      segsize, TI_SWAP_NTOH);
583					bcopy(&tmparray2[segresid], ptr,
584					      segsize - segresid);
585					first_pass = 0;
586				} else
587					ti_bcopy_swap(tmparray, ptr, segsize,
588						      TI_SWAP_NTOH);
589			}
590
591		} else {
592			if (useraddr) {
593				copyin(ptr, tmparray2, segsize);
594				ti_bcopy_swap(tmparray2, tmparray, segsize,
595					      TI_SWAP_HTON);
596			} else
597				ti_bcopy_swap(ptr, tmparray, segsize,
598					      TI_SWAP_HTON);
599
600			bus_space_write_region_4(sc->ti_btag,
601						 sc->ti_bhandle, ti_offset,
602						 (u_int32_t *)tmparray,
603						 segsize >> 2);
604		}
605		segptr += segsize;
606		ptr += segsize;
607		cnt -= segsize;
608	}
609
610	/*
611	 * Handle leftover, non-word-aligned bytes.
612	 */
613	if (resid != 0) {
614		u_int32_t	tmpval, tmpval2;
615		bus_size_t	ti_offset;
616
617		/*
618		 * Set the segment pointer.
619		 */
620		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
621
622		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
623
624		/*
625		 * First, grab whatever is in our source/destination.
626		 * We'll obviously need this for reads, but also for
627		 * writes, since we'll be doing read/modify/write.
628		 */
629		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
630					ti_offset, &tmpval, 1);
631
632		/*
633		 * Next, translate this from little-endian to big-endian
634		 * (at least on i386 boxes).
635		 */
636		tmpval2 = ntohl(tmpval);
637
638		if (readdata) {
639			/*
640			 * If we're reading, just copy the leftover number
641			 * of bytes from the host byte order buffer to
642			 * the user's buffer.
643			 */
644			if (useraddr)
645				copyout(&tmpval2, ptr, resid);
646			else
647				bcopy(&tmpval2, ptr, resid);
648		} else {
649			/*
650			 * If we're writing, first copy the bytes to be
651			 * written into the network byte order buffer,
652			 * leaving the rest of the buffer with whatever was
653			 * originally in there.  Then, swap the bytes
654			 * around into host order and write them out.
655			 *
656			 * XXX KDM the read side of this has been verified
657			 * to work, but the write side of it has not been
658			 * verified.  So user beware.
659			 */
660			if (useraddr)
661				copyin(ptr, &tmpval2, resid);
662			else
663				bcopy(ptr, &tmpval2, resid);
664
665			tmpval = htonl(tmpval2);
666
667			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
668						 ti_offset, &tmpval, 1);
669		}
670	}
671
672	CSR_WRITE_4(sc, TI_WINBASE, origwin);
673
674	TI_UNLOCK(sc);
675
676	return(0);
677}
678
679static int
680ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
681	struct ti_softc		*sc;
682	u_int32_t		tigon_addr, len;
683	caddr_t			buf;
684	int			useraddr, readdata;
685	int			cpu;
686{
687	u_int32_t	segptr;
688	int		cnt;
689	u_int32_t	tmpval, tmpval2;
690	caddr_t		ptr;
691
692	/*
693	 * At the moment, we don't handle non-aligned cases, we just bail.
694	 * If this proves to be a problem, it will be fixed.
695	 */
696	if (tigon_addr & 0x3) {
697		printf("ti%d: ti_copy_scratch: tigon address %#x isn't "
698		       "word-aligned\n", sc->ti_unit, tigon_addr);
699		return(EINVAL);
700	}
701
702	if (len & 0x3) {
703		printf("ti%d: ti_copy_scratch: transfer length %d isn't "
704		       "word-aligned\n", sc->ti_unit, len);
705		return(EINVAL);
706	}
707
708	segptr = tigon_addr;
709	cnt = len;
710	ptr = buf;
711
712	TI_LOCK(sc);
713
714	while (cnt) {
715		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
716
717		if (readdata) {
718			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
719
720			tmpval = ntohl(tmpval2);
721
722			/*
723			 * Note:  I've used this debugging interface
724			 * extensively with Alteon's 12.3.15 firmware,
725			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
726			 *
727			 * When you compile the firmware without
728			 * optimization, which is necessary sometimes in
729			 * order to properly step through it, you sometimes
730			 * read out a bogus value of 0xc0017c instead of
731			 * whatever was supposed to be in that scratchpad
732			 * location.  That value is on the stack somewhere,
733			 * but I've never been able to figure out what was
734			 * causing the problem.
735			 *
736			 * The address seems to pop up in random places,
737			 * often not in the same place on two subsequent
738			 * reads.
739			 *
740			 * In any case, the underlying data doesn't seem
741			 * to be affected, just the value read out.
742			 *
743			 * KDM, 3/7/2000
744			 */
745
746			if (tmpval2 == 0xc0017c)
747				printf("ti%d: found 0xc0017c at %#x "
748				       "(tmpval2)\n", sc->ti_unit, segptr);
749
750			if (tmpval == 0xc0017c)
751				printf("ti%d: found 0xc0017c at %#x "
752				       "(tmpval)\n", sc->ti_unit, segptr);
753
754			if (useraddr)
755				copyout(&tmpval, ptr, 4);
756			else
757				bcopy(&tmpval, ptr, 4);
758		} else {
759			if (useraddr)
760				copyin(ptr, &tmpval2, 4);
761			else
762				bcopy(ptr, &tmpval2, 4);
763
764			tmpval = htonl(tmpval2);
765
766			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
767		}
768
769		cnt -= 4;
770		segptr += 4;
771		ptr += 4;
772	}
773
774	TI_UNLOCK(sc);
775
776	return(0);
777}
778
779static int
780ti_bcopy_swap(src, dst, len, swap_type)
781	const void	*src;
782	void		*dst;
783	size_t		len;
784	ti_swap_type	swap_type;
785{
786	const u_int8_t *tmpsrc;
787	u_int8_t *tmpdst;
788	size_t tmplen;
789
790	if (len & 0x3) {
791		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
792		       len);
793		return(-1);
794	}
795
796	tmpsrc = src;
797	tmpdst = dst;
798	tmplen = len;
799
800	while (tmplen) {
801		if (swap_type == TI_SWAP_NTOH)
802			*(u_int32_t *)tmpdst =
803				ntohl(*(const u_int32_t *)tmpsrc);
804		else
805			*(u_int32_t *)tmpdst =
806				htonl(*(const u_int32_t *)tmpsrc);
807
808		tmpsrc += 4;
809		tmpdst += 4;
810		tmplen -= 4;
811	}
812
813	return(0);
814}
815
816/*
817 * Load firmware image into the NIC. Check that the firmware revision
818 * is acceptable and see if we want the firmware for the Tigon 1 or
819 * Tigon 2.
820 */
821static void
822ti_loadfw(sc)
823	struct ti_softc		*sc;
824{
825	switch(sc->ti_hwrev) {
826	case TI_HWREV_TIGON:
827		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
828		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
829		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
830			printf("ti%d: firmware revision mismatch; want "
831			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
832			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
833			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
834			    tigonFwReleaseMinor, tigonFwReleaseFix);
835			return;
836		}
837		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
838		    (caddr_t)tigonFwText);
839		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
840		    (caddr_t)tigonFwData);
841		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
842		    (caddr_t)tigonFwRodata);
843		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
844		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
845		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
846		break;
847	case TI_HWREV_TIGON_II:
848		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
849		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
850		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
851			printf("ti%d: firmware revision mismatch; want "
852			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
853			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
854			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
855			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
856			return;
857		}
858		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
859		    (caddr_t)tigon2FwText);
860		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
861		    (caddr_t)tigon2FwData);
862		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
863		    (caddr_t)tigon2FwRodata);
864		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
865		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
866		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
867		break;
868	default:
869		printf("ti%d: can't load firmware: unknown hardware rev\n",
870		    sc->ti_unit);
871		break;
872	}
873
874	return;
875}
876
877/*
878 * Send the NIC a command via the command ring.
879 */
880static void
881ti_cmd(sc, cmd)
882	struct ti_softc		*sc;
883	struct ti_cmd_desc	*cmd;
884{
885	u_int32_t		index;
886
887	if (sc->ti_rdata->ti_cmd_ring == NULL)
888		return;
889
890	index = sc->ti_cmd_saved_prodidx;
891	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
892	TI_INC(index, TI_CMD_RING_CNT);
893	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
894	sc->ti_cmd_saved_prodidx = index;
895
896	return;
897}
898
899/*
900 * Send the NIC an extended command. The 'len' parameter specifies the
901 * number of command slots to include after the initial command.
902 */
903static void
904ti_cmd_ext(sc, cmd, arg, len)
905	struct ti_softc		*sc;
906	struct ti_cmd_desc	*cmd;
907	caddr_t			arg;
908	int			len;
909{
910	u_int32_t		index;
911	register int		i;
912
913	if (sc->ti_rdata->ti_cmd_ring == NULL)
914		return;
915
916	index = sc->ti_cmd_saved_prodidx;
917	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
918	TI_INC(index, TI_CMD_RING_CNT);
919	for (i = 0; i < len; i++) {
920		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
921		    *(u_int32_t *)(&arg[i * 4]));
922		TI_INC(index, TI_CMD_RING_CNT);
923	}
924	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
925	sc->ti_cmd_saved_prodidx = index;
926
927	return;
928}
929
930/*
931 * Handle events that have triggered interrupts.
932 */
933static void
934ti_handle_events(sc)
935	struct ti_softc		*sc;
936{
937	struct ti_event_desc	*e;
938
939	if (sc->ti_rdata->ti_event_ring == NULL)
940		return;
941
942	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
943		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
944		switch(e->ti_event) {
945		case TI_EV_LINKSTAT_CHANGED:
946			sc->ti_linkstat = e->ti_code;
947			if (e->ti_code == TI_EV_CODE_LINK_UP)
948				printf("ti%d: 10/100 link up\n", sc->ti_unit);
949			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
950				printf("ti%d: gigabit link up\n", sc->ti_unit);
951			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
952				printf("ti%d: link down\n", sc->ti_unit);
953			break;
954		case TI_EV_ERROR:
955			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
956				printf("ti%d: invalid command\n", sc->ti_unit);
957			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
958				printf("ti%d: unknown command\n", sc->ti_unit);
959			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
960				printf("ti%d: bad config data\n", sc->ti_unit);
961			break;
962		case TI_EV_FIRMWARE_UP:
963			ti_init2(sc);
964			break;
965		case TI_EV_STATS_UPDATED:
966			ti_stats_update(sc);
967			break;
968		case TI_EV_RESET_JUMBO_RING:
969		case TI_EV_MCAST_UPDATED:
970			/* Who cares. */
971			break;
972		default:
973			printf("ti%d: unknown event: %d\n",
974			    sc->ti_unit, e->ti_event);
975			break;
976		}
977		/* Advance the consumer index. */
978		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
979		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
980	}
981
982	return;
983}
984
985#ifdef TI_PRIVATE_JUMBOS
986
987/*
988 * Memory management for the jumbo receive ring is a pain in the
989 * butt. We need to allocate at least 9018 bytes of space per frame,
990 * _and_ it has to be contiguous (unless you use the extended
991 * jumbo descriptor format). Using malloc() all the time won't
992 * work: malloc() allocates memory in powers of two, which means we
993 * would end up wasting a considerable amount of space by allocating
994 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
995 * to do our own memory management.
996 *
997 * The driver needs to allocate a contiguous chunk of memory at boot
998 * time. We then chop this up ourselves into 9K pieces and use them
999 * as external mbuf storage.
1000 *
1001 * One issue here is how much memory to allocate. The jumbo ring has
1002 * 256 slots in it, but at 9K per slot than can consume over 2MB of
1003 * RAM. This is a bit much, especially considering we also need
1004 * RAM for the standard ring and mini ring (on the Tigon 2). To
1005 * save space, we only actually allocate enough memory for 64 slots
1006 * by default, which works out to between 500 and 600K. This can
1007 * be tuned by changing a #define in if_tireg.h.
1008 */
1009
1010static int
1011ti_alloc_jumbo_mem(sc)
1012	struct ti_softc		*sc;
1013{
1014	caddr_t			ptr;
1015	register int		i;
1016	struct ti_jpool_entry   *entry;
1017
1018	/* Grab a big chunk o' storage. */
1019	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
1020		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1021
1022	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
1023		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
1024		return(ENOBUFS);
1025	}
1026
1027	SLIST_INIT(&sc->ti_jfree_listhead);
1028	SLIST_INIT(&sc->ti_jinuse_listhead);
1029
1030	/*
1031	 * Now divide it up into 9K pieces and save the addresses
1032	 * in an array.
1033	 */
1034	ptr = sc->ti_cdata.ti_jumbo_buf;
1035	for (i = 0; i < TI_JSLOTS; i++) {
1036		sc->ti_cdata.ti_jslots[i] = ptr;
1037		ptr += TI_JLEN;
1038		entry = malloc(sizeof(struct ti_jpool_entry),
1039			       M_DEVBUF, M_NOWAIT);
1040		if (entry == NULL) {
1041			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
1042			           M_DEVBUF);
1043			sc->ti_cdata.ti_jumbo_buf = NULL;
1044			printf("ti%d: no memory for jumbo "
1045			    "buffer queue!\n", sc->ti_unit);
1046			return(ENOBUFS);
1047		}
1048		entry->slot = i;
1049		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1050	}
1051
1052	return(0);
1053}
1054
1055/*
1056 * Allocate a jumbo buffer.
1057 */
1058static void *ti_jalloc(sc)
1059	struct ti_softc		*sc;
1060{
1061	struct ti_jpool_entry   *entry;
1062
1063	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1064
1065	if (entry == NULL) {
1066		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
1067		return(NULL);
1068	}
1069
1070	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1071	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1072	return(sc->ti_cdata.ti_jslots[entry->slot]);
1073}
1074
1075/*
1076 * Release a jumbo buffer.
1077 */
1078static void
1079ti_jfree(buf, args)
1080	void			*buf;
1081	void			*args;
1082{
1083	struct ti_softc		*sc;
1084	int		        i;
1085	struct ti_jpool_entry   *entry;
1086
1087	/* Extract the softc struct pointer. */
1088	sc = (struct ti_softc *)args;
1089
1090	if (sc == NULL)
1091		panic("ti_jfree: didn't get softc pointer!");
1092
1093	/* calculate the slot this buffer belongs to */
1094	i = ((vm_offset_t)buf
1095	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1096
1097	if ((i < 0) || (i >= TI_JSLOTS))
1098		panic("ti_jfree: asked to free buffer that we don't manage!");
1099
1100	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1101	if (entry == NULL)
1102		panic("ti_jfree: buffer not in use!");
1103	entry->slot = i;
1104	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1105	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1106
1107	return;
1108}
1109
1110#endif /* TI_PRIVATE_JUMBOS */
1111
1112/*
1113 * Intialize a standard receive ring descriptor.
1114 */
1115static int
1116ti_newbuf_std(sc, i, m)
1117	struct ti_softc		*sc;
1118	int			i;
1119	struct mbuf		*m;
1120{
1121	struct mbuf		*m_new = NULL;
1122	struct ti_rx_desc	*r;
1123
1124	if (m == NULL) {
1125		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1126		if (m_new == NULL)
1127			return(ENOBUFS);
1128
1129		MCLGET(m_new, M_DONTWAIT);
1130		if (!(m_new->m_flags & M_EXT)) {
1131			m_freem(m_new);
1132			return(ENOBUFS);
1133		}
1134		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1135	} else {
1136		m_new = m;
1137		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1138		m_new->m_data = m_new->m_ext.ext_buf;
1139	}
1140
1141	m_adj(m_new, ETHER_ALIGN);
1142	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1143	r = &sc->ti_rdata->ti_rx_std_ring[i];
1144	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1145	r->ti_type = TI_BDTYPE_RECV_BD;
1146	r->ti_flags = 0;
1147	if (sc->arpcom.ac_if.if_hwassist)
1148		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1149	r->ti_len = m_new->m_len;
1150	r->ti_idx = i;
1151
1152	return(0);
1153}
1154
1155/*
1156 * Intialize a mini receive ring descriptor. This only applies to
1157 * the Tigon 2.
1158 */
1159static int
1160ti_newbuf_mini(sc, i, m)
1161	struct ti_softc		*sc;
1162	int			i;
1163	struct mbuf		*m;
1164{
1165	struct mbuf		*m_new = NULL;
1166	struct ti_rx_desc	*r;
1167
1168	if (m == NULL) {
1169		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1170		if (m_new == NULL) {
1171			return(ENOBUFS);
1172		}
1173		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1174	} else {
1175		m_new = m;
1176		m_new->m_data = m_new->m_pktdat;
1177		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1178	}
1179
1180	m_adj(m_new, ETHER_ALIGN);
1181	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1182	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1183	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1184	r->ti_type = TI_BDTYPE_RECV_BD;
1185	r->ti_flags = TI_BDFLAG_MINI_RING;
1186	if (sc->arpcom.ac_if.if_hwassist)
1187		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1188	r->ti_len = m_new->m_len;
1189	r->ti_idx = i;
1190
1191	return(0);
1192}
1193
1194#ifdef TI_PRIVATE_JUMBOS
1195
1196/*
1197 * Initialize a jumbo receive ring descriptor. This allocates
1198 * a jumbo buffer from the pool managed internally by the driver.
1199 */
1200static int
1201ti_newbuf_jumbo(sc, i, m)
1202	struct ti_softc		*sc;
1203	int			i;
1204	struct mbuf		*m;
1205{
1206	struct mbuf		*m_new = NULL;
1207	struct ti_rx_desc	*r;
1208
1209	if (m == NULL) {
1210		caddr_t			*buf = NULL;
1211
1212		/* Allocate the mbuf. */
1213		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1214		if (m_new == NULL) {
1215			return(ENOBUFS);
1216		}
1217
1218		/* Allocate the jumbo buffer */
1219		buf = ti_jalloc(sc);
1220		if (buf == NULL) {
1221			m_freem(m_new);
1222			printf("ti%d: jumbo allocation failed "
1223			    "-- packet dropped!\n", sc->ti_unit);
1224			return(ENOBUFS);
1225		}
1226
1227		/* Attach the buffer to the mbuf. */
1228		m_new->m_data = (void *) buf;
1229		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1230		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1231		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1232	} else {
1233		m_new = m;
1234		m_new->m_data = m_new->m_ext.ext_buf;
1235		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1236	}
1237
1238	m_adj(m_new, ETHER_ALIGN);
1239	/* Set up the descriptor. */
1240	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1241	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1242	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1243	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1244	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1245	if (sc->arpcom.ac_if.if_hwassist)
1246		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1247	r->ti_len = m_new->m_len;
1248	r->ti_idx = i;
1249
1250	return(0);
1251}
1252
1253#else
1254#include <vm/vm_page.h>
1255
1256#if (PAGE_SIZE == 4096)
1257#define NPAYLOAD 2
1258#else
1259#define NPAYLOAD 1
1260#endif
1261
1262#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1263#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1264#define NFS_HDR_LEN (UDP_HDR_LEN)
1265static int HDR_LEN =  TCP_HDR_LEN;
1266
1267
1268 /*
1269  * Initialize a jumbo receive ring descriptor. This allocates
1270  * a jumbo buffer from the pool managed internally by the driver.
1271  */
1272static int
1273ti_newbuf_jumbo(sc, idx, m_old)
1274        struct ti_softc         *sc;
1275        int                     idx;
1276        struct mbuf             *m_old;
1277{
1278	struct mbuf		*cur, *m_new = NULL;
1279	struct mbuf		*m[3] = {NULL, NULL, NULL};
1280	struct ti_rx_desc_ext	*r;
1281	vm_page_t		frame;
1282				/* 1 extra buf to make nobufs easy*/
1283	caddr_t			buf[3] = {NULL, NULL, NULL};
1284	int			i;
1285
1286	if (m_old != NULL) {
1287		m_new = m_old;
1288		cur = m_old->m_next;
1289		for (i = 0; i <= NPAYLOAD; i++){
1290			m[i] = cur;
1291			cur = cur->m_next;
1292		}
1293	} else {
1294		/* Allocate the mbufs. */
1295		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1296		if (m_new == NULL) {
1297			printf("ti%d: mbuf allocation failed "
1298   			       "-- packet dropped!\n", sc->ti_unit);
1299			goto nobufs;
1300		}
1301		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1302		if (m[NPAYLOAD] == NULL) {
1303			printf("ti%d: cluster mbuf allocation failed "
1304			       "-- packet dropped!\n", sc->ti_unit);
1305			goto nobufs;
1306		}
1307		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1308		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1309			printf("ti%d: mbuf allocation failed "
1310			       "-- packet dropped!\n", sc->ti_unit);
1311			goto nobufs;
1312		}
1313		m[NPAYLOAD]->m_len = MCLBYTES;
1314
1315		for (i = 0; i < NPAYLOAD; i++){
1316			MGET(m[i], M_DONTWAIT, MT_DATA);
1317			if (m[i] == NULL) {
1318				printf("ti%d: mbuf allocation failed "
1319				       "-- packet dropped!\n", sc->ti_unit);
1320				goto nobufs;
1321			}
1322			if (!(frame = jumbo_pg_alloc())){
1323  				printf("ti%d: buffer allocation failed "
1324   				       "-- packet dropped!\n", sc->ti_unit);
1325				printf("      index %d page %d\n", idx, i);
1326   				goto nobufs;
1327			}
1328			buf[i] = jumbo_phys_to_kva(VM_PAGE_TO_PHYS(frame));
1329		}
1330		for (i = 0; i < NPAYLOAD; i++){
1331  		/* Attach the buffer to the mbuf. */
1332   			m[i]->m_data = (void *)buf[i];
1333			m[i]->m_len = PAGE_SIZE;
1334			MEXTADD(m[i], (void *)buf[i], PAGE_SIZE,
1335				jumbo_freem, NULL, 0, EXT_DISPOSABLE);
1336			m[i]->m_next = m[i+1];
1337		}
1338		/* link the buffers to the header */
1339		m_new->m_next = m[0];
1340		m_new->m_data += ETHER_ALIGN;
1341		if (sc->ti_hdrsplit)
1342			m_new->m_len = MHLEN - ETHER_ALIGN;
1343		else
1344   			m_new->m_len = HDR_LEN;
1345		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1346	}
1347
1348	/* Set up the descriptor. */
1349	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1350	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1351	TI_HOSTADDR(r->ti_addr0) = vtophys(mtod(m_new, caddr_t));
1352	r->ti_len0 = m_new->m_len;
1353
1354	TI_HOSTADDR(r->ti_addr1) = vtophys(mtod(m[0], caddr_t));
1355	r->ti_len1 = PAGE_SIZE;
1356
1357	TI_HOSTADDR(r->ti_addr2) = vtophys(mtod(m[1], caddr_t));
1358	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1359
1360	if (PAGE_SIZE == 4096) {
1361		TI_HOSTADDR(r->ti_addr3) = vtophys(mtod(m[2], caddr_t));
1362		r->ti_len3 = MCLBYTES;
1363	} else {
1364		r->ti_len3 = 0;
1365	}
1366        r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1367
1368        r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1369
1370	if (sc->arpcom.ac_if.if_hwassist)
1371		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1372
1373        r->ti_idx = idx;
1374
1375        return(0);
1376
1377 nobufs:
1378
1379	/*
1380	 * Warning! :
1381	 * This can only be called before the mbufs are strung together.
1382	 * If the mbufs are strung together, m_freem() will free the chain,
1383	 * so that the later mbufs will be freed multiple times.
1384	 */
1385        if (m_new)
1386                m_freem(m_new);
1387
1388        for(i = 0; i < 3; i++){
1389                if (m[i])
1390                        m_freem(m[i]);
1391                if (buf[i])
1392                        jumbo_pg_free((vm_offset_t)buf[i]);
1393        }
1394        return ENOBUFS;
1395}
1396#endif
1397
1398
1399
1400/*
1401 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1402 * that's 1MB or memory, which is a lot. For now, we fill only the first
1403 * 256 ring entries and hope that our CPU is fast enough to keep up with
1404 * the NIC.
1405 */
1406static int
1407ti_init_rx_ring_std(sc)
1408	struct ti_softc		*sc;
1409{
1410	register int		i;
1411	struct ti_cmd_desc	cmd;
1412
1413	for (i = 0; i < TI_SSLOTS; i++) {
1414		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1415			return(ENOBUFS);
1416	};
1417
1418	TI_UPDATE_STDPROD(sc, i - 1);
1419	sc->ti_std = i - 1;
1420
1421	return(0);
1422}
1423
1424static void
1425ti_free_rx_ring_std(sc)
1426	struct ti_softc		*sc;
1427{
1428	register int		i;
1429
1430	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1431		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1432			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1433			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1434		}
1435		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1436		    sizeof(struct ti_rx_desc));
1437	}
1438
1439	return;
1440}
1441
1442static int
1443ti_init_rx_ring_jumbo(sc)
1444	struct ti_softc		*sc;
1445{
1446	register int		i;
1447	struct ti_cmd_desc	cmd;
1448
1449	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1450		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1451			return(ENOBUFS);
1452	};
1453
1454	TI_UPDATE_JUMBOPROD(sc, i - 1);
1455	sc->ti_jumbo = i - 1;
1456
1457	return(0);
1458}
1459
1460static void
1461ti_free_rx_ring_jumbo(sc)
1462	struct ti_softc		*sc;
1463{
1464	register int		i;
1465
1466	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1467		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1468			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1469			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1470		}
1471		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1472		    sizeof(struct ti_rx_desc));
1473	}
1474
1475	return;
1476}
1477
1478static int
1479ti_init_rx_ring_mini(sc)
1480	struct ti_softc		*sc;
1481{
1482	register int		i;
1483
1484	for (i = 0; i < TI_MSLOTS; i++) {
1485		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1486			return(ENOBUFS);
1487	};
1488
1489	TI_UPDATE_MINIPROD(sc, i - 1);
1490	sc->ti_mini = i - 1;
1491
1492	return(0);
1493}
1494
1495static void
1496ti_free_rx_ring_mini(sc)
1497	struct ti_softc		*sc;
1498{
1499	register int		i;
1500
1501	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1502		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1503			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1504			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1505		}
1506		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1507		    sizeof(struct ti_rx_desc));
1508	}
1509
1510	return;
1511}
1512
1513static void
1514ti_free_tx_ring(sc)
1515	struct ti_softc		*sc;
1516{
1517	register int		i;
1518
1519	if (sc->ti_rdata->ti_tx_ring == NULL)
1520		return;
1521
1522	for (i = 0; i < TI_TX_RING_CNT; i++) {
1523		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1524			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1525			sc->ti_cdata.ti_tx_chain[i] = NULL;
1526		}
1527		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1528		    sizeof(struct ti_tx_desc));
1529	}
1530
1531	return;
1532}
1533
1534static int
1535ti_init_tx_ring(sc)
1536	struct ti_softc		*sc;
1537{
1538	sc->ti_txcnt = 0;
1539	sc->ti_tx_saved_considx = 0;
1540	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1541	return(0);
1542}
1543
1544/*
1545 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1546 * but we have to support the old way too so that Tigon 1 cards will
1547 * work.
1548 */
1549static void
1550ti_add_mcast(sc, addr)
1551	struct ti_softc		*sc;
1552	struct ether_addr	*addr;
1553{
1554	struct ti_cmd_desc	cmd;
1555	u_int16_t		*m;
1556	u_int32_t		ext[2] = {0, 0};
1557
1558	m = (u_int16_t *)&addr->octet[0];
1559
1560	switch(sc->ti_hwrev) {
1561	case TI_HWREV_TIGON:
1562		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1563		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1564		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1565		break;
1566	case TI_HWREV_TIGON_II:
1567		ext[0] = htons(m[0]);
1568		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1569		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1570		break;
1571	default:
1572		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1573		break;
1574	}
1575
1576	return;
1577}
1578
1579static void
1580ti_del_mcast(sc, addr)
1581	struct ti_softc		*sc;
1582	struct ether_addr	*addr;
1583{
1584	struct ti_cmd_desc	cmd;
1585	u_int16_t		*m;
1586	u_int32_t		ext[2] = {0, 0};
1587
1588	m = (u_int16_t *)&addr->octet[0];
1589
1590	switch(sc->ti_hwrev) {
1591	case TI_HWREV_TIGON:
1592		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1593		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1594		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1595		break;
1596	case TI_HWREV_TIGON_II:
1597		ext[0] = htons(m[0]);
1598		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1599		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1600		break;
1601	default:
1602		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1603		break;
1604	}
1605
1606	return;
1607}
1608
1609/*
1610 * Configure the Tigon's multicast address filter.
1611 *
1612 * The actual multicast table management is a bit of a pain, thanks to
1613 * slight brain damage on the part of both Alteon and us. With our
1614 * multicast code, we are only alerted when the multicast address table
1615 * changes and at that point we only have the current list of addresses:
1616 * we only know the current state, not the previous state, so we don't
1617 * actually know what addresses were removed or added. The firmware has
1618 * state, but we can't get our grubby mits on it, and there is no 'delete
1619 * all multicast addresses' command. Hence, we have to maintain our own
1620 * state so we know what addresses have been programmed into the NIC at
1621 * any given time.
1622 */
1623static void
1624ti_setmulti(sc)
1625	struct ti_softc		*sc;
1626{
1627	struct ifnet		*ifp;
1628	struct ifmultiaddr	*ifma;
1629	struct ti_cmd_desc	cmd;
1630	struct ti_mc_entry	*mc;
1631	u_int32_t		intrs;
1632
1633	ifp = &sc->arpcom.ac_if;
1634
1635	if (ifp->if_flags & IFF_ALLMULTI) {
1636		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1637		return;
1638	} else {
1639		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1640	}
1641
1642	/* Disable interrupts. */
1643	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1644	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1645
1646	/* First, zot all the existing filters. */
1647	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1648		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1649		ti_del_mcast(sc, &mc->mc_addr);
1650		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1651		free(mc, M_DEVBUF);
1652	}
1653
1654	/* Now program new ones. */
1655	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1656		if (ifma->ifma_addr->sa_family != AF_LINK)
1657			continue;
1658		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1659		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1660		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1661		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1662		ti_add_mcast(sc, &mc->mc_addr);
1663	}
1664
1665	/* Re-enable interrupts. */
1666	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1667
1668	return;
1669}
1670
1671/*
1672 * Check to see if the BIOS has configured us for a 64 bit slot when
1673 * we aren't actually in one. If we detect this condition, we can work
1674 * around it on the Tigon 2 by setting a bit in the PCI state register,
1675 * but for the Tigon 1 we must give up and abort the interface attach.
1676 */
1677static int ti_64bitslot_war(sc)
1678	struct ti_softc		*sc;
1679{
1680	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1681		CSR_WRITE_4(sc, 0x600, 0);
1682		CSR_WRITE_4(sc, 0x604, 0);
1683		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1684		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1685			if (sc->ti_hwrev == TI_HWREV_TIGON)
1686				return(EINVAL);
1687			else {
1688				TI_SETBIT(sc, TI_PCI_STATE,
1689				    TI_PCISTATE_32BIT_BUS);
1690				return(0);
1691			}
1692		}
1693	}
1694
1695	return(0);
1696}
1697
1698/*
1699 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1700 * self-test results.
1701 */
1702static int
1703ti_chipinit(sc)
1704	struct ti_softc		*sc;
1705{
1706	u_int32_t		cacheline;
1707	u_int32_t		pci_writemax = 0;
1708	u_int32_t		hdrsplit;
1709
1710	/* Initialize link to down state. */
1711	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1712
1713	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1714		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1715	else
1716		sc->arpcom.ac_if.if_hwassist = 0;
1717
1718	/* Set endianness before we access any non-PCI registers. */
1719#if BYTE_ORDER == BIG_ENDIAN
1720	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1721	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1722#else
1723	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1724	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1725#endif
1726
1727	/* Check the ROM failed bit to see if self-tests passed. */
1728	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1729		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1730		return(ENODEV);
1731	}
1732
1733	/* Halt the CPU. */
1734	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1735
1736	/* Figure out the hardware revision. */
1737	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1738	case TI_REV_TIGON_I:
1739		sc->ti_hwrev = TI_HWREV_TIGON;
1740		break;
1741	case TI_REV_TIGON_II:
1742		sc->ti_hwrev = TI_HWREV_TIGON_II;
1743		break;
1744	default:
1745		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1746		return(ENODEV);
1747	}
1748
1749	/* Do special setup for Tigon 2. */
1750	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1751		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1752		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1753		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1754	}
1755
1756	/*
1757	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1758	 * can't do header splitting.
1759	 */
1760#ifdef TI_JUMBO_HDRSPLIT
1761	if (sc->ti_hwrev != TI_HWREV_TIGON)
1762		sc->ti_hdrsplit = 1;
1763	else
1764		printf("ti%d: can't do header splitting on a Tigon I board\n",
1765		       sc->ti_unit);
1766#endif /* TI_JUMBO_HDRSPLIT */
1767
1768	/* Set up the PCI state register. */
1769	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1770	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1771		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1772	}
1773
1774	/* Clear the read/write max DMA parameters. */
1775	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1776	    TI_PCISTATE_READ_MAXDMA));
1777
1778	/* Get cache line size. */
1779	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1780
1781	/*
1782	 * If the system has set enabled the PCI memory write
1783	 * and invalidate command in the command register, set
1784	 * the write max parameter accordingly. This is necessary
1785	 * to use MWI with the Tigon 2.
1786	 */
1787	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1788		switch(cacheline) {
1789		case 1:
1790		case 4:
1791		case 8:
1792		case 16:
1793		case 32:
1794		case 64:
1795			break;
1796		default:
1797		/* Disable PCI memory write and invalidate. */
1798			if (bootverbose)
1799				printf("ti%d: cache line size %d not "
1800				    "supported; disabling PCI MWI\n",
1801				    sc->ti_unit, cacheline);
1802			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1803			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1804			break;
1805		}
1806	}
1807
1808#ifdef __brokenalpha__
1809	/*
1810	 * From the Alteon sample driver:
1811	 * Must insure that we do not cross an 8K (bytes) boundary
1812	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1813	 * restriction on some ALPHA platforms with early revision
1814	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1815	 */
1816	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1817#else
1818	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1819#endif
1820
1821	/* This sets the min dma param all the way up (0xff). */
1822	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1823
1824	if (sc->ti_hdrsplit)
1825		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1826	else
1827		hdrsplit = 0;
1828
1829	/* Configure DMA variables. */
1830#if BYTE_ORDER == BIG_ENDIAN
1831	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1832	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1833	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1834	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1835#else /* BYTE_ORDER */
1836	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1837	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1838	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1839#endif /* BYTE_ORDER */
1840
1841	/*
1842	 * Only allow 1 DMA channel to be active at a time.
1843	 * I don't think this is a good idea, but without it
1844	 * the firmware racks up lots of nicDmaReadRingFull
1845	 * errors.  This is not compatible with hardware checksums.
1846	 */
1847	if (sc->arpcom.ac_if.if_hwassist == 0)
1848		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1849
1850	/* Recommended settings from Tigon manual. */
1851	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1852	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1853
1854	if (ti_64bitslot_war(sc)) {
1855		printf("ti%d: bios thinks we're in a 64 bit slot, "
1856		    "but we aren't", sc->ti_unit);
1857		return(EINVAL);
1858	}
1859
1860	return(0);
1861}
1862
1863/*
1864 * Initialize the general information block and firmware, and
1865 * start the CPU(s) running.
1866 */
1867static int
1868ti_gibinit(sc)
1869	struct ti_softc		*sc;
1870{
1871	struct ti_rcb		*rcb;
1872	int			i;
1873	struct ifnet		*ifp;
1874
1875	ifp = &sc->arpcom.ac_if;
1876
1877	/* Disable interrupts for now. */
1878	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1879
1880	/* Tell the chip where to find the general information block. */
1881	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1882	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1883
1884	/* Load the firmware into SRAM. */
1885	ti_loadfw(sc);
1886
1887	/* Set up the contents of the general info and ring control blocks. */
1888
1889	/* Set up the event ring and producer pointer. */
1890	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1891
1892	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1893	rcb->ti_flags = 0;
1894	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1895	    vtophys(&sc->ti_ev_prodidx);
1896	sc->ti_ev_prodidx.ti_idx = 0;
1897	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1898	sc->ti_ev_saved_considx = 0;
1899
1900	/* Set up the command ring and producer mailbox. */
1901	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1902
1903	sc->ti_rdata->ti_cmd_ring =
1904	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1905	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1906	rcb->ti_flags = 0;
1907	rcb->ti_max_len = 0;
1908	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1909		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1910	}
1911	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1912	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1913	sc->ti_cmd_saved_prodidx = 0;
1914
1915	/*
1916	 * Assign the address of the stats refresh buffer.
1917	 * We re-use the current stats buffer for this to
1918	 * conserve memory.
1919	 */
1920	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1921	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1922
1923	/* Set up the standard receive ring. */
1924	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1925	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1926	rcb->ti_max_len = TI_FRAMELEN;
1927	rcb->ti_flags = 0;
1928	if (sc->arpcom.ac_if.if_hwassist)
1929		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1930		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1931	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1932
1933	/* Set up the jumbo receive ring. */
1934	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1935	TI_HOSTADDR(rcb->ti_hostaddr) =
1936	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1937
1938#ifdef TI_PRIVATE_JUMBOS
1939	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1940	rcb->ti_flags = 0;
1941#else
1942	rcb->ti_max_len = PAGE_SIZE;
1943	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
1944#endif
1945	if (sc->arpcom.ac_if.if_hwassist)
1946		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1947		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1948	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1949
1950	/*
1951	 * Set up the mini ring. Only activated on the
1952	 * Tigon 2 but the slot in the config block is
1953	 * still there on the Tigon 1.
1954	 */
1955	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1956	TI_HOSTADDR(rcb->ti_hostaddr) =
1957	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1958	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1959	if (sc->ti_hwrev == TI_HWREV_TIGON)
1960		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1961	else
1962		rcb->ti_flags = 0;
1963	if (sc->arpcom.ac_if.if_hwassist)
1964		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1965		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1966	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1967
1968	/*
1969	 * Set up the receive return ring.
1970	 */
1971	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1972	TI_HOSTADDR(rcb->ti_hostaddr) =
1973	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1974	rcb->ti_flags = 0;
1975	rcb->ti_max_len = TI_RETURN_RING_CNT;
1976	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1977	    vtophys(&sc->ti_return_prodidx);
1978
1979	/*
1980	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1981	 * of putting the transmit ring in the host's address space and
1982	 * letting the chip DMA it instead of leaving the ring in the NIC's
1983	 * memory and accessing it through the shared memory region. We
1984	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1985	 * so we have to revert to the shared memory scheme if we detect
1986	 * a Tigon 1 chip.
1987	 */
1988	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1989	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1990		sc->ti_rdata->ti_tx_ring_nic =
1991		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1992	}
1993	bzero((char *)sc->ti_rdata->ti_tx_ring,
1994	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1995	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1996	if (sc->ti_hwrev == TI_HWREV_TIGON)
1997		rcb->ti_flags = 0;
1998	else
1999		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2000	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2001	if (sc->arpcom.ac_if.if_hwassist)
2002		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2003		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2004	rcb->ti_max_len = TI_TX_RING_CNT;
2005	if (sc->ti_hwrev == TI_HWREV_TIGON)
2006		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
2007	else
2008		TI_HOSTADDR(rcb->ti_hostaddr) =
2009		    vtophys(&sc->ti_rdata->ti_tx_ring);
2010	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
2011	    vtophys(&sc->ti_tx_considx);
2012
2013	/* Set up tuneables */
2014#if 0
2015	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2016		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2017		    (sc->ti_rx_coal_ticks / 10));
2018	else
2019#endif
2020		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2021	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2022	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2023	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2024	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2025	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2026
2027	/* Turn interrupts on. */
2028	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2029	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2030
2031	/* Start CPU. */
2032	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2033
2034	return(0);
2035}
2036
2037/*
2038 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2039 * against our list and return its name if we find a match.
2040 */
2041static int
2042ti_probe(dev)
2043	device_t		dev;
2044{
2045	struct ti_type		*t;
2046
2047	t = ti_devs;
2048
2049	while(t->ti_name != NULL) {
2050		if ((pci_get_vendor(dev) == t->ti_vid) &&
2051		    (pci_get_device(dev) == t->ti_did)) {
2052			device_set_desc(dev, t->ti_name);
2053			return(0);
2054		}
2055		t++;
2056	}
2057
2058	return(ENXIO);
2059}
2060
2061#ifdef KLD_MODULE
2062static int
2063log2rndup(int len)
2064{
2065	int log2size = 0, t = len;
2066	while (t > 1) {
2067		log2size++;
2068		t >>= 1;
2069	}
2070	if (len != (1 << log2size))
2071		log2size++;
2072	return log2size;
2073}
2074
2075static int
2076ti_mbuf_sanity(device_t dev)
2077{
2078	if ((mbstat.m_msize != MSIZE) || mbstat.m_mclbytes != MCLBYTES){
2079		device_printf(dev, "\n");
2080		device_printf(dev, "This module was compiled with "
2081				   "-DMCLSHIFT=%d -DMSIZE=%d\n", MCLSHIFT,
2082				   MSIZE);
2083		device_printf(dev, "The kernel was compiled with MCLSHIFT=%d,"
2084			      " MSIZE=%d\n", log2rndup(mbstat.m_mclbytes),
2085			      (int)mbstat.m_msize);
2086		return(EINVAL);
2087	}
2088	return(0);
2089}
2090#endif
2091
2092
2093static int
2094ti_attach(dev)
2095	device_t		dev;
2096{
2097	u_int32_t		command;
2098	struct ifnet		*ifp;
2099	struct ti_softc		*sc;
2100	int			unit, error = 0, rid;
2101
2102	sc = NULL;
2103
2104#ifdef KLD_MODULE
2105	if (ti_mbuf_sanity(dev)){
2106		device_printf(dev, "Module mbuf constants do not match "
2107			      "kernel constants!\n");
2108		device_printf(dev, "Rebuild the module or the kernel so "
2109			      "they match\n");
2110		device_printf(dev, "\n");
2111		error = EINVAL;
2112		goto fail;
2113	}
2114#endif
2115
2116	sc = device_get_softc(dev);
2117	unit = device_get_unit(dev);
2118	bzero(sc, sizeof(struct ti_softc));
2119
2120	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2121	    MTX_DEF | MTX_RECURSE);
2122	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
2123	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
2124
2125	/*
2126	 * Map control/status registers.
2127	 */
2128	pci_enable_busmaster(dev);
2129	pci_enable_io(dev, SYS_RES_MEMORY);
2130	command = pci_read_config(dev, PCIR_COMMAND, 4);
2131
2132	if (!(command & PCIM_CMD_MEMEN)) {
2133		printf("ti%d: failed to enable memory mapping!\n", unit);
2134		error = ENXIO;
2135		goto fail;
2136	}
2137
2138	rid = TI_PCI_LOMEM;
2139	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
2140	    0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
2141
2142	if (sc->ti_res == NULL) {
2143		printf ("ti%d: couldn't map memory\n", unit);
2144		error = ENXIO;
2145		goto fail;
2146	}
2147
2148	sc->ti_btag = rman_get_bustag(sc->ti_res);
2149	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2150	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
2151
2152	/* Allocate interrupt */
2153	rid = 0;
2154
2155	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
2156	    RF_SHAREABLE | RF_ACTIVE);
2157
2158	if (sc->ti_irq == NULL) {
2159		printf("ti%d: couldn't map interrupt\n", unit);
2160		error = ENXIO;
2161		goto fail;
2162	}
2163
2164	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
2165	   ti_intr, sc, &sc->ti_intrhand);
2166
2167	if (error) {
2168		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2169		bus_release_resource(dev, SYS_RES_MEMORY,
2170		    TI_PCI_LOMEM, sc->ti_res);
2171		printf("ti%d: couldn't set up irq\n", unit);
2172		goto fail;
2173	}
2174
2175	sc->ti_unit = unit;
2176
2177	if (ti_chipinit(sc)) {
2178		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2179		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2180		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2181		bus_release_resource(dev, SYS_RES_MEMORY,
2182		    TI_PCI_LOMEM, sc->ti_res);
2183		error = ENXIO;
2184		goto fail;
2185	}
2186
2187	/* Zero out the NIC's on-board SRAM. */
2188	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
2189
2190	/* Init again -- zeroing memory may have clobbered some registers. */
2191	if (ti_chipinit(sc)) {
2192		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2193		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2194		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2195		bus_release_resource(dev, SYS_RES_MEMORY,
2196		    TI_PCI_LOMEM, sc->ti_res);
2197		error = ENXIO;
2198		goto fail;
2199	}
2200
2201	/*
2202	 * Get station address from the EEPROM. Note: the manual states
2203	 * that the MAC address is at offset 0x8c, however the data is
2204	 * stored as two longwords (since that's how it's loaded into
2205	 * the NIC). This means the MAC address is actually preceded
2206	 * by two zero bytes. We need to skip over those.
2207	 */
2208	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
2209				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2210		printf("ti%d: failed to read station address\n", unit);
2211		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2212		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2213		bus_release_resource(dev, SYS_RES_MEMORY,
2214		    TI_PCI_LOMEM, sc->ti_res);
2215		error = ENXIO;
2216		goto fail;
2217	}
2218
2219	/*
2220	 * A Tigon chip was detected. Inform the world.
2221	 */
2222	printf("ti%d: Ethernet address: %6D\n", unit,
2223				sc->arpcom.ac_enaddr, ":");
2224
2225	/* Allocate the general information block and ring buffers. */
2226	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
2227	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
2228
2229	if (sc->ti_rdata == NULL) {
2230		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2231		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2232		bus_release_resource(dev, SYS_RES_MEMORY,
2233		    TI_PCI_LOMEM, sc->ti_res);
2234		error = ENXIO;
2235		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
2236		goto fail;
2237	}
2238
2239	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2240
2241	/* Try to allocate memory for jumbo buffers. */
2242#ifdef TI_PRIVATE_JUMBOS
2243	if (ti_alloc_jumbo_mem(sc)) {
2244		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
2245		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2246		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2247		bus_release_resource(dev, SYS_RES_MEMORY,
2248		    TI_PCI_LOMEM, sc->ti_res);
2249		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
2250		    M_DEVBUF);
2251		error = ENXIO;
2252		goto fail;
2253	}
2254#else
2255	if (!jumbo_vm_init()) {
2256		printf("ti%d: VM initialization failed!\n", sc->ti_unit);
2257		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2258		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2259		bus_release_resource(dev, SYS_RES_MEMORY,
2260		    TI_PCI_LOMEM, sc->ti_res);
2261		free(sc->ti_rdata, M_DEVBUF);
2262		error = ENOMEM;
2263		goto fail;
2264	}
2265#endif
2266
2267	/*
2268	 * We really need a better way to tell a 1000baseTX card
2269	 * from a 1000baseSX one, since in theory there could be
2270	 * OEMed 1000baseTX cards from lame vendors who aren't
2271	 * clever enough to change the PCI ID. For the moment
2272	 * though, the AceNIC is the only copper card available.
2273	 */
2274	if (pci_get_vendor(dev) == ALT_VENDORID &&
2275	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2276		sc->ti_copper = 1;
2277	/* Ok, it's not the only copper card available. */
2278	if (pci_get_vendor(dev) == NG_VENDORID &&
2279	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2280		sc->ti_copper = 1;
2281
2282	/* Set default tuneable values. */
2283	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2284#if 0
2285	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2286#endif
2287	sc->ti_rx_coal_ticks = 170;
2288	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2289	sc->ti_rx_max_coal_bds = 64;
2290#if 0
2291	sc->ti_tx_max_coal_bds = 128;
2292#endif
2293	sc->ti_tx_max_coal_bds = 32;
2294	sc->ti_tx_buf_ratio = 21;
2295
2296	/* Set up ifnet structure */
2297	ifp = &sc->arpcom.ac_if;
2298	ifp->if_softc = sc;
2299	ifp->if_unit = sc->ti_unit;
2300	ifp->if_name = "ti";
2301	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2302	tis[unit] = sc;
2303	ifp->if_ioctl = ti_ioctl;
2304	ifp->if_output = ether_output;
2305	ifp->if_start = ti_start;
2306	ifp->if_watchdog = ti_watchdog;
2307	ifp->if_init = ti_init;
2308	ifp->if_mtu = ETHERMTU;
2309	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2310
2311	/* Set up ifmedia support. */
2312	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2313	if (sc->ti_copper) {
2314		/*
2315		 * Copper cards allow manual 10/100 mode selection,
2316		 * but not manual 1000baseTX mode selection. Why?
2317		 * Becuase currently there's no way to specify the
2318		 * master/slave setting through the firmware interface,
2319		 * so Alteon decided to just bag it and handle it
2320		 * via autonegotiation.
2321		 */
2322		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2323		ifmedia_add(&sc->ifmedia,
2324		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2325		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2326		ifmedia_add(&sc->ifmedia,
2327		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2328		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2329		ifmedia_add(&sc->ifmedia,
2330		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2331	} else {
2332		/* Fiber cards don't support 10/100 modes. */
2333		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2334		ifmedia_add(&sc->ifmedia,
2335		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2336	}
2337	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2338	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2339
2340	/*
2341	 * We're assuming here that card initialization is a sequential
2342	 * thing.  If it isn't, multiple cards probing at the same time
2343	 * could stomp on the list of softcs here.
2344	 */
2345	/*
2346	 * If this is the first card to be initialized, initialize the
2347	 * softc queue.
2348	 */
2349	if (unit == 0)
2350		STAILQ_INIT(&ti_sc_list);
2351
2352	STAILQ_INSERT_TAIL(&ti_sc_list, sc, ti_links);
2353
2354	/* Register the device */
2355	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2356			   0600, "ti%d", sc->ti_unit);
2357
2358	/*
2359	 * Call MI attach routine.
2360	 */
2361	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
2362	return(0);
2363
2364fail:
2365	mtx_destroy(&sc->ti_mtx);
2366	return(error);
2367}
2368
2369/*
2370 * Verify that our character special device is not currently
2371 * open.  Also track down any cached vnodes & kill them before
2372 * the module is unloaded
2373 */
2374static int
2375ti_unref_special(device_t dev)
2376{
2377	struct vnode *ti_vn;
2378	int count;
2379	struct ti_softc *sc = sc = device_get_softc(dev);
2380
2381	if (!vfinddev(sc->dev, VCHR, &ti_vn)) {
2382		return 0;
2383	}
2384
2385	if ((count = vcount(ti_vn))) {
2386		device_printf(dev, "%d refs to special device, "
2387			      "denying unload\n", count);
2388		return count;
2389	}
2390	/* now we know that there's a vnode in the cache. We hunt it
2391	   down and kill it now, before unloading */
2392	vgone(ti_vn);
2393	return(0);
2394}
2395
2396
2397static int
2398ti_detach(dev)
2399	device_t		dev;
2400{
2401	struct ti_softc		*sc;
2402	struct ifnet		*ifp;
2403
2404	if (ti_unref_special(dev))
2405		return EBUSY;
2406
2407	sc = device_get_softc(dev);
2408	TI_LOCK(sc);
2409	ifp = &sc->arpcom.ac_if;
2410
2411	ether_ifdetach(ifp);
2412	ti_stop(sc);
2413
2414	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2415	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2416	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
2417
2418#ifdef TI_PRIVATE_JUMBOS
2419	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
2420#endif
2421	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
2422	ifmedia_removeall(&sc->ifmedia);
2423
2424	TI_UNLOCK(sc);
2425	mtx_destroy(&sc->ti_mtx);
2426
2427	return(0);
2428}
2429
2430#ifdef TI_JUMBO_HDRSPLIT
2431/*
2432 * If hdr_len is 0, that means that header splitting wasn't done on
2433 * this packet for some reason.  The two most likely reasons are that
2434 * the protocol isn't a supported protocol for splitting, or this
2435 * packet had a fragment offset that wasn't 0.
2436 *
2437 * The header length, if it is non-zero, will always be the length of
2438 * the headers on the packet, but that length could be longer than the
2439 * first mbuf.  So we take the minimum of the two as the actual
2440 * length.
2441 */
2442static __inline void
2443ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2444{
2445	int i = 0;
2446	int lengths[4] = {0, 0, 0, 0};
2447	struct mbuf *m, *mp;
2448
2449	if (hdr_len != 0)
2450		top->m_len = min(hdr_len, top->m_len);
2451	pkt_len -= top->m_len;
2452	lengths[i++] = top->m_len;
2453
2454	mp = top;
2455	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2456		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2457		pkt_len -= m->m_len;
2458		lengths[i++] = m->m_len;
2459		mp = m;
2460	}
2461
2462#if 0
2463	if (hdr_len != 0)
2464		printf("got split packet: ");
2465	else
2466		printf("got non-split packet: ");
2467
2468	printf("%d,%d,%d,%d = %d\n", lengths[0],
2469	    lengths[1], lengths[2], lengths[3],
2470	    lengths[0] + lengths[1] + lengths[2] +
2471	    lengths[3]);
2472#endif
2473
2474	if (pkt_len)
2475		panic("header splitting didn't");
2476
2477	if (m) {
2478		m_freem(m);
2479		mp->m_next = NULL;
2480
2481	}
2482	if (mp->m_next != NULL)
2483		panic("ti_hdr_split: last mbuf in chain should be null");
2484}
2485#endif /* TI_JUMBO_HDRSPLIT */
2486
2487/*
2488 * Frame reception handling. This is called if there's a frame
2489 * on the receive return list.
2490 *
2491 * Note: we have to be able to handle three possibilities here:
2492 * 1) the frame is from the mini receive ring (can only happen)
2493 *    on Tigon 2 boards)
2494 * 2) the frame is from the jumbo recieve ring
2495 * 3) the frame is from the standard receive ring
2496 */
2497
2498static void
2499ti_rxeof(sc)
2500	struct ti_softc		*sc;
2501{
2502	struct ifnet		*ifp;
2503	struct ti_cmd_desc	cmd;
2504
2505	ifp = &sc->arpcom.ac_if;
2506
2507	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2508		struct ti_rx_desc	*cur_rx;
2509		u_int32_t		rxidx;
2510		struct ether_header	*eh;
2511		struct mbuf		*m = NULL;
2512		u_int16_t		vlan_tag = 0;
2513		int			have_tag = 0;
2514
2515		cur_rx =
2516		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2517		rxidx = cur_rx->ti_idx;
2518		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2519
2520		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2521			have_tag = 1;
2522			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2523		}
2524
2525		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2526
2527			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2528			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2529			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2530			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2531				ifp->if_ierrors++;
2532				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2533				continue;
2534			}
2535			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2536				ifp->if_ierrors++;
2537				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2538				continue;
2539			}
2540#ifdef TI_PRIVATE_JUMBOS
2541                        m->m_len = cur_rx->ti_len;
2542#else /* TI_PRIVATE_JUMBOS */
2543#ifdef TI_JUMBO_HDRSPLIT
2544			if (sc->ti_hdrsplit)
2545				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2546					     cur_rx->ti_len, rxidx);
2547			else
2548#endif /* TI_JUMBO_HDRSPLIT */
2549                        	m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2550#endif /* TI_PRIVATE_JUMBOS */
2551		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2552			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2553			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2554			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2555			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2556				ifp->if_ierrors++;
2557				ti_newbuf_mini(sc, sc->ti_mini, m);
2558				continue;
2559			}
2560			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2561				ifp->if_ierrors++;
2562				ti_newbuf_mini(sc, sc->ti_mini, m);
2563				continue;
2564			}
2565			m->m_len = cur_rx->ti_len;
2566		} else {
2567			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2568			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2569			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2570			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2571				ifp->if_ierrors++;
2572				ti_newbuf_std(sc, sc->ti_std, m);
2573				continue;
2574			}
2575			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2576				ifp->if_ierrors++;
2577				ti_newbuf_std(sc, sc->ti_std, m);
2578				continue;
2579			}
2580			m->m_len = cur_rx->ti_len;
2581		}
2582
2583		m->m_pkthdr.len = cur_rx->ti_len;
2584		ifp->if_ipackets++;
2585		eh = mtod(m, struct ether_header *);
2586		m->m_pkthdr.rcvif = ifp;
2587
2588		if (ifp->if_hwassist) {
2589			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2590			    CSUM_DATA_VALID;
2591			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2592				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2593			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2594		}
2595
2596		/*
2597		 * If we received a packet with a vlan tag,
2598		 * tag it before passing the packet upward.
2599		 */
2600		if (have_tag)
2601			VLAN_INPUT_TAG(ifp, m, vlan_tag, continue);
2602		(*ifp->if_input)(ifp, m);
2603	}
2604
2605	/* Only necessary on the Tigon 1. */
2606	if (sc->ti_hwrev == TI_HWREV_TIGON)
2607		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2608		    sc->ti_rx_saved_considx);
2609
2610	TI_UPDATE_STDPROD(sc, sc->ti_std);
2611	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2612	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2613
2614	return;
2615}
2616
2617static void
2618ti_txeof(sc)
2619	struct ti_softc		*sc;
2620{
2621	struct ti_tx_desc	*cur_tx = NULL;
2622	struct ifnet		*ifp;
2623
2624	ifp = &sc->arpcom.ac_if;
2625
2626	/*
2627	 * Go through our tx ring and free mbufs for those
2628	 * frames that have been sent.
2629	 */
2630	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2631		u_int32_t		idx = 0;
2632
2633		idx = sc->ti_tx_saved_considx;
2634		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2635			if (idx > 383)
2636				CSR_WRITE_4(sc, TI_WINBASE,
2637				    TI_TX_RING_BASE + 6144);
2638			else if (idx > 255)
2639				CSR_WRITE_4(sc, TI_WINBASE,
2640				    TI_TX_RING_BASE + 4096);
2641			else if (idx > 127)
2642				CSR_WRITE_4(sc, TI_WINBASE,
2643				    TI_TX_RING_BASE + 2048);
2644			else
2645				CSR_WRITE_4(sc, TI_WINBASE,
2646				    TI_TX_RING_BASE);
2647			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2648		} else
2649			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2650		if (cur_tx->ti_flags & TI_BDFLAG_END)
2651			ifp->if_opackets++;
2652		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2653			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2654			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2655		}
2656		sc->ti_txcnt--;
2657		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2658		ifp->if_timer = 0;
2659	}
2660
2661	if (cur_tx != NULL)
2662		ifp->if_flags &= ~IFF_OACTIVE;
2663
2664	return;
2665}
2666
2667static void
2668ti_intr(xsc)
2669	void			*xsc;
2670{
2671	struct ti_softc		*sc;
2672	struct ifnet		*ifp;
2673
2674	sc = xsc;
2675	TI_LOCK(sc);
2676	ifp = &sc->arpcom.ac_if;
2677
2678/*#ifdef notdef*/
2679	/* Avoid this for now -- checking this register is expensive. */
2680	/* Make sure this is really our interrupt. */
2681	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2682		TI_UNLOCK(sc);
2683		return;
2684	}
2685/*#endif*/
2686
2687	/* Ack interrupt and stop others from occuring. */
2688	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2689
2690	if (ifp->if_flags & IFF_RUNNING) {
2691		/* Check RX return ring producer/consumer */
2692		ti_rxeof(sc);
2693
2694		/* Check TX ring producer/consumer */
2695		ti_txeof(sc);
2696	}
2697
2698	ti_handle_events(sc);
2699
2700	/* Re-enable interrupts. */
2701	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2702
2703	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2704		ti_start(ifp);
2705
2706	TI_UNLOCK(sc);
2707
2708	return;
2709}
2710
2711static void
2712ti_stats_update(sc)
2713	struct ti_softc		*sc;
2714{
2715	struct ifnet		*ifp;
2716
2717	ifp = &sc->arpcom.ac_if;
2718
2719	ifp->if_collisions +=
2720	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2721	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2722	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2723	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2724	   ifp->if_collisions;
2725
2726	return;
2727}
2728
2729/*
2730 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2731 * pointers to descriptors.
2732 */
2733static int
2734ti_encap(sc, m_head, txidx)
2735	struct ti_softc		*sc;
2736	struct mbuf		*m_head;
2737	u_int32_t		*txidx;
2738{
2739	struct ti_tx_desc	*f = NULL;
2740	struct mbuf		*m;
2741	u_int32_t		frag, cur, cnt = 0;
2742	u_int16_t		csum_flags = 0;
2743	struct m_tag		*mtag;
2744
2745	m = m_head;
2746	cur = frag = *txidx;
2747
2748	if (m_head->m_pkthdr.csum_flags) {
2749		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2750			csum_flags |= TI_BDFLAG_IP_CKSUM;
2751		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2752			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2753		if (m_head->m_flags & M_LASTFRAG)
2754			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2755		else if (m_head->m_flags & M_FRAG)
2756			csum_flags |= TI_BDFLAG_IP_FRAG;
2757	}
2758
2759	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m);
2760
2761	/*
2762 	 * Start packing the mbufs in this chain into
2763	 * the fragment pointers. Stop when we run out
2764 	 * of fragments or hit the end of the mbuf chain.
2765	 */
2766	for (m = m_head; m != NULL; m = m->m_next) {
2767		if (m->m_len != 0) {
2768			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2769				if (frag > 383)
2770					CSR_WRITE_4(sc, TI_WINBASE,
2771					    TI_TX_RING_BASE + 6144);
2772				else if (frag > 255)
2773					CSR_WRITE_4(sc, TI_WINBASE,
2774					    TI_TX_RING_BASE + 4096);
2775				else if (frag > 127)
2776					CSR_WRITE_4(sc, TI_WINBASE,
2777					    TI_TX_RING_BASE + 2048);
2778				else
2779					CSR_WRITE_4(sc, TI_WINBASE,
2780					    TI_TX_RING_BASE);
2781				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2782			} else
2783				f = &sc->ti_rdata->ti_tx_ring[frag];
2784			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2785				break;
2786			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2787			f->ti_len = m->m_len;
2788			f->ti_flags = csum_flags;
2789
2790			if (mtag != NULL) {
2791				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2792				f->ti_vlan_tag = VLAN_TAG_VALUE(mtag) & 0xfff;
2793			} else {
2794				f->ti_vlan_tag = 0;
2795			}
2796
2797			/*
2798			 * Sanity check: avoid coming within 16 descriptors
2799			 * of the end of the ring.
2800			 */
2801			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2802				return(ENOBUFS);
2803			cur = frag;
2804			TI_INC(frag, TI_TX_RING_CNT);
2805			cnt++;
2806		}
2807	}
2808
2809	if (m != NULL)
2810		return(ENOBUFS);
2811
2812	if (frag == sc->ti_tx_saved_considx)
2813		return(ENOBUFS);
2814
2815	if (sc->ti_hwrev == TI_HWREV_TIGON)
2816		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2817	            TI_BDFLAG_END;
2818	else
2819		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2820	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2821	sc->ti_txcnt += cnt;
2822
2823	*txidx = frag;
2824
2825	return(0);
2826}
2827
2828/*
2829 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2830 * to the mbuf data regions directly in the transmit descriptors.
2831 */
2832static void
2833ti_start(ifp)
2834	struct ifnet		*ifp;
2835{
2836	struct ti_softc		*sc;
2837	struct mbuf		*m_head = NULL;
2838	u_int32_t		prodidx = 0;
2839
2840	sc = ifp->if_softc;
2841	TI_LOCK(sc);
2842
2843	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2844
2845	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2846		IF_DEQUEUE(&ifp->if_snd, m_head);
2847		if (m_head == NULL)
2848			break;
2849
2850		/*
2851		 * XXX
2852		 * safety overkill.  If this is a fragmented packet chain
2853		 * with delayed TCP/UDP checksums, then only encapsulate
2854		 * it if we have enough descriptors to handle the entire
2855		 * chain at once.
2856		 * (paranoia -- may not actually be needed)
2857		 */
2858		if (m_head->m_flags & M_FIRSTFRAG &&
2859		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2860			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2861			    m_head->m_pkthdr.csum_data + 16) {
2862				IF_PREPEND(&ifp->if_snd, m_head);
2863				ifp->if_flags |= IFF_OACTIVE;
2864				break;
2865			}
2866		}
2867
2868		/*
2869		 * Pack the data into the transmit ring. If we
2870		 * don't have room, set the OACTIVE flag and wait
2871		 * for the NIC to drain the ring.
2872		 */
2873		if (ti_encap(sc, m_head, &prodidx)) {
2874			IF_PREPEND(&ifp->if_snd, m_head);
2875			ifp->if_flags |= IFF_OACTIVE;
2876			break;
2877		}
2878
2879		/*
2880		 * If there's a BPF listener, bounce a copy of this frame
2881		 * to him.
2882		 */
2883		BPF_MTAP(ifp, m_head);
2884	}
2885
2886	/* Transmit */
2887	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2888
2889	/*
2890	 * Set a timeout in case the chip goes out to lunch.
2891	 */
2892	ifp->if_timer = 5;
2893	TI_UNLOCK(sc);
2894
2895	return;
2896}
2897
2898static void
2899ti_init(xsc)
2900	void			*xsc;
2901{
2902	struct ti_softc		*sc = xsc;
2903
2904	/* Cancel pending I/O and flush buffers. */
2905	ti_stop(sc);
2906
2907	TI_LOCK(sc);
2908	/* Init the gen info block, ring control blocks and firmware. */
2909	if (ti_gibinit(sc)) {
2910		printf("ti%d: initialization failure\n", sc->ti_unit);
2911		TI_UNLOCK(sc);
2912		return;
2913	}
2914
2915	TI_UNLOCK(sc);
2916
2917	return;
2918}
2919
2920static void ti_init2(sc)
2921	struct ti_softc		*sc;
2922{
2923	struct ti_cmd_desc	cmd;
2924	struct ifnet		*ifp;
2925	u_int16_t		*m;
2926	struct ifmedia		*ifm;
2927	int			tmp;
2928
2929	ifp = &sc->arpcom.ac_if;
2930
2931	/* Specify MTU and interface index. */
2932	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2933	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2934	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2935	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2936
2937	/* Load our MAC address. */
2938	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2939	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2940	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2941	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2942
2943	/* Enable or disable promiscuous mode as needed. */
2944	if (ifp->if_flags & IFF_PROMISC) {
2945		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2946	} else {
2947		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2948	}
2949
2950	/* Program multicast filter. */
2951	ti_setmulti(sc);
2952
2953	/*
2954	 * If this is a Tigon 1, we should tell the
2955	 * firmware to use software packet filtering.
2956	 */
2957	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2958		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2959	}
2960
2961	/* Init RX ring. */
2962	ti_init_rx_ring_std(sc);
2963
2964	/* Init jumbo RX ring. */
2965	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2966		ti_init_rx_ring_jumbo(sc);
2967
2968	/*
2969	 * If this is a Tigon 2, we can also configure the
2970	 * mini ring.
2971	 */
2972	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2973		ti_init_rx_ring_mini(sc);
2974
2975	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2976	sc->ti_rx_saved_considx = 0;
2977
2978	/* Init TX ring. */
2979	ti_init_tx_ring(sc);
2980
2981	/* Tell firmware we're alive. */
2982	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2983
2984	/* Enable host interrupts. */
2985	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2986
2987	ifp->if_flags |= IFF_RUNNING;
2988	ifp->if_flags &= ~IFF_OACTIVE;
2989
2990	/*
2991	 * Make sure to set media properly. We have to do this
2992	 * here since we have to issue commands in order to set
2993	 * the link negotiation and we can't issue commands until
2994	 * the firmware is running.
2995	 */
2996	ifm = &sc->ifmedia;
2997	tmp = ifm->ifm_media;
2998	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2999	ti_ifmedia_upd(ifp);
3000	ifm->ifm_media = tmp;
3001
3002	return;
3003}
3004
3005/*
3006 * Set media options.
3007 */
3008static int
3009ti_ifmedia_upd(ifp)
3010	struct ifnet		*ifp;
3011{
3012	struct ti_softc		*sc;
3013	struct ifmedia		*ifm;
3014	struct ti_cmd_desc	cmd;
3015	u_int32_t		flowctl;
3016
3017	sc = ifp->if_softc;
3018	ifm = &sc->ifmedia;
3019
3020	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3021		return(EINVAL);
3022
3023	flowctl = 0;
3024
3025	switch(IFM_SUBTYPE(ifm->ifm_media)) {
3026	case IFM_AUTO:
3027		/*
3028		 * Transmit flow control doesn't work on the Tigon 1.
3029		 */
3030		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3031
3032		/*
3033		 * Transmit flow control can also cause problems on the
3034		 * Tigon 2, apparantly with both the copper and fiber
3035		 * boards.  The symptom is that the interface will just
3036		 * hang.  This was reproduced with Alteon 180 switches.
3037		 */
3038#if 0
3039		if (sc->ti_hwrev != TI_HWREV_TIGON)
3040			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3041#endif
3042
3043		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3044		    TI_GLNK_FULL_DUPLEX| flowctl |
3045		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3046
3047		flowctl = TI_LNK_RX_FLOWCTL_Y;
3048#if 0
3049		if (sc->ti_hwrev != TI_HWREV_TIGON)
3050			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3051#endif
3052
3053		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3054		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3055		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3056		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3057		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3058		break;
3059	case IFM_1000_SX:
3060	case IFM_1000_T:
3061		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3062#if 0
3063		if (sc->ti_hwrev != TI_HWREV_TIGON)
3064			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3065#endif
3066
3067		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3068		    flowctl |TI_GLNK_ENB);
3069		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3070		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3071			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3072		}
3073		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3074		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3075		break;
3076	case IFM_100_FX:
3077	case IFM_10_FL:
3078	case IFM_100_TX:
3079	case IFM_10_T:
3080		flowctl = TI_LNK_RX_FLOWCTL_Y;
3081#if 0
3082		if (sc->ti_hwrev != TI_HWREV_TIGON)
3083			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3084#endif
3085
3086		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3087		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3088		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3089		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3090			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3091		} else {
3092			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3093		}
3094		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3095			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3096		} else {
3097			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3098		}
3099		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3100		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3101		break;
3102	}
3103
3104	return(0);
3105}
3106
3107/*
3108 * Report current media status.
3109 */
3110static void
3111ti_ifmedia_sts(ifp, ifmr)
3112	struct ifnet		*ifp;
3113	struct ifmediareq	*ifmr;
3114{
3115	struct ti_softc		*sc;
3116	u_int32_t		media = 0;
3117
3118	sc = ifp->if_softc;
3119
3120	ifmr->ifm_status = IFM_AVALID;
3121	ifmr->ifm_active = IFM_ETHER;
3122
3123	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3124		return;
3125
3126	ifmr->ifm_status |= IFM_ACTIVE;
3127
3128	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3129		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3130		if (sc->ti_copper)
3131			ifmr->ifm_active |= IFM_1000_T;
3132		else
3133			ifmr->ifm_active |= IFM_1000_SX;
3134		if (media & TI_GLNK_FULL_DUPLEX)
3135			ifmr->ifm_active |= IFM_FDX;
3136		else
3137			ifmr->ifm_active |= IFM_HDX;
3138	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3139		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3140		if (sc->ti_copper) {
3141			if (media & TI_LNK_100MB)
3142				ifmr->ifm_active |= IFM_100_TX;
3143			if (media & TI_LNK_10MB)
3144				ifmr->ifm_active |= IFM_10_T;
3145		} else {
3146			if (media & TI_LNK_100MB)
3147				ifmr->ifm_active |= IFM_100_FX;
3148			if (media & TI_LNK_10MB)
3149				ifmr->ifm_active |= IFM_10_FL;
3150		}
3151		if (media & TI_LNK_FULL_DUPLEX)
3152			ifmr->ifm_active |= IFM_FDX;
3153		if (media & TI_LNK_HALF_DUPLEX)
3154			ifmr->ifm_active |= IFM_HDX;
3155	}
3156
3157	return;
3158}
3159
3160static int
3161ti_ioctl(ifp, command, data)
3162	struct ifnet		*ifp;
3163	u_long			command;
3164	caddr_t			data;
3165{
3166	struct ti_softc		*sc = ifp->if_softc;
3167	struct ifreq		*ifr = (struct ifreq *) data;
3168	int			mask, error = 0;
3169	struct ti_cmd_desc	cmd;
3170
3171	TI_LOCK(sc);
3172
3173	switch(command) {
3174	case SIOCSIFMTU:
3175		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3176			error = EINVAL;
3177		else {
3178			ifp->if_mtu = ifr->ifr_mtu;
3179			ti_init(sc);
3180		}
3181		break;
3182	case SIOCSIFFLAGS:
3183		if (ifp->if_flags & IFF_UP) {
3184			/*
3185			 * If only the state of the PROMISC flag changed,
3186			 * then just use the 'set promisc mode' command
3187			 * instead of reinitializing the entire NIC. Doing
3188			 * a full re-init means reloading the firmware and
3189			 * waiting for it to start up, which may take a
3190			 * second or two.
3191			 */
3192			if (ifp->if_flags & IFF_RUNNING &&
3193			    ifp->if_flags & IFF_PROMISC &&
3194			    !(sc->ti_if_flags & IFF_PROMISC)) {
3195				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3196				    TI_CMD_CODE_PROMISC_ENB, 0);
3197			} else if (ifp->if_flags & IFF_RUNNING &&
3198			    !(ifp->if_flags & IFF_PROMISC) &&
3199			    sc->ti_if_flags & IFF_PROMISC) {
3200				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3201				    TI_CMD_CODE_PROMISC_DIS, 0);
3202			} else
3203				ti_init(sc);
3204		} else {
3205			if (ifp->if_flags & IFF_RUNNING) {
3206				ti_stop(sc);
3207			}
3208		}
3209		sc->ti_if_flags = ifp->if_flags;
3210		error = 0;
3211		break;
3212	case SIOCADDMULTI:
3213	case SIOCDELMULTI:
3214		if (ifp->if_flags & IFF_RUNNING) {
3215			ti_setmulti(sc);
3216			error = 0;
3217		}
3218		break;
3219	case SIOCSIFMEDIA:
3220	case SIOCGIFMEDIA:
3221		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3222		break;
3223	case SIOCSIFCAP:
3224		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3225		if (mask & IFCAP_HWCSUM) {
3226			if (IFCAP_HWCSUM & ifp->if_capenable)
3227				ifp->if_capenable &= ~IFCAP_HWCSUM;
3228                        else
3229                                ifp->if_capenable |= IFCAP_HWCSUM;
3230			if (ifp->if_flags & IFF_RUNNING)
3231				ti_init(sc);
3232                }
3233		error = 0;
3234		break;
3235	default:
3236		error = ether_ioctl(ifp, command, data);
3237		break;
3238	}
3239
3240	TI_UNLOCK(sc);
3241
3242	return(error);
3243}
3244
3245static int
3246ti_open(dev_t dev, int flags, int fmt, struct thread *td)
3247{
3248	int unit;
3249	struct ti_softc *sc;
3250
3251	unit = minor(dev) & 0xff;
3252
3253	sc = ti_lookup_softc(unit);
3254
3255	if (sc == NULL)
3256		return(ENODEV);
3257
3258	TI_LOCK(sc);
3259	sc->ti_flags |= TI_FLAG_DEBUGING;
3260	TI_UNLOCK(sc);
3261
3262	return(0);
3263}
3264
3265static int
3266ti_close(dev_t dev, int flag, int fmt, struct thread *td)
3267{
3268	int unit;
3269	struct ti_softc *sc;
3270
3271	unit = minor(dev) & 0xff;
3272
3273	sc = ti_lookup_softc(unit);
3274
3275	if (sc == NULL)
3276		return(ENODEV);
3277
3278	TI_LOCK(sc);
3279	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3280	TI_UNLOCK(sc);
3281
3282	return(0);
3283}
3284
3285/*
3286 * This ioctl routine goes along with the Tigon character device.
3287 */
3288static int
3289ti_ioctl2(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
3290{
3291	int unit, error;
3292	struct ti_softc *sc;
3293
3294	unit = minor(dev) & 0xff;
3295
3296	sc = ti_lookup_softc(unit);
3297
3298	if (sc == NULL)
3299		return(ENODEV);
3300
3301	error = 0;
3302
3303	switch(cmd) {
3304	case TIIOCGETSTATS:
3305	{
3306		struct ti_stats *outstats;
3307
3308		outstats = (struct ti_stats *)addr;
3309
3310		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3311		      sizeof(struct ti_stats));
3312		break;
3313	}
3314	case TIIOCGETPARAMS:
3315	{
3316		struct ti_params	*params;
3317
3318		params = (struct ti_params *)addr;
3319
3320		params->ti_stat_ticks = sc->ti_stat_ticks;
3321		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3322		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3323		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3324		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3325		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3326		params->param_mask = TI_PARAM_ALL;
3327
3328		error = 0;
3329
3330		break;
3331	}
3332	case TIIOCSETPARAMS:
3333	{
3334		struct ti_params *params;
3335
3336		params = (struct ti_params *)addr;
3337
3338		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3339			sc->ti_stat_ticks = params->ti_stat_ticks;
3340			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3341		}
3342
3343		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3344			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3345			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3346				    sc->ti_rx_coal_ticks);
3347		}
3348
3349		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3350			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3351			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3352				    sc->ti_tx_coal_ticks);
3353		}
3354
3355		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3356			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3357			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3358				    sc->ti_rx_max_coal_bds);
3359		}
3360
3361		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3362			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3363			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3364				    sc->ti_tx_max_coal_bds);
3365		}
3366
3367		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3368			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3369			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3370				    sc->ti_tx_buf_ratio);
3371		}
3372
3373		error = 0;
3374
3375		break;
3376	}
3377	case TIIOCSETTRACE: {
3378		ti_trace_type	trace_type;
3379
3380		trace_type = *(ti_trace_type *)addr;
3381
3382		/*
3383		 * Set tracing to whatever the user asked for.  Setting
3384		 * this register to 0 should have the effect of disabling
3385		 * tracing.
3386		 */
3387		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3388
3389		error = 0;
3390
3391		break;
3392	}
3393	case TIIOCGETTRACE: {
3394		struct ti_trace_buf	*trace_buf;
3395		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3396
3397		trace_buf = (struct ti_trace_buf *)addr;
3398
3399		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3400		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3401		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3402
3403#if 0
3404		printf("ti%d: trace_start = %#x, cur_trace_ptr = %#x, "
3405		       "trace_len = %d\n", sc->ti_unit, trace_start,
3406		       cur_trace_ptr, trace_len);
3407		printf("ti%d: trace_buf->buf_len = %d\n", sc->ti_unit,
3408		       trace_buf->buf_len);
3409#endif
3410
3411		error = ti_copy_mem(sc, trace_start, min(trace_len,
3412				    trace_buf->buf_len),
3413				    (caddr_t)trace_buf->buf, 1, 1);
3414
3415		if (error == 0) {
3416			trace_buf->fill_len = min(trace_len,
3417						  trace_buf->buf_len);
3418			if (cur_trace_ptr < trace_start)
3419				trace_buf->cur_trace_ptr =
3420					trace_start - cur_trace_ptr;
3421			else
3422				trace_buf->cur_trace_ptr =
3423					cur_trace_ptr - trace_start;
3424		} else
3425			trace_buf->fill_len = 0;
3426
3427
3428		break;
3429	}
3430
3431	/*
3432	 * For debugging, five ioctls are needed:
3433	 * ALT_ATTACH
3434	 * ALT_READ_TG_REG
3435	 * ALT_WRITE_TG_REG
3436	 * ALT_READ_TG_MEM
3437	 * ALT_WRITE_TG_MEM
3438	 */
3439	case ALT_ATTACH:
3440		/*
3441		 * From what I can tell, Alteon's Solaris Tigon driver
3442		 * only has one character device, so you have to attach
3443		 * to the Tigon board you're interested in.  This seems
3444		 * like a not-so-good way to do things, since unless you
3445		 * subsequently specify the unit number of the device
3446		 * you're interested in in every ioctl, you'll only be
3447		 * able to debug one board at a time.
3448		 */
3449		error = 0;
3450		break;
3451	case ALT_READ_TG_MEM:
3452	case ALT_WRITE_TG_MEM:
3453	{
3454		struct tg_mem *mem_param;
3455		u_int32_t sram_end, scratch_end;
3456
3457		mem_param = (struct tg_mem *)addr;
3458
3459		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3460			sram_end = TI_END_SRAM_I;
3461			scratch_end = TI_END_SCRATCH_I;
3462		} else {
3463			sram_end = TI_END_SRAM_II;
3464			scratch_end = TI_END_SCRATCH_II;
3465		}
3466
3467		/*
3468		 * For now, we'll only handle accessing regular SRAM,
3469		 * nothing else.
3470		 */
3471		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3472		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3473			/*
3474			 * In this instance, we always copy to/from user
3475			 * space, so the user space argument is set to 1.
3476			 */
3477			error = ti_copy_mem(sc, mem_param->tgAddr,
3478					    mem_param->len,
3479					    mem_param->userAddr, 1,
3480					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3481		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3482			&& (mem_param->tgAddr <= scratch_end)) {
3483			error = ti_copy_scratch(sc, mem_param->tgAddr,
3484						mem_param->len,
3485						mem_param->userAddr, 1,
3486						(cmd == ALT_READ_TG_MEM) ?
3487						1 : 0, TI_PROCESSOR_A);
3488		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3489			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3490			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3491				printf("ti%d:  invalid memory range for "
3492				       "Tigon I\n", sc->ti_unit);
3493				error = EINVAL;
3494				break;
3495			}
3496			error = ti_copy_scratch(sc, mem_param->tgAddr -
3497						TI_SCRATCH_DEBUG_OFF,
3498						mem_param->len,
3499						mem_param->userAddr, 1,
3500						(cmd == ALT_READ_TG_MEM) ?
3501						1 : 0, TI_PROCESSOR_B);
3502		} else {
3503			printf("ti%d: memory address %#x len %d is out of "
3504			       "supported range\n", sc->ti_unit,
3505			        mem_param->tgAddr, mem_param->len);
3506			error = EINVAL;
3507		}
3508
3509		break;
3510	}
3511	case ALT_READ_TG_REG:
3512	case ALT_WRITE_TG_REG:
3513	{
3514		struct tg_reg	*regs;
3515		u_int32_t	tmpval;
3516
3517		regs = (struct tg_reg *)addr;
3518
3519		/*
3520		 * Make sure the address in question isn't out of range.
3521		 */
3522		if (regs->addr > TI_REG_MAX) {
3523			error = EINVAL;
3524			break;
3525		}
3526		if (cmd == ALT_READ_TG_REG) {
3527			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3528						regs->addr, &tmpval, 1);
3529			regs->data = ntohl(tmpval);
3530#if 0
3531			if ((regs->addr == TI_CPU_STATE)
3532			 || (regs->addr == TI_CPU_CTL_B)) {
3533				printf("ti%d: register %#x = %#x\n",
3534				       sc->ti_unit, regs->addr, tmpval);
3535			}
3536#endif
3537		} else {
3538			tmpval = htonl(regs->data);
3539			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3540						 regs->addr, &tmpval, 1);
3541		}
3542
3543		break;
3544	}
3545	default:
3546		error = ENOTTY;
3547		break;
3548	}
3549	return(error);
3550}
3551
3552static void
3553ti_watchdog(ifp)
3554	struct ifnet		*ifp;
3555{
3556	struct ti_softc		*sc;
3557
3558	sc = ifp->if_softc;
3559	TI_LOCK(sc);
3560
3561	/*
3562	 * When we're debugging, the chip is often stopped for long periods
3563	 * of time, and that would normally cause the watchdog timer to fire.
3564	 * Since that impedes debugging, we don't want to do that.
3565	 */
3566	if (sc->ti_flags & TI_FLAG_DEBUGING) {
3567		TI_UNLOCK(sc);
3568		return;
3569	}
3570
3571	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
3572	ti_stop(sc);
3573	ti_init(sc);
3574
3575	ifp->if_oerrors++;
3576	TI_UNLOCK(sc);
3577
3578	return;
3579}
3580
3581/*
3582 * Stop the adapter and free any mbufs allocated to the
3583 * RX and TX lists.
3584 */
3585static void
3586ti_stop(sc)
3587	struct ti_softc		*sc;
3588{
3589	struct ifnet		*ifp;
3590	struct ti_cmd_desc	cmd;
3591
3592	TI_LOCK(sc);
3593
3594	ifp = &sc->arpcom.ac_if;
3595
3596	/* Disable host interrupts. */
3597	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3598	/*
3599	 * Tell firmware we're shutting down.
3600	 */
3601	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3602
3603	/* Halt and reinitialize. */
3604	ti_chipinit(sc);
3605	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
3606	ti_chipinit(sc);
3607
3608	/* Free the RX lists. */
3609	ti_free_rx_ring_std(sc);
3610
3611	/* Free jumbo RX list. */
3612	ti_free_rx_ring_jumbo(sc);
3613
3614	/* Free mini RX list. */
3615	ti_free_rx_ring_mini(sc);
3616
3617	/* Free TX buffers. */
3618	ti_free_tx_ring(sc);
3619
3620	sc->ti_ev_prodidx.ti_idx = 0;
3621	sc->ti_return_prodidx.ti_idx = 0;
3622	sc->ti_tx_considx.ti_idx = 0;
3623	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3624
3625	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3626	TI_UNLOCK(sc);
3627
3628	return;
3629}
3630
3631/*
3632 * Stop all chip I/O so that the kernel's probe routines don't
3633 * get confused by errant DMAs when rebooting.
3634 */
3635static void
3636ti_shutdown(dev)
3637	device_t		dev;
3638{
3639	struct ti_softc		*sc;
3640
3641	sc = device_get_softc(dev);
3642	TI_LOCK(sc);
3643	ti_chipinit(sc);
3644	TI_UNLOCK(sc);
3645
3646	return;
3647}
3648