if_ti.c revision 104401
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/ti/if_ti.c 104401 2002-10-03 06:44:01Z alfred $
33 */
34
35/*
36 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37 * Manuals, sample driver and firmware source kits are available
38 * from http://www.alteon.com/support/openkits.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Electrical Engineering Department
42 * Columbia University, New York City
43 */
44
45/*
46 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50 * filtering and jumbo (9014 byte) frames. The hardware is largely
51 * controlled by firmware, which must be loaded into the NIC during
52 * initialization.
53 *
54 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55 * revision, which supports new features such as extended commands,
56 * extended jumbo receive ring desciptors and a mini receive ring.
57 *
58 * Alteon Networks is to be commended for releasing such a vast amount
59 * of development material for the Tigon NIC without requiring an NDA
60 * (although they really should have done it a long time ago). With
61 * any luck, the other vendors will finally wise up and follow Alteon's
62 * stellar example.
63 *
64 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65 * this driver by #including it as a C header file. This bloats the
66 * driver somewhat, but it's the easiest method considering that the
67 * driver code and firmware code need to be kept in sync. The source
68 * for the firmware is not provided with the FreeBSD distribution since
69 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70 *
71 * The following people deserve special thanks:
72 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73 *   for testing
74 * - Raymond Lee of Netgear, for providing a pair of Netgear
75 *   GA620 Tigon 2 boards for testing
76 * - Ulf Zimmermann, for bringing the GA260 to my attention and
77 *   convincing me to write this driver.
78 * - Andrew Gallatin for providing FreeBSD/Alpha support.
79 */
80
81#include "opt_ti.h"
82
83#include <sys/param.h>
84#include <sys/systm.h>
85#include <sys/sockio.h>
86#include <sys/mbuf.h>
87#include <sys/malloc.h>
88#include <sys/kernel.h>
89#include <sys/socket.h>
90#include <sys/queue.h>
91#include <sys/conf.h>
92
93#include <net/if.h>
94#include <net/if_arp.h>
95#include <net/ethernet.h>
96#include <net/if_dl.h>
97#include <net/if_media.h>
98#include <net/if_types.h>
99#include <net/if_vlan_var.h>
100
101#include <net/bpf.h>
102
103#include <netinet/in_systm.h>
104#include <netinet/in.h>
105#include <netinet/ip.h>
106
107#include <vm/vm.h>              /* for vtophys */
108#include <vm/pmap.h>            /* for vtophys */
109#include <machine/bus_memio.h>
110#include <machine/bus.h>
111#include <machine/resource.h>
112#include <sys/bus.h>
113#include <sys/rman.h>
114
115/* #define TI_PRIVATE_JUMBOS */
116
117#if !defined(TI_PRIVATE_JUMBOS)
118#include <sys/sockio.h>
119#include <sys/uio.h>
120#include <sys/lock.h>
121#include <vm/vm_extern.h>
122#include <vm/pmap.h>
123#include <vm/vm_map.h>
124#include <vm/vm_map.h>
125#include <vm/vm_param.h>
126#include <vm/vm_pageout.h>
127#include <sys/vmmeter.h>
128#include <vm/vm_page.h>
129#include <vm/vm_object.h>
130#include <vm/vm_kern.h>
131#include <sys/proc.h>
132#include <sys/jumbo.h>
133#endif /* !TI_PRIVATE_JUMBOS */
134#include <sys/vnode.h> /* for vfindev, vgone */
135
136#include <pci/pcireg.h>
137#include <pci/pcivar.h>
138
139#include <sys/tiio.h>
140#include <pci/if_tireg.h>
141#include <pci/ti_fw.h>
142#include <pci/ti_fw2.h>
143
144#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
145/*
146 * We can only turn on header splitting if we're using extended receive
147 * BDs.
148 */
149#if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
150#error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
151#endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
152
153#if !defined(lint)
154static const char rcsid[] =
155  "$FreeBSD: head/sys/dev/ti/if_ti.c 104401 2002-10-03 06:44:01Z alfred $";
156#endif
157
158struct ti_softc *tis[8];
159
160typedef enum {
161	TI_SWAP_HTON,
162	TI_SWAP_NTOH
163} ti_swap_type;
164
165
166/*
167 * Various supported device vendors/types and their names.
168 */
169
170static struct ti_type ti_devs[] = {
171	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
172		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
173	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
174		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
175	{ TC_VENDORID,	TC_DEVICEID_3C985,
176		"3Com 3c985-SX Gigabit Ethernet" },
177	{ NG_VENDORID, NG_DEVICEID_GA620,
178		"Netgear GA620 1000baseSX Gigabit Ethernet" },
179	{ NG_VENDORID, NG_DEVICEID_GA620T,
180		"Netgear GA620 1000baseT Gigabit Ethernet" },
181	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
182		"Silicon Graphics Gigabit Ethernet" },
183	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
184		"Farallon PN9000SX Gigabit Ethernet" },
185	{ 0, 0, NULL }
186};
187
188#define	TI_CDEV_MAJOR	153
189
190static	d_open_t	ti_open;
191static	d_close_t	ti_close;
192static	d_ioctl_t	ti_ioctl2;
193
194static struct cdevsw ti_cdevsw = {
195        /* open */      ti_open,
196        /* close */     ti_close,
197        /* read */      NULL,
198        /* write */     NULL,
199        /* ioctl */     ti_ioctl2,
200        /* poll */      seltrue,
201        /* mmap */      nommap,
202        /* strategy */  nostrategy,
203        /* name */      "ti",
204        /* maj */       TI_CDEV_MAJOR,
205        /* dump */      nodump,
206        /* psize */     nopsize,
207        /* flags */     0,
208};
209
210static int ti_probe		(device_t);
211static int ti_attach		(device_t);
212static int ti_detach		(device_t);
213static void ti_txeof		(struct ti_softc *);
214static void ti_rxeof		(struct ti_softc *);
215
216static void ti_stats_update	(struct ti_softc *);
217static int ti_encap		(struct ti_softc *, struct mbuf *, u_int32_t *);
218
219static void ti_intr		(void *);
220static void ti_start		(struct ifnet *);
221static int ti_ioctl		(struct ifnet *, u_long, caddr_t);
222static void ti_init		(void *);
223static void ti_init2		(struct ti_softc *);
224static void ti_stop		(struct ti_softc *);
225static void ti_watchdog		(struct ifnet *);
226static void ti_shutdown		(device_t);
227static int ti_ifmedia_upd	(struct ifnet *);
228static void ti_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
229
230static u_int32_t ti_eeprom_putbyte	(struct ti_softc *, int);
231static u_int8_t	ti_eeprom_getbyte	(struct ti_softc *, int, u_int8_t *);
232static int ti_read_eeprom	(struct ti_softc *, caddr_t, int, int);
233
234static void ti_add_mcast	(struct ti_softc *, struct ether_addr *);
235static void ti_del_mcast	(struct ti_softc *, struct ether_addr *);
236static void ti_setmulti		(struct ti_softc *);
237
238static void ti_mem		(struct ti_softc *, u_int32_t,
239					u_int32_t, caddr_t);
240static int ti_copy_mem		(struct ti_softc *, u_int32_t,
241					u_int32_t, caddr_t, int, int);
242static int ti_copy_scratch	(struct ti_softc *, u_int32_t,
243					u_int32_t, caddr_t, int, int, int);
244static int ti_bcopy_swap	(const void *, void *, size_t,
245					ti_swap_type);
246static void ti_loadfw		(struct ti_softc *);
247static void ti_cmd		(struct ti_softc *, struct ti_cmd_desc *);
248static void ti_cmd_ext		(struct ti_softc *, struct ti_cmd_desc *,
249					caddr_t, int);
250static void ti_handle_events	(struct ti_softc *);
251#ifdef TI_PRIVATE_JUMBOS
252static int ti_alloc_jumbo_mem	(struct ti_softc *);
253static void *ti_jalloc		(struct ti_softc *);
254static void ti_jfree		(void *, void *);
255#endif /* TI_PRIVATE_JUMBOS */
256static int ti_newbuf_std	(struct ti_softc *, int, struct mbuf *);
257static int ti_newbuf_mini	(struct ti_softc *, int, struct mbuf *);
258static int ti_newbuf_jumbo	(struct ti_softc *, int, struct mbuf *);
259static int ti_init_rx_ring_std	(struct ti_softc *);
260static void ti_free_rx_ring_std	(struct ti_softc *);
261static int ti_init_rx_ring_jumbo	(struct ti_softc *);
262static void ti_free_rx_ring_jumbo	(struct ti_softc *);
263static int ti_init_rx_ring_mini	(struct ti_softc *);
264static void ti_free_rx_ring_mini	(struct ti_softc *);
265static void ti_free_tx_ring	(struct ti_softc *);
266static int ti_init_tx_ring	(struct ti_softc *);
267
268static int ti_64bitslot_war	(struct ti_softc *);
269static int ti_chipinit		(struct ti_softc *);
270static int ti_gibinit		(struct ti_softc *);
271
272#ifdef TI_JUMBO_HDRSPLIT
273static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
274					     int pkt_len, int idx);
275#endif /* TI_JUMBO_HDRSPLIT */
276
277static device_method_t ti_methods[] = {
278	/* Device interface */
279	DEVMETHOD(device_probe,		ti_probe),
280	DEVMETHOD(device_attach,	ti_attach),
281	DEVMETHOD(device_detach,	ti_detach),
282	DEVMETHOD(device_shutdown,	ti_shutdown),
283	{ 0, 0 }
284};
285
286static driver_t ti_driver = {
287	"ti",
288	ti_methods,
289	sizeof(struct ti_softc)
290};
291
292static devclass_t ti_devclass;
293
294DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
295
296/* List of Tigon softcs */
297static STAILQ_HEAD(ti_softc_list, ti_softc) ti_sc_list;
298
299static struct ti_softc *
300ti_lookup_softc(int unit)
301{
302	struct ti_softc *sc;
303	for (sc = STAILQ_FIRST(&ti_sc_list); sc != NULL;
304	     sc = STAILQ_NEXT(sc, ti_links))
305		if (sc->ti_unit == unit)
306			return(sc);
307	return(NULL);
308}
309
310/*
311 * Send an instruction or address to the EEPROM, check for ACK.
312 */
313static u_int32_t ti_eeprom_putbyte(sc, byte)
314	struct ti_softc		*sc;
315	int			byte;
316{
317	register int		i, ack = 0;
318
319	/*
320	 * Make sure we're in TX mode.
321	 */
322	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
323
324	/*
325	 * Feed in each bit and stobe the clock.
326	 */
327	for (i = 0x80; i; i >>= 1) {
328		if (byte & i) {
329			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
330		} else {
331			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
332		}
333		DELAY(1);
334		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
335		DELAY(1);
336		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
337	}
338
339	/*
340	 * Turn off TX mode.
341	 */
342	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
343
344	/*
345	 * Check for ack.
346	 */
347	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
348	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
349	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
350
351	return(ack);
352}
353
354/*
355 * Read a byte of data stored in the EEPROM at address 'addr.'
356 * We have to send two address bytes since the EEPROM can hold
357 * more than 256 bytes of data.
358 */
359static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
360	struct ti_softc		*sc;
361	int			addr;
362	u_int8_t		*dest;
363{
364	register int		i;
365	u_int8_t		byte = 0;
366
367	EEPROM_START;
368
369	/*
370	 * Send write control code to EEPROM.
371	 */
372	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
373		printf("ti%d: failed to send write command, status: %x\n",
374		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
375		return(1);
376	}
377
378	/*
379	 * Send first byte of address of byte we want to read.
380	 */
381	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
382		printf("ti%d: failed to send address, status: %x\n",
383		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
384		return(1);
385	}
386	/*
387	 * Send second byte address of byte we want to read.
388	 */
389	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
390		printf("ti%d: failed to send address, status: %x\n",
391		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
392		return(1);
393	}
394
395	EEPROM_STOP;
396	EEPROM_START;
397	/*
398	 * Send read control code to EEPROM.
399	 */
400	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
401		printf("ti%d: failed to send read command, status: %x\n",
402		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
403		return(1);
404	}
405
406	/*
407	 * Start reading bits from EEPROM.
408	 */
409	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
410	for (i = 0x80; i; i >>= 1) {
411		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
412		DELAY(1);
413		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
414			byte |= i;
415		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
416		DELAY(1);
417	}
418
419	EEPROM_STOP;
420
421	/*
422	 * No ACK generated for read, so just return byte.
423	 */
424
425	*dest = byte;
426
427	return(0);
428}
429
430/*
431 * Read a sequence of bytes from the EEPROM.
432 */
433static int
434ti_read_eeprom(sc, dest, off, cnt)
435	struct ti_softc		*sc;
436	caddr_t			dest;
437	int			off;
438	int			cnt;
439{
440	int			err = 0, i;
441	u_int8_t		byte = 0;
442
443	for (i = 0; i < cnt; i++) {
444		err = ti_eeprom_getbyte(sc, off + i, &byte);
445		if (err)
446			break;
447		*(dest + i) = byte;
448	}
449
450	return(err ? 1 : 0);
451}
452
453/*
454 * NIC memory access function. Can be used to either clear a section
455 * of NIC local memory or (if buf is non-NULL) copy data into it.
456 */
457static void
458ti_mem(sc, addr, len, buf)
459	struct ti_softc		*sc;
460	u_int32_t		addr, len;
461	caddr_t			buf;
462{
463	int			segptr, segsize, cnt;
464	caddr_t			ti_winbase, ptr;
465
466	segptr = addr;
467	cnt = len;
468	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
469	ptr = buf;
470
471	while(cnt) {
472		if (cnt < TI_WINLEN)
473			segsize = cnt;
474		else
475			segsize = TI_WINLEN - (segptr % TI_WINLEN);
476		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
477		if (buf == NULL)
478			bzero((char *)ti_winbase + (segptr &
479			    (TI_WINLEN - 1)), segsize);
480		else {
481			bcopy((char *)ptr, (char *)ti_winbase +
482			    (segptr & (TI_WINLEN - 1)), segsize);
483			ptr += segsize;
484		}
485		segptr += segsize;
486		cnt -= segsize;
487	}
488
489	return;
490}
491
492static int
493ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
494	struct ti_softc		*sc;
495	u_int32_t		tigon_addr, len;
496	caddr_t			buf;
497	int			useraddr, readdata;
498{
499	int		segptr, segsize, cnt;
500	caddr_t		ptr;
501	u_int32_t	origwin;
502	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
503	int		resid, segresid;
504	int		first_pass;
505
506	/*
507	 * At the moment, we don't handle non-aligned cases, we just bail.
508	 * If this proves to be a problem, it will be fixed.
509	 */
510	if ((readdata == 0)
511	 && (tigon_addr & 0x3)) {
512		printf("ti%d: ti_copy_mem: tigon address %#x isn't "
513		       "word-aligned\n", sc->ti_unit, tigon_addr);
514		printf("ti%d: ti_copy_mem: unaligned writes aren't yet "
515		       "supported\n", sc->ti_unit);
516		return(EINVAL);
517	}
518
519	segptr = tigon_addr & ~0x3;
520	segresid = tigon_addr - segptr;
521
522	/*
523	 * This is the non-aligned amount left over that we'll need to
524	 * copy.
525	 */
526	resid = len & 0x3;
527
528	/* Add in the left over amount at the front of the buffer */
529	resid += segresid;
530
531	cnt = len & ~0x3;
532	/*
533	 * If resid + segresid is >= 4, add multiples of 4 to the count and
534	 * decrease the residual by that much.
535	 */
536	cnt += resid & ~0x3;
537	resid -= resid & ~0x3;
538
539	ptr = buf;
540
541	first_pass = 1;
542
543	/*
544	 * Make sure we aren't interrupted while we're changing the window
545	 * pointer.
546	 */
547	TI_LOCK(sc);
548
549	/*
550	 * Save the old window base value.
551	 */
552	origwin = CSR_READ_4(sc, TI_WINBASE);
553
554	while(cnt) {
555		bus_size_t ti_offset;
556
557		if (cnt < TI_WINLEN)
558			segsize = cnt;
559		else
560			segsize = TI_WINLEN - (segptr % TI_WINLEN);
561		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
562
563		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
564
565		if (readdata) {
566
567			bus_space_read_region_4(sc->ti_btag,
568						sc->ti_bhandle, ti_offset,
569						(u_int32_t *)tmparray,
570						segsize >> 2);
571			if (useraddr) {
572				/*
573				 * Yeah, this is a little on the kludgy
574				 * side, but at least this code is only
575				 * used for debugging.
576				 */
577				ti_bcopy_swap(tmparray, tmparray2, segsize,
578					      TI_SWAP_NTOH);
579
580				if (first_pass) {
581					copyout(&tmparray2[segresid], ptr,
582						segsize - segresid);
583					first_pass = 0;
584				} else
585					copyout(tmparray2, ptr, segsize);
586			} else {
587				if (first_pass) {
588
589					ti_bcopy_swap(tmparray, tmparray2,
590						      segsize, TI_SWAP_NTOH);
591					bcopy(&tmparray2[segresid], ptr,
592					      segsize - segresid);
593					first_pass = 0;
594				} else
595					ti_bcopy_swap(tmparray, ptr, segsize,
596						      TI_SWAP_NTOH);
597			}
598
599		} else {
600			if (useraddr) {
601				copyin(ptr, tmparray2, segsize);
602				ti_bcopy_swap(tmparray2, tmparray, segsize,
603					      TI_SWAP_HTON);
604			} else
605				ti_bcopy_swap(ptr, tmparray, segsize,
606					      TI_SWAP_HTON);
607
608			bus_space_write_region_4(sc->ti_btag,
609						 sc->ti_bhandle, ti_offset,
610						 (u_int32_t *)tmparray,
611						 segsize >> 2);
612		}
613		segptr += segsize;
614		ptr += segsize;
615		cnt -= segsize;
616	}
617
618	/*
619	 * Handle leftover, non-word-aligned bytes.
620	 */
621	if (resid != 0) {
622		u_int32_t	tmpval, tmpval2;
623		bus_size_t	ti_offset;
624
625		/*
626		 * Set the segment pointer.
627		 */
628		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
629
630		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
631
632		/*
633		 * First, grab whatever is in our source/destination.
634		 * We'll obviously need this for reads, but also for
635		 * writes, since we'll be doing read/modify/write.
636		 */
637		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
638					ti_offset, &tmpval, 1);
639
640		/*
641		 * Next, translate this from little-endian to big-endian
642		 * (at least on i386 boxes).
643		 */
644		tmpval2 = ntohl(tmpval);
645
646		if (readdata) {
647			/*
648			 * If we're reading, just copy the leftover number
649			 * of bytes from the host byte order buffer to
650			 * the user's buffer.
651			 */
652			if (useraddr)
653				copyout(&tmpval2, ptr, resid);
654			else
655				bcopy(&tmpval2, ptr, resid);
656		} else {
657			/*
658			 * If we're writing, first copy the bytes to be
659			 * written into the network byte order buffer,
660			 * leaving the rest of the buffer with whatever was
661			 * originally in there.  Then, swap the bytes
662			 * around into host order and write them out.
663			 *
664			 * XXX KDM the read side of this has been verified
665			 * to work, but the write side of it has not been
666			 * verified.  So user beware.
667			 */
668			if (useraddr)
669				copyin(ptr, &tmpval2, resid);
670			else
671				bcopy(ptr, &tmpval2, resid);
672
673			tmpval = htonl(tmpval2);
674
675			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
676						 ti_offset, &tmpval, 1);
677		}
678	}
679
680	CSR_WRITE_4(sc, TI_WINBASE, origwin);
681
682	TI_UNLOCK(sc);
683
684	return(0);
685}
686
687static int
688ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
689	struct ti_softc		*sc;
690	u_int32_t		tigon_addr, len;
691	caddr_t			buf;
692	int			useraddr, readdata;
693	int			cpu;
694{
695	u_int32_t	segptr;
696	int		cnt;
697	u_int32_t	tmpval, tmpval2;
698	caddr_t		ptr;
699
700	/*
701	 * At the moment, we don't handle non-aligned cases, we just bail.
702	 * If this proves to be a problem, it will be fixed.
703	 */
704	if (tigon_addr & 0x3) {
705		printf("ti%d: ti_copy_scratch: tigon address %#x isn't "
706		       "word-aligned\n", sc->ti_unit, tigon_addr);
707		return(EINVAL);
708	}
709
710	if (len & 0x3) {
711		printf("ti%d: ti_copy_scratch: transfer length %d isn't "
712		       "word-aligned\n", sc->ti_unit, len);
713		return(EINVAL);
714	}
715
716	segptr = tigon_addr;
717	cnt = len;
718	ptr = buf;
719
720	TI_LOCK(sc);
721
722	while (cnt) {
723		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
724
725		if (readdata) {
726			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
727
728			tmpval = ntohl(tmpval2);
729
730			/*
731			 * Note:  I've used this debugging interface
732			 * extensively with Alteon's 12.3.15 firmware,
733			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
734			 *
735			 * When you compile the firmware without
736			 * optimization, which is necessary sometimes in
737			 * order to properly step through it, you sometimes
738			 * read out a bogus value of 0xc0017c instead of
739			 * whatever was supposed to be in that scratchpad
740			 * location.  That value is on the stack somewhere,
741			 * but I've never been able to figure out what was
742			 * causing the problem.
743			 *
744			 * The address seems to pop up in random places,
745			 * often not in the same place on two subsequent
746			 * reads.
747			 *
748			 * In any case, the underlying data doesn't seem
749			 * to be affected, just the value read out.
750			 *
751			 * KDM, 3/7/2000
752			 */
753
754			if (tmpval2 == 0xc0017c)
755				printf("ti%d: found 0xc0017c at %#x "
756				       "(tmpval2)\n", sc->ti_unit, segptr);
757
758			if (tmpval == 0xc0017c)
759				printf("ti%d: found 0xc0017c at %#x "
760				       "(tmpval)\n", sc->ti_unit, segptr);
761
762			if (useraddr)
763				copyout(&tmpval, ptr, 4);
764			else
765				bcopy(&tmpval, ptr, 4);
766		} else {
767			if (useraddr)
768				copyin(ptr, &tmpval2, 4);
769			else
770				bcopy(ptr, &tmpval2, 4);
771
772			tmpval = htonl(tmpval2);
773
774			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
775		}
776
777		cnt -= 4;
778		segptr += 4;
779		ptr += 4;
780	}
781
782	TI_UNLOCK(sc);
783
784	return(0);
785}
786
787static int
788ti_bcopy_swap(src, dst, len, swap_type)
789	const void	*src;
790	void		*dst;
791	size_t		len;
792	ti_swap_type	swap_type;
793{
794	const u_int8_t *tmpsrc;
795	u_int8_t *tmpdst;
796	size_t tmplen;
797
798	if (len & 0x3) {
799		printf("ti_bcopy_swap: length %d isn't 32-bit aligned\n",
800		       len);
801		return(-1);
802	}
803
804	tmpsrc = src;
805	tmpdst = dst;
806	tmplen = len;
807
808	while (tmplen) {
809		if (swap_type == TI_SWAP_NTOH)
810			*(u_int32_t *)tmpdst =
811				ntohl(*(const u_int32_t *)tmpsrc);
812		else
813			*(u_int32_t *)tmpdst =
814				htonl(*(const u_int32_t *)tmpsrc);
815
816		tmpsrc += 4;
817		tmpdst += 4;
818		tmplen -= 4;
819	}
820
821	return(0);
822}
823
824/*
825 * Load firmware image into the NIC. Check that the firmware revision
826 * is acceptable and see if we want the firmware for the Tigon 1 or
827 * Tigon 2.
828 */
829static void
830ti_loadfw(sc)
831	struct ti_softc		*sc;
832{
833	switch(sc->ti_hwrev) {
834	case TI_HWREV_TIGON:
835		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
836		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
837		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
838			printf("ti%d: firmware revision mismatch; want "
839			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
840			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
841			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
842			    tigonFwReleaseMinor, tigonFwReleaseFix);
843			return;
844		}
845		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
846		    (caddr_t)tigonFwText);
847		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
848		    (caddr_t)tigonFwData);
849		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
850		    (caddr_t)tigonFwRodata);
851		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
852		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
853		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
854		break;
855	case TI_HWREV_TIGON_II:
856		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
857		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
858		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
859			printf("ti%d: firmware revision mismatch; want "
860			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
861			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
862			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
863			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
864			return;
865		}
866		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
867		    (caddr_t)tigon2FwText);
868		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
869		    (caddr_t)tigon2FwData);
870		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
871		    (caddr_t)tigon2FwRodata);
872		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
873		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
874		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
875		break;
876	default:
877		printf("ti%d: can't load firmware: unknown hardware rev\n",
878		    sc->ti_unit);
879		break;
880	}
881
882	return;
883}
884
885/*
886 * Send the NIC a command via the command ring.
887 */
888static void
889ti_cmd(sc, cmd)
890	struct ti_softc		*sc;
891	struct ti_cmd_desc	*cmd;
892{
893	u_int32_t		index;
894
895	if (sc->ti_rdata->ti_cmd_ring == NULL)
896		return;
897
898	index = sc->ti_cmd_saved_prodidx;
899	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
900	TI_INC(index, TI_CMD_RING_CNT);
901	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
902	sc->ti_cmd_saved_prodidx = index;
903
904	return;
905}
906
907/*
908 * Send the NIC an extended command. The 'len' parameter specifies the
909 * number of command slots to include after the initial command.
910 */
911static void
912ti_cmd_ext(sc, cmd, arg, len)
913	struct ti_softc		*sc;
914	struct ti_cmd_desc	*cmd;
915	caddr_t			arg;
916	int			len;
917{
918	u_int32_t		index;
919	register int		i;
920
921	if (sc->ti_rdata->ti_cmd_ring == NULL)
922		return;
923
924	index = sc->ti_cmd_saved_prodidx;
925	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
926	TI_INC(index, TI_CMD_RING_CNT);
927	for (i = 0; i < len; i++) {
928		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
929		    *(u_int32_t *)(&arg[i * 4]));
930		TI_INC(index, TI_CMD_RING_CNT);
931	}
932	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
933	sc->ti_cmd_saved_prodidx = index;
934
935	return;
936}
937
938/*
939 * Handle events that have triggered interrupts.
940 */
941static void
942ti_handle_events(sc)
943	struct ti_softc		*sc;
944{
945	struct ti_event_desc	*e;
946
947	if (sc->ti_rdata->ti_event_ring == NULL)
948		return;
949
950	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
951		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
952		switch(e->ti_event) {
953		case TI_EV_LINKSTAT_CHANGED:
954			sc->ti_linkstat = e->ti_code;
955			if (e->ti_code == TI_EV_CODE_LINK_UP)
956				printf("ti%d: 10/100 link up\n", sc->ti_unit);
957			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
958				printf("ti%d: gigabit link up\n", sc->ti_unit);
959			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
960				printf("ti%d: link down\n", sc->ti_unit);
961			break;
962		case TI_EV_ERROR:
963			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
964				printf("ti%d: invalid command\n", sc->ti_unit);
965			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
966				printf("ti%d: unknown command\n", sc->ti_unit);
967			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
968				printf("ti%d: bad config data\n", sc->ti_unit);
969			break;
970		case TI_EV_FIRMWARE_UP:
971			ti_init2(sc);
972			break;
973		case TI_EV_STATS_UPDATED:
974			ti_stats_update(sc);
975			break;
976		case TI_EV_RESET_JUMBO_RING:
977		case TI_EV_MCAST_UPDATED:
978			/* Who cares. */
979			break;
980		default:
981			printf("ti%d: unknown event: %d\n",
982			    sc->ti_unit, e->ti_event);
983			break;
984		}
985		/* Advance the consumer index. */
986		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
987		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
988	}
989
990	return;
991}
992
993#ifdef TI_PRIVATE_JUMBOS
994
995/*
996 * Memory management for the jumbo receive ring is a pain in the
997 * butt. We need to allocate at least 9018 bytes of space per frame,
998 * _and_ it has to be contiguous (unless you use the extended
999 * jumbo descriptor format). Using malloc() all the time won't
1000 * work: malloc() allocates memory in powers of two, which means we
1001 * would end up wasting a considerable amount of space by allocating
1002 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
1003 * to do our own memory management.
1004 *
1005 * The driver needs to allocate a contiguous chunk of memory at boot
1006 * time. We then chop this up ourselves into 9K pieces and use them
1007 * as external mbuf storage.
1008 *
1009 * One issue here is how much memory to allocate. The jumbo ring has
1010 * 256 slots in it, but at 9K per slot than can consume over 2MB of
1011 * RAM. This is a bit much, especially considering we also need
1012 * RAM for the standard ring and mini ring (on the Tigon 2). To
1013 * save space, we only actually allocate enough memory for 64 slots
1014 * by default, which works out to between 500 and 600K. This can
1015 * be tuned by changing a #define in if_tireg.h.
1016 */
1017
1018static int
1019ti_alloc_jumbo_mem(sc)
1020	struct ti_softc		*sc;
1021{
1022	caddr_t			ptr;
1023	register int		i;
1024	struct ti_jpool_entry   *entry;
1025
1026	/* Grab a big chunk o' storage. */
1027	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
1028		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1029
1030	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
1031		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
1032		return(ENOBUFS);
1033	}
1034
1035	SLIST_INIT(&sc->ti_jfree_listhead);
1036	SLIST_INIT(&sc->ti_jinuse_listhead);
1037
1038	/*
1039	 * Now divide it up into 9K pieces and save the addresses
1040	 * in an array.
1041	 */
1042	ptr = sc->ti_cdata.ti_jumbo_buf;
1043	for (i = 0; i < TI_JSLOTS; i++) {
1044		sc->ti_cdata.ti_jslots[i] = ptr;
1045		ptr += TI_JLEN;
1046		entry = malloc(sizeof(struct ti_jpool_entry),
1047			       M_DEVBUF, M_NOWAIT);
1048		if (entry == NULL) {
1049			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
1050			           M_DEVBUF);
1051			sc->ti_cdata.ti_jumbo_buf = NULL;
1052			printf("ti%d: no memory for jumbo "
1053			    "buffer queue!\n", sc->ti_unit);
1054			return(ENOBUFS);
1055		}
1056		entry->slot = i;
1057		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1058	}
1059
1060	return(0);
1061}
1062
1063/*
1064 * Allocate a jumbo buffer.
1065 */
1066static void *ti_jalloc(sc)
1067	struct ti_softc		*sc;
1068{
1069	struct ti_jpool_entry   *entry;
1070
1071	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1072
1073	if (entry == NULL) {
1074		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
1075		return(NULL);
1076	}
1077
1078	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1079	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1080	return(sc->ti_cdata.ti_jslots[entry->slot]);
1081}
1082
1083/*
1084 * Release a jumbo buffer.
1085 */
1086static void
1087ti_jfree(buf, args)
1088	void			*buf;
1089	void			*args;
1090{
1091	struct ti_softc		*sc;
1092	int		        i;
1093	struct ti_jpool_entry   *entry;
1094
1095	/* Extract the softc struct pointer. */
1096	sc = (struct ti_softc *)args;
1097
1098	if (sc == NULL)
1099		panic("ti_jfree: didn't get softc pointer!");
1100
1101	/* calculate the slot this buffer belongs to */
1102	i = ((vm_offset_t)buf
1103	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1104
1105	if ((i < 0) || (i >= TI_JSLOTS))
1106		panic("ti_jfree: asked to free buffer that we don't manage!");
1107
1108	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1109	if (entry == NULL)
1110		panic("ti_jfree: buffer not in use!");
1111	entry->slot = i;
1112	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1113	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1114
1115	return;
1116}
1117
1118#endif /* TI_PRIVATE_JUMBOS */
1119
1120/*
1121 * Intialize a standard receive ring descriptor.
1122 */
1123static int
1124ti_newbuf_std(sc, i, m)
1125	struct ti_softc		*sc;
1126	int			i;
1127	struct mbuf		*m;
1128{
1129	struct mbuf		*m_new = NULL;
1130	struct ti_rx_desc	*r;
1131
1132	if (m == NULL) {
1133		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1134		if (m_new == NULL)
1135			return(ENOBUFS);
1136
1137		MCLGET(m_new, M_DONTWAIT);
1138		if (!(m_new->m_flags & M_EXT)) {
1139			m_freem(m_new);
1140			return(ENOBUFS);
1141		}
1142		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1143	} else {
1144		m_new = m;
1145		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1146		m_new->m_data = m_new->m_ext.ext_buf;
1147	}
1148
1149	m_adj(m_new, ETHER_ALIGN);
1150	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1151	r = &sc->ti_rdata->ti_rx_std_ring[i];
1152	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1153	r->ti_type = TI_BDTYPE_RECV_BD;
1154	r->ti_flags = 0;
1155	if (sc->arpcom.ac_if.if_hwassist)
1156		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1157	r->ti_len = m_new->m_len;
1158	r->ti_idx = i;
1159
1160	return(0);
1161}
1162
1163/*
1164 * Intialize a mini receive ring descriptor. This only applies to
1165 * the Tigon 2.
1166 */
1167static int
1168ti_newbuf_mini(sc, i, m)
1169	struct ti_softc		*sc;
1170	int			i;
1171	struct mbuf		*m;
1172{
1173	struct mbuf		*m_new = NULL;
1174	struct ti_rx_desc	*r;
1175
1176	if (m == NULL) {
1177		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1178		if (m_new == NULL) {
1179			return(ENOBUFS);
1180		}
1181		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1182	} else {
1183		m_new = m;
1184		m_new->m_data = m_new->m_pktdat;
1185		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1186	}
1187
1188	m_adj(m_new, ETHER_ALIGN);
1189	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1190	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1191	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1192	r->ti_type = TI_BDTYPE_RECV_BD;
1193	r->ti_flags = TI_BDFLAG_MINI_RING;
1194	if (sc->arpcom.ac_if.if_hwassist)
1195		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1196	r->ti_len = m_new->m_len;
1197	r->ti_idx = i;
1198
1199	return(0);
1200}
1201
1202#ifdef TI_PRIVATE_JUMBOS
1203
1204/*
1205 * Initialize a jumbo receive ring descriptor. This allocates
1206 * a jumbo buffer from the pool managed internally by the driver.
1207 */
1208static int
1209ti_newbuf_jumbo(sc, i, m)
1210	struct ti_softc		*sc;
1211	int			i;
1212	struct mbuf		*m;
1213{
1214	struct mbuf		*m_new = NULL;
1215	struct ti_rx_desc	*r;
1216
1217	if (m == NULL) {
1218		caddr_t			*buf = NULL;
1219
1220		/* Allocate the mbuf. */
1221		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1222		if (m_new == NULL) {
1223			return(ENOBUFS);
1224		}
1225
1226		/* Allocate the jumbo buffer */
1227		buf = ti_jalloc(sc);
1228		if (buf == NULL) {
1229			m_freem(m_new);
1230			printf("ti%d: jumbo allocation failed "
1231			    "-- packet dropped!\n", sc->ti_unit);
1232			return(ENOBUFS);
1233		}
1234
1235		/* Attach the buffer to the mbuf. */
1236		m_new->m_data = (void *) buf;
1237		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1238		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1239		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1240	} else {
1241		m_new = m;
1242		m_new->m_data = m_new->m_ext.ext_buf;
1243		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1244	}
1245
1246	m_adj(m_new, ETHER_ALIGN);
1247	/* Set up the descriptor. */
1248	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1249	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1250	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1251	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1252	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1253	if (sc->arpcom.ac_if.if_hwassist)
1254		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1255	r->ti_len = m_new->m_len;
1256	r->ti_idx = i;
1257
1258	return(0);
1259}
1260
1261#else
1262#include <vm/vm_page.h>
1263
1264#if (PAGE_SIZE == 4096)
1265#define NPAYLOAD 2
1266#else
1267#define NPAYLOAD 1
1268#endif
1269
1270#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1271#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1272#define NFS_HDR_LEN (UDP_HDR_LEN)
1273static int HDR_LEN =  TCP_HDR_LEN;
1274
1275
1276 /*
1277  * Initialize a jumbo receive ring descriptor. This allocates
1278  * a jumbo buffer from the pool managed internally by the driver.
1279  */
1280static int
1281ti_newbuf_jumbo(sc, idx, m_old)
1282        struct ti_softc         *sc;
1283        int                     idx;
1284        struct mbuf             *m_old;
1285{
1286	struct mbuf		*cur, *m_new = NULL;
1287	struct mbuf		*m[3] = {NULL, NULL, NULL};
1288	struct ti_rx_desc_ext	*r;
1289	vm_page_t		frame;
1290				/* 1 extra buf to make nobufs easy*/
1291	caddr_t			buf[3] = {NULL, NULL, NULL};
1292	int			i;
1293
1294	if (m_old != NULL) {
1295		m_new = m_old;
1296		cur = m_old->m_next;
1297		for (i = 0; i <= NPAYLOAD; i++){
1298			m[i] = cur;
1299			cur = cur->m_next;
1300		}
1301	} else {
1302		/* Allocate the mbufs. */
1303		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1304		if (m_new == NULL) {
1305			printf("ti%d: mbuf allocation failed "
1306   			       "-- packet dropped!\n", sc->ti_unit);
1307			goto nobufs;
1308		}
1309		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1310		if (m[NPAYLOAD] == NULL) {
1311			printf("ti%d: cluster mbuf allocation failed "
1312			       "-- packet dropped!\n", sc->ti_unit);
1313			goto nobufs;
1314		}
1315		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1316		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1317			printf("ti%d: mbuf allocation failed "
1318			       "-- packet dropped!\n", sc->ti_unit);
1319			goto nobufs;
1320		}
1321		m[NPAYLOAD]->m_len = MCLBYTES;
1322
1323		for (i = 0; i < NPAYLOAD; i++){
1324			MGET(m[i], M_DONTWAIT, MT_DATA);
1325			if (m[i] == NULL) {
1326				printf("ti%d: mbuf allocation failed "
1327				       "-- packet dropped!\n", sc->ti_unit);
1328				goto nobufs;
1329			}
1330			if (!(frame = jumbo_pg_alloc())){
1331  				printf("ti%d: buffer allocation failed "
1332   				       "-- packet dropped!\n", sc->ti_unit);
1333				printf("      index %d page %d\n", idx, i);
1334   				goto nobufs;
1335			}
1336			buf[i] = jumbo_phys_to_kva(VM_PAGE_TO_PHYS(frame));
1337		}
1338		for (i = 0; i < NPAYLOAD; i++){
1339  		/* Attach the buffer to the mbuf. */
1340   			m[i]->m_data = (void *)buf[i];
1341			m[i]->m_len = PAGE_SIZE;
1342			MEXTADD(m[i], (void *)buf[i], PAGE_SIZE,
1343				jumbo_freem, NULL, 0, EXT_DISPOSABLE);
1344			m[i]->m_next = m[i+1];
1345		}
1346		/* link the buffers to the header */
1347		m_new->m_next = m[0];
1348		m_new->m_data += ETHER_ALIGN;
1349		if (sc->ti_hdrsplit)
1350			m_new->m_len = MHLEN - ETHER_ALIGN;
1351		else
1352   			m_new->m_len = HDR_LEN;
1353		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1354	}
1355
1356	/* Set up the descriptor. */
1357	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1358	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1359	TI_HOSTADDR(r->ti_addr0) = vtophys(mtod(m_new, caddr_t));
1360	r->ti_len0 = m_new->m_len;
1361
1362	TI_HOSTADDR(r->ti_addr1) = vtophys(mtod(m[0], caddr_t));
1363	r->ti_len1 = PAGE_SIZE;
1364
1365	TI_HOSTADDR(r->ti_addr2) = vtophys(mtod(m[1], caddr_t));
1366	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1367
1368	if (PAGE_SIZE == 4096) {
1369		TI_HOSTADDR(r->ti_addr3) = vtophys(mtod(m[2], caddr_t));
1370		r->ti_len3 = MCLBYTES;
1371	} else {
1372		r->ti_len3 = 0;
1373	}
1374        r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1375
1376        r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1377
1378	if (sc->arpcom.ac_if.if_hwassist)
1379		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1380
1381        r->ti_idx = idx;
1382
1383        return(0);
1384
1385 nobufs:
1386
1387	/*
1388	 * Warning! :
1389	 * This can only be called before the mbufs are strung together.
1390	 * If the mbufs are strung together, m_freem() will free the chain,
1391	 * so that the later mbufs will be freed multiple times.
1392	 */
1393        if (m_new)
1394                m_freem(m_new);
1395
1396        for(i = 0; i < 3; i++){
1397                if (m[i])
1398                        m_freem(m[i]);
1399                if (buf[i])
1400                        jumbo_pg_free((vm_offset_t)buf[i]);
1401        }
1402        return ENOBUFS;
1403}
1404#endif
1405
1406
1407
1408/*
1409 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1410 * that's 1MB or memory, which is a lot. For now, we fill only the first
1411 * 256 ring entries and hope that our CPU is fast enough to keep up with
1412 * the NIC.
1413 */
1414static int
1415ti_init_rx_ring_std(sc)
1416	struct ti_softc		*sc;
1417{
1418	register int		i;
1419	struct ti_cmd_desc	cmd;
1420
1421	for (i = 0; i < TI_SSLOTS; i++) {
1422		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1423			return(ENOBUFS);
1424	};
1425
1426	TI_UPDATE_STDPROD(sc, i - 1);
1427	sc->ti_std = i - 1;
1428
1429	return(0);
1430}
1431
1432static void
1433ti_free_rx_ring_std(sc)
1434	struct ti_softc		*sc;
1435{
1436	register int		i;
1437
1438	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1439		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1440			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1441			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1442		}
1443		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1444		    sizeof(struct ti_rx_desc));
1445	}
1446
1447	return;
1448}
1449
1450static int
1451ti_init_rx_ring_jumbo(sc)
1452	struct ti_softc		*sc;
1453{
1454	register int		i;
1455	struct ti_cmd_desc	cmd;
1456
1457	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1458		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1459			return(ENOBUFS);
1460	};
1461
1462	TI_UPDATE_JUMBOPROD(sc, i - 1);
1463	sc->ti_jumbo = i - 1;
1464
1465	return(0);
1466}
1467
1468static void
1469ti_free_rx_ring_jumbo(sc)
1470	struct ti_softc		*sc;
1471{
1472	register int		i;
1473
1474	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1475		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1476			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1477			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1478		}
1479		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1480		    sizeof(struct ti_rx_desc));
1481	}
1482
1483	return;
1484}
1485
1486static int
1487ti_init_rx_ring_mini(sc)
1488	struct ti_softc		*sc;
1489{
1490	register int		i;
1491
1492	for (i = 0; i < TI_MSLOTS; i++) {
1493		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1494			return(ENOBUFS);
1495	};
1496
1497	TI_UPDATE_MINIPROD(sc, i - 1);
1498	sc->ti_mini = i - 1;
1499
1500	return(0);
1501}
1502
1503static void
1504ti_free_rx_ring_mini(sc)
1505	struct ti_softc		*sc;
1506{
1507	register int		i;
1508
1509	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1510		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1511			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1512			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1513		}
1514		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1515		    sizeof(struct ti_rx_desc));
1516	}
1517
1518	return;
1519}
1520
1521static void
1522ti_free_tx_ring(sc)
1523	struct ti_softc		*sc;
1524{
1525	register int		i;
1526
1527	if (sc->ti_rdata->ti_tx_ring == NULL)
1528		return;
1529
1530	for (i = 0; i < TI_TX_RING_CNT; i++) {
1531		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1532			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1533			sc->ti_cdata.ti_tx_chain[i] = NULL;
1534		}
1535		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1536		    sizeof(struct ti_tx_desc));
1537	}
1538
1539	return;
1540}
1541
1542static int
1543ti_init_tx_ring(sc)
1544	struct ti_softc		*sc;
1545{
1546	sc->ti_txcnt = 0;
1547	sc->ti_tx_saved_considx = 0;
1548	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1549	return(0);
1550}
1551
1552/*
1553 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1554 * but we have to support the old way too so that Tigon 1 cards will
1555 * work.
1556 */
1557void
1558ti_add_mcast(sc, addr)
1559	struct ti_softc		*sc;
1560	struct ether_addr	*addr;
1561{
1562	struct ti_cmd_desc	cmd;
1563	u_int16_t		*m;
1564	u_int32_t		ext[2] = {0, 0};
1565
1566	m = (u_int16_t *)&addr->octet[0];
1567
1568	switch(sc->ti_hwrev) {
1569	case TI_HWREV_TIGON:
1570		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1571		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1572		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1573		break;
1574	case TI_HWREV_TIGON_II:
1575		ext[0] = htons(m[0]);
1576		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1577		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1578		break;
1579	default:
1580		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1581		break;
1582	}
1583
1584	return;
1585}
1586
1587void
1588ti_del_mcast(sc, addr)
1589	struct ti_softc		*sc;
1590	struct ether_addr	*addr;
1591{
1592	struct ti_cmd_desc	cmd;
1593	u_int16_t		*m;
1594	u_int32_t		ext[2] = {0, 0};
1595
1596	m = (u_int16_t *)&addr->octet[0];
1597
1598	switch(sc->ti_hwrev) {
1599	case TI_HWREV_TIGON:
1600		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1601		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1602		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1603		break;
1604	case TI_HWREV_TIGON_II:
1605		ext[0] = htons(m[0]);
1606		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1607		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1608		break;
1609	default:
1610		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1611		break;
1612	}
1613
1614	return;
1615}
1616
1617/*
1618 * Configure the Tigon's multicast address filter.
1619 *
1620 * The actual multicast table management is a bit of a pain, thanks to
1621 * slight brain damage on the part of both Alteon and us. With our
1622 * multicast code, we are only alerted when the multicast address table
1623 * changes and at that point we only have the current list of addresses:
1624 * we only know the current state, not the previous state, so we don't
1625 * actually know what addresses were removed or added. The firmware has
1626 * state, but we can't get our grubby mits on it, and there is no 'delete
1627 * all multicast addresses' command. Hence, we have to maintain our own
1628 * state so we know what addresses have been programmed into the NIC at
1629 * any given time.
1630 */
1631static void
1632ti_setmulti(sc)
1633	struct ti_softc		*sc;
1634{
1635	struct ifnet		*ifp;
1636	struct ifmultiaddr	*ifma;
1637	struct ti_cmd_desc	cmd;
1638	struct ti_mc_entry	*mc;
1639	u_int32_t		intrs;
1640
1641	ifp = &sc->arpcom.ac_if;
1642
1643	if (ifp->if_flags & IFF_ALLMULTI) {
1644		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1645		return;
1646	} else {
1647		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1648	}
1649
1650	/* Disable interrupts. */
1651	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1652	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1653
1654	/* First, zot all the existing filters. */
1655	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1656		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1657		ti_del_mcast(sc, &mc->mc_addr);
1658		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1659		free(mc, M_DEVBUF);
1660	}
1661
1662	/* Now program new ones. */
1663	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1664		if (ifma->ifma_addr->sa_family != AF_LINK)
1665			continue;
1666		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1667		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1668		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1669		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1670		ti_add_mcast(sc, &mc->mc_addr);
1671	}
1672
1673	/* Re-enable interrupts. */
1674	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1675
1676	return;
1677}
1678
1679/*
1680 * Check to see if the BIOS has configured us for a 64 bit slot when
1681 * we aren't actually in one. If we detect this condition, we can work
1682 * around it on the Tigon 2 by setting a bit in the PCI state register,
1683 * but for the Tigon 1 we must give up and abort the interface attach.
1684 */
1685static int ti_64bitslot_war(sc)
1686	struct ti_softc		*sc;
1687{
1688	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1689		CSR_WRITE_4(sc, 0x600, 0);
1690		CSR_WRITE_4(sc, 0x604, 0);
1691		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1692		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1693			if (sc->ti_hwrev == TI_HWREV_TIGON)
1694				return(EINVAL);
1695			else {
1696				TI_SETBIT(sc, TI_PCI_STATE,
1697				    TI_PCISTATE_32BIT_BUS);
1698				return(0);
1699			}
1700		}
1701	}
1702
1703	return(0);
1704}
1705
1706/*
1707 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1708 * self-test results.
1709 */
1710static int
1711ti_chipinit(sc)
1712	struct ti_softc		*sc;
1713{
1714	u_int32_t		cacheline;
1715	u_int32_t		pci_writemax = 0;
1716	u_int32_t		hdrsplit;
1717
1718	/* Initialize link to down state. */
1719	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1720
1721	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1722		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1723	else
1724		sc->arpcom.ac_if.if_hwassist = 0;
1725
1726	/* Set endianness before we access any non-PCI registers. */
1727#if BYTE_ORDER == BIG_ENDIAN
1728	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1729	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1730#else
1731	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1732	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1733#endif
1734
1735	/* Check the ROM failed bit to see if self-tests passed. */
1736	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1737		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1738		return(ENODEV);
1739	}
1740
1741	/* Halt the CPU. */
1742	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1743
1744	/* Figure out the hardware revision. */
1745	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1746	case TI_REV_TIGON_I:
1747		sc->ti_hwrev = TI_HWREV_TIGON;
1748		break;
1749	case TI_REV_TIGON_II:
1750		sc->ti_hwrev = TI_HWREV_TIGON_II;
1751		break;
1752	default:
1753		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1754		return(ENODEV);
1755	}
1756
1757	/* Do special setup for Tigon 2. */
1758	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1759		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1760		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1761		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1762	}
1763
1764	/*
1765	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1766	 * can't do header splitting.
1767	 */
1768#ifdef TI_JUMBO_HDRSPLIT
1769	if (sc->ti_hwrev != TI_HWREV_TIGON)
1770		sc->ti_hdrsplit = 1;
1771	else
1772		printf("ti%d: can't do header splitting on a Tigon I board\n",
1773		       sc->ti_unit);
1774#endif /* TI_JUMBO_HDRSPLIT */
1775
1776	/* Set up the PCI state register. */
1777	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1778	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1779		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1780	}
1781
1782	/* Clear the read/write max DMA parameters. */
1783	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1784	    TI_PCISTATE_READ_MAXDMA));
1785
1786	/* Get cache line size. */
1787	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1788
1789	/*
1790	 * If the system has set enabled the PCI memory write
1791	 * and invalidate command in the command register, set
1792	 * the write max parameter accordingly. This is necessary
1793	 * to use MWI with the Tigon 2.
1794	 */
1795	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1796		switch(cacheline) {
1797		case 1:
1798		case 4:
1799		case 8:
1800		case 16:
1801		case 32:
1802		case 64:
1803			break;
1804		default:
1805		/* Disable PCI memory write and invalidate. */
1806			if (bootverbose)
1807				printf("ti%d: cache line size %d not "
1808				    "supported; disabling PCI MWI\n",
1809				    sc->ti_unit, cacheline);
1810			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1811			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1812			break;
1813		}
1814	}
1815
1816#ifdef __brokenalpha__
1817	/*
1818	 * From the Alteon sample driver:
1819	 * Must insure that we do not cross an 8K (bytes) boundary
1820	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1821	 * restriction on some ALPHA platforms with early revision
1822	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1823	 */
1824	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1825#else
1826	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1827#endif
1828
1829	/* This sets the min dma param all the way up (0xff). */
1830	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1831
1832	if (sc->ti_hdrsplit)
1833		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1834	else
1835		hdrsplit = 0;
1836
1837	/* Configure DMA variables. */
1838#if BYTE_ORDER == BIG_ENDIAN
1839	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1840	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1841	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1842	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1843#else /* BYTE_ORDER */
1844	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1845	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1846	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1847#endif /* BYTE_ORDER */
1848
1849	/*
1850	 * Only allow 1 DMA channel to be active at a time.
1851	 * I don't think this is a good idea, but without it
1852	 * the firmware racks up lots of nicDmaReadRingFull
1853	 * errors.  This is not compatible with hardware checksums.
1854	 */
1855	if (sc->arpcom.ac_if.if_hwassist == 0)
1856		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1857
1858	/* Recommended settings from Tigon manual. */
1859	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1860	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1861
1862	if (ti_64bitslot_war(sc)) {
1863		printf("ti%d: bios thinks we're in a 64 bit slot, "
1864		    "but we aren't", sc->ti_unit);
1865		return(EINVAL);
1866	}
1867
1868	return(0);
1869}
1870
1871/*
1872 * Initialize the general information block and firmware, and
1873 * start the CPU(s) running.
1874 */
1875static int
1876ti_gibinit(sc)
1877	struct ti_softc		*sc;
1878{
1879	struct ti_rcb		*rcb;
1880	int			i;
1881	struct ifnet		*ifp;
1882
1883	ifp = &sc->arpcom.ac_if;
1884
1885	/* Disable interrupts for now. */
1886	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1887
1888	/* Tell the chip where to find the general information block. */
1889	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1890	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1891
1892	/* Load the firmware into SRAM. */
1893	ti_loadfw(sc);
1894
1895	/* Set up the contents of the general info and ring control blocks. */
1896
1897	/* Set up the event ring and producer pointer. */
1898	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1899
1900	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1901	rcb->ti_flags = 0;
1902	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1903	    vtophys(&sc->ti_ev_prodidx);
1904	sc->ti_ev_prodidx.ti_idx = 0;
1905	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1906	sc->ti_ev_saved_considx = 0;
1907
1908	/* Set up the command ring and producer mailbox. */
1909	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1910
1911	sc->ti_rdata->ti_cmd_ring =
1912	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1913	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1914	rcb->ti_flags = 0;
1915	rcb->ti_max_len = 0;
1916	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1917		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1918	}
1919	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1920	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1921	sc->ti_cmd_saved_prodidx = 0;
1922
1923	/*
1924	 * Assign the address of the stats refresh buffer.
1925	 * We re-use the current stats buffer for this to
1926	 * conserve memory.
1927	 */
1928	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1929	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1930
1931	/* Set up the standard receive ring. */
1932	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1933	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1934	rcb->ti_max_len = TI_FRAMELEN;
1935	rcb->ti_flags = 0;
1936	if (sc->arpcom.ac_if.if_hwassist)
1937		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1938		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1939	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1940
1941	/* Set up the jumbo receive ring. */
1942	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1943	TI_HOSTADDR(rcb->ti_hostaddr) =
1944	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1945
1946#ifdef TI_PRIVATE_JUMBOS
1947	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1948	rcb->ti_flags = 0;
1949#else
1950	rcb->ti_max_len = PAGE_SIZE;
1951	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
1952#endif
1953	if (sc->arpcom.ac_if.if_hwassist)
1954		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1955		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1956	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1957
1958	/*
1959	 * Set up the mini ring. Only activated on the
1960	 * Tigon 2 but the slot in the config block is
1961	 * still there on the Tigon 1.
1962	 */
1963	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1964	TI_HOSTADDR(rcb->ti_hostaddr) =
1965	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1966	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1967	if (sc->ti_hwrev == TI_HWREV_TIGON)
1968		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1969	else
1970		rcb->ti_flags = 0;
1971	if (sc->arpcom.ac_if.if_hwassist)
1972		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1973		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1974	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1975
1976	/*
1977	 * Set up the receive return ring.
1978	 */
1979	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1980	TI_HOSTADDR(rcb->ti_hostaddr) =
1981	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1982	rcb->ti_flags = 0;
1983	rcb->ti_max_len = TI_RETURN_RING_CNT;
1984	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1985	    vtophys(&sc->ti_return_prodidx);
1986
1987	/*
1988	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1989	 * of putting the transmit ring in the host's address space and
1990	 * letting the chip DMA it instead of leaving the ring in the NIC's
1991	 * memory and accessing it through the shared memory region. We
1992	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1993	 * so we have to revert to the shared memory scheme if we detect
1994	 * a Tigon 1 chip.
1995	 */
1996	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1997	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1998		sc->ti_rdata->ti_tx_ring_nic =
1999		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
2000	}
2001	bzero((char *)sc->ti_rdata->ti_tx_ring,
2002	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
2003	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
2004	if (sc->ti_hwrev == TI_HWREV_TIGON)
2005		rcb->ti_flags = 0;
2006	else
2007		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2008	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2009	if (sc->arpcom.ac_if.if_hwassist)
2010		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2011		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2012	rcb->ti_max_len = TI_TX_RING_CNT;
2013	if (sc->ti_hwrev == TI_HWREV_TIGON)
2014		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
2015	else
2016		TI_HOSTADDR(rcb->ti_hostaddr) =
2017		    vtophys(&sc->ti_rdata->ti_tx_ring);
2018	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
2019	    vtophys(&sc->ti_tx_considx);
2020
2021	/* Set up tuneables */
2022#if 0
2023	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2024		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2025		    (sc->ti_rx_coal_ticks / 10));
2026	else
2027#endif
2028		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2029	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2030	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2031	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2032	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2033	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2034
2035	/* Turn interrupts on. */
2036	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2037	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2038
2039	/* Start CPU. */
2040	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2041
2042	return(0);
2043}
2044
2045/*
2046 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2047 * against our list and return its name if we find a match.
2048 */
2049static int
2050ti_probe(dev)
2051	device_t		dev;
2052{
2053	struct ti_type		*t;
2054
2055	t = ti_devs;
2056
2057	while(t->ti_name != NULL) {
2058		if ((pci_get_vendor(dev) == t->ti_vid) &&
2059		    (pci_get_device(dev) == t->ti_did)) {
2060			device_set_desc(dev, t->ti_name);
2061			return(0);
2062		}
2063		t++;
2064	}
2065
2066	return(ENXIO);
2067}
2068
2069#ifdef KLD_MODULE
2070static int
2071log2rndup(int len)
2072{
2073	int log2size = 0, t = len;
2074	while (t > 1) {
2075		log2size++;
2076		t >>= 1;
2077	}
2078	if (len != (1 << log2size))
2079		log2size++;
2080	return log2size;
2081}
2082
2083static int
2084ti_mbuf_sanity(device_t dev)
2085{
2086	if ((mbstat.m_msize != MSIZE) || mbstat.m_mclbytes != MCLBYTES){
2087		device_printf(dev, "\n");
2088		device_printf(dev, "This module was compiled with "
2089				   "-DMCLSHIFT=%d -DMSIZE=%d\n", MCLSHIFT,
2090				   MSIZE);
2091		device_printf(dev, "The kernel was compiled with MCLSHIFT=%d,"
2092			      " MSIZE=%d\n", log2rndup(mbstat.m_mclbytes),
2093			      (int)mbstat.m_msize);
2094		return(EINVAL);
2095	}
2096	return(0);
2097}
2098#endif
2099
2100
2101static int
2102ti_attach(dev)
2103	device_t		dev;
2104{
2105	u_int32_t		command;
2106	struct ifnet		*ifp;
2107	struct ti_softc		*sc;
2108	int			unit, error = 0, rid;
2109
2110	sc = NULL;
2111
2112#ifdef KLD_MODULE
2113	if (ti_mbuf_sanity(dev)){
2114		device_printf(dev, "Module mbuf constants do not match "
2115			      "kernel constants!\n");
2116		device_printf(dev, "Rebuild the module or the kernel so "
2117			      "they match\n");
2118		device_printf(dev, "\n");
2119		error = EINVAL;
2120		goto fail;
2121	}
2122#endif
2123
2124	sc = device_get_softc(dev);
2125	unit = device_get_unit(dev);
2126	bzero(sc, sizeof(struct ti_softc));
2127
2128	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2129	    MTX_DEF | MTX_RECURSE);
2130	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM;
2131	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
2132
2133	/*
2134	 * Map control/status registers.
2135	 */
2136	pci_enable_busmaster(dev);
2137	pci_enable_io(dev, SYS_RES_MEMORY);
2138	command = pci_read_config(dev, PCIR_COMMAND, 4);
2139
2140	if (!(command & PCIM_CMD_MEMEN)) {
2141		printf("ti%d: failed to enable memory mapping!\n", unit);
2142		error = ENXIO;
2143		goto fail;
2144	}
2145
2146	rid = TI_PCI_LOMEM;
2147	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
2148	    0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
2149
2150	if (sc->ti_res == NULL) {
2151		printf ("ti%d: couldn't map memory\n", unit);
2152		error = ENXIO;
2153		goto fail;
2154	}
2155
2156	sc->ti_btag = rman_get_bustag(sc->ti_res);
2157	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2158	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
2159
2160	/* Allocate interrupt */
2161	rid = 0;
2162
2163	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
2164	    RF_SHAREABLE | RF_ACTIVE);
2165
2166	if (sc->ti_irq == NULL) {
2167		printf("ti%d: couldn't map interrupt\n", unit);
2168		error = ENXIO;
2169		goto fail;
2170	}
2171
2172	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
2173	   ti_intr, sc, &sc->ti_intrhand);
2174
2175	if (error) {
2176		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2177		bus_release_resource(dev, SYS_RES_MEMORY,
2178		    TI_PCI_LOMEM, sc->ti_res);
2179		printf("ti%d: couldn't set up irq\n", unit);
2180		goto fail;
2181	}
2182
2183	sc->ti_unit = unit;
2184
2185	if (ti_chipinit(sc)) {
2186		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2187		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2188		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2189		bus_release_resource(dev, SYS_RES_MEMORY,
2190		    TI_PCI_LOMEM, sc->ti_res);
2191		error = ENXIO;
2192		goto fail;
2193	}
2194
2195	/* Zero out the NIC's on-board SRAM. */
2196	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
2197
2198	/* Init again -- zeroing memory may have clobbered some registers. */
2199	if (ti_chipinit(sc)) {
2200		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2201		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2202		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2203		bus_release_resource(dev, SYS_RES_MEMORY,
2204		    TI_PCI_LOMEM, sc->ti_res);
2205		error = ENXIO;
2206		goto fail;
2207	}
2208
2209	/*
2210	 * Get station address from the EEPROM. Note: the manual states
2211	 * that the MAC address is at offset 0x8c, however the data is
2212	 * stored as two longwords (since that's how it's loaded into
2213	 * the NIC). This means the MAC address is actually preceded
2214	 * by two zero bytes. We need to skip over those.
2215	 */
2216	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
2217				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2218		printf("ti%d: failed to read station address\n", unit);
2219		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2220		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2221		bus_release_resource(dev, SYS_RES_MEMORY,
2222		    TI_PCI_LOMEM, sc->ti_res);
2223		error = ENXIO;
2224		goto fail;
2225	}
2226
2227	/*
2228	 * A Tigon chip was detected. Inform the world.
2229	 */
2230	printf("ti%d: Ethernet address: %6D\n", unit,
2231				sc->arpcom.ac_enaddr, ":");
2232
2233	/* Allocate the general information block and ring buffers. */
2234	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
2235	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
2236
2237	if (sc->ti_rdata == NULL) {
2238		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2239		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2240		bus_release_resource(dev, SYS_RES_MEMORY,
2241		    TI_PCI_LOMEM, sc->ti_res);
2242		error = ENXIO;
2243		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
2244		goto fail;
2245	}
2246
2247	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2248
2249	/* Try to allocate memory for jumbo buffers. */
2250#ifdef TI_PRIVATE_JUMBOS
2251	if (ti_alloc_jumbo_mem(sc)) {
2252		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
2253		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2254		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2255		bus_release_resource(dev, SYS_RES_MEMORY,
2256		    TI_PCI_LOMEM, sc->ti_res);
2257		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
2258		    M_DEVBUF);
2259		error = ENXIO;
2260		goto fail;
2261	}
2262#else
2263	if (!jumbo_vm_init()) {
2264		printf("ti%d: VM initialization failed!\n", sc->ti_unit);
2265		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2266		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2267		bus_release_resource(dev, SYS_RES_MEMORY,
2268		    TI_PCI_LOMEM, sc->ti_res);
2269		free(sc->ti_rdata, M_DEVBUF);
2270		error = ENOMEM;
2271		goto fail;
2272	}
2273#endif
2274
2275	/*
2276	 * We really need a better way to tell a 1000baseTX card
2277	 * from a 1000baseSX one, since in theory there could be
2278	 * OEMed 1000baseTX cards from lame vendors who aren't
2279	 * clever enough to change the PCI ID. For the moment
2280	 * though, the AceNIC is the only copper card available.
2281	 */
2282	if (pci_get_vendor(dev) == ALT_VENDORID &&
2283	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2284		sc->ti_copper = 1;
2285	/* Ok, it's not the only copper card available. */
2286	if (pci_get_vendor(dev) == NG_VENDORID &&
2287	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2288		sc->ti_copper = 1;
2289
2290	/* Set default tuneable values. */
2291	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2292#if 0
2293	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2294#endif
2295	sc->ti_rx_coal_ticks = 170;
2296	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2297	sc->ti_rx_max_coal_bds = 64;
2298#if 0
2299	sc->ti_tx_max_coal_bds = 128;
2300#endif
2301	sc->ti_tx_max_coal_bds = 32;
2302	sc->ti_tx_buf_ratio = 21;
2303
2304	/* Set up ifnet structure */
2305	ifp = &sc->arpcom.ac_if;
2306	ifp->if_softc = sc;
2307	ifp->if_unit = sc->ti_unit;
2308	ifp->if_name = "ti";
2309	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2310	tis[unit] = sc;
2311	ifp->if_ioctl = ti_ioctl;
2312	ifp->if_output = ether_output;
2313	ifp->if_start = ti_start;
2314	ifp->if_watchdog = ti_watchdog;
2315	ifp->if_init = ti_init;
2316	ifp->if_mtu = ETHERMTU;
2317	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2318
2319	/* Set up ifmedia support. */
2320	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2321	if (sc->ti_copper) {
2322		/*
2323		 * Copper cards allow manual 10/100 mode selection,
2324		 * but not manual 1000baseTX mode selection. Why?
2325		 * Becuase currently there's no way to specify the
2326		 * master/slave setting through the firmware interface,
2327		 * so Alteon decided to just bag it and handle it
2328		 * via autonegotiation.
2329		 */
2330		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2331		ifmedia_add(&sc->ifmedia,
2332		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2333		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2334		ifmedia_add(&sc->ifmedia,
2335		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2336		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2337		ifmedia_add(&sc->ifmedia,
2338		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2339	} else {
2340		/* Fiber cards don't support 10/100 modes. */
2341		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2342		ifmedia_add(&sc->ifmedia,
2343		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2344	}
2345	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2346	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2347
2348	/*
2349	 * We're assuming here that card initialization is a sequential
2350	 * thing.  If it isn't, multiple cards probing at the same time
2351	 * could stomp on the list of softcs here.
2352	 */
2353	/*
2354	 * If this is the first card to be initialized, initialize the
2355	 * softc queue.
2356	 */
2357	if (unit == 0)
2358		STAILQ_INIT(&ti_sc_list);
2359
2360	STAILQ_INSERT_TAIL(&ti_sc_list, sc, ti_links);
2361
2362	/* Register the device */
2363	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2364			   0600, "ti%d", sc->ti_unit);
2365
2366	/*
2367	 * Call MI attach routine.
2368	 */
2369	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
2370	return(0);
2371
2372fail:
2373	mtx_destroy(&sc->ti_mtx);
2374	return(error);
2375}
2376
2377/*
2378 * Verify that our character special device is not currently
2379 * open.  Also track down any cached vnodes & kill them before
2380 * the module is unloaded
2381 */
2382static int
2383ti_unref_special(device_t dev)
2384{
2385	struct vnode *ti_vn;
2386	int count;
2387	struct ti_softc *sc = sc = device_get_softc(dev);
2388
2389	if (!vfinddev(sc->dev, VCHR, &ti_vn)) {
2390		return 0;
2391	}
2392
2393	if ((count = vcount(ti_vn))) {
2394		device_printf(dev, "%d refs to special device, "
2395			      "denying unload\n", count);
2396		return count;
2397	}
2398	/* now we know that there's a vnode in the cache. We hunt it
2399	   down and kill it now, before unloading */
2400	vgone(ti_vn);
2401	return(0);
2402}
2403
2404
2405static int
2406ti_detach(dev)
2407	device_t		dev;
2408{
2409	struct ti_softc		*sc;
2410	struct ifnet		*ifp;
2411
2412	if (ti_unref_special(dev))
2413		return EBUSY;
2414
2415	sc = device_get_softc(dev);
2416	TI_LOCK(sc);
2417	ifp = &sc->arpcom.ac_if;
2418
2419	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
2420	ti_stop(sc);
2421
2422	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2423	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2424	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
2425
2426#ifdef TI_PRIVATE_JUMBOS
2427	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
2428#endif
2429	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
2430	ifmedia_removeall(&sc->ifmedia);
2431
2432	TI_UNLOCK(sc);
2433	mtx_destroy(&sc->ti_mtx);
2434
2435	return(0);
2436}
2437
2438#ifdef TI_JUMBO_HDRSPLIT
2439/*
2440 * If hdr_len is 0, that means that header splitting wasn't done on
2441 * this packet for some reason.  The two most likely reasons are that
2442 * the protocol isn't a supported protocol for splitting, or this
2443 * packet had a fragment offset that wasn't 0.
2444 *
2445 * The header length, if it is non-zero, will always be the length of
2446 * the headers on the packet, but that length could be longer than the
2447 * first mbuf.  So we take the minimum of the two as the actual
2448 * length.
2449 */
2450static __inline void
2451ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2452{
2453	int i = 0;
2454	int lengths[4] = {0, 0, 0, 0};
2455	struct mbuf *m, *mp;
2456
2457	if (hdr_len != 0)
2458		top->m_len = min(hdr_len, top->m_len);
2459	pkt_len -= top->m_len;
2460	lengths[i++] = top->m_len;
2461
2462	mp = top;
2463	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2464		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2465		pkt_len -= m->m_len;
2466		lengths[i++] = m->m_len;
2467		mp = m;
2468	}
2469
2470#if 0
2471	if (hdr_len != 0)
2472		printf("got split packet: ");
2473	else
2474		printf("got non-split packet: ");
2475
2476	printf("%d,%d,%d,%d = %d\n", lengths[0],
2477	    lengths[1], lengths[2], lengths[3],
2478	    lengths[0] + lengths[1] + lengths[2] +
2479	    lengths[3]);
2480#endif
2481
2482	if (pkt_len)
2483		panic("header splitting didn't");
2484
2485	if (m) {
2486		m_freem(m);
2487		mp->m_next = NULL;
2488
2489	}
2490	if (mp->m_next != NULL)
2491		panic("ti_hdr_split: last mbuf in chain should be null");
2492}
2493#endif /* TI_JUMBO_HDRSPLIT */
2494
2495/*
2496 * Frame reception handling. This is called if there's a frame
2497 * on the receive return list.
2498 *
2499 * Note: we have to be able to handle three possibilities here:
2500 * 1) the frame is from the mini receive ring (can only happen)
2501 *    on Tigon 2 boards)
2502 * 2) the frame is from the jumbo recieve ring
2503 * 3) the frame is from the standard receive ring
2504 */
2505
2506static void
2507ti_rxeof(sc)
2508	struct ti_softc		*sc;
2509{
2510	struct ifnet		*ifp;
2511	struct ti_cmd_desc	cmd;
2512
2513	ifp = &sc->arpcom.ac_if;
2514
2515	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2516		struct ti_rx_desc	*cur_rx;
2517		u_int32_t		rxidx;
2518		struct ether_header	*eh;
2519		struct mbuf		*m = NULL;
2520		u_int16_t		vlan_tag = 0;
2521		int			have_tag = 0;
2522
2523		cur_rx =
2524		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2525		rxidx = cur_rx->ti_idx;
2526		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2527
2528		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2529			have_tag = 1;
2530			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2531		}
2532
2533		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2534
2535			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2536			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2537			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2538			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2539				ifp->if_ierrors++;
2540				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2541				continue;
2542			}
2543			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2544				ifp->if_ierrors++;
2545				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2546				continue;
2547			}
2548#ifdef TI_PRIVATE_JUMBOS
2549                        m->m_len = cur_rx->ti_len;
2550#else /* TI_PRIVATE_JUMBOS */
2551#ifdef TI_JUMBO_HDRSPLIT
2552			if (sc->ti_hdrsplit)
2553				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2554					     cur_rx->ti_len, rxidx);
2555			else
2556#endif /* TI_JUMBO_HDRSPLIT */
2557                        	m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2558#endif /* TI_PRIVATE_JUMBOS */
2559		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2560			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2561			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2562			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2563			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2564				ifp->if_ierrors++;
2565				ti_newbuf_mini(sc, sc->ti_mini, m);
2566				continue;
2567			}
2568			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2569				ifp->if_ierrors++;
2570				ti_newbuf_mini(sc, sc->ti_mini, m);
2571				continue;
2572			}
2573			m->m_len = cur_rx->ti_len;
2574		} else {
2575			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2576			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2577			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2578			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2579				ifp->if_ierrors++;
2580				ti_newbuf_std(sc, sc->ti_std, m);
2581				continue;
2582			}
2583			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2584				ifp->if_ierrors++;
2585				ti_newbuf_std(sc, sc->ti_std, m);
2586				continue;
2587			}
2588			m->m_len = cur_rx->ti_len;
2589		}
2590
2591		m->m_pkthdr.len = cur_rx->ti_len;
2592		ifp->if_ipackets++;
2593		eh = mtod(m, struct ether_header *);
2594		m->m_pkthdr.rcvif = ifp;
2595
2596		/* Remove header from mbuf and pass it on. */
2597		m_adj(m, sizeof(struct ether_header));
2598
2599		if (ifp->if_hwassist) {
2600			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2601			    CSUM_DATA_VALID;
2602			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2603				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2604			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2605		}
2606
2607		/*
2608		 * If we received a packet with a vlan tag, pass it
2609		 * to vlan_input() instead of ether_input().
2610		 */
2611		if (have_tag) {
2612			VLAN_INPUT_TAG(eh, m, vlan_tag);
2613			have_tag = vlan_tag = 0;
2614			continue;
2615		}
2616		ether_input(ifp, eh, m);
2617	}
2618
2619	/* Only necessary on the Tigon 1. */
2620	if (sc->ti_hwrev == TI_HWREV_TIGON)
2621		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2622		    sc->ti_rx_saved_considx);
2623
2624	TI_UPDATE_STDPROD(sc, sc->ti_std);
2625	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2626	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2627
2628	return;
2629}
2630
2631static void
2632ti_txeof(sc)
2633	struct ti_softc		*sc;
2634{
2635	struct ti_tx_desc	*cur_tx = NULL;
2636	struct ifnet		*ifp;
2637
2638	ifp = &sc->arpcom.ac_if;
2639
2640	/*
2641	 * Go through our tx ring and free mbufs for those
2642	 * frames that have been sent.
2643	 */
2644	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2645		u_int32_t		idx = 0;
2646
2647		idx = sc->ti_tx_saved_considx;
2648		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2649			if (idx > 383)
2650				CSR_WRITE_4(sc, TI_WINBASE,
2651				    TI_TX_RING_BASE + 6144);
2652			else if (idx > 255)
2653				CSR_WRITE_4(sc, TI_WINBASE,
2654				    TI_TX_RING_BASE + 4096);
2655			else if (idx > 127)
2656				CSR_WRITE_4(sc, TI_WINBASE,
2657				    TI_TX_RING_BASE + 2048);
2658			else
2659				CSR_WRITE_4(sc, TI_WINBASE,
2660				    TI_TX_RING_BASE);
2661			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2662		} else
2663			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2664		if (cur_tx->ti_flags & TI_BDFLAG_END)
2665			ifp->if_opackets++;
2666		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2667			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2668			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2669		}
2670		sc->ti_txcnt--;
2671		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2672		ifp->if_timer = 0;
2673	}
2674
2675	if (cur_tx != NULL)
2676		ifp->if_flags &= ~IFF_OACTIVE;
2677
2678	return;
2679}
2680
2681static void
2682ti_intr(xsc)
2683	void			*xsc;
2684{
2685	struct ti_softc		*sc;
2686	struct ifnet		*ifp;
2687
2688	sc = xsc;
2689	TI_LOCK(sc);
2690	ifp = &sc->arpcom.ac_if;
2691
2692/*#ifdef notdef*/
2693	/* Avoid this for now -- checking this register is expensive. */
2694	/* Make sure this is really our interrupt. */
2695	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2696		TI_UNLOCK(sc);
2697		return;
2698	}
2699/*#endif*/
2700
2701	/* Ack interrupt and stop others from occuring. */
2702	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2703
2704	if (ifp->if_flags & IFF_RUNNING) {
2705		/* Check RX return ring producer/consumer */
2706		ti_rxeof(sc);
2707
2708		/* Check TX ring producer/consumer */
2709		ti_txeof(sc);
2710	}
2711
2712	ti_handle_events(sc);
2713
2714	/* Re-enable interrupts. */
2715	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2716
2717	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2718		ti_start(ifp);
2719
2720	TI_UNLOCK(sc);
2721
2722	return;
2723}
2724
2725static void
2726ti_stats_update(sc)
2727	struct ti_softc		*sc;
2728{
2729	struct ifnet		*ifp;
2730
2731	ifp = &sc->arpcom.ac_if;
2732
2733	ifp->if_collisions +=
2734	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2735	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2736	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2737	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2738	   ifp->if_collisions;
2739
2740	return;
2741}
2742
2743/*
2744 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2745 * pointers to descriptors.
2746 */
2747static int
2748ti_encap(sc, m_head, txidx)
2749	struct ti_softc		*sc;
2750	struct mbuf		*m_head;
2751	u_int32_t		*txidx;
2752{
2753	struct ti_tx_desc	*f = NULL;
2754	struct mbuf		*m;
2755	u_int32_t		frag, cur, cnt = 0;
2756	u_int16_t		csum_flags = 0;
2757	struct ifvlan		*ifv = NULL;
2758
2759	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2760	    m_head->m_pkthdr.rcvif != NULL &&
2761	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2762		ifv = m_head->m_pkthdr.rcvif->if_softc;
2763
2764	m = m_head;
2765	cur = frag = *txidx;
2766
2767	if (m_head->m_pkthdr.csum_flags) {
2768		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2769			csum_flags |= TI_BDFLAG_IP_CKSUM;
2770		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2771			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2772		if (m_head->m_flags & M_LASTFRAG)
2773			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2774		else if (m_head->m_flags & M_FRAG)
2775			csum_flags |= TI_BDFLAG_IP_FRAG;
2776	}
2777	/*
2778 	 * Start packing the mbufs in this chain into
2779	 * the fragment pointers. Stop when we run out
2780 	 * of fragments or hit the end of the mbuf chain.
2781	 */
2782	for (m = m_head; m != NULL; m = m->m_next) {
2783		if (m->m_len != 0) {
2784			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2785				if (frag > 383)
2786					CSR_WRITE_4(sc, TI_WINBASE,
2787					    TI_TX_RING_BASE + 6144);
2788				else if (frag > 255)
2789					CSR_WRITE_4(sc, TI_WINBASE,
2790					    TI_TX_RING_BASE + 4096);
2791				else if (frag > 127)
2792					CSR_WRITE_4(sc, TI_WINBASE,
2793					    TI_TX_RING_BASE + 2048);
2794				else
2795					CSR_WRITE_4(sc, TI_WINBASE,
2796					    TI_TX_RING_BASE);
2797				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2798			} else
2799				f = &sc->ti_rdata->ti_tx_ring[frag];
2800			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2801				break;
2802			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2803			f->ti_len = m->m_len;
2804			f->ti_flags = csum_flags;
2805
2806			if (ifv != NULL) {
2807				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2808				f->ti_vlan_tag = ifv->ifv_tag & 0xfff;
2809			} else {
2810				f->ti_vlan_tag = 0;
2811			}
2812
2813			/*
2814			 * Sanity check: avoid coming within 16 descriptors
2815			 * of the end of the ring.
2816			 */
2817			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2818				return(ENOBUFS);
2819			cur = frag;
2820			TI_INC(frag, TI_TX_RING_CNT);
2821			cnt++;
2822		}
2823	}
2824
2825	if (m != NULL)
2826		return(ENOBUFS);
2827
2828	if (frag == sc->ti_tx_saved_considx)
2829		return(ENOBUFS);
2830
2831	if (sc->ti_hwrev == TI_HWREV_TIGON)
2832		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2833	            TI_BDFLAG_END;
2834	else
2835		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2836	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2837	sc->ti_txcnt += cnt;
2838
2839	*txidx = frag;
2840
2841	return(0);
2842}
2843
2844/*
2845 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2846 * to the mbuf data regions directly in the transmit descriptors.
2847 */
2848static void
2849ti_start(ifp)
2850	struct ifnet		*ifp;
2851{
2852	struct ti_softc		*sc;
2853	struct mbuf		*m_head = NULL;
2854	u_int32_t		prodidx = 0;
2855
2856	sc = ifp->if_softc;
2857	TI_LOCK(sc);
2858
2859	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2860
2861	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2862		IF_DEQUEUE(&ifp->if_snd, m_head);
2863		if (m_head == NULL)
2864			break;
2865
2866		/*
2867		 * XXX
2868		 * safety overkill.  If this is a fragmented packet chain
2869		 * with delayed TCP/UDP checksums, then only encapsulate
2870		 * it if we have enough descriptors to handle the entire
2871		 * chain at once.
2872		 * (paranoia -- may not actually be needed)
2873		 */
2874		if (m_head->m_flags & M_FIRSTFRAG &&
2875		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2876			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2877			    m_head->m_pkthdr.csum_data + 16) {
2878				IF_PREPEND(&ifp->if_snd, m_head);
2879				ifp->if_flags |= IFF_OACTIVE;
2880				break;
2881			}
2882		}
2883
2884		/*
2885		 * Pack the data into the transmit ring. If we
2886		 * don't have room, set the OACTIVE flag and wait
2887		 * for the NIC to drain the ring.
2888		 */
2889		if (ti_encap(sc, m_head, &prodidx)) {
2890			IF_PREPEND(&ifp->if_snd, m_head);
2891			ifp->if_flags |= IFF_OACTIVE;
2892			break;
2893		}
2894
2895		/*
2896		 * If there's a BPF listener, bounce a copy of this frame
2897		 * to him.
2898		 */
2899		if (ifp->if_bpf)
2900			bpf_mtap(ifp, m_head);
2901	}
2902
2903	/* Transmit */
2904	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2905
2906	/*
2907	 * Set a timeout in case the chip goes out to lunch.
2908	 */
2909	ifp->if_timer = 5;
2910	TI_UNLOCK(sc);
2911
2912	return;
2913}
2914
2915static void
2916ti_init(xsc)
2917	void			*xsc;
2918{
2919	struct ti_softc		*sc = xsc;
2920
2921	/* Cancel pending I/O and flush buffers. */
2922	ti_stop(sc);
2923
2924	TI_LOCK(sc);
2925	/* Init the gen info block, ring control blocks and firmware. */
2926	if (ti_gibinit(sc)) {
2927		printf("ti%d: initialization failure\n", sc->ti_unit);
2928		TI_UNLOCK(sc);
2929		return;
2930	}
2931
2932	TI_UNLOCK(sc);
2933
2934	return;
2935}
2936
2937static void ti_init2(sc)
2938	struct ti_softc		*sc;
2939{
2940	struct ti_cmd_desc	cmd;
2941	struct ifnet		*ifp;
2942	u_int16_t		*m;
2943	struct ifmedia		*ifm;
2944	int			tmp;
2945
2946	ifp = &sc->arpcom.ac_if;
2947
2948	/* Specify MTU and interface index. */
2949	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2950	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2951	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2952	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2953
2954	/* Load our MAC address. */
2955	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2956	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2957	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2958	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2959
2960	/* Enable or disable promiscuous mode as needed. */
2961	if (ifp->if_flags & IFF_PROMISC) {
2962		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2963	} else {
2964		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2965	}
2966
2967	/* Program multicast filter. */
2968	ti_setmulti(sc);
2969
2970	/*
2971	 * If this is a Tigon 1, we should tell the
2972	 * firmware to use software packet filtering.
2973	 */
2974	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2975		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2976	}
2977
2978	/* Init RX ring. */
2979	ti_init_rx_ring_std(sc);
2980
2981	/* Init jumbo RX ring. */
2982	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2983		ti_init_rx_ring_jumbo(sc);
2984
2985	/*
2986	 * If this is a Tigon 2, we can also configure the
2987	 * mini ring.
2988	 */
2989	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2990		ti_init_rx_ring_mini(sc);
2991
2992	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2993	sc->ti_rx_saved_considx = 0;
2994
2995	/* Init TX ring. */
2996	ti_init_tx_ring(sc);
2997
2998	/* Tell firmware we're alive. */
2999	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3000
3001	/* Enable host interrupts. */
3002	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3003
3004	ifp->if_flags |= IFF_RUNNING;
3005	ifp->if_flags &= ~IFF_OACTIVE;
3006
3007	/*
3008	 * Make sure to set media properly. We have to do this
3009	 * here since we have to issue commands in order to set
3010	 * the link negotiation and we can't issue commands until
3011	 * the firmware is running.
3012	 */
3013	ifm = &sc->ifmedia;
3014	tmp = ifm->ifm_media;
3015	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3016	ti_ifmedia_upd(ifp);
3017	ifm->ifm_media = tmp;
3018
3019	return;
3020}
3021
3022/*
3023 * Set media options.
3024 */
3025static int
3026ti_ifmedia_upd(ifp)
3027	struct ifnet		*ifp;
3028{
3029	struct ti_softc		*sc;
3030	struct ifmedia		*ifm;
3031	struct ti_cmd_desc	cmd;
3032	u_int32_t		flowctl;
3033
3034	sc = ifp->if_softc;
3035	ifm = &sc->ifmedia;
3036
3037	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3038		return(EINVAL);
3039
3040	flowctl = 0;
3041
3042	switch(IFM_SUBTYPE(ifm->ifm_media)) {
3043	case IFM_AUTO:
3044		/*
3045		 * Transmit flow control doesn't work on the Tigon 1.
3046		 */
3047		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3048
3049		/*
3050		 * Transmit flow control can also cause problems on the
3051		 * Tigon 2, apparantly with both the copper and fiber
3052		 * boards.  The symptom is that the interface will just
3053		 * hang.  This was reproduced with Alteon 180 switches.
3054		 */
3055#if 0
3056		if (sc->ti_hwrev != TI_HWREV_TIGON)
3057			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3058#endif
3059
3060		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3061		    TI_GLNK_FULL_DUPLEX| flowctl |
3062		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3063
3064		flowctl = TI_LNK_RX_FLOWCTL_Y;
3065#if 0
3066		if (sc->ti_hwrev != TI_HWREV_TIGON)
3067			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3068#endif
3069
3070		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3071		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3072		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3073		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3074		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3075		break;
3076	case IFM_1000_SX:
3077	case IFM_1000_T:
3078		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3079#if 0
3080		if (sc->ti_hwrev != TI_HWREV_TIGON)
3081			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3082#endif
3083
3084		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3085		    flowctl |TI_GLNK_ENB);
3086		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3087		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3088			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3089		}
3090		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3091		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3092		break;
3093	case IFM_100_FX:
3094	case IFM_10_FL:
3095	case IFM_100_TX:
3096	case IFM_10_T:
3097		flowctl = TI_LNK_RX_FLOWCTL_Y;
3098#if 0
3099		if (sc->ti_hwrev != TI_HWREV_TIGON)
3100			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3101#endif
3102
3103		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3104		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3105		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3106		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3107			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3108		} else {
3109			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3110		}
3111		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3112			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3113		} else {
3114			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3115		}
3116		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3117		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3118		break;
3119	}
3120
3121	return(0);
3122}
3123
3124/*
3125 * Report current media status.
3126 */
3127static void
3128ti_ifmedia_sts(ifp, ifmr)
3129	struct ifnet		*ifp;
3130	struct ifmediareq	*ifmr;
3131{
3132	struct ti_softc		*sc;
3133	u_int32_t		media = 0;
3134
3135	sc = ifp->if_softc;
3136
3137	ifmr->ifm_status = IFM_AVALID;
3138	ifmr->ifm_active = IFM_ETHER;
3139
3140	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3141		return;
3142
3143	ifmr->ifm_status |= IFM_ACTIVE;
3144
3145	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3146		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3147		if (sc->ti_copper)
3148			ifmr->ifm_active |= IFM_1000_T;
3149		else
3150			ifmr->ifm_active |= IFM_1000_SX;
3151		if (media & TI_GLNK_FULL_DUPLEX)
3152			ifmr->ifm_active |= IFM_FDX;
3153		else
3154			ifmr->ifm_active |= IFM_HDX;
3155	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3156		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3157		if (sc->ti_copper) {
3158			if (media & TI_LNK_100MB)
3159				ifmr->ifm_active |= IFM_100_TX;
3160			if (media & TI_LNK_10MB)
3161				ifmr->ifm_active |= IFM_10_T;
3162		} else {
3163			if (media & TI_LNK_100MB)
3164				ifmr->ifm_active |= IFM_100_FX;
3165			if (media & TI_LNK_10MB)
3166				ifmr->ifm_active |= IFM_10_FL;
3167		}
3168		if (media & TI_LNK_FULL_DUPLEX)
3169			ifmr->ifm_active |= IFM_FDX;
3170		if (media & TI_LNK_HALF_DUPLEX)
3171			ifmr->ifm_active |= IFM_HDX;
3172	}
3173
3174	return;
3175}
3176
3177static int
3178ti_ioctl(ifp, command, data)
3179	struct ifnet		*ifp;
3180	u_long			command;
3181	caddr_t			data;
3182{
3183	struct ti_softc		*sc = ifp->if_softc;
3184	struct ifreq		*ifr = (struct ifreq *) data;
3185	int			mask, error = 0;
3186	struct ti_cmd_desc	cmd;
3187
3188	TI_LOCK(sc);
3189
3190	switch(command) {
3191	case SIOCSIFADDR:
3192	case SIOCGIFADDR:
3193		error = ether_ioctl(ifp, command, data);
3194		break;
3195	case SIOCSIFMTU:
3196		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3197			error = EINVAL;
3198		else {
3199			ifp->if_mtu = ifr->ifr_mtu;
3200			ti_init(sc);
3201		}
3202		break;
3203	case SIOCSIFFLAGS:
3204		if (ifp->if_flags & IFF_UP) {
3205			/*
3206			 * If only the state of the PROMISC flag changed,
3207			 * then just use the 'set promisc mode' command
3208			 * instead of reinitializing the entire NIC. Doing
3209			 * a full re-init means reloading the firmware and
3210			 * waiting for it to start up, which may take a
3211			 * second or two.
3212			 */
3213			if (ifp->if_flags & IFF_RUNNING &&
3214			    ifp->if_flags & IFF_PROMISC &&
3215			    !(sc->ti_if_flags & IFF_PROMISC)) {
3216				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3217				    TI_CMD_CODE_PROMISC_ENB, 0);
3218			} else if (ifp->if_flags & IFF_RUNNING &&
3219			    !(ifp->if_flags & IFF_PROMISC) &&
3220			    sc->ti_if_flags & IFF_PROMISC) {
3221				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3222				    TI_CMD_CODE_PROMISC_DIS, 0);
3223			} else
3224				ti_init(sc);
3225		} else {
3226			if (ifp->if_flags & IFF_RUNNING) {
3227				ti_stop(sc);
3228			}
3229		}
3230		sc->ti_if_flags = ifp->if_flags;
3231		error = 0;
3232		break;
3233	case SIOCADDMULTI:
3234	case SIOCDELMULTI:
3235		if (ifp->if_flags & IFF_RUNNING) {
3236			ti_setmulti(sc);
3237			error = 0;
3238		}
3239		break;
3240	case SIOCSIFMEDIA:
3241	case SIOCGIFMEDIA:
3242		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3243		break;
3244	case SIOCSIFCAP:
3245		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3246		if (mask & IFCAP_HWCSUM) {
3247			if (IFCAP_HWCSUM & ifp->if_capenable)
3248				ifp->if_capenable &= ~IFCAP_HWCSUM;
3249                        else
3250                                ifp->if_capenable |= IFCAP_HWCSUM;
3251			if (ifp->if_flags & IFF_RUNNING)
3252				ti_init(sc);
3253                }
3254		error = 0;
3255		break;
3256	default:
3257		error = EINVAL;
3258		break;
3259	}
3260
3261	TI_UNLOCK(sc);
3262
3263	return(error);
3264}
3265
3266static int
3267ti_open(dev_t dev, int flags, int fmt, struct thread *td)
3268{
3269	int unit;
3270	struct ti_softc *sc;
3271
3272	unit = minor(dev) & 0xff;
3273
3274	sc = ti_lookup_softc(unit);
3275
3276	if (sc == NULL)
3277		return(ENODEV);
3278
3279	TI_LOCK(sc);
3280	sc->ti_flags |= TI_FLAG_DEBUGING;
3281	TI_UNLOCK(sc);
3282
3283	return(0);
3284}
3285
3286static int
3287ti_close(dev_t dev, int flag, int fmt, struct thread *td)
3288{
3289	int unit;
3290	struct ti_softc *sc;
3291
3292	unit = minor(dev) & 0xff;
3293
3294	sc = ti_lookup_softc(unit);
3295
3296	if (sc == NULL)
3297		return(ENODEV);
3298
3299	TI_LOCK(sc);
3300	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3301	TI_UNLOCK(sc);
3302
3303	return(0);
3304}
3305
3306/*
3307 * This ioctl routine goes along with the Tigon character device.
3308 */
3309static int
3310ti_ioctl2(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
3311{
3312	int unit, error;
3313	struct ti_softc *sc;
3314
3315	unit = minor(dev) & 0xff;
3316
3317	sc = ti_lookup_softc(unit);
3318
3319	if (sc == NULL)
3320		return(ENODEV);
3321
3322	error = 0;
3323
3324	switch(cmd) {
3325	case TIIOCGETSTATS:
3326	{
3327		struct ti_stats *outstats;
3328
3329		outstats = (struct ti_stats *)addr;
3330
3331		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3332		      sizeof(struct ti_stats));
3333		break;
3334	}
3335	case TIIOCGETPARAMS:
3336	{
3337		struct ti_params	*params;
3338
3339		params = (struct ti_params *)addr;
3340
3341		params->ti_stat_ticks = sc->ti_stat_ticks;
3342		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3343		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3344		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3345		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3346		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3347		params->param_mask = TI_PARAM_ALL;
3348
3349		error = 0;
3350
3351		break;
3352	}
3353	case TIIOCSETPARAMS:
3354	{
3355		struct ti_params *params;
3356
3357		params = (struct ti_params *)addr;
3358
3359		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3360			sc->ti_stat_ticks = params->ti_stat_ticks;
3361			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3362		}
3363
3364		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3365			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3366			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3367				    sc->ti_rx_coal_ticks);
3368		}
3369
3370		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3371			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3372			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3373				    sc->ti_tx_coal_ticks);
3374		}
3375
3376		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3377			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3378			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3379				    sc->ti_rx_max_coal_bds);
3380		}
3381
3382		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3383			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3384			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3385				    sc->ti_tx_max_coal_bds);
3386		}
3387
3388		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3389			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3390			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3391				    sc->ti_tx_buf_ratio);
3392		}
3393
3394		error = 0;
3395
3396		break;
3397	}
3398	case TIIOCSETTRACE: {
3399		ti_trace_type	trace_type;
3400
3401		trace_type = *(ti_trace_type *)addr;
3402
3403		/*
3404		 * Set tracing to whatever the user asked for.  Setting
3405		 * this register to 0 should have the effect of disabling
3406		 * tracing.
3407		 */
3408		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3409
3410		error = 0;
3411
3412		break;
3413	}
3414	case TIIOCGETTRACE: {
3415		struct ti_trace_buf	*trace_buf;
3416		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3417
3418		trace_buf = (struct ti_trace_buf *)addr;
3419
3420		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3421		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3422		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3423
3424#if 0
3425		printf("ti%d: trace_start = %#x, cur_trace_ptr = %#x, "
3426		       "trace_len = %d\n", sc->ti_unit, trace_start,
3427		       cur_trace_ptr, trace_len);
3428		printf("ti%d: trace_buf->buf_len = %d\n", sc->ti_unit,
3429		       trace_buf->buf_len);
3430#endif
3431
3432		error = ti_copy_mem(sc, trace_start, min(trace_len,
3433				    trace_buf->buf_len),
3434				    (caddr_t)trace_buf->buf, 1, 1);
3435
3436		if (error == 0) {
3437			trace_buf->fill_len = min(trace_len,
3438						  trace_buf->buf_len);
3439			if (cur_trace_ptr < trace_start)
3440				trace_buf->cur_trace_ptr =
3441					trace_start - cur_trace_ptr;
3442			else
3443				trace_buf->cur_trace_ptr =
3444					cur_trace_ptr - trace_start;
3445		} else
3446			trace_buf->fill_len = 0;
3447
3448
3449		break;
3450	}
3451
3452	/*
3453	 * For debugging, five ioctls are needed:
3454	 * ALT_ATTACH
3455	 * ALT_READ_TG_REG
3456	 * ALT_WRITE_TG_REG
3457	 * ALT_READ_TG_MEM
3458	 * ALT_WRITE_TG_MEM
3459	 */
3460	case ALT_ATTACH:
3461		/*
3462		 * From what I can tell, Alteon's Solaris Tigon driver
3463		 * only has one character device, so you have to attach
3464		 * to the Tigon board you're interested in.  This seems
3465		 * like a not-so-good way to do things, since unless you
3466		 * subsequently specify the unit number of the device
3467		 * you're interested in in every ioctl, you'll only be
3468		 * able to debug one board at a time.
3469		 */
3470		error = 0;
3471		break;
3472	case ALT_READ_TG_MEM:
3473	case ALT_WRITE_TG_MEM:
3474	{
3475		struct tg_mem *mem_param;
3476		u_int32_t sram_end, scratch_end;
3477
3478		mem_param = (struct tg_mem *)addr;
3479
3480		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3481			sram_end = TI_END_SRAM_I;
3482			scratch_end = TI_END_SCRATCH_I;
3483		} else {
3484			sram_end = TI_END_SRAM_II;
3485			scratch_end = TI_END_SCRATCH_II;
3486		}
3487
3488		/*
3489		 * For now, we'll only handle accessing regular SRAM,
3490		 * nothing else.
3491		 */
3492		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3493		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3494			/*
3495			 * In this instance, we always copy to/from user
3496			 * space, so the user space argument is set to 1.
3497			 */
3498			error = ti_copy_mem(sc, mem_param->tgAddr,
3499					    mem_param->len,
3500					    mem_param->userAddr, 1,
3501					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3502		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3503			&& (mem_param->tgAddr <= scratch_end)) {
3504			error = ti_copy_scratch(sc, mem_param->tgAddr,
3505						mem_param->len,
3506						mem_param->userAddr, 1,
3507						(cmd == ALT_READ_TG_MEM) ?
3508						1 : 0, TI_PROCESSOR_A);
3509		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3510			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3511			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3512				printf("ti%d:  invalid memory range for "
3513				       "Tigon I\n", sc->ti_unit);
3514				error = EINVAL;
3515				break;
3516			}
3517			error = ti_copy_scratch(sc, mem_param->tgAddr -
3518						TI_SCRATCH_DEBUG_OFF,
3519						mem_param->len,
3520						mem_param->userAddr, 1,
3521						(cmd == ALT_READ_TG_MEM) ?
3522						1 : 0, TI_PROCESSOR_B);
3523		} else {
3524			printf("ti%d: memory address %#x len %d is out of "
3525			       "supported range\n", sc->ti_unit,
3526			        mem_param->tgAddr, mem_param->len);
3527			error = EINVAL;
3528		}
3529
3530		break;
3531	}
3532	case ALT_READ_TG_REG:
3533	case ALT_WRITE_TG_REG:
3534	{
3535		struct tg_reg	*regs;
3536		u_int32_t	tmpval;
3537
3538		regs = (struct tg_reg *)addr;
3539
3540		/*
3541		 * Make sure the address in question isn't out of range.
3542		 */
3543		if (regs->addr > TI_REG_MAX) {
3544			error = EINVAL;
3545			break;
3546		}
3547		if (cmd == ALT_READ_TG_REG) {
3548			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3549						regs->addr, &tmpval, 1);
3550			regs->data = ntohl(tmpval);
3551#if 0
3552			if ((regs->addr == TI_CPU_STATE)
3553			 || (regs->addr == TI_CPU_CTL_B)) {
3554				printf("ti%d: register %#x = %#x\n",
3555				       sc->ti_unit, regs->addr, tmpval);
3556			}
3557#endif
3558		} else {
3559			tmpval = htonl(regs->data);
3560			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3561						 regs->addr, &tmpval, 1);
3562		}
3563
3564		break;
3565	}
3566	default:
3567		error = ENOTTY;
3568		break;
3569	}
3570	return(error);
3571}
3572
3573static void
3574ti_watchdog(ifp)
3575	struct ifnet		*ifp;
3576{
3577	struct ti_softc		*sc;
3578
3579	sc = ifp->if_softc;
3580	TI_LOCK(sc);
3581
3582	/*
3583	 * When we're debugging, the chip is often stopped for long periods
3584	 * of time, and that would normally cause the watchdog timer to fire.
3585	 * Since that impedes debugging, we don't want to do that.
3586	 */
3587	if (sc->ti_flags & TI_FLAG_DEBUGING) {
3588		TI_UNLOCK(sc);
3589		return;
3590	}
3591
3592	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
3593	ti_stop(sc);
3594	ti_init(sc);
3595
3596	ifp->if_oerrors++;
3597	TI_UNLOCK(sc);
3598
3599	return;
3600}
3601
3602/*
3603 * Stop the adapter and free any mbufs allocated to the
3604 * RX and TX lists.
3605 */
3606static void
3607ti_stop(sc)
3608	struct ti_softc		*sc;
3609{
3610	struct ifnet		*ifp;
3611	struct ti_cmd_desc	cmd;
3612
3613	TI_LOCK(sc);
3614
3615	ifp = &sc->arpcom.ac_if;
3616
3617	/* Disable host interrupts. */
3618	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3619	/*
3620	 * Tell firmware we're shutting down.
3621	 */
3622	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3623
3624	/* Halt and reinitialize. */
3625	ti_chipinit(sc);
3626	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
3627	ti_chipinit(sc);
3628
3629	/* Free the RX lists. */
3630	ti_free_rx_ring_std(sc);
3631
3632	/* Free jumbo RX list. */
3633	ti_free_rx_ring_jumbo(sc);
3634
3635	/* Free mini RX list. */
3636	ti_free_rx_ring_mini(sc);
3637
3638	/* Free TX buffers. */
3639	ti_free_tx_ring(sc);
3640
3641	sc->ti_ev_prodidx.ti_idx = 0;
3642	sc->ti_return_prodidx.ti_idx = 0;
3643	sc->ti_tx_considx.ti_idx = 0;
3644	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3645
3646	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3647	TI_UNLOCK(sc);
3648
3649	return;
3650}
3651
3652/*
3653 * Stop all chip I/O so that the kernel's probe routines don't
3654 * get confused by errant DMAs when rebooting.
3655 */
3656static void
3657ti_shutdown(dev)
3658	device_t		dev;
3659{
3660	struct ti_softc		*sc;
3661
3662	sc = device_get_softc(dev);
3663	TI_LOCK(sc);
3664	ti_chipinit(sc);
3665	TI_UNLOCK(sc);
3666
3667	return;
3668}
3669