if_ti.c revision 227512
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35 * Manuals, sample driver and firmware source kits are available
36 * from http://www.alteon.com/support/openkits.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48 * filtering and jumbo (9014 byte) frames. The hardware is largely
49 * controlled by firmware, which must be loaded into the NIC during
50 * initialization.
51 *
52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53 * revision, which supports new features such as extended commands,
54 * extended jumbo receive ring desciptors and a mini receive ring.
55 *
56 * Alteon Networks is to be commended for releasing such a vast amount
57 * of development material for the Tigon NIC without requiring an NDA
58 * (although they really should have done it a long time ago). With
59 * any luck, the other vendors will finally wise up and follow Alteon's
60 * stellar example.
61 *
62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63 * this driver by #including it as a C header file. This bloats the
64 * driver somewhat, but it's the easiest method considering that the
65 * driver code and firmware code need to be kept in sync. The source
66 * for the firmware is not provided with the FreeBSD distribution since
67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68 *
69 * The following people deserve special thanks:
70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71 *   for testing
72 * - Raymond Lee of Netgear, for providing a pair of Netgear
73 *   GA620 Tigon 2 boards for testing
74 * - Ulf Zimmermann, for bringing the GA260 to my attention and
75 *   convincing me to write this driver.
76 * - Andrew Gallatin for providing FreeBSD/Alpha support.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/dev/ti/if_ti.c 227512 2011-11-14 20:38:14Z yongari $");
81
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/module.h>
91#include <sys/socket.h>
92#include <sys/queue.h>
93#include <sys/conf.h>
94#include <sys/sf_buf.h>
95
96#include <net/if.h>
97#include <net/if_arp.h>
98#include <net/ethernet.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101#include <net/if_types.h>
102#include <net/if_vlan_var.h>
103
104#include <net/bpf.h>
105
106#include <netinet/in_systm.h>
107#include <netinet/in.h>
108#include <netinet/ip.h>
109
110#include <machine/bus.h>
111#include <machine/resource.h>
112#include <sys/bus.h>
113#include <sys/rman.h>
114
115#ifdef TI_SF_BUF_JUMBO
116#include <vm/vm.h>
117#include <vm/vm_page.h>
118#endif
119
120#include <dev/pci/pcireg.h>
121#include <dev/pci/pcivar.h>
122
123#include <sys/tiio.h>
124#include <dev/ti/if_tireg.h>
125#include <dev/ti/ti_fw.h>
126#include <dev/ti/ti_fw2.h>
127
128#include <sys/sysctl.h>
129
130#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
131/*
132 * We can only turn on header splitting if we're using extended receive
133 * BDs.
134 */
135#if defined(TI_JUMBO_HDRSPLIT) && !defined(TI_SF_BUF_JUMBO)
136#error "options TI_JUMBO_HDRSPLIT requires TI_SF_BUF_JUMBO"
137#endif /* TI_JUMBO_HDRSPLIT && !TI_SF_BUF_JUMBO */
138
139typedef enum {
140	TI_SWAP_HTON,
141	TI_SWAP_NTOH
142} ti_swap_type;
143
144/*
145 * Various supported device vendors/types and their names.
146 */
147
148static const struct ti_type const ti_devs[] = {
149	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
150		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
151	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
152		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
153	{ TC_VENDORID,	TC_DEVICEID_3C985,
154		"3Com 3c985-SX Gigabit Ethernet" },
155	{ NG_VENDORID, NG_DEVICEID_GA620,
156		"Netgear GA620 1000baseSX Gigabit Ethernet" },
157	{ NG_VENDORID, NG_DEVICEID_GA620T,
158		"Netgear GA620 1000baseT Gigabit Ethernet" },
159	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
160		"Silicon Graphics Gigabit Ethernet" },
161	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
162		"Farallon PN9000SX Gigabit Ethernet" },
163	{ 0, 0, NULL }
164};
165
166
167static	d_open_t	ti_open;
168static	d_close_t	ti_close;
169static	d_ioctl_t	ti_ioctl2;
170
171static struct cdevsw ti_cdevsw = {
172	.d_version =	D_VERSION,
173	.d_flags =	0,
174	.d_open =	ti_open,
175	.d_close =	ti_close,
176	.d_ioctl =	ti_ioctl2,
177	.d_name =	"ti",
178};
179
180static int ti_probe(device_t);
181static int ti_attach(device_t);
182static int ti_detach(device_t);
183static void ti_txeof(struct ti_softc *);
184static void ti_rxeof(struct ti_softc *);
185
186static void ti_stats_update(struct ti_softc *);
187static int ti_encap(struct ti_softc *, struct mbuf **);
188
189static void ti_intr(void *);
190static void ti_start(struct ifnet *);
191static void ti_start_locked(struct ifnet *);
192static int ti_ioctl(struct ifnet *, u_long, caddr_t);
193static void ti_init(void *);
194static void ti_init_locked(void *);
195static void ti_init2(struct ti_softc *);
196static void ti_stop(struct ti_softc *);
197static void ti_watchdog(void *);
198static int ti_shutdown(device_t);
199static int ti_ifmedia_upd(struct ifnet *);
200static int ti_ifmedia_upd_locked(struct ti_softc *);
201static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
202
203static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
204static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
205static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
206
207static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
208static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
209static void ti_setmulti(struct ti_softc *);
210
211static void ti_mem_read(struct ti_softc *, uint32_t, uint32_t, void *);
212static void ti_mem_write(struct ti_softc *, uint32_t, uint32_t, void *);
213static void ti_mem_zero(struct ti_softc *, uint32_t, uint32_t);
214static int ti_copy_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t, int,
215    int);
216static int ti_copy_scratch(struct ti_softc *, uint32_t, uint32_t, caddr_t,
217    int, int, int);
218static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
219static void ti_loadfw(struct ti_softc *);
220static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
221static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
222static void ti_handle_events(struct ti_softc *);
223static void ti_dma_map_addr(void *, bus_dma_segment_t *, int, int);
224static int ti_dma_alloc(struct ti_softc *);
225static void ti_dma_free(struct ti_softc *);
226static int ti_dma_ring_alloc(struct ti_softc *, bus_size_t, bus_size_t,
227    bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
228static void ti_dma_ring_free(struct ti_softc *, bus_dma_tag_t *, uint8_t **,
229    bus_dmamap_t *);
230static int ti_newbuf_std(struct ti_softc *, int);
231static int ti_newbuf_mini(struct ti_softc *, int);
232static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
233static int ti_init_rx_ring_std(struct ti_softc *);
234static void ti_free_rx_ring_std(struct ti_softc *);
235static int ti_init_rx_ring_jumbo(struct ti_softc *);
236static void ti_free_rx_ring_jumbo(struct ti_softc *);
237static int ti_init_rx_ring_mini(struct ti_softc *);
238static void ti_free_rx_ring_mini(struct ti_softc *);
239static void ti_free_tx_ring(struct ti_softc *);
240static int ti_init_tx_ring(struct ti_softc *);
241static void ti_discard_std(struct ti_softc *, int);
242#ifndef TI_SF_BUF_JUMBO
243static void ti_discard_jumbo(struct ti_softc *, int);
244#endif
245static void ti_discard_mini(struct ti_softc *, int);
246
247static int ti_64bitslot_war(struct ti_softc *);
248static int ti_chipinit(struct ti_softc *);
249static int ti_gibinit(struct ti_softc *);
250
251#ifdef TI_JUMBO_HDRSPLIT
252static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len,
253    int idx);
254#endif /* TI_JUMBO_HDRSPLIT */
255
256static void ti_sysctl_node(struct ti_softc *);
257
258static device_method_t ti_methods[] = {
259	/* Device interface */
260	DEVMETHOD(device_probe,		ti_probe),
261	DEVMETHOD(device_attach,	ti_attach),
262	DEVMETHOD(device_detach,	ti_detach),
263	DEVMETHOD(device_shutdown,	ti_shutdown),
264	{ 0, 0 }
265};
266
267static driver_t ti_driver = {
268	"ti",
269	ti_methods,
270	sizeof(struct ti_softc)
271};
272
273static devclass_t ti_devclass;
274
275DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
276MODULE_DEPEND(ti, pci, 1, 1, 1);
277MODULE_DEPEND(ti, ether, 1, 1, 1);
278
279/*
280 * Send an instruction or address to the EEPROM, check for ACK.
281 */
282static uint32_t
283ti_eeprom_putbyte(struct ti_softc *sc, int byte)
284{
285	int i, ack = 0;
286
287	/*
288	 * Make sure we're in TX mode.
289	 */
290	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
291
292	/*
293	 * Feed in each bit and stobe the clock.
294	 */
295	for (i = 0x80; i; i >>= 1) {
296		if (byte & i) {
297			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
298		} else {
299			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
300		}
301		DELAY(1);
302		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
303		DELAY(1);
304		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
305	}
306
307	/*
308	 * Turn off TX mode.
309	 */
310	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
311
312	/*
313	 * Check for ack.
314	 */
315	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
316	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
317	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
318
319	return (ack);
320}
321
322/*
323 * Read a byte of data stored in the EEPROM at address 'addr.'
324 * We have to send two address bytes since the EEPROM can hold
325 * more than 256 bytes of data.
326 */
327static uint8_t
328ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
329{
330	int i;
331	uint8_t byte = 0;
332
333	EEPROM_START;
334
335	/*
336	 * Send write control code to EEPROM.
337	 */
338	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
339		device_printf(sc->ti_dev,
340		    "failed to send write command, status: %x\n",
341		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
342		return (1);
343	}
344
345	/*
346	 * Send first byte of address of byte we want to read.
347	 */
348	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
349		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
350		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
351		return (1);
352	}
353	/*
354	 * Send second byte address of byte we want to read.
355	 */
356	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
357		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
358		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
359		return (1);
360	}
361
362	EEPROM_STOP;
363	EEPROM_START;
364	/*
365	 * Send read control code to EEPROM.
366	 */
367	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
368		device_printf(sc->ti_dev,
369		    "failed to send read command, status: %x\n",
370		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
371		return (1);
372	}
373
374	/*
375	 * Start reading bits from EEPROM.
376	 */
377	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
378	for (i = 0x80; i; i >>= 1) {
379		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
380		DELAY(1);
381		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
382			byte |= i;
383		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
384		DELAY(1);
385	}
386
387	EEPROM_STOP;
388
389	/*
390	 * No ACK generated for read, so just return byte.
391	 */
392
393	*dest = byte;
394
395	return (0);
396}
397
398/*
399 * Read a sequence of bytes from the EEPROM.
400 */
401static int
402ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
403{
404	int err = 0, i;
405	uint8_t byte = 0;
406
407	for (i = 0; i < cnt; i++) {
408		err = ti_eeprom_getbyte(sc, off + i, &byte);
409		if (err)
410			break;
411		*(dest + i) = byte;
412	}
413
414	return (err ? 1 : 0);
415}
416
417/*
418 * NIC memory read function.
419 * Can be used to copy data from NIC local memory.
420 */
421static void
422ti_mem_read(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
423{
424	int segptr, segsize, cnt;
425	char *ptr;
426
427	segptr = addr;
428	cnt = len;
429	ptr = buf;
430
431	while (cnt) {
432		if (cnt < TI_WINLEN)
433			segsize = cnt;
434		else
435			segsize = TI_WINLEN - (segptr % TI_WINLEN);
436		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
437		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
438		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
439		    segsize / 4);
440		ptr += segsize;
441		segptr += segsize;
442		cnt -= segsize;
443	}
444}
445
446
447/*
448 * NIC memory write function.
449 * Can be used to copy data into NIC local memory.
450 */
451static void
452ti_mem_write(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
453{
454	int segptr, segsize, cnt;
455	char *ptr;
456
457	segptr = addr;
458	cnt = len;
459	ptr = buf;
460
461	while (cnt) {
462		if (cnt < TI_WINLEN)
463			segsize = cnt;
464		else
465			segsize = TI_WINLEN - (segptr % TI_WINLEN);
466		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
467		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
468		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
469		    segsize / 4);
470		ptr += segsize;
471		segptr += segsize;
472		cnt -= segsize;
473	}
474}
475
476/*
477 * NIC memory read function.
478 * Can be used to clear a section of NIC local memory.
479 */
480static void
481ti_mem_zero(struct ti_softc *sc, uint32_t addr, uint32_t len)
482{
483	int segptr, segsize, cnt;
484
485	segptr = addr;
486	cnt = len;
487
488	while (cnt) {
489		if (cnt < TI_WINLEN)
490			segsize = cnt;
491		else
492			segsize = TI_WINLEN - (segptr % TI_WINLEN);
493		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
494		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
495		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
496		segptr += segsize;
497		cnt -= segsize;
498	}
499}
500
501static int
502ti_copy_mem(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
503    caddr_t buf, int useraddr, int readdata)
504{
505	int segptr, segsize, cnt;
506	caddr_t ptr;
507	uint32_t origwin;
508	int resid, segresid;
509	int first_pass;
510
511	TI_LOCK_ASSERT(sc);
512
513	/*
514	 * At the moment, we don't handle non-aligned cases, we just bail.
515	 * If this proves to be a problem, it will be fixed.
516	 */
517	if (readdata == 0 && (tigon_addr & 0x3) != 0) {
518		device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
519		    "word-aligned\n", __func__, tigon_addr);
520		device_printf(sc->ti_dev, "%s: unaligned writes aren't "
521		    "yet supported\n", __func__);
522		return (EINVAL);
523	}
524
525	segptr = tigon_addr & ~0x3;
526	segresid = tigon_addr - segptr;
527
528	/*
529	 * This is the non-aligned amount left over that we'll need to
530	 * copy.
531	 */
532	resid = len & 0x3;
533
534	/* Add in the left over amount at the front of the buffer */
535	resid += segresid;
536
537	cnt = len & ~0x3;
538	/*
539	 * If resid + segresid is >= 4, add multiples of 4 to the count and
540	 * decrease the residual by that much.
541	 */
542	cnt += resid & ~0x3;
543	resid -= resid & ~0x3;
544
545	ptr = buf;
546
547	first_pass = 1;
548
549	/*
550	 * Save the old window base value.
551	 */
552	origwin = CSR_READ_4(sc, TI_WINBASE);
553
554	while (cnt) {
555		bus_size_t ti_offset;
556
557		if (cnt < TI_WINLEN)
558			segsize = cnt;
559		else
560			segsize = TI_WINLEN - (segptr % TI_WINLEN);
561		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
562
563		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
564
565		if (readdata) {
566			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
567			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
568			if (useraddr) {
569				/*
570				 * Yeah, this is a little on the kludgy
571				 * side, but at least this code is only
572				 * used for debugging.
573				 */
574				ti_bcopy_swap(sc->ti_membuf, sc->ti_membuf2,
575				    segsize, TI_SWAP_NTOH);
576
577				TI_UNLOCK(sc);
578				if (first_pass) {
579					copyout(&sc->ti_membuf2[segresid], ptr,
580					    segsize - segresid);
581					first_pass = 0;
582				} else
583					copyout(sc->ti_membuf2, ptr, segsize);
584				TI_LOCK(sc);
585			} else {
586				if (first_pass) {
587
588					ti_bcopy_swap(sc->ti_membuf,
589					    sc->ti_membuf2, segsize,
590					    TI_SWAP_NTOH);
591					TI_UNLOCK(sc);
592					bcopy(&sc->ti_membuf2[segresid], ptr,
593					    segsize - segresid);
594					TI_LOCK(sc);
595					first_pass = 0;
596				} else
597					ti_bcopy_swap(sc->ti_membuf, ptr,
598					    segsize, TI_SWAP_NTOH);
599			}
600
601		} else {
602			if (useraddr) {
603				TI_UNLOCK(sc);
604				copyin(ptr, sc->ti_membuf2, segsize);
605				TI_LOCK(sc);
606				ti_bcopy_swap(sc->ti_membuf2, sc->ti_membuf,
607				    segsize, TI_SWAP_HTON);
608			} else
609				ti_bcopy_swap(ptr, sc->ti_membuf, segsize,
610				    TI_SWAP_HTON);
611
612			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
613			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
614		}
615		segptr += segsize;
616		ptr += segsize;
617		cnt -= segsize;
618	}
619
620	/*
621	 * Handle leftover, non-word-aligned bytes.
622	 */
623	if (resid != 0) {
624		uint32_t tmpval, tmpval2;
625		bus_size_t ti_offset;
626
627		/*
628		 * Set the segment pointer.
629		 */
630		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
631
632		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
633
634		/*
635		 * First, grab whatever is in our source/destination.
636		 * We'll obviously need this for reads, but also for
637		 * writes, since we'll be doing read/modify/write.
638		 */
639		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
640		    ti_offset, &tmpval, 1);
641
642		/*
643		 * Next, translate this from little-endian to big-endian
644		 * (at least on i386 boxes).
645		 */
646		tmpval2 = ntohl(tmpval);
647
648		if (readdata) {
649			/*
650			 * If we're reading, just copy the leftover number
651			 * of bytes from the host byte order buffer to
652			 * the user's buffer.
653			 */
654			if (useraddr) {
655				TI_UNLOCK(sc);
656				copyout(&tmpval2, ptr, resid);
657				TI_LOCK(sc);
658			} else
659				bcopy(&tmpval2, ptr, resid);
660		} else {
661			/*
662			 * If we're writing, first copy the bytes to be
663			 * written into the network byte order buffer,
664			 * leaving the rest of the buffer with whatever was
665			 * originally in there.  Then, swap the bytes
666			 * around into host order and write them out.
667			 *
668			 * XXX KDM the read side of this has been verified
669			 * to work, but the write side of it has not been
670			 * verified.  So user beware.
671			 */
672			if (useraddr) {
673				TI_UNLOCK(sc);
674				copyin(ptr, &tmpval2, resid);
675				TI_LOCK(sc);
676			} else
677				bcopy(ptr, &tmpval2, resid);
678
679			tmpval = htonl(tmpval2);
680
681			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
682			    ti_offset, &tmpval, 1);
683		}
684	}
685
686	CSR_WRITE_4(sc, TI_WINBASE, origwin);
687
688	return (0);
689}
690
691static int
692ti_copy_scratch(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
693    caddr_t buf, int useraddr, int readdata, int cpu)
694{
695	uint32_t segptr;
696	int cnt;
697	uint32_t tmpval, tmpval2;
698	caddr_t ptr;
699
700	TI_LOCK_ASSERT(sc);
701
702	/*
703	 * At the moment, we don't handle non-aligned cases, we just bail.
704	 * If this proves to be a problem, it will be fixed.
705	 */
706	if (tigon_addr & 0x3) {
707		device_printf(sc->ti_dev, "%s: tigon address %#x "
708		    "isn't word-aligned\n", __func__, tigon_addr);
709		return (EINVAL);
710	}
711
712	if (len & 0x3) {
713		device_printf(sc->ti_dev, "%s: transfer length %d "
714		    "isn't word-aligned\n", __func__, len);
715		return (EINVAL);
716	}
717
718	segptr = tigon_addr;
719	cnt = len;
720	ptr = buf;
721
722	while (cnt) {
723		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
724
725		if (readdata) {
726			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
727
728			tmpval = ntohl(tmpval2);
729
730			/*
731			 * Note:  I've used this debugging interface
732			 * extensively with Alteon's 12.3.15 firmware,
733			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
734			 *
735			 * When you compile the firmware without
736			 * optimization, which is necessary sometimes in
737			 * order to properly step through it, you sometimes
738			 * read out a bogus value of 0xc0017c instead of
739			 * whatever was supposed to be in that scratchpad
740			 * location.  That value is on the stack somewhere,
741			 * but I've never been able to figure out what was
742			 * causing the problem.
743			 *
744			 * The address seems to pop up in random places,
745			 * often not in the same place on two subsequent
746			 * reads.
747			 *
748			 * In any case, the underlying data doesn't seem
749			 * to be affected, just the value read out.
750			 *
751			 * KDM, 3/7/2000
752			 */
753
754			if (tmpval2 == 0xc0017c)
755				device_printf(sc->ti_dev, "found 0xc0017c at "
756				    "%#x (tmpval2)\n", segptr);
757
758			if (tmpval == 0xc0017c)
759				device_printf(sc->ti_dev, "found 0xc0017c at "
760				    "%#x (tmpval)\n", segptr);
761
762			if (useraddr)
763				copyout(&tmpval, ptr, 4);
764			else
765				bcopy(&tmpval, ptr, 4);
766		} else {
767			if (useraddr)
768				copyin(ptr, &tmpval2, 4);
769			else
770				bcopy(ptr, &tmpval2, 4);
771
772			tmpval = htonl(tmpval2);
773
774			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
775		}
776
777		cnt -= 4;
778		segptr += 4;
779		ptr += 4;
780	}
781
782	return (0);
783}
784
785static int
786ti_bcopy_swap(const void *src, void *dst, size_t len, ti_swap_type swap_type)
787{
788	const uint8_t *tmpsrc;
789	uint8_t *tmpdst;
790	size_t tmplen;
791
792	if (len & 0x3) {
793		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n", len);
794		return (-1);
795	}
796
797	tmpsrc = src;
798	tmpdst = dst;
799	tmplen = len;
800
801	while (tmplen) {
802		if (swap_type == TI_SWAP_NTOH)
803			*(uint32_t *)tmpdst = ntohl(*(const uint32_t *)tmpsrc);
804		else
805			*(uint32_t *)tmpdst = htonl(*(const uint32_t *)tmpsrc);
806		tmpsrc += 4;
807		tmpdst += 4;
808		tmplen -= 4;
809	}
810
811	return (0);
812}
813
814/*
815 * Load firmware image into the NIC. Check that the firmware revision
816 * is acceptable and see if we want the firmware for the Tigon 1 or
817 * Tigon 2.
818 */
819static void
820ti_loadfw(struct ti_softc *sc)
821{
822
823	TI_LOCK_ASSERT(sc);
824
825	switch (sc->ti_hwrev) {
826	case TI_HWREV_TIGON:
827		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
828		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
829		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
830			device_printf(sc->ti_dev, "firmware revision mismatch; "
831			    "want %d.%d.%d, got %d.%d.%d\n",
832			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
833			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
834			    tigonFwReleaseMinor, tigonFwReleaseFix);
835			return;
836		}
837		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
838		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
839		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
840		    tigonFwRodata);
841		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
842		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
843		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
844		break;
845	case TI_HWREV_TIGON_II:
846		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
847		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
848		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
849			device_printf(sc->ti_dev, "firmware revision mismatch; "
850			    "want %d.%d.%d, got %d.%d.%d\n",
851			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
852			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
853			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
854			return;
855		}
856		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
857		    tigon2FwText);
858		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
859		    tigon2FwData);
860		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
861		    tigon2FwRodata);
862		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
863		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
864		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
865		break;
866	default:
867		device_printf(sc->ti_dev,
868		    "can't load firmware: unknown hardware rev\n");
869		break;
870	}
871}
872
873/*
874 * Send the NIC a command via the command ring.
875 */
876static void
877ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
878{
879	int index;
880
881	index = sc->ti_cmd_saved_prodidx;
882	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
883	TI_INC(index, TI_CMD_RING_CNT);
884	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
885	sc->ti_cmd_saved_prodidx = index;
886}
887
888/*
889 * Send the NIC an extended command. The 'len' parameter specifies the
890 * number of command slots to include after the initial command.
891 */
892static void
893ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
894{
895	int index;
896	int i;
897
898	index = sc->ti_cmd_saved_prodidx;
899	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
900	TI_INC(index, TI_CMD_RING_CNT);
901	for (i = 0; i < len; i++) {
902		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
903		    *(uint32_t *)(&arg[i * 4]));
904		TI_INC(index, TI_CMD_RING_CNT);
905	}
906	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
907	sc->ti_cmd_saved_prodidx = index;
908}
909
910/*
911 * Handle events that have triggered interrupts.
912 */
913static void
914ti_handle_events(struct ti_softc *sc)
915{
916	struct ti_event_desc *e;
917
918	if (sc->ti_rdata.ti_event_ring == NULL)
919		return;
920
921	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
922	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_POSTREAD);
923	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
924		e = &sc->ti_rdata.ti_event_ring[sc->ti_ev_saved_considx];
925		switch (TI_EVENT_EVENT(e)) {
926		case TI_EV_LINKSTAT_CHANGED:
927			sc->ti_linkstat = TI_EVENT_CODE(e);
928			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
929				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
930				sc->ti_ifp->if_baudrate = IF_Mbps(100);
931				if (bootverbose)
932					device_printf(sc->ti_dev,
933					    "10/100 link up\n");
934			} else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
935				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
936				sc->ti_ifp->if_baudrate = IF_Gbps(1UL);
937				if (bootverbose)
938					device_printf(sc->ti_dev,
939					    "gigabit link up\n");
940			} else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
941				if_link_state_change(sc->ti_ifp,
942				    LINK_STATE_DOWN);
943				sc->ti_ifp->if_baudrate = 0;
944				if (bootverbose)
945					device_printf(sc->ti_dev,
946					    "link down\n");
947			}
948			break;
949		case TI_EV_ERROR:
950			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
951				device_printf(sc->ti_dev, "invalid command\n");
952			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
953				device_printf(sc->ti_dev, "unknown command\n");
954			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
955				device_printf(sc->ti_dev, "bad config data\n");
956			break;
957		case TI_EV_FIRMWARE_UP:
958			ti_init2(sc);
959			break;
960		case TI_EV_STATS_UPDATED:
961			ti_stats_update(sc);
962			break;
963		case TI_EV_RESET_JUMBO_RING:
964		case TI_EV_MCAST_UPDATED:
965			/* Who cares. */
966			break;
967		default:
968			device_printf(sc->ti_dev, "unknown event: %d\n",
969			    TI_EVENT_EVENT(e));
970			break;
971		}
972		/* Advance the consumer index. */
973		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
974		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
975	}
976	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
977	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_PREREAD);
978}
979
980struct ti_dmamap_arg {
981	bus_addr_t	ti_busaddr;
982};
983
984static void
985ti_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
986{
987	struct ti_dmamap_arg *ctx;
988
989	if (error)
990		return;
991
992	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
993
994	ctx = arg;
995	ctx->ti_busaddr = segs->ds_addr;
996}
997
998static int
999ti_dma_ring_alloc(struct ti_softc *sc, bus_size_t alignment, bus_size_t maxsize,
1000    bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, bus_addr_t *paddr,
1001    const char *msg)
1002{
1003	struct ti_dmamap_arg ctx;
1004	int error;
1005
1006	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag,
1007	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1008	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
1009	if (error != 0) {
1010		device_printf(sc->ti_dev,
1011		    "could not create %s dma tag\n", msg);
1012		return (error);
1013	}
1014	/* Allocate DMA'able memory for ring. */
1015	error = bus_dmamem_alloc(*tag, (void **)ring,
1016	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1017	if (error != 0) {
1018		device_printf(sc->ti_dev,
1019		    "could not allocate DMA'able memory for %s\n", msg);
1020		return (error);
1021	}
1022	/* Load the address of the ring. */
1023	ctx.ti_busaddr = 0;
1024	error = bus_dmamap_load(*tag, *map, *ring, maxsize, ti_dma_map_addr,
1025	    &ctx, BUS_DMA_NOWAIT);
1026	if (error != 0) {
1027		device_printf(sc->ti_dev,
1028		    "could not load DMA'able memory for %s\n", msg);
1029		return (error);
1030	}
1031	*paddr = ctx.ti_busaddr;
1032	return (0);
1033}
1034
1035static void
1036ti_dma_ring_free(struct ti_softc *sc, bus_dma_tag_t *tag, uint8_t **ring,
1037    bus_dmamap_t *map)
1038{
1039
1040	if (*map != NULL)
1041		bus_dmamap_unload(*tag, *map);
1042	if (*map != NULL && *ring != NULL) {
1043		bus_dmamem_free(*tag, *ring, *map);
1044		*ring = NULL;
1045		*map = NULL;
1046	}
1047	if (*tag) {
1048		bus_dma_tag_destroy(*tag);
1049		*tag = NULL;
1050	}
1051}
1052
1053static int
1054ti_dma_alloc(struct ti_softc *sc)
1055{
1056	bus_addr_t lowaddr;
1057	int i, error;
1058
1059	lowaddr = BUS_SPACE_MAXADDR;
1060	if (sc->ti_dac == 0)
1061		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1062
1063	error = bus_dma_tag_create(bus_get_dma_tag(sc->ti_dev), 1, 0, lowaddr,
1064	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1065	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1066	    &sc->ti_cdata.ti_parent_tag);
1067	if (error != 0) {
1068		device_printf(sc->ti_dev,
1069		    "could not allocate parent dma tag\n");
1070		return (ENOMEM);
1071	}
1072
1073	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_gib),
1074	    &sc->ti_cdata.ti_gib_tag, (uint8_t **)&sc->ti_rdata.ti_info,
1075	    &sc->ti_cdata.ti_gib_map, &sc->ti_rdata.ti_info_paddr, "GIB");
1076	if (error)
1077		return (error);
1078
1079	/* Producer/consumer status */
1080	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_status),
1081	    &sc->ti_cdata.ti_status_tag, (uint8_t **)&sc->ti_rdata.ti_status,
1082	    &sc->ti_cdata.ti_status_map, &sc->ti_rdata.ti_status_paddr,
1083	    "event ring");
1084	if (error)
1085		return (error);
1086
1087	/* Event ring */
1088	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_EVENT_RING_SZ,
1089	    &sc->ti_cdata.ti_event_ring_tag,
1090	    (uint8_t **)&sc->ti_rdata.ti_event_ring,
1091	    &sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr,
1092	    "event ring");
1093	if (error)
1094		return (error);
1095
1096	/* Command ring lives in shared memory so no need to create DMA area. */
1097
1098	/* Standard RX ring */
1099	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_STD_RX_RING_SZ,
1100	    &sc->ti_cdata.ti_rx_std_ring_tag,
1101	    (uint8_t **)&sc->ti_rdata.ti_rx_std_ring,
1102	    &sc->ti_cdata.ti_rx_std_ring_map,
1103	    &sc->ti_rdata.ti_rx_std_ring_paddr, "RX ring");
1104	if (error)
1105		return (error);
1106
1107	/* Jumbo RX ring */
1108	error = ti_dma_ring_alloc(sc, TI_JUMBO_RING_ALIGN, TI_JUMBO_RX_RING_SZ,
1109	    &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1110	    (uint8_t **)&sc->ti_rdata.ti_rx_jumbo_ring,
1111	    &sc->ti_cdata.ti_rx_jumbo_ring_map,
1112	    &sc->ti_rdata.ti_rx_jumbo_ring_paddr, "jumbo RX ring");
1113	if (error)
1114		return (error);
1115
1116	/* RX return ring */
1117	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_RX_RETURN_RING_SZ,
1118	    &sc->ti_cdata.ti_rx_return_ring_tag,
1119	    (uint8_t **)&sc->ti_rdata.ti_rx_return_ring,
1120	    &sc->ti_cdata.ti_rx_return_ring_map,
1121	    &sc->ti_rdata.ti_rx_return_ring_paddr, "RX return ring");
1122	if (error)
1123		return (error);
1124
1125	/* Create DMA tag for standard RX mbufs. */
1126	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1127	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1128	    MCLBYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_std_tag);
1129	if (error) {
1130		device_printf(sc->ti_dev, "could not allocate RX dma tag\n");
1131		return (error);
1132	}
1133
1134	/* Create DMA tag for jumbo RX mbufs. */
1135#ifdef TI_SF_BUF_JUMBO
1136	/*
1137	 * The VM system will take care of providing aligned pages.  Alignment
1138	 * is set to 1 here so that busdma resources won't be wasted.
1139	 */
1140	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1141	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE * 4, 4,
1142	    PAGE_SIZE, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1143#else
1144	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1145	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MJUM9BYTES, 1,
1146	    MJUM9BYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1147#endif
1148	if (error) {
1149		device_printf(sc->ti_dev,
1150		    "could not allocate jumbo RX dma tag\n");
1151		return (error);
1152	}
1153
1154	/* Create DMA tag for TX mbufs. */
1155	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1,
1156	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1157	    MCLBYTES * TI_MAXTXSEGS, TI_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1158	    &sc->ti_cdata.ti_tx_tag);
1159	if (error) {
1160		device_printf(sc->ti_dev, "could not allocate TX dma tag\n");
1161		return (ENOMEM);
1162	}
1163
1164	/* Create DMA maps for RX buffers. */
1165	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1166		error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1167		    &sc->ti_cdata.ti_rx_std_maps[i]);
1168		if (error) {
1169			device_printf(sc->ti_dev,
1170			    "could not create DMA map for RX\n");
1171			return (error);
1172		}
1173	}
1174	error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1175	    &sc->ti_cdata.ti_rx_std_sparemap);
1176	if (error) {
1177		device_printf(sc->ti_dev,
1178		    "could not create spare DMA map for RX\n");
1179		return (error);
1180	}
1181
1182	/* Create DMA maps for jumbo RX buffers. */
1183	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1184		error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1185		    &sc->ti_cdata.ti_rx_jumbo_maps[i]);
1186		if (error) {
1187			device_printf(sc->ti_dev,
1188			    "could not create DMA map for jumbo RX\n");
1189			return (error);
1190		}
1191	}
1192	error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1193	    &sc->ti_cdata.ti_rx_jumbo_sparemap);
1194	if (error) {
1195		device_printf(sc->ti_dev,
1196		    "could not create spare DMA map for jumbo RX\n");
1197		return (error);
1198	}
1199
1200	/* Create DMA maps for TX buffers. */
1201	for (i = 0; i < TI_TX_RING_CNT; i++) {
1202		error = bus_dmamap_create(sc->ti_cdata.ti_tx_tag, 0,
1203		    &sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1204		if (error) {
1205			device_printf(sc->ti_dev,
1206			    "could not create DMA map for TX\n");
1207			return (ENOMEM);
1208		}
1209	}
1210
1211	/* Mini ring and TX ring is not available on Tigon 1. */
1212	if (sc->ti_hwrev == TI_HWREV_TIGON)
1213		return (0);
1214
1215	/* TX ring */
1216	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_TX_RING_SZ,
1217	    &sc->ti_cdata.ti_tx_ring_tag, (uint8_t **)&sc->ti_rdata.ti_tx_ring,
1218	    &sc->ti_cdata.ti_tx_ring_map, &sc->ti_rdata.ti_tx_ring_paddr,
1219	    "TX ring");
1220	if (error)
1221		return (error);
1222
1223	/* Mini RX ring */
1224	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_MINI_RX_RING_SZ,
1225	    &sc->ti_cdata.ti_rx_mini_ring_tag,
1226	    (uint8_t **)&sc->ti_rdata.ti_rx_mini_ring,
1227	    &sc->ti_cdata.ti_rx_mini_ring_map,
1228	    &sc->ti_rdata.ti_rx_mini_ring_paddr, "mini RX ring");
1229	if (error)
1230		return (error);
1231
1232	/* Create DMA tag for mini RX mbufs. */
1233	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1234	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MHLEN, 1,
1235	    MHLEN, 0, NULL, NULL, &sc->ti_cdata.ti_rx_mini_tag);
1236	if (error) {
1237		device_printf(sc->ti_dev,
1238		    "could not allocate mini RX dma tag\n");
1239		return (error);
1240	}
1241
1242	/* Create DMA maps for mini RX buffers. */
1243	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1244		error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1245		    &sc->ti_cdata.ti_rx_mini_maps[i]);
1246		if (error) {
1247			device_printf(sc->ti_dev,
1248			    "could not create DMA map for mini RX\n");
1249			return (error);
1250		}
1251	}
1252	error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1253	    &sc->ti_cdata.ti_rx_mini_sparemap);
1254	if (error) {
1255		device_printf(sc->ti_dev,
1256		    "could not create spare DMA map for mini RX\n");
1257		return (error);
1258	}
1259
1260	return (0);
1261}
1262
1263static void
1264ti_dma_free(struct ti_softc *sc)
1265{
1266	int i;
1267
1268	/* Destroy DMA maps for RX buffers. */
1269	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1270		if (sc->ti_cdata.ti_rx_std_maps[i]) {
1271			bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1272			    sc->ti_cdata.ti_rx_std_maps[i]);
1273			sc->ti_cdata.ti_rx_std_maps[i] = NULL;
1274		}
1275	}
1276	if (sc->ti_cdata.ti_rx_std_sparemap) {
1277		bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1278		    sc->ti_cdata.ti_rx_std_sparemap);
1279		sc->ti_cdata.ti_rx_std_sparemap = NULL;
1280	}
1281	if (sc->ti_cdata.ti_rx_std_tag) {
1282		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_std_tag);
1283		sc->ti_cdata.ti_rx_std_tag = NULL;
1284	}
1285
1286	/* Destroy DMA maps for jumbo RX buffers. */
1287	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1288		if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1289			bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1290			    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1291			sc->ti_cdata.ti_rx_jumbo_maps[i] = NULL;
1292		}
1293	}
1294	if (sc->ti_cdata.ti_rx_jumbo_sparemap) {
1295		bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1296		    sc->ti_cdata.ti_rx_jumbo_sparemap);
1297		sc->ti_cdata.ti_rx_jumbo_sparemap = NULL;
1298	}
1299	if (sc->ti_cdata.ti_rx_jumbo_tag) {
1300		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_jumbo_tag);
1301		sc->ti_cdata.ti_rx_jumbo_tag = NULL;
1302	}
1303
1304	/* Destroy DMA maps for mini RX buffers. */
1305	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1306		if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1307			bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1308			    sc->ti_cdata.ti_rx_mini_maps[i]);
1309			sc->ti_cdata.ti_rx_mini_maps[i] = NULL;
1310		}
1311	}
1312	if (sc->ti_cdata.ti_rx_mini_sparemap) {
1313		bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1314		    sc->ti_cdata.ti_rx_mini_sparemap);
1315		sc->ti_cdata.ti_rx_mini_sparemap = NULL;
1316	}
1317	if (sc->ti_cdata.ti_rx_mini_tag) {
1318		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_mini_tag);
1319		sc->ti_cdata.ti_rx_mini_tag = NULL;
1320	}
1321
1322	/* Destroy DMA maps for TX buffers. */
1323	for (i = 0; i < TI_TX_RING_CNT; i++) {
1324		if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1325			bus_dmamap_destroy(sc->ti_cdata.ti_tx_tag,
1326			    sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1327			sc->ti_cdata.ti_txdesc[i].tx_dmamap = NULL;
1328		}
1329	}
1330	if (sc->ti_cdata.ti_tx_tag) {
1331		bus_dma_tag_destroy(sc->ti_cdata.ti_tx_tag);
1332		sc->ti_cdata.ti_tx_tag = NULL;
1333	}
1334
1335	/* Destroy standard RX ring. */
1336	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_std_ring_tag,
1337	    (void *)&sc->ti_rdata.ti_rx_std_ring,
1338	    &sc->ti_cdata.ti_rx_std_ring_map);
1339	/* Destroy jumbo RX ring. */
1340	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1341	    (void *)&sc->ti_rdata.ti_rx_jumbo_ring,
1342	    &sc->ti_cdata.ti_rx_jumbo_ring_map);
1343	/* Destroy mini RX ring. */
1344	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_mini_ring_tag,
1345	    (void *)&sc->ti_rdata.ti_rx_mini_ring,
1346	    &sc->ti_cdata.ti_rx_mini_ring_map);
1347	/* Destroy RX return ring. */
1348	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_return_ring_tag,
1349	    (void *)&sc->ti_rdata.ti_rx_return_ring,
1350	    &sc->ti_cdata.ti_rx_return_ring_map);
1351	/* Destroy TX ring. */
1352	ti_dma_ring_free(sc, &sc->ti_cdata.ti_tx_ring_tag,
1353	    (void *)&sc->ti_rdata.ti_tx_ring, &sc->ti_cdata.ti_tx_ring_map);
1354	/* Destroy status block. */
1355	ti_dma_ring_free(sc, &sc->ti_cdata.ti_status_tag,
1356	    (void *)&sc->ti_rdata.ti_status, &sc->ti_cdata.ti_status_map);
1357	/* Destroy event ring. */
1358	ti_dma_ring_free(sc, &sc->ti_cdata.ti_event_ring_tag,
1359	    (void *)&sc->ti_rdata.ti_event_ring,
1360	    &sc->ti_cdata.ti_event_ring_map);
1361	/* Destroy GIB */
1362	ti_dma_ring_free(sc, &sc->ti_cdata.ti_gib_tag,
1363	    (void *)&sc->ti_rdata.ti_info, &sc->ti_cdata.ti_gib_map);
1364
1365	/* Destroy the parent tag. */
1366	if (sc->ti_cdata.ti_parent_tag) {
1367		bus_dma_tag_destroy(sc->ti_cdata.ti_parent_tag);
1368		sc->ti_cdata.ti_parent_tag = NULL;
1369	}
1370}
1371
1372/*
1373 * Intialize a standard receive ring descriptor.
1374 */
1375static int
1376ti_newbuf_std(struct ti_softc *sc, int i)
1377{
1378	bus_dmamap_t map;
1379	bus_dma_segment_t segs[1];
1380	struct mbuf *m;
1381	struct ti_rx_desc *r;
1382	int error, nsegs;
1383
1384	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1385	if (m == NULL)
1386		return (ENOBUFS);
1387	m->m_len = m->m_pkthdr.len = MCLBYTES;
1388	m_adj(m, ETHER_ALIGN);
1389
1390	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_std_tag,
1391	    sc->ti_cdata.ti_rx_std_sparemap, m, segs, &nsegs, 0);
1392	if (error != 0) {
1393		m_freem(m);
1394		return (error);
1395        }
1396	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1397
1398	if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1399		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1400		    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_POSTREAD);
1401		bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag,
1402		    sc->ti_cdata.ti_rx_std_maps[i]);
1403	}
1404
1405	map = sc->ti_cdata.ti_rx_std_maps[i];
1406	sc->ti_cdata.ti_rx_std_maps[i] = sc->ti_cdata.ti_rx_std_sparemap;
1407	sc->ti_cdata.ti_rx_std_sparemap = map;
1408	sc->ti_cdata.ti_rx_std_chain[i] = m;
1409
1410	r = &sc->ti_rdata.ti_rx_std_ring[i];
1411	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1412	r->ti_len = segs[0].ds_len;
1413	r->ti_type = TI_BDTYPE_RECV_BD;
1414	r->ti_flags = 0;
1415	r->ti_vlan_tag = 0;
1416	r->ti_tcp_udp_cksum = 0;
1417	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1418		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1419	r->ti_idx = i;
1420
1421	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1422	    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_PREREAD);
1423	return (0);
1424}
1425
1426/*
1427 * Intialize a mini receive ring descriptor. This only applies to
1428 * the Tigon 2.
1429 */
1430static int
1431ti_newbuf_mini(struct ti_softc *sc, int i)
1432{
1433	bus_dmamap_t map;
1434	bus_dma_segment_t segs[1];
1435	struct mbuf *m;
1436	struct ti_rx_desc *r;
1437	int error, nsegs;
1438
1439	MGETHDR(m, M_DONTWAIT, MT_DATA);
1440	if (m == NULL)
1441		return (ENOBUFS);
1442	m->m_len = m->m_pkthdr.len = MHLEN;
1443	m_adj(m, ETHER_ALIGN);
1444
1445	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_mini_tag,
1446	    sc->ti_cdata.ti_rx_mini_sparemap, m, segs, &nsegs, 0);
1447	if (error != 0) {
1448		m_freem(m);
1449		return (error);
1450        }
1451	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1452
1453	if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1454		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1455		    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_POSTREAD);
1456		bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag,
1457		    sc->ti_cdata.ti_rx_mini_maps[i]);
1458	}
1459
1460	map = sc->ti_cdata.ti_rx_mini_maps[i];
1461	sc->ti_cdata.ti_rx_mini_maps[i] = sc->ti_cdata.ti_rx_mini_sparemap;
1462	sc->ti_cdata.ti_rx_mini_sparemap = map;
1463	sc->ti_cdata.ti_rx_mini_chain[i] = m;
1464
1465	r = &sc->ti_rdata.ti_rx_mini_ring[i];
1466	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1467	r->ti_len = segs[0].ds_len;
1468	r->ti_type = TI_BDTYPE_RECV_BD;
1469	r->ti_flags = TI_BDFLAG_MINI_RING;
1470	r->ti_vlan_tag = 0;
1471	r->ti_tcp_udp_cksum = 0;
1472	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1473		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1474	r->ti_idx = i;
1475
1476	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1477	    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_PREREAD);
1478	return (0);
1479}
1480
1481#ifndef TI_SF_BUF_JUMBO
1482
1483/*
1484 * Initialize a jumbo receive ring descriptor. This allocates
1485 * a jumbo buffer from the pool managed internally by the driver.
1486 */
1487static int
1488ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *dummy)
1489{
1490	bus_dmamap_t map;
1491	bus_dma_segment_t segs[1];
1492	struct mbuf *m;
1493	struct ti_rx_desc *r;
1494	int error, nsegs;
1495
1496	(void)dummy;
1497
1498	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1499	if (m == NULL)
1500		return (ENOBUFS);
1501	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1502	m_adj(m, ETHER_ALIGN);
1503
1504	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag,
1505	    sc->ti_cdata.ti_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1506	if (error != 0) {
1507		m_freem(m);
1508		return (error);
1509        }
1510	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1511
1512	if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1513		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1514		    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_POSTREAD);
1515		bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag,
1516		    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1517	}
1518
1519	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1520	sc->ti_cdata.ti_rx_jumbo_maps[i] = sc->ti_cdata.ti_rx_jumbo_sparemap;
1521	sc->ti_cdata.ti_rx_jumbo_sparemap = map;
1522	sc->ti_cdata.ti_rx_jumbo_chain[i] = m;
1523
1524	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
1525	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1526	r->ti_len = segs[0].ds_len;
1527	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1528	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1529	r->ti_vlan_tag = 0;
1530	r->ti_tcp_udp_cksum = 0;
1531	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1532		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1533	r->ti_idx = i;
1534
1535	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1536	    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_PREREAD);
1537	return (0);
1538}
1539
1540#else
1541
1542#if (PAGE_SIZE == 4096)
1543#define NPAYLOAD 2
1544#else
1545#define NPAYLOAD 1
1546#endif
1547
1548#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1549#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1550#define NFS_HDR_LEN (UDP_HDR_LEN)
1551static int HDR_LEN = TCP_HDR_LEN;
1552
1553/*
1554 * Initialize a jumbo receive ring descriptor. This allocates
1555 * a jumbo buffer from the pool managed internally by the driver.
1556 */
1557static int
1558ti_newbuf_jumbo(struct ti_softc *sc, int idx, struct mbuf *m_old)
1559{
1560	bus_dmamap_t map;
1561	struct mbuf *cur, *m_new = NULL;
1562	struct mbuf *m[3] = {NULL, NULL, NULL};
1563	struct ti_rx_desc_ext *r;
1564	vm_page_t frame;
1565	static int color;
1566	/* 1 extra buf to make nobufs easy*/
1567	struct sf_buf *sf[3] = {NULL, NULL, NULL};
1568	int i;
1569	bus_dma_segment_t segs[4];
1570	int nsegs;
1571
1572	if (m_old != NULL) {
1573		m_new = m_old;
1574		cur = m_old->m_next;
1575		for (i = 0; i <= NPAYLOAD; i++){
1576			m[i] = cur;
1577			cur = cur->m_next;
1578		}
1579	} else {
1580		/* Allocate the mbufs. */
1581		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1582		if (m_new == NULL) {
1583			device_printf(sc->ti_dev, "mbuf allocation failed "
1584			    "-- packet dropped!\n");
1585			goto nobufs;
1586		}
1587		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1588		if (m[NPAYLOAD] == NULL) {
1589			device_printf(sc->ti_dev, "cluster mbuf allocation "
1590			    "failed -- packet dropped!\n");
1591			goto nobufs;
1592		}
1593		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1594		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1595			device_printf(sc->ti_dev, "mbuf allocation failed "
1596			    "-- packet dropped!\n");
1597			goto nobufs;
1598		}
1599		m[NPAYLOAD]->m_len = MCLBYTES;
1600
1601		for (i = 0; i < NPAYLOAD; i++){
1602			MGET(m[i], M_DONTWAIT, MT_DATA);
1603			if (m[i] == NULL) {
1604				device_printf(sc->ti_dev, "mbuf allocation "
1605				    "failed -- packet dropped!\n");
1606				goto nobufs;
1607			}
1608			frame = vm_page_alloc(NULL, color++,
1609			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1610			    VM_ALLOC_WIRED);
1611			if (frame == NULL) {
1612				device_printf(sc->ti_dev, "buffer allocation "
1613				    "failed -- packet dropped!\n");
1614				printf("      index %d page %d\n", idx, i);
1615				goto nobufs;
1616			}
1617			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1618			if (sf[i] == NULL) {
1619				vm_page_unwire(frame, 0);
1620				vm_page_free(frame);
1621				device_printf(sc->ti_dev, "buffer allocation "
1622				    "failed -- packet dropped!\n");
1623				printf("      index %d page %d\n", idx, i);
1624				goto nobufs;
1625			}
1626		}
1627		for (i = 0; i < NPAYLOAD; i++){
1628		/* Attach the buffer to the mbuf. */
1629			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1630			m[i]->m_len = PAGE_SIZE;
1631			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1632			    sf_buf_mext, (void*)sf_buf_kva(sf[i]), sf[i],
1633			    0, EXT_DISPOSABLE);
1634			m[i]->m_next = m[i+1];
1635		}
1636		/* link the buffers to the header */
1637		m_new->m_next = m[0];
1638		m_new->m_data += ETHER_ALIGN;
1639		if (sc->ti_hdrsplit)
1640			m_new->m_len = MHLEN - ETHER_ALIGN;
1641		else
1642			m_new->m_len = HDR_LEN;
1643		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1644	}
1645
1646	/* Set up the descriptor. */
1647	r = &sc->ti_rdata.ti_rx_jumbo_ring[idx];
1648	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1649	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1650	if (bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag, map, m_new,
1651	    segs, &nsegs, 0))
1652		return (ENOBUFS);
1653	if ((nsegs < 1) || (nsegs > 4))
1654		return (ENOBUFS);
1655	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1656	r->ti_len0 = m_new->m_len;
1657
1658	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1659	r->ti_len1 = PAGE_SIZE;
1660
1661	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1662	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1663
1664	if (PAGE_SIZE == 4096) {
1665		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1666		r->ti_len3 = MCLBYTES;
1667	} else {
1668		r->ti_len3 = 0;
1669	}
1670	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1671
1672	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1673
1674	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1675		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1676
1677	r->ti_idx = idx;
1678
1679	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map, BUS_DMASYNC_PREREAD);
1680	return (0);
1681
1682nobufs:
1683
1684	/*
1685	 * Warning! :
1686	 * This can only be called before the mbufs are strung together.
1687	 * If the mbufs are strung together, m_freem() will free the chain,
1688	 * so that the later mbufs will be freed multiple times.
1689	 */
1690	if (m_new)
1691		m_freem(m_new);
1692
1693	for (i = 0; i < 3; i++) {
1694		if (m[i])
1695			m_freem(m[i]);
1696		if (sf[i])
1697			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1698	}
1699	return (ENOBUFS);
1700}
1701#endif
1702
1703/*
1704 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1705 * that's 1MB or memory, which is a lot. For now, we fill only the first
1706 * 256 ring entries and hope that our CPU is fast enough to keep up with
1707 * the NIC.
1708 */
1709static int
1710ti_init_rx_ring_std(struct ti_softc *sc)
1711{
1712	int i;
1713	struct ti_cmd_desc cmd;
1714
1715	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1716		if (ti_newbuf_std(sc, i) != 0)
1717			return (ENOBUFS);
1718	};
1719
1720	sc->ti_std = TI_STD_RX_RING_CNT - 1;
1721	TI_UPDATE_STDPROD(sc, TI_STD_RX_RING_CNT - 1);
1722
1723	return (0);
1724}
1725
1726static void
1727ti_free_rx_ring_std(struct ti_softc *sc)
1728{
1729	bus_dmamap_t map;
1730	int i;
1731
1732	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1733		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1734			map = sc->ti_cdata.ti_rx_std_maps[i];
1735			bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag, map,
1736			    BUS_DMASYNC_POSTREAD);
1737			bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag, map);
1738			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1739			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1740		}
1741	}
1742	bzero(sc->ti_rdata.ti_rx_std_ring, TI_STD_RX_RING_SZ);
1743	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
1744	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1745}
1746
1747static int
1748ti_init_rx_ring_jumbo(struct ti_softc *sc)
1749{
1750	struct ti_cmd_desc cmd;
1751	int i;
1752
1753	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1754		if (ti_newbuf_jumbo(sc, i, NULL) != 0)
1755			return (ENOBUFS);
1756	};
1757
1758	sc->ti_jumbo = TI_JUMBO_RX_RING_CNT - 1;
1759	TI_UPDATE_JUMBOPROD(sc, TI_JUMBO_RX_RING_CNT - 1);
1760
1761	return (0);
1762}
1763
1764static void
1765ti_free_rx_ring_jumbo(struct ti_softc *sc)
1766{
1767	bus_dmamap_t map;
1768	int i;
1769
1770	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1771		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1772			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1773			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
1774			    BUS_DMASYNC_POSTREAD);
1775			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
1776			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1777			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1778		}
1779	}
1780	bzero(sc->ti_rdata.ti_rx_jumbo_ring, TI_JUMBO_RX_RING_SZ);
1781	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
1782	    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1783}
1784
1785static int
1786ti_init_rx_ring_mini(struct ti_softc *sc)
1787{
1788	int i;
1789
1790	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1791		if (ti_newbuf_mini(sc, i) != 0)
1792			return (ENOBUFS);
1793	};
1794
1795	sc->ti_mini = TI_MINI_RX_RING_CNT - 1;
1796	TI_UPDATE_MINIPROD(sc, TI_MINI_RX_RING_CNT - 1);
1797
1798	return (0);
1799}
1800
1801static void
1802ti_free_rx_ring_mini(struct ti_softc *sc)
1803{
1804	bus_dmamap_t map;
1805	int i;
1806
1807	if (sc->ti_rdata.ti_rx_mini_ring == NULL)
1808		return;
1809
1810	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1811		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1812			map = sc->ti_cdata.ti_rx_mini_maps[i];
1813			bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag, map,
1814			    BUS_DMASYNC_POSTREAD);
1815			bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag, map);
1816			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1817			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1818		}
1819	}
1820	bzero(sc->ti_rdata.ti_rx_mini_ring, TI_MINI_RX_RING_SZ);
1821	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
1822	    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
1823}
1824
1825static void
1826ti_free_tx_ring(struct ti_softc *sc)
1827{
1828	struct ti_txdesc *txd;
1829	int i;
1830
1831	if (sc->ti_rdata.ti_tx_ring == NULL)
1832		return;
1833
1834	for (i = 0; i < TI_TX_RING_CNT; i++) {
1835		txd = &sc->ti_cdata.ti_txdesc[i];
1836		if (txd->tx_m != NULL) {
1837			bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
1838			    BUS_DMASYNC_POSTWRITE);
1839			bus_dmamap_unload(sc->ti_cdata.ti_tx_tag,
1840			    txd->tx_dmamap);
1841			m_freem(txd->tx_m);
1842			txd->tx_m = NULL;
1843		}
1844	}
1845	bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
1846	bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
1847	    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
1848}
1849
1850static int
1851ti_init_tx_ring(struct ti_softc *sc)
1852{
1853	struct ti_txdesc *txd;
1854	int i;
1855
1856	STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1857	STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1858	for (i = 0; i < TI_TX_RING_CNT; i++) {
1859		txd = &sc->ti_cdata.ti_txdesc[i];
1860		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1861	}
1862	sc->ti_txcnt = 0;
1863	sc->ti_tx_saved_considx = 0;
1864	sc->ti_tx_saved_prodidx = 0;
1865	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1866	return (0);
1867}
1868
1869/*
1870 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1871 * but we have to support the old way too so that Tigon 1 cards will
1872 * work.
1873 */
1874static void
1875ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1876{
1877	struct ti_cmd_desc cmd;
1878	uint16_t *m;
1879	uint32_t ext[2] = {0, 0};
1880
1881	m = (uint16_t *)&addr->octet[0];
1882
1883	switch (sc->ti_hwrev) {
1884	case TI_HWREV_TIGON:
1885		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1886		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1887		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1888		break;
1889	case TI_HWREV_TIGON_II:
1890		ext[0] = htons(m[0]);
1891		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1892		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1893		break;
1894	default:
1895		device_printf(sc->ti_dev, "unknown hwrev\n");
1896		break;
1897	}
1898}
1899
1900static void
1901ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1902{
1903	struct ti_cmd_desc cmd;
1904	uint16_t *m;
1905	uint32_t ext[2] = {0, 0};
1906
1907	m = (uint16_t *)&addr->octet[0];
1908
1909	switch (sc->ti_hwrev) {
1910	case TI_HWREV_TIGON:
1911		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1912		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1913		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1914		break;
1915	case TI_HWREV_TIGON_II:
1916		ext[0] = htons(m[0]);
1917		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1918		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1919		break;
1920	default:
1921		device_printf(sc->ti_dev, "unknown hwrev\n");
1922		break;
1923	}
1924}
1925
1926/*
1927 * Configure the Tigon's multicast address filter.
1928 *
1929 * The actual multicast table management is a bit of a pain, thanks to
1930 * slight brain damage on the part of both Alteon and us. With our
1931 * multicast code, we are only alerted when the multicast address table
1932 * changes and at that point we only have the current list of addresses:
1933 * we only know the current state, not the previous state, so we don't
1934 * actually know what addresses were removed or added. The firmware has
1935 * state, but we can't get our grubby mits on it, and there is no 'delete
1936 * all multicast addresses' command. Hence, we have to maintain our own
1937 * state so we know what addresses have been programmed into the NIC at
1938 * any given time.
1939 */
1940static void
1941ti_setmulti(struct ti_softc *sc)
1942{
1943	struct ifnet *ifp;
1944	struct ifmultiaddr *ifma;
1945	struct ti_cmd_desc cmd;
1946	struct ti_mc_entry *mc;
1947	uint32_t intrs;
1948
1949	TI_LOCK_ASSERT(sc);
1950
1951	ifp = sc->ti_ifp;
1952
1953	if (ifp->if_flags & IFF_ALLMULTI) {
1954		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1955		return;
1956	} else {
1957		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1958	}
1959
1960	/* Disable interrupts. */
1961	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1962	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1963
1964	/* First, zot all the existing filters. */
1965	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1966		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1967		ti_del_mcast(sc, &mc->mc_addr);
1968		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1969		free(mc, M_DEVBUF);
1970	}
1971
1972	/* Now program new ones. */
1973	if_maddr_rlock(ifp);
1974	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1975		if (ifma->ifma_addr->sa_family != AF_LINK)
1976			continue;
1977		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1978		if (mc == NULL) {
1979			device_printf(sc->ti_dev,
1980			    "no memory for mcast filter entry\n");
1981			continue;
1982		}
1983		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1984		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1985		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1986		ti_add_mcast(sc, &mc->mc_addr);
1987	}
1988	if_maddr_runlock(ifp);
1989
1990	/* Re-enable interrupts. */
1991	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1992}
1993
1994/*
1995 * Check to see if the BIOS has configured us for a 64 bit slot when
1996 * we aren't actually in one. If we detect this condition, we can work
1997 * around it on the Tigon 2 by setting a bit in the PCI state register,
1998 * but for the Tigon 1 we must give up and abort the interface attach.
1999 */
2000static int
2001ti_64bitslot_war(struct ti_softc *sc)
2002{
2003
2004	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
2005		CSR_WRITE_4(sc, 0x600, 0);
2006		CSR_WRITE_4(sc, 0x604, 0);
2007		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
2008		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
2009			if (sc->ti_hwrev == TI_HWREV_TIGON)
2010				return (EINVAL);
2011			else {
2012				TI_SETBIT(sc, TI_PCI_STATE,
2013				    TI_PCISTATE_32BIT_BUS);
2014				return (0);
2015			}
2016		}
2017	}
2018
2019	return (0);
2020}
2021
2022/*
2023 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2024 * self-test results.
2025 */
2026static int
2027ti_chipinit(struct ti_softc *sc)
2028{
2029	uint32_t cacheline;
2030	uint32_t pci_writemax = 0;
2031	uint32_t hdrsplit;
2032
2033	/* Initialize link to down state. */
2034	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
2035
2036	/* Set endianness before we access any non-PCI registers. */
2037#if 0 && BYTE_ORDER == BIG_ENDIAN
2038	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2039	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
2040#else
2041	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2042	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
2043#endif
2044
2045	/* Check the ROM failed bit to see if self-tests passed. */
2046	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
2047		device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
2048		return (ENODEV);
2049	}
2050
2051	/* Halt the CPU. */
2052	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
2053
2054	/* Figure out the hardware revision. */
2055	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
2056	case TI_REV_TIGON_I:
2057		sc->ti_hwrev = TI_HWREV_TIGON;
2058		break;
2059	case TI_REV_TIGON_II:
2060		sc->ti_hwrev = TI_HWREV_TIGON_II;
2061		break;
2062	default:
2063		device_printf(sc->ti_dev, "unsupported chip revision\n");
2064		return (ENODEV);
2065	}
2066
2067	/* Do special setup for Tigon 2. */
2068	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2069		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
2070		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
2071		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
2072	}
2073
2074	/*
2075	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
2076	 * can't do header splitting.
2077	 */
2078#ifdef TI_JUMBO_HDRSPLIT
2079	if (sc->ti_hwrev != TI_HWREV_TIGON)
2080		sc->ti_hdrsplit = 1;
2081	else
2082		device_printf(sc->ti_dev,
2083		    "can't do header splitting on a Tigon I board\n");
2084#endif /* TI_JUMBO_HDRSPLIT */
2085
2086	/* Set up the PCI state register. */
2087	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
2088	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2089		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
2090	}
2091
2092	/* Clear the read/write max DMA parameters. */
2093	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
2094	    TI_PCISTATE_READ_MAXDMA));
2095
2096	/* Get cache line size. */
2097	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
2098
2099	/*
2100	 * If the system has set enabled the PCI memory write
2101	 * and invalidate command in the command register, set
2102	 * the write max parameter accordingly. This is necessary
2103	 * to use MWI with the Tigon 2.
2104	 */
2105	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
2106		switch (cacheline) {
2107		case 1:
2108		case 4:
2109		case 8:
2110		case 16:
2111		case 32:
2112		case 64:
2113			break;
2114		default:
2115		/* Disable PCI memory write and invalidate. */
2116			if (bootverbose)
2117				device_printf(sc->ti_dev, "cache line size %d"
2118				    " not supported; disabling PCI MWI\n",
2119				    cacheline);
2120			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
2121			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
2122			break;
2123		}
2124	}
2125
2126	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2127
2128	/* This sets the min dma param all the way up (0xff). */
2129	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2130
2131	if (sc->ti_hdrsplit)
2132		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2133	else
2134		hdrsplit = 0;
2135
2136	/* Configure DMA variables. */
2137#if BYTE_ORDER == BIG_ENDIAN
2138	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2139	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2140	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2141	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2142#else /* BYTE_ORDER */
2143	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2144	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2145	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2146#endif /* BYTE_ORDER */
2147
2148	/*
2149	 * Only allow 1 DMA channel to be active at a time.
2150	 * I don't think this is a good idea, but without it
2151	 * the firmware racks up lots of nicDmaReadRingFull
2152	 * errors.  This is not compatible with hardware checksums.
2153	 */
2154	if ((sc->ti_ifp->if_capenable & (IFCAP_TXCSUM | IFCAP_RXCSUM)) == 0)
2155		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2156
2157	/* Recommended settings from Tigon manual. */
2158	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2159	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2160
2161	if (ti_64bitslot_war(sc)) {
2162		device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
2163		    "but we aren't");
2164		return (EINVAL);
2165	}
2166
2167	return (0);
2168}
2169
2170/*
2171 * Initialize the general information block and firmware, and
2172 * start the CPU(s) running.
2173 */
2174static int
2175ti_gibinit(struct ti_softc *sc)
2176{
2177	struct ifnet *ifp;
2178	struct ti_rcb *rcb;
2179	int i;
2180
2181	TI_LOCK_ASSERT(sc);
2182
2183	ifp = sc->ti_ifp;
2184
2185	/* Disable interrupts for now. */
2186	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2187
2188	/* Tell the chip where to find the general information block. */
2189	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI,
2190	    (uint64_t)sc->ti_rdata.ti_info_paddr >> 32);
2191	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO,
2192	    sc->ti_rdata.ti_info_paddr & 0xFFFFFFFF);
2193
2194	/* Load the firmware into SRAM. */
2195	ti_loadfw(sc);
2196
2197	/* Set up the contents of the general info and ring control blocks. */
2198
2199	/* Set up the event ring and producer pointer. */
2200	bzero(sc->ti_rdata.ti_event_ring, TI_EVENT_RING_SZ);
2201	rcb = &sc->ti_rdata.ti_info->ti_ev_rcb;
2202	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_event_ring_paddr);
2203	rcb->ti_flags = 0;
2204	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_ev_prodidx_ptr,
2205	    sc->ti_rdata.ti_status_paddr +
2206	    offsetof(struct ti_status, ti_ev_prodidx_r));
2207	sc->ti_ev_prodidx.ti_idx = 0;
2208	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2209	sc->ti_ev_saved_considx = 0;
2210
2211	/* Set up the command ring and producer mailbox. */
2212	rcb = &sc->ti_rdata.ti_info->ti_cmd_rcb;
2213	ti_hostaddr64(&rcb->ti_hostaddr, TI_GCR_NIC_ADDR(TI_GCR_CMDRING));
2214	rcb->ti_flags = 0;
2215	rcb->ti_max_len = 0;
2216	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2217		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2218	}
2219	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2220	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2221	sc->ti_cmd_saved_prodidx = 0;
2222
2223	/*
2224	 * Assign the address of the stats refresh buffer.
2225	 * We re-use the current stats buffer for this to
2226	 * conserve memory.
2227	 */
2228	bzero(&sc->ti_rdata.ti_info->ti_stats, sizeof(struct ti_stats));
2229	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_refresh_stats_ptr,
2230	    sc->ti_rdata.ti_info_paddr + offsetof(struct ti_gib, ti_stats));
2231
2232	/* Set up the standard receive ring. */
2233	rcb = &sc->ti_rdata.ti_info->ti_std_rx_rcb;
2234	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_std_ring_paddr);
2235	rcb->ti_max_len = TI_FRAMELEN;
2236	rcb->ti_flags = 0;
2237	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2238		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2239		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2240	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2241		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2242
2243	/* Set up the jumbo receive ring. */
2244	rcb = &sc->ti_rdata.ti_info->ti_jumbo_rx_rcb;
2245	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_jumbo_ring_paddr);
2246
2247#ifndef TI_SF_BUF_JUMBO
2248	rcb->ti_max_len = MJUM9BYTES - ETHER_ALIGN;
2249	rcb->ti_flags = 0;
2250#else
2251	rcb->ti_max_len = PAGE_SIZE;
2252	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2253#endif
2254	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2255		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2256		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2257	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2258		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2259
2260	/*
2261	 * Set up the mini ring. Only activated on the
2262	 * Tigon 2 but the slot in the config block is
2263	 * still there on the Tigon 1.
2264	 */
2265	rcb = &sc->ti_rdata.ti_info->ti_mini_rx_rcb;
2266	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_mini_ring_paddr);
2267	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2268	if (sc->ti_hwrev == TI_HWREV_TIGON)
2269		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2270	else
2271		rcb->ti_flags = 0;
2272	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2273		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2274		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2275	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2276		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2277
2278	/*
2279	 * Set up the receive return ring.
2280	 */
2281	rcb = &sc->ti_rdata.ti_info->ti_return_rcb;
2282	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_return_ring_paddr);
2283	rcb->ti_flags = 0;
2284	rcb->ti_max_len = TI_RETURN_RING_CNT;
2285	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_return_prodidx_ptr,
2286	    sc->ti_rdata.ti_status_paddr +
2287	    offsetof(struct ti_status, ti_return_prodidx_r));
2288
2289	/*
2290	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2291	 * of putting the transmit ring in the host's address space and
2292	 * letting the chip DMA it instead of leaving the ring in the NIC's
2293	 * memory and accessing it through the shared memory region. We
2294	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2295	 * so we have to revert to the shared memory scheme if we detect
2296	 * a Tigon 1 chip.
2297	 */
2298	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2299	if (sc->ti_rdata.ti_tx_ring != NULL)
2300		bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
2301	rcb = &sc->ti_rdata.ti_info->ti_tx_rcb;
2302	if (sc->ti_hwrev == TI_HWREV_TIGON)
2303		rcb->ti_flags = 0;
2304	else
2305		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2306	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2307		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2308	if (sc->ti_ifp->if_capenable & IFCAP_TXCSUM)
2309		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2310		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2311	rcb->ti_max_len = TI_TX_RING_CNT;
2312	if (sc->ti_hwrev == TI_HWREV_TIGON)
2313		ti_hostaddr64(&rcb->ti_hostaddr, TI_TX_RING_BASE);
2314	else
2315		ti_hostaddr64(&rcb->ti_hostaddr,
2316		    sc->ti_rdata.ti_tx_ring_paddr);
2317	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_tx_considx_ptr,
2318	    sc->ti_rdata.ti_status_paddr +
2319	    offsetof(struct ti_status, ti_tx_considx_r));
2320
2321	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
2322	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2323	bus_dmamap_sync(sc->ti_cdata.ti_status_tag, sc->ti_cdata.ti_status_map,
2324	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2325	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
2326	    sc->ti_cdata.ti_event_ring_map,
2327	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2328	if (sc->ti_rdata.ti_tx_ring != NULL)
2329		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2330		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
2331
2332	/* Set up tunables */
2333#if 0
2334	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2335		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2336		    (sc->ti_rx_coal_ticks / 10));
2337	else
2338#endif
2339		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2340	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2341	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2342	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2343	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2344	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2345
2346	/* Turn interrupts on. */
2347	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2348	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2349
2350	/* Start CPU. */
2351	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2352
2353	return (0);
2354}
2355
2356/*
2357 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2358 * against our list and return its name if we find a match.
2359 */
2360static int
2361ti_probe(device_t dev)
2362{
2363	const struct ti_type *t;
2364
2365	t = ti_devs;
2366
2367	while (t->ti_name != NULL) {
2368		if ((pci_get_vendor(dev) == t->ti_vid) &&
2369		    (pci_get_device(dev) == t->ti_did)) {
2370			device_set_desc(dev, t->ti_name);
2371			return (BUS_PROBE_DEFAULT);
2372		}
2373		t++;
2374	}
2375
2376	return (ENXIO);
2377}
2378
2379static int
2380ti_attach(device_t dev)
2381{
2382	struct ifnet *ifp;
2383	struct ti_softc *sc;
2384	int error = 0, rid;
2385	u_char eaddr[6];
2386
2387	sc = device_get_softc(dev);
2388	sc->ti_dev = dev;
2389
2390	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2391	    MTX_DEF);
2392	callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2393	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2394	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2395	if (ifp == NULL) {
2396		device_printf(dev, "can not if_alloc()\n");
2397		error = ENOSPC;
2398		goto fail;
2399	}
2400	sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
2401	sc->ti_ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
2402	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2403
2404	/*
2405	 * Map control/status registers.
2406	 */
2407	pci_enable_busmaster(dev);
2408
2409	rid = PCIR_BAR(0);
2410	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2411	    RF_ACTIVE);
2412
2413	if (sc->ti_res == NULL) {
2414		device_printf(dev, "couldn't map memory\n");
2415		error = ENXIO;
2416		goto fail;
2417	}
2418
2419	sc->ti_btag = rman_get_bustag(sc->ti_res);
2420	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2421
2422	/* Allocate interrupt */
2423	rid = 0;
2424
2425	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2426	    RF_SHAREABLE | RF_ACTIVE);
2427
2428	if (sc->ti_irq == NULL) {
2429		device_printf(dev, "couldn't map interrupt\n");
2430		error = ENXIO;
2431		goto fail;
2432	}
2433
2434	if (ti_chipinit(sc)) {
2435		device_printf(dev, "chip initialization failed\n");
2436		error = ENXIO;
2437		goto fail;
2438	}
2439
2440	/* Zero out the NIC's on-board SRAM. */
2441	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2442
2443	/* Init again -- zeroing memory may have clobbered some registers. */
2444	if (ti_chipinit(sc)) {
2445		device_printf(dev, "chip initialization failed\n");
2446		error = ENXIO;
2447		goto fail;
2448	}
2449
2450	/*
2451	 * Get station address from the EEPROM. Note: the manual states
2452	 * that the MAC address is at offset 0x8c, however the data is
2453	 * stored as two longwords (since that's how it's loaded into
2454	 * the NIC). This means the MAC address is actually preceded
2455	 * by two zero bytes. We need to skip over those.
2456	 */
2457	if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2458		device_printf(dev, "failed to read station address\n");
2459		error = ENXIO;
2460		goto fail;
2461	}
2462
2463	/* Allocate working area for memory dump. */
2464	sc->ti_membuf = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF, M_NOWAIT);
2465	sc->ti_membuf2 = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF,
2466	    M_NOWAIT);
2467	if (sc->ti_membuf == NULL || sc->ti_membuf2 == NULL) {
2468		device_printf(dev, "cannot allocate memory buffer\n");
2469		error = ENOMEM;
2470		goto fail;
2471	}
2472	if ((error = ti_dma_alloc(sc)) != 0)
2473		goto fail;
2474
2475	/*
2476	 * We really need a better way to tell a 1000baseTX card
2477	 * from a 1000baseSX one, since in theory there could be
2478	 * OEMed 1000baseTX cards from lame vendors who aren't
2479	 * clever enough to change the PCI ID. For the moment
2480	 * though, the AceNIC is the only copper card available.
2481	 */
2482	if (pci_get_vendor(dev) == ALT_VENDORID &&
2483	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2484		sc->ti_copper = 1;
2485	/* Ok, it's not the only copper card available. */
2486	if (pci_get_vendor(dev) == NG_VENDORID &&
2487	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2488		sc->ti_copper = 1;
2489
2490	/* Set default tunable values. */
2491	ti_sysctl_node(sc);
2492
2493	/* Set up ifnet structure */
2494	ifp->if_softc = sc;
2495	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2496	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2497	ifp->if_ioctl = ti_ioctl;
2498	ifp->if_start = ti_start;
2499	ifp->if_init = ti_init;
2500	ifp->if_baudrate = IF_Gbps(1UL);
2501	ifp->if_snd.ifq_drv_maxlen = TI_TX_RING_CNT - 1;
2502	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2503	IFQ_SET_READY(&ifp->if_snd);
2504
2505	/* Set up ifmedia support. */
2506	if (sc->ti_copper) {
2507		/*
2508		 * Copper cards allow manual 10/100 mode selection,
2509		 * but not manual 1000baseTX mode selection. Why?
2510		 * Becuase currently there's no way to specify the
2511		 * master/slave setting through the firmware interface,
2512		 * so Alteon decided to just bag it and handle it
2513		 * via autonegotiation.
2514		 */
2515		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2516		ifmedia_add(&sc->ifmedia,
2517		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2518		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2519		ifmedia_add(&sc->ifmedia,
2520		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2521		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2522		ifmedia_add(&sc->ifmedia,
2523		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2524	} else {
2525		/* Fiber cards don't support 10/100 modes. */
2526		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2527		ifmedia_add(&sc->ifmedia,
2528		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2529	}
2530	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2531	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2532
2533	/*
2534	 * We're assuming here that card initialization is a sequential
2535	 * thing.  If it isn't, multiple cards probing at the same time
2536	 * could stomp on the list of softcs here.
2537	 */
2538
2539	/* Register the device */
2540	sc->dev = make_dev(&ti_cdevsw, device_get_unit(dev), UID_ROOT,
2541	    GID_OPERATOR, 0600, "ti%d", device_get_unit(dev));
2542	sc->dev->si_drv1 = sc;
2543
2544	/*
2545	 * Call MI attach routine.
2546	 */
2547	ether_ifattach(ifp, eaddr);
2548
2549	/* VLAN capability setup. */
2550	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM |
2551	    IFCAP_VLAN_HWTAGGING;
2552	ifp->if_capenable = ifp->if_capabilities;
2553	/* Tell the upper layer we support VLAN over-sized frames. */
2554	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
2555
2556	/* Driver supports link state tracking. */
2557	ifp->if_capabilities |= IFCAP_LINKSTATE;
2558	ifp->if_capenable |= IFCAP_LINKSTATE;
2559
2560	/* Hook interrupt last to avoid having to lock softc */
2561	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2562	   NULL, ti_intr, sc, &sc->ti_intrhand);
2563
2564	if (error) {
2565		device_printf(dev, "couldn't set up irq\n");
2566		goto fail;
2567	}
2568
2569fail:
2570	if (error)
2571		ti_detach(dev);
2572
2573	return (error);
2574}
2575
2576/*
2577 * Shutdown hardware and free up resources. This can be called any
2578 * time after the mutex has been initialized. It is called in both
2579 * the error case in attach and the normal detach case so it needs
2580 * to be careful about only freeing resources that have actually been
2581 * allocated.
2582 */
2583static int
2584ti_detach(device_t dev)
2585{
2586	struct ti_softc *sc;
2587	struct ifnet *ifp;
2588
2589	sc = device_get_softc(dev);
2590	if (sc->dev)
2591		destroy_dev(sc->dev);
2592	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2593	ifp = sc->ti_ifp;
2594	if (device_is_attached(dev)) {
2595		ether_ifdetach(ifp);
2596		TI_LOCK(sc);
2597		ti_stop(sc);
2598		TI_UNLOCK(sc);
2599	}
2600
2601	/* These should only be active if attach succeeded */
2602	callout_drain(&sc->ti_watchdog);
2603	bus_generic_detach(dev);
2604	ti_dma_free(sc);
2605	ifmedia_removeall(&sc->ifmedia);
2606
2607	if (sc->ti_intrhand)
2608		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2609	if (sc->ti_irq)
2610		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2611	if (sc->ti_res) {
2612		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
2613		    sc->ti_res);
2614	}
2615	if (ifp)
2616		if_free(ifp);
2617	if (sc->ti_membuf)
2618		free(sc->ti_membuf, M_DEVBUF);
2619	if (sc->ti_membuf2)
2620		free(sc->ti_membuf2, M_DEVBUF);
2621
2622	mtx_destroy(&sc->ti_mtx);
2623
2624	return (0);
2625}
2626
2627#ifdef TI_JUMBO_HDRSPLIT
2628/*
2629 * If hdr_len is 0, that means that header splitting wasn't done on
2630 * this packet for some reason.  The two most likely reasons are that
2631 * the protocol isn't a supported protocol for splitting, or this
2632 * packet had a fragment offset that wasn't 0.
2633 *
2634 * The header length, if it is non-zero, will always be the length of
2635 * the headers on the packet, but that length could be longer than the
2636 * first mbuf.  So we take the minimum of the two as the actual
2637 * length.
2638 */
2639static __inline void
2640ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2641{
2642	int i = 0;
2643	int lengths[4] = {0, 0, 0, 0};
2644	struct mbuf *m, *mp;
2645
2646	if (hdr_len != 0)
2647		top->m_len = min(hdr_len, top->m_len);
2648	pkt_len -= top->m_len;
2649	lengths[i++] = top->m_len;
2650
2651	mp = top;
2652	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2653		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2654		pkt_len -= m->m_len;
2655		lengths[i++] = m->m_len;
2656		mp = m;
2657	}
2658
2659#if 0
2660	if (hdr_len != 0)
2661		printf("got split packet: ");
2662	else
2663		printf("got non-split packet: ");
2664
2665	printf("%d,%d,%d,%d = %d\n", lengths[0],
2666	    lengths[1], lengths[2], lengths[3],
2667	    lengths[0] + lengths[1] + lengths[2] +
2668	    lengths[3]);
2669#endif
2670
2671	if (pkt_len)
2672		panic("header splitting didn't");
2673
2674	if (m) {
2675		m_freem(m);
2676		mp->m_next = NULL;
2677
2678	}
2679	if (mp->m_next != NULL)
2680		panic("ti_hdr_split: last mbuf in chain should be null");
2681}
2682#endif /* TI_JUMBO_HDRSPLIT */
2683
2684static void
2685ti_discard_std(struct ti_softc *sc, int i)
2686{
2687
2688	struct ti_rx_desc *r;
2689
2690	r = &sc->ti_rdata.ti_rx_std_ring[i];
2691	r->ti_len = MCLBYTES - ETHER_ALIGN;
2692	r->ti_type = TI_BDTYPE_RECV_BD;
2693	r->ti_flags = 0;
2694	r->ti_vlan_tag = 0;
2695	r->ti_tcp_udp_cksum = 0;
2696	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2697		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2698	r->ti_idx = i;
2699}
2700
2701static void
2702ti_discard_mini(struct ti_softc *sc, int i)
2703{
2704
2705	struct ti_rx_desc *r;
2706
2707	r = &sc->ti_rdata.ti_rx_mini_ring[i];
2708	r->ti_len = MHLEN - ETHER_ALIGN;
2709	r->ti_type = TI_BDTYPE_RECV_BD;
2710	r->ti_flags = TI_BDFLAG_MINI_RING;
2711	r->ti_vlan_tag = 0;
2712	r->ti_tcp_udp_cksum = 0;
2713	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2714		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2715	r->ti_idx = i;
2716}
2717
2718#ifndef TI_SF_BUF_JUMBO
2719static void
2720ti_discard_jumbo(struct ti_softc *sc, int i)
2721{
2722
2723	struct ti_rx_desc *r;
2724
2725	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
2726	r->ti_len = MJUM9BYTES - ETHER_ALIGN;
2727	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
2728	r->ti_flags = TI_BDFLAG_JUMBO_RING;
2729	r->ti_vlan_tag = 0;
2730	r->ti_tcp_udp_cksum = 0;
2731	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2732		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2733	r->ti_idx = i;
2734}
2735#endif
2736
2737/*
2738 * Frame reception handling. This is called if there's a frame
2739 * on the receive return list.
2740 *
2741 * Note: we have to be able to handle three possibilities here:
2742 * 1) the frame is from the mini receive ring (can only happen)
2743 *    on Tigon 2 boards)
2744 * 2) the frame is from the jumbo recieve ring
2745 * 3) the frame is from the standard receive ring
2746 */
2747
2748static void
2749ti_rxeof(struct ti_softc *sc)
2750{
2751	struct ifnet *ifp;
2752#ifdef TI_SF_BUF_JUMBO
2753	bus_dmamap_t map;
2754#endif
2755	struct ti_cmd_desc cmd;
2756	int jumbocnt, minicnt, stdcnt, ti_len;
2757
2758	TI_LOCK_ASSERT(sc);
2759
2760	ifp = sc->ti_ifp;
2761
2762	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2763	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
2764	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2765		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2766		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
2767	if (sc->ti_rdata.ti_rx_mini_ring != NULL)
2768		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2769		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_POSTWRITE);
2770	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2771	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
2772
2773	jumbocnt = minicnt = stdcnt = 0;
2774	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2775		struct ti_rx_desc *cur_rx;
2776		uint32_t rxidx;
2777		struct mbuf *m = NULL;
2778		uint16_t vlan_tag = 0;
2779		int have_tag = 0;
2780
2781		cur_rx =
2782		    &sc->ti_rdata.ti_rx_return_ring[sc->ti_rx_saved_considx];
2783		rxidx = cur_rx->ti_idx;
2784		ti_len = cur_rx->ti_len;
2785		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2786
2787		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2788			have_tag = 1;
2789			vlan_tag = cur_rx->ti_vlan_tag;
2790		}
2791
2792		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2793			jumbocnt++;
2794			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2795			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2796#ifndef TI_SF_BUF_JUMBO
2797			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2798				ifp->if_ierrors++;
2799				ti_discard_jumbo(sc, rxidx);
2800				continue;
2801			}
2802			if (ti_newbuf_jumbo(sc, rxidx, NULL) != 0) {
2803				ifp->if_iqdrops++;
2804				ti_discard_jumbo(sc, rxidx);
2805				continue;
2806			}
2807			m->m_len = ti_len;
2808#else /* !TI_SF_BUF_JUMBO */
2809			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2810			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2811			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
2812			    BUS_DMASYNC_POSTREAD);
2813			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
2814			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2815				ifp->if_ierrors++;
2816				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2817				continue;
2818			}
2819			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2820				ifp->if_iqdrops++;
2821				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2822				continue;
2823			}
2824#ifdef TI_JUMBO_HDRSPLIT
2825			if (sc->ti_hdrsplit)
2826				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2827					     ti_len, rxidx);
2828			else
2829#endif /* TI_JUMBO_HDRSPLIT */
2830			m_adj(m, ti_len - m->m_pkthdr.len);
2831#endif /* TI_SF_BUF_JUMBO */
2832		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2833			minicnt++;
2834			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2835			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2836			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2837				ifp->if_ierrors++;
2838				ti_discard_mini(sc, rxidx);
2839				continue;
2840			}
2841			if (ti_newbuf_mini(sc, rxidx) != 0) {
2842				ifp->if_iqdrops++;
2843				ti_discard_mini(sc, rxidx);
2844				continue;
2845			}
2846			m->m_len = ti_len;
2847		} else {
2848			stdcnt++;
2849			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2850			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2851			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2852				ifp->if_ierrors++;
2853				ti_discard_std(sc, rxidx);
2854				continue;
2855			}
2856			if (ti_newbuf_std(sc, rxidx) != 0) {
2857				ifp->if_iqdrops++;
2858				ti_discard_std(sc, rxidx);
2859				continue;
2860			}
2861			m->m_len = ti_len;
2862		}
2863
2864		m->m_pkthdr.len = ti_len;
2865		ifp->if_ipackets++;
2866		m->m_pkthdr.rcvif = ifp;
2867
2868		if (ifp->if_capenable & IFCAP_RXCSUM) {
2869			if (cur_rx->ti_flags & TI_BDFLAG_IP_CKSUM) {
2870				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2871				if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2872					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2873			}
2874			if (cur_rx->ti_flags & TI_BDFLAG_TCP_UDP_CKSUM) {
2875				m->m_pkthdr.csum_data =
2876				    cur_rx->ti_tcp_udp_cksum;
2877				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2878			}
2879		}
2880
2881		/*
2882		 * If we received a packet with a vlan tag,
2883		 * tag it before passing the packet upward.
2884		 */
2885		if (have_tag) {
2886			m->m_pkthdr.ether_vtag = vlan_tag;
2887			m->m_flags |= M_VLANTAG;
2888		}
2889		TI_UNLOCK(sc);
2890		(*ifp->if_input)(ifp, m);
2891		TI_LOCK(sc);
2892	}
2893
2894	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2895	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_PREREAD);
2896	/* Only necessary on the Tigon 1. */
2897	if (sc->ti_hwrev == TI_HWREV_TIGON)
2898		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2899		    sc->ti_rx_saved_considx);
2900
2901	if (stdcnt > 0) {
2902		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2903		    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
2904		TI_UPDATE_STDPROD(sc, sc->ti_std);
2905	}
2906	if (minicnt > 0) {
2907		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2908		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
2909		TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2910	}
2911	if (jumbocnt > 0) {
2912		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2913		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
2914		TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2915	}
2916}
2917
2918static void
2919ti_txeof(struct ti_softc *sc)
2920{
2921	struct ti_txdesc *txd;
2922	struct ti_tx_desc txdesc;
2923	struct ti_tx_desc *cur_tx = NULL;
2924	struct ifnet *ifp;
2925	int idx;
2926
2927	ifp = sc->ti_ifp;
2928
2929	txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2930	if (txd == NULL)
2931		return;
2932
2933	if (sc->ti_rdata.ti_tx_ring != NULL)
2934		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2935		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2936	/*
2937	 * Go through our tx ring and free mbufs for those
2938	 * frames that have been sent.
2939	 */
2940	for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2941	    TI_INC(idx, TI_TX_RING_CNT)) {
2942		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2943			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2944			    sizeof(txdesc), &txdesc);
2945			cur_tx = &txdesc;
2946		} else
2947			cur_tx = &sc->ti_rdata.ti_tx_ring[idx];
2948		sc->ti_txcnt--;
2949		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2950		if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2951			continue;
2952		bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
2953		    BUS_DMASYNC_POSTWRITE);
2954		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
2955
2956		ifp->if_opackets++;
2957		m_freem(txd->tx_m);
2958		txd->tx_m = NULL;
2959		STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2960		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2961		txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2962	}
2963	sc->ti_tx_saved_considx = idx;
2964	if (sc->ti_txcnt == 0)
2965		sc->ti_timer = 0;
2966}
2967
2968static void
2969ti_intr(void *xsc)
2970{
2971	struct ti_softc *sc;
2972	struct ifnet *ifp;
2973
2974	sc = xsc;
2975	TI_LOCK(sc);
2976	ifp = sc->ti_ifp;
2977
2978	/* Make sure this is really our interrupt. */
2979	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2980		TI_UNLOCK(sc);
2981		return;
2982	}
2983
2984	/* Ack interrupt and stop others from occuring. */
2985	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2986
2987	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2988		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
2989		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_POSTREAD);
2990		/* Check RX return ring producer/consumer */
2991		ti_rxeof(sc);
2992
2993		/* Check TX ring producer/consumer */
2994		ti_txeof(sc);
2995		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
2996		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_PREREAD);
2997	}
2998
2999	ti_handle_events(sc);
3000
3001	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3002		/* Re-enable interrupts. */
3003		CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3004		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3005			ti_start_locked(ifp);
3006	}
3007
3008	TI_UNLOCK(sc);
3009}
3010
3011static void
3012ti_stats_update(struct ti_softc *sc)
3013{
3014	struct ifnet *ifp;
3015	struct ti_stats *s;
3016
3017	ifp = sc->ti_ifp;
3018
3019	if (sc->ti_stat_ticks == 0)
3020		return;
3021	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
3022	    BUS_DMASYNC_POSTREAD);
3023
3024	s = &sc->ti_rdata.ti_info->ti_stats;
3025	ifp->if_collisions += (s->dot3StatsSingleCollisionFrames +
3026	   s->dot3StatsMultipleCollisionFrames +
3027	   s->dot3StatsExcessiveCollisions + s->dot3StatsLateCollisions) -
3028	    ifp->if_collisions;
3029
3030	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
3031	    BUS_DMASYNC_PREREAD);
3032}
3033
3034/*
3035 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3036 * pointers to descriptors.
3037 */
3038static int
3039ti_encap(struct ti_softc *sc, struct mbuf **m_head)
3040{
3041	struct ti_txdesc *txd;
3042	struct ti_tx_desc *f;
3043	struct ti_tx_desc txdesc;
3044	struct mbuf *m;
3045	bus_dma_segment_t txsegs[TI_MAXTXSEGS];
3046	uint16_t csum_flags;
3047	int error, frag, i, nseg;
3048
3049	if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
3050		return (ENOBUFS);
3051
3052	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3053	    *m_head, txsegs, &nseg, 0);
3054	if (error == EFBIG) {
3055		m = m_defrag(*m_head, M_DONTWAIT);
3056		if (m == NULL) {
3057			m_freem(*m_head);
3058			*m_head = NULL;
3059			return (ENOMEM);
3060		}
3061		*m_head = m;
3062		error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag,
3063		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
3064		if (error) {
3065			m_freem(*m_head);
3066			*m_head = NULL;
3067			return (error);
3068		}
3069	} else if (error != 0)
3070		return (error);
3071	if (nseg == 0) {
3072		m_freem(*m_head);
3073		*m_head = NULL;
3074		return (EIO);
3075	}
3076
3077	if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
3078		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
3079		return (ENOBUFS);
3080	}
3081	bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3082	    BUS_DMASYNC_PREWRITE);
3083
3084	m = *m_head;
3085	csum_flags = 0;
3086	if (m->m_pkthdr.csum_flags) {
3087		if (m->m_pkthdr.csum_flags & CSUM_IP)
3088			csum_flags |= TI_BDFLAG_IP_CKSUM;
3089		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3090			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
3091		if (m->m_flags & M_LASTFRAG)
3092			csum_flags |= TI_BDFLAG_IP_FRAG_END;
3093		else if (m->m_flags & M_FRAG)
3094			csum_flags |= TI_BDFLAG_IP_FRAG;
3095	}
3096
3097	frag = sc->ti_tx_saved_prodidx;
3098	for (i = 0; i < nseg; i++) {
3099		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3100			bzero(&txdesc, sizeof(txdesc));
3101			f = &txdesc;
3102		} else
3103			f = &sc->ti_rdata.ti_tx_ring[frag];
3104		ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
3105		f->ti_len = txsegs[i].ds_len;
3106		f->ti_flags = csum_flags;
3107		if (m->m_flags & M_VLANTAG) {
3108			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
3109			f->ti_vlan_tag = m->m_pkthdr.ether_vtag;
3110		} else {
3111			f->ti_vlan_tag = 0;
3112		}
3113
3114		if (sc->ti_hwrev == TI_HWREV_TIGON)
3115			ti_mem_write(sc, TI_TX_RING_BASE + frag *
3116			    sizeof(txdesc), sizeof(txdesc), &txdesc);
3117		TI_INC(frag, TI_TX_RING_CNT);
3118	}
3119
3120	sc->ti_tx_saved_prodidx = frag;
3121	/* set TI_BDFLAG_END on the last descriptor */
3122	frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
3123	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3124		txdesc.ti_flags |= TI_BDFLAG_END;
3125		ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
3126		    sizeof(txdesc), &txdesc);
3127	} else
3128		sc->ti_rdata.ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3129
3130	STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3131	STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3132	txd->tx_m = m;
3133	sc->ti_txcnt += nseg;
3134
3135	return (0);
3136}
3137
3138static void
3139ti_start(struct ifnet *ifp)
3140{
3141	struct ti_softc *sc;
3142
3143	sc = ifp->if_softc;
3144	TI_LOCK(sc);
3145	ti_start_locked(ifp);
3146	TI_UNLOCK(sc);
3147}
3148
3149/*
3150 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3151 * to the mbuf data regions directly in the transmit descriptors.
3152 */
3153static void
3154ti_start_locked(struct ifnet *ifp)
3155{
3156	struct ti_softc *sc;
3157	struct mbuf *m_head = NULL;
3158	int enq = 0;
3159
3160	sc = ifp->if_softc;
3161
3162	for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
3163	    sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3164		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3165		if (m_head == NULL)
3166			break;
3167
3168		/*
3169		 * XXX
3170		 * safety overkill.  If this is a fragmented packet chain
3171		 * with delayed TCP/UDP checksums, then only encapsulate
3172		 * it if we have enough descriptors to handle the entire
3173		 * chain at once.
3174		 * (paranoia -- may not actually be needed)
3175		 */
3176		if (m_head->m_flags & M_FIRSTFRAG &&
3177		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3178			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
3179			    m_head->m_pkthdr.csum_data + 16) {
3180				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3181				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3182				break;
3183			}
3184		}
3185
3186		/*
3187		 * Pack the data into the transmit ring. If we
3188		 * don't have room, set the OACTIVE flag and wait
3189		 * for the NIC to drain the ring.
3190		 */
3191		if (ti_encap(sc, &m_head)) {
3192			if (m_head == NULL)
3193				break;
3194			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3195			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3196			break;
3197		}
3198
3199		enq++;
3200		/*
3201		 * If there's a BPF listener, bounce a copy of this frame
3202		 * to him.
3203		 */
3204		ETHER_BPF_MTAP(ifp, m_head);
3205	}
3206
3207	if (enq > 0) {
3208		if (sc->ti_rdata.ti_tx_ring != NULL)
3209			bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
3210			    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
3211		/* Transmit */
3212		CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3213
3214		/*
3215		 * Set a timeout in case the chip goes out to lunch.
3216		 */
3217		sc->ti_timer = 5;
3218	}
3219}
3220
3221static void
3222ti_init(void *xsc)
3223{
3224	struct ti_softc *sc;
3225
3226	sc = xsc;
3227	TI_LOCK(sc);
3228	ti_init_locked(sc);
3229	TI_UNLOCK(sc);
3230}
3231
3232static void
3233ti_init_locked(void *xsc)
3234{
3235	struct ti_softc *sc = xsc;
3236
3237	if (sc->ti_ifp->if_drv_flags & IFF_DRV_RUNNING)
3238		return;
3239
3240	/* Cancel pending I/O and flush buffers. */
3241	ti_stop(sc);
3242
3243	/* Init the gen info block, ring control blocks and firmware. */
3244	if (ti_gibinit(sc)) {
3245		device_printf(sc->ti_dev, "initialization failure\n");
3246		return;
3247	}
3248}
3249
3250static void ti_init2(struct ti_softc *sc)
3251{
3252	struct ti_cmd_desc cmd;
3253	struct ifnet *ifp;
3254	uint8_t *ea;
3255	struct ifmedia *ifm;
3256	int tmp;
3257
3258	TI_LOCK_ASSERT(sc);
3259
3260	ifp = sc->ti_ifp;
3261
3262	/* Specify MTU and interface index. */
3263	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_get_unit(sc->ti_dev));
3264	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3265	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3266	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3267
3268	/* Load our MAC address. */
3269	ea = IF_LLADDR(sc->ti_ifp);
3270	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3271	CSR_WRITE_4(sc, TI_GCR_PAR1,
3272	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3273	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3274
3275	/* Enable or disable promiscuous mode as needed. */
3276	if (ifp->if_flags & IFF_PROMISC) {
3277		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3278	} else {
3279		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3280	}
3281
3282	/* Program multicast filter. */
3283	ti_setmulti(sc);
3284
3285	/*
3286	 * If this is a Tigon 1, we should tell the
3287	 * firmware to use software packet filtering.
3288	 */
3289	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3290		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3291	}
3292
3293	/* Init RX ring. */
3294	if (ti_init_rx_ring_std(sc) != 0) {
3295		/* XXX */
3296		device_printf(sc->ti_dev, "no memory for std Rx buffers.\n");
3297		return;
3298	}
3299
3300	/* Init jumbo RX ring. */
3301	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) {
3302		if (ti_init_rx_ring_jumbo(sc) != 0) {
3303			/* XXX */
3304			device_printf(sc->ti_dev,
3305			    "no memory for jumbo Rx buffers.\n");
3306			return;
3307		}
3308	}
3309
3310	/*
3311	 * If this is a Tigon 2, we can also configure the
3312	 * mini ring.
3313	 */
3314	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
3315		if (ti_init_rx_ring_mini(sc) != 0) {
3316			/* XXX */
3317			device_printf(sc->ti_dev,
3318			    "no memory for mini Rx buffers.\n");
3319			return;
3320		}
3321	}
3322
3323	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3324	sc->ti_rx_saved_considx = 0;
3325
3326	/* Init TX ring. */
3327	ti_init_tx_ring(sc);
3328
3329	/* Tell firmware we're alive. */
3330	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3331
3332	/* Enable host interrupts. */
3333	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3334
3335	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3336	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3337	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3338
3339	/*
3340	 * Make sure to set media properly. We have to do this
3341	 * here since we have to issue commands in order to set
3342	 * the link negotiation and we can't issue commands until
3343	 * the firmware is running.
3344	 */
3345	ifm = &sc->ifmedia;
3346	tmp = ifm->ifm_media;
3347	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3348	ti_ifmedia_upd_locked(sc);
3349	ifm->ifm_media = tmp;
3350}
3351
3352/*
3353 * Set media options.
3354 */
3355static int
3356ti_ifmedia_upd(struct ifnet *ifp)
3357{
3358	struct ti_softc *sc;
3359	int error;
3360
3361	sc = ifp->if_softc;
3362	TI_LOCK(sc);
3363	error = ti_ifmedia_upd(ifp);
3364	TI_UNLOCK(sc);
3365
3366	return (error);
3367}
3368
3369static int
3370ti_ifmedia_upd_locked(struct ti_softc *sc)
3371{
3372	struct ifmedia *ifm;
3373	struct ti_cmd_desc cmd;
3374	uint32_t flowctl;
3375
3376	ifm = &sc->ifmedia;
3377
3378	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3379		return (EINVAL);
3380
3381	flowctl = 0;
3382
3383	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3384	case IFM_AUTO:
3385		/*
3386		 * Transmit flow control doesn't work on the Tigon 1.
3387		 */
3388		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3389
3390		/*
3391		 * Transmit flow control can also cause problems on the
3392		 * Tigon 2, apparantly with both the copper and fiber
3393		 * boards.  The symptom is that the interface will just
3394		 * hang.  This was reproduced with Alteon 180 switches.
3395		 */
3396#if 0
3397		if (sc->ti_hwrev != TI_HWREV_TIGON)
3398			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3399#endif
3400
3401		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3402		    TI_GLNK_FULL_DUPLEX| flowctl |
3403		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3404
3405		flowctl = TI_LNK_RX_FLOWCTL_Y;
3406#if 0
3407		if (sc->ti_hwrev != TI_HWREV_TIGON)
3408			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3409#endif
3410
3411		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3412		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3413		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3414		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3415		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3416		break;
3417	case IFM_1000_SX:
3418	case IFM_1000_T:
3419		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3420#if 0
3421		if (sc->ti_hwrev != TI_HWREV_TIGON)
3422			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3423#endif
3424
3425		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3426		    flowctl |TI_GLNK_ENB);
3427		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3428		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3429			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3430		}
3431		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3432		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3433		break;
3434	case IFM_100_FX:
3435	case IFM_10_FL:
3436	case IFM_100_TX:
3437	case IFM_10_T:
3438		flowctl = TI_LNK_RX_FLOWCTL_Y;
3439#if 0
3440		if (sc->ti_hwrev != TI_HWREV_TIGON)
3441			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3442#endif
3443
3444		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3445		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3446		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3447		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3448			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3449		} else {
3450			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3451		}
3452		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3453			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3454		} else {
3455			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3456		}
3457		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3458		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3459		break;
3460	}
3461
3462	return (0);
3463}
3464
3465/*
3466 * Report current media status.
3467 */
3468static void
3469ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3470{
3471	struct ti_softc *sc;
3472	uint32_t media = 0;
3473
3474	sc = ifp->if_softc;
3475
3476	TI_LOCK(sc);
3477
3478	ifmr->ifm_status = IFM_AVALID;
3479	ifmr->ifm_active = IFM_ETHER;
3480
3481	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
3482		TI_UNLOCK(sc);
3483		return;
3484	}
3485
3486	ifmr->ifm_status |= IFM_ACTIVE;
3487
3488	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3489		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3490		if (sc->ti_copper)
3491			ifmr->ifm_active |= IFM_1000_T;
3492		else
3493			ifmr->ifm_active |= IFM_1000_SX;
3494		if (media & TI_GLNK_FULL_DUPLEX)
3495			ifmr->ifm_active |= IFM_FDX;
3496		else
3497			ifmr->ifm_active |= IFM_HDX;
3498	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3499		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3500		if (sc->ti_copper) {
3501			if (media & TI_LNK_100MB)
3502				ifmr->ifm_active |= IFM_100_TX;
3503			if (media & TI_LNK_10MB)
3504				ifmr->ifm_active |= IFM_10_T;
3505		} else {
3506			if (media & TI_LNK_100MB)
3507				ifmr->ifm_active |= IFM_100_FX;
3508			if (media & TI_LNK_10MB)
3509				ifmr->ifm_active |= IFM_10_FL;
3510		}
3511		if (media & TI_LNK_FULL_DUPLEX)
3512			ifmr->ifm_active |= IFM_FDX;
3513		if (media & TI_LNK_HALF_DUPLEX)
3514			ifmr->ifm_active |= IFM_HDX;
3515	}
3516	TI_UNLOCK(sc);
3517}
3518
3519static int
3520ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3521{
3522	struct ti_softc *sc = ifp->if_softc;
3523	struct ifreq *ifr = (struct ifreq *) data;
3524	struct ti_cmd_desc cmd;
3525	int mask, error = 0;
3526
3527	switch (command) {
3528	case SIOCSIFMTU:
3529		TI_LOCK(sc);
3530		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > TI_JUMBO_MTU)
3531			error = EINVAL;
3532		else {
3533			ifp->if_mtu = ifr->ifr_mtu;
3534			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3535				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3536				ti_init_locked(sc);
3537			}
3538		}
3539		TI_UNLOCK(sc);
3540		break;
3541	case SIOCSIFFLAGS:
3542		TI_LOCK(sc);
3543		if (ifp->if_flags & IFF_UP) {
3544			/*
3545			 * If only the state of the PROMISC flag changed,
3546			 * then just use the 'set promisc mode' command
3547			 * instead of reinitializing the entire NIC. Doing
3548			 * a full re-init means reloading the firmware and
3549			 * waiting for it to start up, which may take a
3550			 * second or two.
3551			 */
3552			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3553			    ifp->if_flags & IFF_PROMISC &&
3554			    !(sc->ti_if_flags & IFF_PROMISC)) {
3555				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3556				    TI_CMD_CODE_PROMISC_ENB, 0);
3557			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3558			    !(ifp->if_flags & IFF_PROMISC) &&
3559			    sc->ti_if_flags & IFF_PROMISC) {
3560				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3561				    TI_CMD_CODE_PROMISC_DIS, 0);
3562			} else
3563				ti_init_locked(sc);
3564		} else {
3565			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3566				ti_stop(sc);
3567			}
3568		}
3569		sc->ti_if_flags = ifp->if_flags;
3570		TI_UNLOCK(sc);
3571		break;
3572	case SIOCADDMULTI:
3573	case SIOCDELMULTI:
3574		TI_LOCK(sc);
3575		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3576			ti_setmulti(sc);
3577		TI_UNLOCK(sc);
3578		break;
3579	case SIOCSIFMEDIA:
3580	case SIOCGIFMEDIA:
3581		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3582		break;
3583	case SIOCSIFCAP:
3584		TI_LOCK(sc);
3585		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3586		if ((mask & IFCAP_TXCSUM) != 0 &&
3587		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3588			ifp->if_capenable ^= IFCAP_TXCSUM;
3589			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
3590				ifp->if_hwassist |= TI_CSUM_FEATURES;
3591                        else
3592				ifp->if_hwassist &= ~TI_CSUM_FEATURES;
3593                }
3594		if ((mask & IFCAP_RXCSUM) != 0 &&
3595		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
3596			ifp->if_capenable ^= IFCAP_RXCSUM;
3597		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3598		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0)
3599                        ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3600		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
3601		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
3602			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
3603		if ((mask & (IFCAP_TXCSUM | IFCAP_RXCSUM |
3604		    IFCAP_VLAN_HWTAGGING)) != 0) {
3605			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3606				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3607				ti_init_locked(sc);
3608			}
3609		}
3610		TI_UNLOCK(sc);
3611		VLAN_CAPABILITIES(ifp);
3612		break;
3613	default:
3614		error = ether_ioctl(ifp, command, data);
3615		break;
3616	}
3617
3618	return (error);
3619}
3620
3621static int
3622ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3623{
3624	struct ti_softc *sc;
3625
3626	sc = dev->si_drv1;
3627	if (sc == NULL)
3628		return (ENODEV);
3629
3630	TI_LOCK(sc);
3631	sc->ti_flags |= TI_FLAG_DEBUGING;
3632	TI_UNLOCK(sc);
3633
3634	return (0);
3635}
3636
3637static int
3638ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3639{
3640	struct ti_softc *sc;
3641
3642	sc = dev->si_drv1;
3643	if (sc == NULL)
3644		return (ENODEV);
3645
3646	TI_LOCK(sc);
3647	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3648	TI_UNLOCK(sc);
3649
3650	return (0);
3651}
3652
3653/*
3654 * This ioctl routine goes along with the Tigon character device.
3655 */
3656static int
3657ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3658    struct thread *td)
3659{
3660	struct ti_softc *sc;
3661	int error;
3662
3663	sc = dev->si_drv1;
3664	if (sc == NULL)
3665		return (ENODEV);
3666
3667	error = 0;
3668
3669	switch (cmd) {
3670	case TIIOCGETSTATS:
3671	{
3672		struct ti_stats *outstats;
3673
3674		outstats = (struct ti_stats *)addr;
3675
3676		TI_LOCK(sc);
3677		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3678		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
3679		bcopy(&sc->ti_rdata.ti_info->ti_stats, outstats,
3680		    sizeof(struct ti_stats));
3681		TI_UNLOCK(sc);
3682		break;
3683	}
3684	case TIIOCGETPARAMS:
3685	{
3686		struct ti_params *params;
3687
3688		params = (struct ti_params *)addr;
3689
3690		TI_LOCK(sc);
3691		params->ti_stat_ticks = sc->ti_stat_ticks;
3692		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3693		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3694		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3695		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3696		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3697		params->param_mask = TI_PARAM_ALL;
3698		TI_UNLOCK(sc);
3699		break;
3700	}
3701	case TIIOCSETPARAMS:
3702	{
3703		struct ti_params *params;
3704
3705		params = (struct ti_params *)addr;
3706
3707		TI_LOCK(sc);
3708		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3709			sc->ti_stat_ticks = params->ti_stat_ticks;
3710			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3711		}
3712
3713		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3714			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3715			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3716				    sc->ti_rx_coal_ticks);
3717		}
3718
3719		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3720			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3721			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3722				    sc->ti_tx_coal_ticks);
3723		}
3724
3725		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3726			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3727			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3728				    sc->ti_rx_max_coal_bds);
3729		}
3730
3731		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3732			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3733			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3734				    sc->ti_tx_max_coal_bds);
3735		}
3736
3737		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3738			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3739			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3740				    sc->ti_tx_buf_ratio);
3741		}
3742		TI_UNLOCK(sc);
3743		break;
3744	}
3745	case TIIOCSETTRACE: {
3746		ti_trace_type trace_type;
3747
3748		trace_type = *(ti_trace_type *)addr;
3749
3750		/*
3751		 * Set tracing to whatever the user asked for.  Setting
3752		 * this register to 0 should have the effect of disabling
3753		 * tracing.
3754		 */
3755		TI_LOCK(sc);
3756		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3757		TI_UNLOCK(sc);
3758		break;
3759	}
3760	case TIIOCGETTRACE: {
3761		struct ti_trace_buf *trace_buf;
3762		uint32_t trace_start, cur_trace_ptr, trace_len;
3763
3764		trace_buf = (struct ti_trace_buf *)addr;
3765
3766		TI_LOCK(sc);
3767		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3768		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3769		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3770#if 0
3771		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3772		       "trace_len = %d\n", trace_start,
3773		       cur_trace_ptr, trace_len);
3774		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3775		       trace_buf->buf_len);
3776#endif
3777		error = ti_copy_mem(sc, trace_start, min(trace_len,
3778		    trace_buf->buf_len), (caddr_t)trace_buf->buf, 1, 1);
3779		if (error == 0) {
3780			trace_buf->fill_len = min(trace_len,
3781			    trace_buf->buf_len);
3782			if (cur_trace_ptr < trace_start)
3783				trace_buf->cur_trace_ptr =
3784				    trace_start - cur_trace_ptr;
3785			else
3786				trace_buf->cur_trace_ptr =
3787				    cur_trace_ptr - trace_start;
3788		} else
3789			trace_buf->fill_len = 0;
3790		TI_UNLOCK(sc);
3791		break;
3792	}
3793
3794	/*
3795	 * For debugging, five ioctls are needed:
3796	 * ALT_ATTACH
3797	 * ALT_READ_TG_REG
3798	 * ALT_WRITE_TG_REG
3799	 * ALT_READ_TG_MEM
3800	 * ALT_WRITE_TG_MEM
3801	 */
3802	case ALT_ATTACH:
3803		/*
3804		 * From what I can tell, Alteon's Solaris Tigon driver
3805		 * only has one character device, so you have to attach
3806		 * to the Tigon board you're interested in.  This seems
3807		 * like a not-so-good way to do things, since unless you
3808		 * subsequently specify the unit number of the device
3809		 * you're interested in every ioctl, you'll only be
3810		 * able to debug one board at a time.
3811		 */
3812		break;
3813	case ALT_READ_TG_MEM:
3814	case ALT_WRITE_TG_MEM:
3815	{
3816		struct tg_mem *mem_param;
3817		uint32_t sram_end, scratch_end;
3818
3819		mem_param = (struct tg_mem *)addr;
3820
3821		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3822			sram_end = TI_END_SRAM_I;
3823			scratch_end = TI_END_SCRATCH_I;
3824		} else {
3825			sram_end = TI_END_SRAM_II;
3826			scratch_end = TI_END_SCRATCH_II;
3827		}
3828
3829		/*
3830		 * For now, we'll only handle accessing regular SRAM,
3831		 * nothing else.
3832		 */
3833		TI_LOCK(sc);
3834		if (mem_param->tgAddr >= TI_BEG_SRAM &&
3835		    mem_param->tgAddr + mem_param->len <= sram_end) {
3836			/*
3837			 * In this instance, we always copy to/from user
3838			 * space, so the user space argument is set to 1.
3839			 */
3840			error = ti_copy_mem(sc, mem_param->tgAddr,
3841			    mem_param->len, mem_param->userAddr, 1,
3842			    cmd == ALT_READ_TG_MEM ? 1 : 0);
3843		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH &&
3844		    mem_param->tgAddr <= scratch_end) {
3845			error = ti_copy_scratch(sc, mem_param->tgAddr,
3846			    mem_param->len, mem_param->userAddr, 1,
3847			    cmd == ALT_READ_TG_MEM ?  1 : 0, TI_PROCESSOR_A);
3848		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG &&
3849		    mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG) {
3850			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3851				if_printf(sc->ti_ifp,
3852				    "invalid memory range for Tigon I\n");
3853				error = EINVAL;
3854				break;
3855			}
3856			error = ti_copy_scratch(sc, mem_param->tgAddr -
3857			    TI_SCRATCH_DEBUG_OFF, mem_param->len,
3858			    mem_param->userAddr, 1,
3859			    cmd == ALT_READ_TG_MEM ? 1 : 0, TI_PROCESSOR_B);
3860		} else {
3861			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3862			        "out of supported range\n",
3863			        mem_param->tgAddr, mem_param->len);
3864			error = EINVAL;
3865		}
3866		TI_UNLOCK(sc);
3867		break;
3868	}
3869	case ALT_READ_TG_REG:
3870	case ALT_WRITE_TG_REG:
3871	{
3872		struct tg_reg *regs;
3873		uint32_t tmpval;
3874
3875		regs = (struct tg_reg *)addr;
3876
3877		/*
3878		 * Make sure the address in question isn't out of range.
3879		 */
3880		if (regs->addr > TI_REG_MAX) {
3881			error = EINVAL;
3882			break;
3883		}
3884		TI_LOCK(sc);
3885		if (cmd == ALT_READ_TG_REG) {
3886			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3887			    regs->addr, &tmpval, 1);
3888			regs->data = ntohl(tmpval);
3889#if 0
3890			if ((regs->addr == TI_CPU_STATE)
3891			 || (regs->addr == TI_CPU_CTL_B)) {
3892				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3893				       regs->addr, tmpval);
3894			}
3895#endif
3896		} else {
3897			tmpval = htonl(regs->data);
3898			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3899			    regs->addr, &tmpval, 1);
3900		}
3901		TI_UNLOCK(sc);
3902		break;
3903	}
3904	default:
3905		error = ENOTTY;
3906		break;
3907	}
3908	return (error);
3909}
3910
3911static void
3912ti_watchdog(void *arg)
3913{
3914	struct ti_softc *sc;
3915	struct ifnet *ifp;
3916
3917	sc = arg;
3918	TI_LOCK_ASSERT(sc);
3919	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3920	if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3921		return;
3922
3923	/*
3924	 * When we're debugging, the chip is often stopped for long periods
3925	 * of time, and that would normally cause the watchdog timer to fire.
3926	 * Since that impedes debugging, we don't want to do that.
3927	 */
3928	if (sc->ti_flags & TI_FLAG_DEBUGING)
3929		return;
3930
3931	ifp = sc->ti_ifp;
3932	if_printf(ifp, "watchdog timeout -- resetting\n");
3933	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3934	ti_init_locked(sc);
3935
3936	ifp->if_oerrors++;
3937}
3938
3939/*
3940 * Stop the adapter and free any mbufs allocated to the
3941 * RX and TX lists.
3942 */
3943static void
3944ti_stop(struct ti_softc *sc)
3945{
3946	struct ifnet *ifp;
3947	struct ti_cmd_desc cmd;
3948
3949	TI_LOCK_ASSERT(sc);
3950
3951	ifp = sc->ti_ifp;
3952
3953	/* Disable host interrupts. */
3954	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3955	/*
3956	 * Tell firmware we're shutting down.
3957	 */
3958	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3959
3960	/* Halt and reinitialize. */
3961	if (ti_chipinit(sc) == 0) {
3962		ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3963		/* XXX ignore init errors. */
3964		ti_chipinit(sc);
3965	}
3966
3967	/* Free the RX lists. */
3968	ti_free_rx_ring_std(sc);
3969
3970	/* Free jumbo RX list. */
3971	ti_free_rx_ring_jumbo(sc);
3972
3973	/* Free mini RX list. */
3974	ti_free_rx_ring_mini(sc);
3975
3976	/* Free TX buffers. */
3977	ti_free_tx_ring(sc);
3978
3979	sc->ti_ev_prodidx.ti_idx = 0;
3980	sc->ti_return_prodidx.ti_idx = 0;
3981	sc->ti_tx_considx.ti_idx = 0;
3982	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3983
3984	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3985	callout_stop(&sc->ti_watchdog);
3986}
3987
3988/*
3989 * Stop all chip I/O so that the kernel's probe routines don't
3990 * get confused by errant DMAs when rebooting.
3991 */
3992static int
3993ti_shutdown(device_t dev)
3994{
3995	struct ti_softc *sc;
3996
3997	sc = device_get_softc(dev);
3998	TI_LOCK(sc);
3999	ti_chipinit(sc);
4000	TI_UNLOCK(sc);
4001
4002	return (0);
4003}
4004
4005static void
4006ti_sysctl_node(struct ti_softc *sc)
4007{
4008	struct sysctl_ctx_list *ctx;
4009	struct sysctl_oid_list *child;
4010	char tname[32];
4011
4012	ctx = device_get_sysctl_ctx(sc->ti_dev);
4013	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ti_dev));
4014
4015	/* Use DAC */
4016	sc->ti_dac = 1;
4017	snprintf(tname, sizeof(tname), "dev.ti.%d.dac",
4018	    device_get_unit(sc->ti_dev));
4019	TUNABLE_INT_FETCH(tname, &sc->ti_dac);
4020
4021	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_coal_ticks", CTLFLAG_RW,
4022	    &sc->ti_rx_coal_ticks, 0, "Receive coalcesced ticks");
4023	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_max_coal_bds", CTLFLAG_RW,
4024	    &sc->ti_rx_max_coal_bds, 0, "Receive max coalcesced BDs");
4025
4026	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_coal_ticks", CTLFLAG_RW,
4027	    &sc->ti_tx_coal_ticks, 0, "Send coalcesced ticks");
4028	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_max_coal_bds", CTLFLAG_RW,
4029	    &sc->ti_tx_max_coal_bds, 0, "Send max coalcesced BDs");
4030	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_buf_ratio", CTLFLAG_RW,
4031	    &sc->ti_tx_buf_ratio, 0,
4032	    "Ratio of NIC memory devoted to TX buffer");
4033
4034	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "stat_ticks", CTLFLAG_RW,
4035	    &sc->ti_stat_ticks, 0,
4036	    "Number of clock ticks for statistics update interval");
4037
4038	/* Pull in device tunables. */
4039	sc->ti_rx_coal_ticks = 170;
4040	resource_int_value(device_get_name(sc->ti_dev),
4041	    device_get_unit(sc->ti_dev), "rx_coal_ticks",
4042	    &sc->ti_rx_coal_ticks);
4043	sc->ti_rx_max_coal_bds = 64;
4044	resource_int_value(device_get_name(sc->ti_dev),
4045	    device_get_unit(sc->ti_dev), "rx_max_coal_bds",
4046	    &sc->ti_rx_max_coal_bds);
4047
4048	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
4049	resource_int_value(device_get_name(sc->ti_dev),
4050	    device_get_unit(sc->ti_dev), "tx_coal_ticks",
4051	    &sc->ti_tx_coal_ticks);
4052	sc->ti_tx_max_coal_bds = 32;
4053	resource_int_value(device_get_name(sc->ti_dev),
4054	    device_get_unit(sc->ti_dev), "tx_max_coal_bds",
4055	    &sc->ti_tx_max_coal_bds);
4056	sc->ti_tx_buf_ratio = 21;
4057	resource_int_value(device_get_name(sc->ti_dev),
4058	    device_get_unit(sc->ti_dev), "tx_buf_ratio",
4059	    &sc->ti_tx_buf_ratio);
4060
4061	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
4062	resource_int_value(device_get_name(sc->ti_dev),
4063	    device_get_unit(sc->ti_dev), "stat_ticks",
4064	    &sc->ti_stat_ticks);
4065}
4066