if_ti.c revision 227095
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35 * Manuals, sample driver and firmware source kits are available
36 * from http://www.alteon.com/support/openkits.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48 * filtering and jumbo (9014 byte) frames. The hardware is largely
49 * controlled by firmware, which must be loaded into the NIC during
50 * initialization.
51 *
52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53 * revision, which supports new features such as extended commands,
54 * extended jumbo receive ring desciptors and a mini receive ring.
55 *
56 * Alteon Networks is to be commended for releasing such a vast amount
57 * of development material for the Tigon NIC without requiring an NDA
58 * (although they really should have done it a long time ago). With
59 * any luck, the other vendors will finally wise up and follow Alteon's
60 * stellar example.
61 *
62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63 * this driver by #including it as a C header file. This bloats the
64 * driver somewhat, but it's the easiest method considering that the
65 * driver code and firmware code need to be kept in sync. The source
66 * for the firmware is not provided with the FreeBSD distribution since
67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68 *
69 * The following people deserve special thanks:
70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71 *   for testing
72 * - Raymond Lee of Netgear, for providing a pair of Netgear
73 *   GA620 Tigon 2 boards for testing
74 * - Ulf Zimmermann, for bringing the GA260 to my attention and
75 *   convincing me to write this driver.
76 * - Andrew Gallatin for providing FreeBSD/Alpha support.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/dev/ti/if_ti.c 227095 2011-11-04 22:53:52Z yongari $");
81
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/module.h>
91#include <sys/socket.h>
92#include <sys/queue.h>
93#include <sys/conf.h>
94#include <sys/sf_buf.h>
95
96#include <net/if.h>
97#include <net/if_arp.h>
98#include <net/ethernet.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101#include <net/if_types.h>
102#include <net/if_vlan_var.h>
103
104#include <net/bpf.h>
105
106#include <netinet/in_systm.h>
107#include <netinet/in.h>
108#include <netinet/ip.h>
109
110#include <machine/bus.h>
111#include <machine/resource.h>
112#include <sys/bus.h>
113#include <sys/rman.h>
114
115/* #define TI_PRIVATE_JUMBOS */
116#ifndef TI_PRIVATE_JUMBOS
117#include <vm/vm.h>
118#include <vm/vm_page.h>
119#endif
120
121#include <dev/pci/pcireg.h>
122#include <dev/pci/pcivar.h>
123
124#include <sys/tiio.h>
125#include <dev/ti/if_tireg.h>
126#include <dev/ti/ti_fw.h>
127#include <dev/ti/ti_fw2.h>
128
129#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
130/*
131 * We can only turn on header splitting if we're using extended receive
132 * BDs.
133 */
134#if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
135#error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
136#endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
137
138typedef enum {
139	TI_SWAP_HTON,
140	TI_SWAP_NTOH
141} ti_swap_type;
142
143/*
144 * Various supported device vendors/types and their names.
145 */
146
147static const struct ti_type const ti_devs[] = {
148	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
149		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
150	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
151		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
152	{ TC_VENDORID,	TC_DEVICEID_3C985,
153		"3Com 3c985-SX Gigabit Ethernet" },
154	{ NG_VENDORID, NG_DEVICEID_GA620,
155		"Netgear GA620 1000baseSX Gigabit Ethernet" },
156	{ NG_VENDORID, NG_DEVICEID_GA620T,
157		"Netgear GA620 1000baseT Gigabit Ethernet" },
158	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
159		"Silicon Graphics Gigabit Ethernet" },
160	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
161		"Farallon PN9000SX Gigabit Ethernet" },
162	{ 0, 0, NULL }
163};
164
165
166static	d_open_t	ti_open;
167static	d_close_t	ti_close;
168static	d_ioctl_t	ti_ioctl2;
169
170static struct cdevsw ti_cdevsw = {
171	.d_version =	D_VERSION,
172	.d_flags =	0,
173	.d_open =	ti_open,
174	.d_close =	ti_close,
175	.d_ioctl =	ti_ioctl2,
176	.d_name =	"ti",
177};
178
179static int ti_probe(device_t);
180static int ti_attach(device_t);
181static int ti_detach(device_t);
182static void ti_txeof(struct ti_softc *);
183static void ti_rxeof(struct ti_softc *);
184
185static void ti_stats_update(struct ti_softc *);
186static int ti_encap(struct ti_softc *, struct mbuf **);
187
188static void ti_intr(void *);
189static void ti_start(struct ifnet *);
190static void ti_start_locked(struct ifnet *);
191static int ti_ioctl(struct ifnet *, u_long, caddr_t);
192static void ti_init(void *);
193static void ti_init_locked(void *);
194static void ti_init2(struct ti_softc *);
195static void ti_stop(struct ti_softc *);
196static void ti_watchdog(void *);
197static int ti_shutdown(device_t);
198static int ti_ifmedia_upd(struct ifnet *);
199static int ti_ifmedia_upd_locked(struct ti_softc *);
200static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
201
202static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
203static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
204static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
205
206static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
207static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
208static void ti_setmulti(struct ti_softc *);
209
210static void ti_mem_read(struct ti_softc *, uint32_t, uint32_t, void *);
211static void ti_mem_write(struct ti_softc *, uint32_t, uint32_t, void *);
212static void ti_mem_zero(struct ti_softc *, uint32_t, uint32_t);
213static int ti_copy_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t, int,
214    int);
215static int ti_copy_scratch(struct ti_softc *, uint32_t, uint32_t, caddr_t,
216    int, int, int);
217static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
218static void ti_loadfw(struct ti_softc *);
219static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
220static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
221static void ti_handle_events(struct ti_softc *);
222static int ti_alloc_dmamaps(struct ti_softc *);
223static void ti_free_dmamaps(struct ti_softc *);
224static int ti_alloc_jumbo_mem(struct ti_softc *);
225#ifdef TI_PRIVATE_JUMBOS
226static void *ti_jalloc(struct ti_softc *);
227static void ti_jfree(void *, void *);
228#endif /* TI_PRIVATE_JUMBOS */
229static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
230static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
231static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
232static int ti_init_rx_ring_std(struct ti_softc *);
233static void ti_free_rx_ring_std(struct ti_softc *);
234static int ti_init_rx_ring_jumbo(struct ti_softc *);
235static void ti_free_rx_ring_jumbo(struct ti_softc *);
236static int ti_init_rx_ring_mini(struct ti_softc *);
237static void ti_free_rx_ring_mini(struct ti_softc *);
238static void ti_free_tx_ring(struct ti_softc *);
239static int ti_init_tx_ring(struct ti_softc *);
240
241static int ti_64bitslot_war(struct ti_softc *);
242static int ti_chipinit(struct ti_softc *);
243static int ti_gibinit(struct ti_softc *);
244
245#ifdef TI_JUMBO_HDRSPLIT
246static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len,
247    int idx);
248#endif /* TI_JUMBO_HDRSPLIT */
249
250static device_method_t ti_methods[] = {
251	/* Device interface */
252	DEVMETHOD(device_probe,		ti_probe),
253	DEVMETHOD(device_attach,	ti_attach),
254	DEVMETHOD(device_detach,	ti_detach),
255	DEVMETHOD(device_shutdown,	ti_shutdown),
256	{ 0, 0 }
257};
258
259static driver_t ti_driver = {
260	"ti",
261	ti_methods,
262	sizeof(struct ti_softc)
263};
264
265static devclass_t ti_devclass;
266
267DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
268MODULE_DEPEND(ti, pci, 1, 1, 1);
269MODULE_DEPEND(ti, ether, 1, 1, 1);
270
271/*
272 * Send an instruction or address to the EEPROM, check for ACK.
273 */
274static uint32_t
275ti_eeprom_putbyte(struct ti_softc *sc, int byte)
276{
277	int i, ack = 0;
278
279	/*
280	 * Make sure we're in TX mode.
281	 */
282	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
283
284	/*
285	 * Feed in each bit and stobe the clock.
286	 */
287	for (i = 0x80; i; i >>= 1) {
288		if (byte & i) {
289			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
290		} else {
291			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
292		}
293		DELAY(1);
294		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
295		DELAY(1);
296		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
297	}
298
299	/*
300	 * Turn off TX mode.
301	 */
302	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
303
304	/*
305	 * Check for ack.
306	 */
307	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
308	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
309	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
310
311	return (ack);
312}
313
314/*
315 * Read a byte of data stored in the EEPROM at address 'addr.'
316 * We have to send two address bytes since the EEPROM can hold
317 * more than 256 bytes of data.
318 */
319static uint8_t
320ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
321{
322	int i;
323	uint8_t byte = 0;
324
325	EEPROM_START;
326
327	/*
328	 * Send write control code to EEPROM.
329	 */
330	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
331		device_printf(sc->ti_dev,
332		    "failed to send write command, status: %x\n",
333		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
334		return (1);
335	}
336
337	/*
338	 * Send first byte of address of byte we want to read.
339	 */
340	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
341		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
342		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
343		return (1);
344	}
345	/*
346	 * Send second byte address of byte we want to read.
347	 */
348	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
349		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
350		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
351		return (1);
352	}
353
354	EEPROM_STOP;
355	EEPROM_START;
356	/*
357	 * Send read control code to EEPROM.
358	 */
359	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
360		device_printf(sc->ti_dev,
361		    "failed to send read command, status: %x\n",
362		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
363		return (1);
364	}
365
366	/*
367	 * Start reading bits from EEPROM.
368	 */
369	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
370	for (i = 0x80; i; i >>= 1) {
371		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
372		DELAY(1);
373		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
374			byte |= i;
375		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
376		DELAY(1);
377	}
378
379	EEPROM_STOP;
380
381	/*
382	 * No ACK generated for read, so just return byte.
383	 */
384
385	*dest = byte;
386
387	return (0);
388}
389
390/*
391 * Read a sequence of bytes from the EEPROM.
392 */
393static int
394ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
395{
396	int err = 0, i;
397	uint8_t byte = 0;
398
399	for (i = 0; i < cnt; i++) {
400		err = ti_eeprom_getbyte(sc, off + i, &byte);
401		if (err)
402			break;
403		*(dest + i) = byte;
404	}
405
406	return (err ? 1 : 0);
407}
408
409/*
410 * NIC memory read function.
411 * Can be used to copy data from NIC local memory.
412 */
413static void
414ti_mem_read(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
415{
416	int segptr, segsize, cnt;
417	char *ptr;
418
419	segptr = addr;
420	cnt = len;
421	ptr = buf;
422
423	while (cnt) {
424		if (cnt < TI_WINLEN)
425			segsize = cnt;
426		else
427			segsize = TI_WINLEN - (segptr % TI_WINLEN);
428		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
429		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
430		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
431		    segsize / 4);
432		ptr += segsize;
433		segptr += segsize;
434		cnt -= segsize;
435	}
436}
437
438
439/*
440 * NIC memory write function.
441 * Can be used to copy data into NIC local memory.
442 */
443static void
444ti_mem_write(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
445{
446	int segptr, segsize, cnt;
447	char *ptr;
448
449	segptr = addr;
450	cnt = len;
451	ptr = buf;
452
453	while (cnt) {
454		if (cnt < TI_WINLEN)
455			segsize = cnt;
456		else
457			segsize = TI_WINLEN - (segptr % TI_WINLEN);
458		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
459		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
460		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
461		    segsize / 4);
462		ptr += segsize;
463		segptr += segsize;
464		cnt -= segsize;
465	}
466}
467
468/*
469 * NIC memory read function.
470 * Can be used to clear a section of NIC local memory.
471 */
472static void
473ti_mem_zero(struct ti_softc *sc, uint32_t addr, uint32_t len)
474{
475	int segptr, segsize, cnt;
476
477	segptr = addr;
478	cnt = len;
479
480	while (cnt) {
481		if (cnt < TI_WINLEN)
482			segsize = cnt;
483		else
484			segsize = TI_WINLEN - (segptr % TI_WINLEN);
485		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
486		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
487		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
488		segptr += segsize;
489		cnt -= segsize;
490	}
491}
492
493static int
494ti_copy_mem(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
495    caddr_t buf, int useraddr, int readdata)
496{
497	int segptr, segsize, cnt;
498	caddr_t ptr;
499	uint32_t origwin;
500	uint8_t tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
501	int resid, segresid;
502	int first_pass;
503
504	TI_LOCK_ASSERT(sc);
505
506	/*
507	 * At the moment, we don't handle non-aligned cases, we just bail.
508	 * If this proves to be a problem, it will be fixed.
509	 */
510	if ((readdata == 0)
511	 && (tigon_addr & 0x3)) {
512		device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
513		    "word-aligned\n", __func__, tigon_addr);
514		device_printf(sc->ti_dev, "%s: unaligned writes aren't "
515		    "yet supported\n", __func__);
516		return (EINVAL);
517	}
518
519	segptr = tigon_addr & ~0x3;
520	segresid = tigon_addr - segptr;
521
522	/*
523	 * This is the non-aligned amount left over that we'll need to
524	 * copy.
525	 */
526	resid = len & 0x3;
527
528	/* Add in the left over amount at the front of the buffer */
529	resid += segresid;
530
531	cnt = len & ~0x3;
532	/*
533	 * If resid + segresid is >= 4, add multiples of 4 to the count and
534	 * decrease the residual by that much.
535	 */
536	cnt += resid & ~0x3;
537	resid -= resid & ~0x3;
538
539	ptr = buf;
540
541	first_pass = 1;
542
543	/*
544	 * Save the old window base value.
545	 */
546	origwin = CSR_READ_4(sc, TI_WINBASE);
547
548	while (cnt) {
549		bus_size_t ti_offset;
550
551		if (cnt < TI_WINLEN)
552			segsize = cnt;
553		else
554			segsize = TI_WINLEN - (segptr % TI_WINLEN);
555		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
556
557		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
558
559		if (readdata) {
560
561			bus_space_read_region_4(sc->ti_btag,
562						sc->ti_bhandle, ti_offset,
563						(uint32_t *)tmparray,
564						segsize >> 2);
565			if (useraddr) {
566				/*
567				 * Yeah, this is a little on the kludgy
568				 * side, but at least this code is only
569				 * used for debugging.
570				 */
571				ti_bcopy_swap(tmparray, tmparray2, segsize,
572					      TI_SWAP_NTOH);
573
574				TI_UNLOCK(sc);
575				if (first_pass) {
576					copyout(&tmparray2[segresid], ptr,
577						segsize - segresid);
578					first_pass = 0;
579				} else
580					copyout(tmparray2, ptr, segsize);
581				TI_LOCK(sc);
582			} else {
583				if (first_pass) {
584
585					ti_bcopy_swap(tmparray, tmparray2,
586						      segsize, TI_SWAP_NTOH);
587					TI_UNLOCK(sc);
588					bcopy(&tmparray2[segresid], ptr,
589					      segsize - segresid);
590					TI_LOCK(sc);
591					first_pass = 0;
592				} else
593					ti_bcopy_swap(tmparray, ptr, segsize,
594						      TI_SWAP_NTOH);
595			}
596
597		} else {
598			if (useraddr) {
599				TI_UNLOCK(sc);
600				copyin(ptr, tmparray2, segsize);
601				TI_LOCK(sc);
602				ti_bcopy_swap(tmparray2, tmparray, segsize,
603					      TI_SWAP_HTON);
604			} else
605				ti_bcopy_swap(ptr, tmparray, segsize,
606					      TI_SWAP_HTON);
607
608			bus_space_write_region_4(sc->ti_btag,
609						 sc->ti_bhandle, ti_offset,
610						 (uint32_t *)tmparray,
611						 segsize >> 2);
612		}
613		segptr += segsize;
614		ptr += segsize;
615		cnt -= segsize;
616	}
617
618	/*
619	 * Handle leftover, non-word-aligned bytes.
620	 */
621	if (resid != 0) {
622		uint32_t	tmpval, tmpval2;
623		bus_size_t	ti_offset;
624
625		/*
626		 * Set the segment pointer.
627		 */
628		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
629
630		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
631
632		/*
633		 * First, grab whatever is in our source/destination.
634		 * We'll obviously need this for reads, but also for
635		 * writes, since we'll be doing read/modify/write.
636		 */
637		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
638					ti_offset, &tmpval, 1);
639
640		/*
641		 * Next, translate this from little-endian to big-endian
642		 * (at least on i386 boxes).
643		 */
644		tmpval2 = ntohl(tmpval);
645
646		if (readdata) {
647			/*
648			 * If we're reading, just copy the leftover number
649			 * of bytes from the host byte order buffer to
650			 * the user's buffer.
651			 */
652			if (useraddr) {
653				TI_UNLOCK(sc);
654				copyout(&tmpval2, ptr, resid);
655				TI_LOCK(sc);
656			} else
657				bcopy(&tmpval2, ptr, resid);
658		} else {
659			/*
660			 * If we're writing, first copy the bytes to be
661			 * written into the network byte order buffer,
662			 * leaving the rest of the buffer with whatever was
663			 * originally in there.  Then, swap the bytes
664			 * around into host order and write them out.
665			 *
666			 * XXX KDM the read side of this has been verified
667			 * to work, but the write side of it has not been
668			 * verified.  So user beware.
669			 */
670			if (useraddr) {
671				TI_UNLOCK(sc);
672				copyin(ptr, &tmpval2, resid);
673				TI_LOCK(sc);
674			} else
675				bcopy(ptr, &tmpval2, resid);
676
677			tmpval = htonl(tmpval2);
678
679			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
680						 ti_offset, &tmpval, 1);
681		}
682	}
683
684	CSR_WRITE_4(sc, TI_WINBASE, origwin);
685
686	return (0);
687}
688
689static int
690ti_copy_scratch(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
691    caddr_t buf, int useraddr, int readdata, int cpu)
692{
693	uint32_t segptr;
694	int cnt;
695	uint32_t tmpval, tmpval2;
696	caddr_t ptr;
697
698	TI_LOCK_ASSERT(sc);
699
700	/*
701	 * At the moment, we don't handle non-aligned cases, we just bail.
702	 * If this proves to be a problem, it will be fixed.
703	 */
704	if (tigon_addr & 0x3) {
705		device_printf(sc->ti_dev, "%s: tigon address %#x "
706		    "isn't word-aligned\n", __func__, tigon_addr);
707		return (EINVAL);
708	}
709
710	if (len & 0x3) {
711		device_printf(sc->ti_dev, "%s: transfer length %d "
712		    "isn't word-aligned\n", __func__, len);
713		return (EINVAL);
714	}
715
716	segptr = tigon_addr;
717	cnt = len;
718	ptr = buf;
719
720	while (cnt) {
721		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
722
723		if (readdata) {
724			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
725
726			tmpval = ntohl(tmpval2);
727
728			/*
729			 * Note:  I've used this debugging interface
730			 * extensively with Alteon's 12.3.15 firmware,
731			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
732			 *
733			 * When you compile the firmware without
734			 * optimization, which is necessary sometimes in
735			 * order to properly step through it, you sometimes
736			 * read out a bogus value of 0xc0017c instead of
737			 * whatever was supposed to be in that scratchpad
738			 * location.  That value is on the stack somewhere,
739			 * but I've never been able to figure out what was
740			 * causing the problem.
741			 *
742			 * The address seems to pop up in random places,
743			 * often not in the same place on two subsequent
744			 * reads.
745			 *
746			 * In any case, the underlying data doesn't seem
747			 * to be affected, just the value read out.
748			 *
749			 * KDM, 3/7/2000
750			 */
751
752			if (tmpval2 == 0xc0017c)
753				device_printf(sc->ti_dev, "found 0xc0017c at "
754				    "%#x (tmpval2)\n", segptr);
755
756			if (tmpval == 0xc0017c)
757				device_printf(sc->ti_dev, "found 0xc0017c at "
758				    "%#x (tmpval)\n", segptr);
759
760			if (useraddr)
761				copyout(&tmpval, ptr, 4);
762			else
763				bcopy(&tmpval, ptr, 4);
764		} else {
765			if (useraddr)
766				copyin(ptr, &tmpval2, 4);
767			else
768				bcopy(ptr, &tmpval2, 4);
769
770			tmpval = htonl(tmpval2);
771
772			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
773		}
774
775		cnt -= 4;
776		segptr += 4;
777		ptr += 4;
778	}
779
780	return (0);
781}
782
783static int
784ti_bcopy_swap(const void *src, void *dst, size_t len, ti_swap_type swap_type)
785{
786	const uint8_t *tmpsrc;
787	uint8_t *tmpdst;
788	size_t tmplen;
789
790	if (len & 0x3) {
791		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
792		       len);
793		return (-1);
794	}
795
796	tmpsrc = src;
797	tmpdst = dst;
798	tmplen = len;
799
800	while (tmplen) {
801		if (swap_type == TI_SWAP_NTOH)
802			*(uint32_t *)tmpdst =
803				ntohl(*(const uint32_t *)tmpsrc);
804		else
805			*(uint32_t *)tmpdst =
806				htonl(*(const uint32_t *)tmpsrc);
807
808		tmpsrc += 4;
809		tmpdst += 4;
810		tmplen -= 4;
811	}
812
813	return (0);
814}
815
816/*
817 * Load firmware image into the NIC. Check that the firmware revision
818 * is acceptable and see if we want the firmware for the Tigon 1 or
819 * Tigon 2.
820 */
821static void
822ti_loadfw(struct ti_softc *sc)
823{
824
825	TI_LOCK_ASSERT(sc);
826
827	switch (sc->ti_hwrev) {
828	case TI_HWREV_TIGON:
829		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
830		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
831		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
832			device_printf(sc->ti_dev, "firmware revision mismatch; "
833			    "want %d.%d.%d, got %d.%d.%d\n",
834			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
835			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
836			    tigonFwReleaseMinor, tigonFwReleaseFix);
837			return;
838		}
839		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
840		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
841		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
842		    tigonFwRodata);
843		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
844		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
845		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
846		break;
847	case TI_HWREV_TIGON_II:
848		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
849		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
850		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
851			device_printf(sc->ti_dev, "firmware revision mismatch; "
852			    "want %d.%d.%d, got %d.%d.%d\n",
853			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
854			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
855			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
856			return;
857		}
858		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
859		    tigon2FwText);
860		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
861		    tigon2FwData);
862		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
863		    tigon2FwRodata);
864		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
865		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
866		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
867		break;
868	default:
869		device_printf(sc->ti_dev,
870		    "can't load firmware: unknown hardware rev\n");
871		break;
872	}
873}
874
875/*
876 * Send the NIC a command via the command ring.
877 */
878static void
879ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
880{
881	int index;
882
883	index = sc->ti_cmd_saved_prodidx;
884	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
885	TI_INC(index, TI_CMD_RING_CNT);
886	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
887	sc->ti_cmd_saved_prodidx = index;
888}
889
890/*
891 * Send the NIC an extended command. The 'len' parameter specifies the
892 * number of command slots to include after the initial command.
893 */
894static void
895ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
896{
897	int index;
898	int i;
899
900	index = sc->ti_cmd_saved_prodidx;
901	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
902	TI_INC(index, TI_CMD_RING_CNT);
903	for (i = 0; i < len; i++) {
904		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
905		    *(uint32_t *)(&arg[i * 4]));
906		TI_INC(index, TI_CMD_RING_CNT);
907	}
908	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
909	sc->ti_cmd_saved_prodidx = index;
910}
911
912/*
913 * Handle events that have triggered interrupts.
914 */
915static void
916ti_handle_events(struct ti_softc *sc)
917{
918	struct ti_event_desc *e;
919
920	if (sc->ti_rdata->ti_event_ring == NULL)
921		return;
922
923	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
924		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
925		switch (TI_EVENT_EVENT(e)) {
926		case TI_EV_LINKSTAT_CHANGED:
927			sc->ti_linkstat = TI_EVENT_CODE(e);
928			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
929				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
930				sc->ti_ifp->if_baudrate = IF_Mbps(100);
931				if (bootverbose)
932					device_printf(sc->ti_dev,
933					    "10/100 link up\n");
934			} else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
935				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
936				sc->ti_ifp->if_baudrate = IF_Gbps(1UL);
937				if (bootverbose)
938					device_printf(sc->ti_dev,
939					    "gigabit link up\n");
940			} else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
941				if_link_state_change(sc->ti_ifp,
942				    LINK_STATE_DOWN);
943				sc->ti_ifp->if_baudrate = 0;
944				if (bootverbose)
945					device_printf(sc->ti_dev,
946					    "link down\n");
947			}
948			break;
949		case TI_EV_ERROR:
950			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
951				device_printf(sc->ti_dev, "invalid command\n");
952			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
953				device_printf(sc->ti_dev, "unknown command\n");
954			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
955				device_printf(sc->ti_dev, "bad config data\n");
956			break;
957		case TI_EV_FIRMWARE_UP:
958			ti_init2(sc);
959			break;
960		case TI_EV_STATS_UPDATED:
961			ti_stats_update(sc);
962			break;
963		case TI_EV_RESET_JUMBO_RING:
964		case TI_EV_MCAST_UPDATED:
965			/* Who cares. */
966			break;
967		default:
968			device_printf(sc->ti_dev, "unknown event: %d\n",
969			    TI_EVENT_EVENT(e));
970			break;
971		}
972		/* Advance the consumer index. */
973		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
974		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
975	}
976}
977
978static int
979ti_alloc_dmamaps(struct ti_softc *sc)
980{
981	int i;
982
983	for (i = 0; i < TI_TX_RING_CNT; i++) {
984		sc->ti_cdata.ti_txdesc[i].tx_m = NULL;
985		sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
986		if (bus_dmamap_create(sc->ti_mbuftx_dmat, 0,
987				      &sc->ti_cdata.ti_txdesc[i].tx_dmamap))
988			return (ENOBUFS);
989	}
990	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
991		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
992				      &sc->ti_cdata.ti_rx_std_maps[i]))
993			return (ENOBUFS);
994	}
995
996	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
997		if (bus_dmamap_create(sc->ti_jumbo_dmat, 0,
998				      &sc->ti_cdata.ti_rx_jumbo_maps[i]))
999			return (ENOBUFS);
1000	}
1001	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1002		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1003				      &sc->ti_cdata.ti_rx_mini_maps[i]))
1004			return (ENOBUFS);
1005	}
1006
1007	return (0);
1008}
1009
1010static void
1011ti_free_dmamaps(struct ti_softc *sc)
1012{
1013	int i;
1014
1015	if (sc->ti_mbuftx_dmat)
1016		for (i = 0; i < TI_TX_RING_CNT; i++)
1017			if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1018				bus_dmamap_destroy(sc->ti_mbuftx_dmat,
1019				    sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1020				sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
1021			}
1022
1023	if (sc->ti_mbufrx_dmat)
1024		for (i = 0; i < TI_STD_RX_RING_CNT; i++)
1025			if (sc->ti_cdata.ti_rx_std_maps[i]) {
1026				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1027				    sc->ti_cdata.ti_rx_std_maps[i]);
1028				sc->ti_cdata.ti_rx_std_maps[i] = 0;
1029			}
1030
1031	if (sc->ti_jumbo_dmat)
1032		for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++)
1033			if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1034				bus_dmamap_destroy(sc->ti_jumbo_dmat,
1035				    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1036				sc->ti_cdata.ti_rx_jumbo_maps[i] = 0;
1037			}
1038	if (sc->ti_mbufrx_dmat)
1039		for (i = 0; i < TI_MINI_RX_RING_CNT; i++)
1040			if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1041				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1042				    sc->ti_cdata.ti_rx_mini_maps[i]);
1043				sc->ti_cdata.ti_rx_mini_maps[i] = 0;
1044			}
1045}
1046
1047#ifdef TI_PRIVATE_JUMBOS
1048
1049/*
1050 * Memory management for the jumbo receive ring is a pain in the
1051 * butt. We need to allocate at least 9018 bytes of space per frame,
1052 * _and_ it has to be contiguous (unless you use the extended
1053 * jumbo descriptor format). Using malloc() all the time won't
1054 * work: malloc() allocates memory in powers of two, which means we
1055 * would end up wasting a considerable amount of space by allocating
1056 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
1057 * to do our own memory management.
1058 *
1059 * The driver needs to allocate a contiguous chunk of memory at boot
1060 * time. We then chop this up ourselves into 9K pieces and use them
1061 * as external mbuf storage.
1062 *
1063 * One issue here is how much memory to allocate. The jumbo ring has
1064 * 256 slots in it, but at 9K per slot than can consume over 2MB of
1065 * RAM. This is a bit much, especially considering we also need
1066 * RAM for the standard ring and mini ring (on the Tigon 2). To
1067 * save space, we only actually allocate enough memory for 64 slots
1068 * by default, which works out to between 500 and 600K. This can
1069 * be tuned by changing a #define in if_tireg.h.
1070 */
1071
1072static int
1073ti_alloc_jumbo_mem(struct ti_softc *sc)
1074{
1075	struct ti_jpool_entry *entry;
1076	caddr_t ptr;
1077	int i;
1078
1079	/*
1080	 * Grab a big chunk o' storage.  Since we are chopping this pool up
1081	 * into ~9k chunks, there doesn't appear to be a need to use page
1082	 * alignment.
1083	 */
1084	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1085				1, 0,			/* algnmnt, boundary */
1086				BUS_SPACE_MAXADDR,	/* lowaddr */
1087				BUS_SPACE_MAXADDR,	/* highaddr */
1088				NULL, NULL,		/* filter, filterarg */
1089				TI_JMEM,		/* maxsize */
1090				1,			/* nsegments */
1091				TI_JMEM,		/* maxsegsize */
1092				0,			/* flags */
1093				NULL, NULL,		/* lockfunc, lockarg */
1094				&sc->ti_jumbo_dmat) != 0) {
1095		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1096		return (ENOBUFS);
1097	}
1098
1099	if (bus_dmamem_alloc(sc->ti_jumbo_dmat,
1100			     (void**)&sc->ti_cdata.ti_jumbo_buf,
1101			     BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
1102			     &sc->ti_jumbo_dmamap) != 0) {
1103		device_printf(sc->ti_dev, "Failed to allocate jumbo memory\n");
1104		return (ENOBUFS);
1105	}
1106
1107	SLIST_INIT(&sc->ti_jfree_listhead);
1108	SLIST_INIT(&sc->ti_jinuse_listhead);
1109
1110	/*
1111	 * Now divide it up into 9K pieces and save the addresses
1112	 * in an array.
1113	 */
1114	ptr = sc->ti_cdata.ti_jumbo_buf;
1115	for (i = 0; i < TI_JSLOTS; i++) {
1116		sc->ti_cdata.ti_jslots[i] = ptr;
1117		ptr += TI_JLEN;
1118		entry = malloc(sizeof(struct ti_jpool_entry),
1119			       M_DEVBUF, M_NOWAIT);
1120		if (entry == NULL) {
1121			device_printf(sc->ti_dev, "no memory for jumbo "
1122			    "buffer queue!\n");
1123			return (ENOBUFS);
1124		}
1125		entry->slot = i;
1126		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1127	}
1128
1129	return (0);
1130}
1131
1132/*
1133 * Allocate a jumbo buffer.
1134 */
1135static void *ti_jalloc(struct ti_softc *sc)
1136{
1137	struct ti_jpool_entry *entry;
1138
1139	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1140
1141	if (entry == NULL) {
1142		device_printf(sc->ti_dev, "no free jumbo buffers\n");
1143		return (NULL);
1144	}
1145
1146	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1147	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1148	return (sc->ti_cdata.ti_jslots[entry->slot]);
1149}
1150
1151/*
1152 * Release a jumbo buffer.
1153 */
1154static void
1155ti_jfree(void *buf, void *args)
1156{
1157	struct ti_softc *sc;
1158	int i;
1159	struct ti_jpool_entry *entry;
1160
1161	/* Extract the softc struct pointer. */
1162	sc = (struct ti_softc *)args;
1163
1164	if (sc == NULL)
1165		panic("ti_jfree: didn't get softc pointer!");
1166
1167	/* calculate the slot this buffer belongs to */
1168	i = ((vm_offset_t)buf
1169	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1170
1171	if ((i < 0) || (i >= TI_JSLOTS))
1172		panic("ti_jfree: asked to free buffer that we don't manage!");
1173
1174	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1175	if (entry == NULL)
1176		panic("ti_jfree: buffer not in use!");
1177	entry->slot = i;
1178	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1179	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1180}
1181
1182#else
1183
1184static int
1185ti_alloc_jumbo_mem(struct ti_softc *sc)
1186{
1187
1188	/*
1189	 * The VM system will take care of providing aligned pages.  Alignment
1190	 * is set to 1 here so that busdma resources won't be wasted.
1191	 */
1192	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1193				1, 0,			/* algnmnt, boundary */
1194				BUS_SPACE_MAXADDR,	/* lowaddr */
1195				BUS_SPACE_MAXADDR,	/* highaddr */
1196				NULL, NULL,		/* filter, filterarg */
1197				PAGE_SIZE * 4 /*XXX*/,	/* maxsize */
1198				4,			/* nsegments */
1199				PAGE_SIZE,		/* maxsegsize */
1200				0,			/* flags */
1201				NULL, NULL,		/* lockfunc, lockarg */
1202				&sc->ti_jumbo_dmat) != 0) {
1203		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1204		return (ENOBUFS);
1205	}
1206
1207	return (0);
1208}
1209
1210#endif /* TI_PRIVATE_JUMBOS */
1211
1212/*
1213 * Intialize a standard receive ring descriptor.
1214 */
1215static int
1216ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m)
1217{
1218	bus_dmamap_t map;
1219	bus_dma_segment_t segs;
1220	struct mbuf *m_new = NULL;
1221	struct ti_rx_desc *r;
1222	int nsegs;
1223
1224	nsegs = 0;
1225	if (m == NULL) {
1226		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1227		if (m_new == NULL)
1228			return (ENOBUFS);
1229
1230		MCLGET(m_new, M_DONTWAIT);
1231		if (!(m_new->m_flags & M_EXT)) {
1232			m_freem(m_new);
1233			return (ENOBUFS);
1234		}
1235		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1236	} else {
1237		m_new = m;
1238		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1239		m_new->m_data = m_new->m_ext.ext_buf;
1240	}
1241
1242	m_adj(m_new, ETHER_ALIGN);
1243	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1244	r = &sc->ti_rdata->ti_rx_std_ring[i];
1245	map = sc->ti_cdata.ti_rx_std_maps[i];
1246	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1247				    &nsegs, 0))
1248		return (ENOBUFS);
1249	if (nsegs != 1)
1250		return (ENOBUFS);
1251	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1252	r->ti_len = segs.ds_len;
1253	r->ti_type = TI_BDTYPE_RECV_BD;
1254	r->ti_flags = 0;
1255	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1256		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1257	r->ti_idx = i;
1258
1259	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1260	return (0);
1261}
1262
1263/*
1264 * Intialize a mini receive ring descriptor. This only applies to
1265 * the Tigon 2.
1266 */
1267static int
1268ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m)
1269{
1270	bus_dma_segment_t segs;
1271	bus_dmamap_t map;
1272	struct mbuf *m_new = NULL;
1273	struct ti_rx_desc *r;
1274	int nsegs;
1275
1276	nsegs = 0;
1277	if (m == NULL) {
1278		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1279		if (m_new == NULL) {
1280			return (ENOBUFS);
1281		}
1282		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1283	} else {
1284		m_new = m;
1285		m_new->m_data = m_new->m_pktdat;
1286		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1287	}
1288
1289	m_adj(m_new, ETHER_ALIGN);
1290	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1291	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1292	map = sc->ti_cdata.ti_rx_mini_maps[i];
1293	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1294				    &nsegs, 0))
1295		return (ENOBUFS);
1296	if (nsegs != 1)
1297		return (ENOBUFS);
1298	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1299	r->ti_len = segs.ds_len;
1300	r->ti_type = TI_BDTYPE_RECV_BD;
1301	r->ti_flags = TI_BDFLAG_MINI_RING;
1302	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1303		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1304	r->ti_idx = i;
1305
1306	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1307	return (0);
1308}
1309
1310#ifdef TI_PRIVATE_JUMBOS
1311
1312/*
1313 * Initialize a jumbo receive ring descriptor. This allocates
1314 * a jumbo buffer from the pool managed internally by the driver.
1315 */
1316static int
1317ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
1318{
1319	bus_dmamap_t map;
1320	struct mbuf *m_new = NULL;
1321	struct ti_rx_desc *r;
1322	int nsegs;
1323	bus_dma_segment_t segs;
1324
1325	if (m == NULL) {
1326		caddr_t *buf = NULL;
1327
1328		/* Allocate the mbuf. */
1329		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1330		if (m_new == NULL) {
1331			return (ENOBUFS);
1332		}
1333
1334		/* Allocate the jumbo buffer */
1335		buf = ti_jalloc(sc);
1336		if (buf == NULL) {
1337			m_freem(m_new);
1338			device_printf(sc->ti_dev, "jumbo allocation failed "
1339			    "-- packet dropped!\n");
1340			return (ENOBUFS);
1341		}
1342
1343		/* Attach the buffer to the mbuf. */
1344		m_new->m_data = (void *) buf;
1345		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1346		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree, buf,
1347		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1348	} else {
1349		m_new = m;
1350		m_new->m_data = m_new->m_ext.ext_buf;
1351		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1352	}
1353
1354	m_adj(m_new, ETHER_ALIGN);
1355	/* Set up the descriptor. */
1356	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1357	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1358	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1359	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, &segs,
1360				    &nsegs, 0))
1361		return (ENOBUFS);
1362	if (nsegs != 1)
1363		return (ENOBUFS);
1364	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1365	r->ti_len = segs.ds_len;
1366	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1367	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1368	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1369		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1370	r->ti_idx = i;
1371
1372	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1373	return (0);
1374}
1375
1376#else
1377
1378#if (PAGE_SIZE == 4096)
1379#define NPAYLOAD 2
1380#else
1381#define NPAYLOAD 1
1382#endif
1383
1384#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1385#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1386#define NFS_HDR_LEN (UDP_HDR_LEN)
1387static int HDR_LEN = TCP_HDR_LEN;
1388
1389/*
1390 * Initialize a jumbo receive ring descriptor. This allocates
1391 * a jumbo buffer from the pool managed internally by the driver.
1392 */
1393static int
1394ti_newbuf_jumbo(struct ti_softc *sc, int idx, struct mbuf *m_old)
1395{
1396	bus_dmamap_t map;
1397	struct mbuf *cur, *m_new = NULL;
1398	struct mbuf *m[3] = {NULL, NULL, NULL};
1399	struct ti_rx_desc_ext *r;
1400	vm_page_t frame;
1401	static int color;
1402	/* 1 extra buf to make nobufs easy*/
1403	struct sf_buf *sf[3] = {NULL, NULL, NULL};
1404	int i;
1405	bus_dma_segment_t segs[4];
1406	int nsegs;
1407
1408	if (m_old != NULL) {
1409		m_new = m_old;
1410		cur = m_old->m_next;
1411		for (i = 0; i <= NPAYLOAD; i++){
1412			m[i] = cur;
1413			cur = cur->m_next;
1414		}
1415	} else {
1416		/* Allocate the mbufs. */
1417		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1418		if (m_new == NULL) {
1419			device_printf(sc->ti_dev, "mbuf allocation failed "
1420			    "-- packet dropped!\n");
1421			goto nobufs;
1422		}
1423		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1424		if (m[NPAYLOAD] == NULL) {
1425			device_printf(sc->ti_dev, "cluster mbuf allocation "
1426			    "failed -- packet dropped!\n");
1427			goto nobufs;
1428		}
1429		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1430		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1431			device_printf(sc->ti_dev, "mbuf allocation failed "
1432			    "-- packet dropped!\n");
1433			goto nobufs;
1434		}
1435		m[NPAYLOAD]->m_len = MCLBYTES;
1436
1437		for (i = 0; i < NPAYLOAD; i++){
1438			MGET(m[i], M_DONTWAIT, MT_DATA);
1439			if (m[i] == NULL) {
1440				device_printf(sc->ti_dev, "mbuf allocation "
1441				    "failed -- packet dropped!\n");
1442				goto nobufs;
1443			}
1444			frame = vm_page_alloc(NULL, color++,
1445			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1446			    VM_ALLOC_WIRED);
1447			if (frame == NULL) {
1448				device_printf(sc->ti_dev, "buffer allocation "
1449				    "failed -- packet dropped!\n");
1450				printf("      index %d page %d\n", idx, i);
1451				goto nobufs;
1452			}
1453			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1454			if (sf[i] == NULL) {
1455				vm_page_unwire(frame, 0);
1456				vm_page_free(frame);
1457				device_printf(sc->ti_dev, "buffer allocation "
1458				    "failed -- packet dropped!\n");
1459				printf("      index %d page %d\n", idx, i);
1460				goto nobufs;
1461			}
1462		}
1463		for (i = 0; i < NPAYLOAD; i++){
1464		/* Attach the buffer to the mbuf. */
1465			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1466			m[i]->m_len = PAGE_SIZE;
1467			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1468			    sf_buf_mext, (void*)sf_buf_kva(sf[i]), sf[i],
1469			    0, EXT_DISPOSABLE);
1470			m[i]->m_next = m[i+1];
1471		}
1472		/* link the buffers to the header */
1473		m_new->m_next = m[0];
1474		m_new->m_data += ETHER_ALIGN;
1475		if (sc->ti_hdrsplit)
1476			m_new->m_len = MHLEN - ETHER_ALIGN;
1477		else
1478			m_new->m_len = HDR_LEN;
1479		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1480	}
1481
1482	/* Set up the descriptor. */
1483	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1484	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1485	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1486	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, segs,
1487				    &nsegs, 0))
1488		return (ENOBUFS);
1489	if ((nsegs < 1) || (nsegs > 4))
1490		return (ENOBUFS);
1491	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1492	r->ti_len0 = m_new->m_len;
1493
1494	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1495	r->ti_len1 = PAGE_SIZE;
1496
1497	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1498	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1499
1500	if (PAGE_SIZE == 4096) {
1501		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1502		r->ti_len3 = MCLBYTES;
1503	} else {
1504		r->ti_len3 = 0;
1505	}
1506	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1507
1508	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1509
1510	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1511		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1512
1513	r->ti_idx = idx;
1514
1515	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1516	return (0);
1517
1518nobufs:
1519
1520	/*
1521	 * Warning! :
1522	 * This can only be called before the mbufs are strung together.
1523	 * If the mbufs are strung together, m_freem() will free the chain,
1524	 * so that the later mbufs will be freed multiple times.
1525	 */
1526	if (m_new)
1527		m_freem(m_new);
1528
1529	for (i = 0; i < 3; i++) {
1530		if (m[i])
1531			m_freem(m[i]);
1532		if (sf[i])
1533			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1534	}
1535	return (ENOBUFS);
1536}
1537#endif
1538
1539/*
1540 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1541 * that's 1MB or memory, which is a lot. For now, we fill only the first
1542 * 256 ring entries and hope that our CPU is fast enough to keep up with
1543 * the NIC.
1544 */
1545static int
1546ti_init_rx_ring_std(struct ti_softc *sc)
1547{
1548	int i;
1549	struct ti_cmd_desc cmd;
1550
1551	for (i = 0; i < TI_SSLOTS; i++) {
1552		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1553			return (ENOBUFS);
1554	};
1555
1556	TI_UPDATE_STDPROD(sc, i - 1);
1557	sc->ti_std = i - 1;
1558
1559	return (0);
1560}
1561
1562static void
1563ti_free_rx_ring_std(struct ti_softc *sc)
1564{
1565	bus_dmamap_t map;
1566	int i;
1567
1568	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1569		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1570			map = sc->ti_cdata.ti_rx_std_maps[i];
1571			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1572			    BUS_DMASYNC_POSTREAD);
1573			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1574			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1575			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1576		}
1577		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1578		    sizeof(struct ti_rx_desc));
1579	}
1580}
1581
1582static int
1583ti_init_rx_ring_jumbo(struct ti_softc *sc)
1584{
1585	struct ti_cmd_desc cmd;
1586	int i;
1587
1588	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1589		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1590			return (ENOBUFS);
1591	};
1592
1593	TI_UPDATE_JUMBOPROD(sc, i - 1);
1594	sc->ti_jumbo = i - 1;
1595
1596	return (0);
1597}
1598
1599static void
1600ti_free_rx_ring_jumbo(struct ti_softc *sc)
1601{
1602	bus_dmamap_t map;
1603	int i;
1604
1605	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1606		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1607			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1608			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
1609			    BUS_DMASYNC_POSTREAD);
1610			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
1611			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1612			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1613		}
1614		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1615		    sizeof(struct ti_rx_desc));
1616	}
1617}
1618
1619static int
1620ti_init_rx_ring_mini(struct ti_softc *sc)
1621{
1622	int i;
1623
1624	for (i = 0; i < TI_MSLOTS; i++) {
1625		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1626			return (ENOBUFS);
1627	};
1628
1629	TI_UPDATE_MINIPROD(sc, i - 1);
1630	sc->ti_mini = i - 1;
1631
1632	return (0);
1633}
1634
1635static void
1636ti_free_rx_ring_mini(struct ti_softc *sc)
1637{
1638	bus_dmamap_t map;
1639	int i;
1640
1641	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1642		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1643			map = sc->ti_cdata.ti_rx_mini_maps[i];
1644			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1645			    BUS_DMASYNC_POSTREAD);
1646			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1647			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1648			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1649		}
1650		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1651		    sizeof(struct ti_rx_desc));
1652	}
1653}
1654
1655static void
1656ti_free_tx_ring(struct ti_softc *sc)
1657{
1658	struct ti_txdesc *txd;
1659	int i;
1660
1661	if (sc->ti_rdata->ti_tx_ring == NULL)
1662		return;
1663
1664	for (i = 0; i < TI_TX_RING_CNT; i++) {
1665		txd = &sc->ti_cdata.ti_txdesc[i];
1666		if (txd->tx_m != NULL) {
1667			bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
1668			    BUS_DMASYNC_POSTWRITE);
1669			bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
1670			m_freem(txd->tx_m);
1671			txd->tx_m = NULL;
1672		}
1673		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1674		    sizeof(struct ti_tx_desc));
1675	}
1676}
1677
1678static int
1679ti_init_tx_ring(struct ti_softc *sc)
1680{
1681	struct ti_txdesc *txd;
1682	int i;
1683
1684	STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1685	STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1686	for (i = 0; i < TI_TX_RING_CNT; i++) {
1687		txd = &sc->ti_cdata.ti_txdesc[i];
1688		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1689	}
1690	sc->ti_txcnt = 0;
1691	sc->ti_tx_saved_considx = 0;
1692	sc->ti_tx_saved_prodidx = 0;
1693	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1694	return (0);
1695}
1696
1697/*
1698 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1699 * but we have to support the old way too so that Tigon 1 cards will
1700 * work.
1701 */
1702static void
1703ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1704{
1705	struct ti_cmd_desc cmd;
1706	uint16_t *m;
1707	uint32_t ext[2] = {0, 0};
1708
1709	m = (uint16_t *)&addr->octet[0];
1710
1711	switch (sc->ti_hwrev) {
1712	case TI_HWREV_TIGON:
1713		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1714		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1715		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1716		break;
1717	case TI_HWREV_TIGON_II:
1718		ext[0] = htons(m[0]);
1719		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1720		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1721		break;
1722	default:
1723		device_printf(sc->ti_dev, "unknown hwrev\n");
1724		break;
1725	}
1726}
1727
1728static void
1729ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1730{
1731	struct ti_cmd_desc cmd;
1732	uint16_t *m;
1733	uint32_t ext[2] = {0, 0};
1734
1735	m = (uint16_t *)&addr->octet[0];
1736
1737	switch (sc->ti_hwrev) {
1738	case TI_HWREV_TIGON:
1739		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1740		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1741		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1742		break;
1743	case TI_HWREV_TIGON_II:
1744		ext[0] = htons(m[0]);
1745		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1746		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1747		break;
1748	default:
1749		device_printf(sc->ti_dev, "unknown hwrev\n");
1750		break;
1751	}
1752}
1753
1754/*
1755 * Configure the Tigon's multicast address filter.
1756 *
1757 * The actual multicast table management is a bit of a pain, thanks to
1758 * slight brain damage on the part of both Alteon and us. With our
1759 * multicast code, we are only alerted when the multicast address table
1760 * changes and at that point we only have the current list of addresses:
1761 * we only know the current state, not the previous state, so we don't
1762 * actually know what addresses were removed or added. The firmware has
1763 * state, but we can't get our grubby mits on it, and there is no 'delete
1764 * all multicast addresses' command. Hence, we have to maintain our own
1765 * state so we know what addresses have been programmed into the NIC at
1766 * any given time.
1767 */
1768static void
1769ti_setmulti(struct ti_softc *sc)
1770{
1771	struct ifnet *ifp;
1772	struct ifmultiaddr *ifma;
1773	struct ti_cmd_desc cmd;
1774	struct ti_mc_entry *mc;
1775	uint32_t intrs;
1776
1777	TI_LOCK_ASSERT(sc);
1778
1779	ifp = sc->ti_ifp;
1780
1781	if (ifp->if_flags & IFF_ALLMULTI) {
1782		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1783		return;
1784	} else {
1785		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1786	}
1787
1788	/* Disable interrupts. */
1789	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1790	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1791
1792	/* First, zot all the existing filters. */
1793	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1794		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1795		ti_del_mcast(sc, &mc->mc_addr);
1796		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1797		free(mc, M_DEVBUF);
1798	}
1799
1800	/* Now program new ones. */
1801	if_maddr_rlock(ifp);
1802	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1803		if (ifma->ifma_addr->sa_family != AF_LINK)
1804			continue;
1805		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1806		if (mc == NULL) {
1807			device_printf(sc->ti_dev,
1808			    "no memory for mcast filter entry\n");
1809			continue;
1810		}
1811		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1812		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1813		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1814		ti_add_mcast(sc, &mc->mc_addr);
1815	}
1816	if_maddr_runlock(ifp);
1817
1818	/* Re-enable interrupts. */
1819	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1820}
1821
1822/*
1823 * Check to see if the BIOS has configured us for a 64 bit slot when
1824 * we aren't actually in one. If we detect this condition, we can work
1825 * around it on the Tigon 2 by setting a bit in the PCI state register,
1826 * but for the Tigon 1 we must give up and abort the interface attach.
1827 */
1828static int ti_64bitslot_war(struct ti_softc *sc)
1829{
1830
1831	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1832		CSR_WRITE_4(sc, 0x600, 0);
1833		CSR_WRITE_4(sc, 0x604, 0);
1834		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1835		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1836			if (sc->ti_hwrev == TI_HWREV_TIGON)
1837				return (EINVAL);
1838			else {
1839				TI_SETBIT(sc, TI_PCI_STATE,
1840				    TI_PCISTATE_32BIT_BUS);
1841				return (0);
1842			}
1843		}
1844	}
1845
1846	return (0);
1847}
1848
1849/*
1850 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1851 * self-test results.
1852 */
1853static int
1854ti_chipinit(struct ti_softc *sc)
1855{
1856	uint32_t cacheline;
1857	uint32_t pci_writemax = 0;
1858	uint32_t hdrsplit;
1859
1860	/* Initialize link to down state. */
1861	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1862
1863	/* Set endianness before we access any non-PCI registers. */
1864#if 0 && BYTE_ORDER == BIG_ENDIAN
1865	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1866	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1867#else
1868	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1869	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1870#endif
1871
1872	/* Check the ROM failed bit to see if self-tests passed. */
1873	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1874		device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
1875		return (ENODEV);
1876	}
1877
1878	/* Halt the CPU. */
1879	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1880
1881	/* Figure out the hardware revision. */
1882	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1883	case TI_REV_TIGON_I:
1884		sc->ti_hwrev = TI_HWREV_TIGON;
1885		break;
1886	case TI_REV_TIGON_II:
1887		sc->ti_hwrev = TI_HWREV_TIGON_II;
1888		break;
1889	default:
1890		device_printf(sc->ti_dev, "unsupported chip revision\n");
1891		return (ENODEV);
1892	}
1893
1894	/* Do special setup for Tigon 2. */
1895	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1896		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1897		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1898		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1899	}
1900
1901	/*
1902	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1903	 * can't do header splitting.
1904	 */
1905#ifdef TI_JUMBO_HDRSPLIT
1906	if (sc->ti_hwrev != TI_HWREV_TIGON)
1907		sc->ti_hdrsplit = 1;
1908	else
1909		device_printf(sc->ti_dev,
1910		    "can't do header splitting on a Tigon I board\n");
1911#endif /* TI_JUMBO_HDRSPLIT */
1912
1913	/* Set up the PCI state register. */
1914	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1915	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1916		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1917	}
1918
1919	/* Clear the read/write max DMA parameters. */
1920	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1921	    TI_PCISTATE_READ_MAXDMA));
1922
1923	/* Get cache line size. */
1924	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1925
1926	/*
1927	 * If the system has set enabled the PCI memory write
1928	 * and invalidate command in the command register, set
1929	 * the write max parameter accordingly. This is necessary
1930	 * to use MWI with the Tigon 2.
1931	 */
1932	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1933		switch (cacheline) {
1934		case 1:
1935		case 4:
1936		case 8:
1937		case 16:
1938		case 32:
1939		case 64:
1940			break;
1941		default:
1942		/* Disable PCI memory write and invalidate. */
1943			if (bootverbose)
1944				device_printf(sc->ti_dev, "cache line size %d"
1945				    " not supported; disabling PCI MWI\n",
1946				    cacheline);
1947			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1948			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1949			break;
1950		}
1951	}
1952
1953	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1954
1955	/* This sets the min dma param all the way up (0xff). */
1956	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1957
1958	if (sc->ti_hdrsplit)
1959		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1960	else
1961		hdrsplit = 0;
1962
1963	/* Configure DMA variables. */
1964#if BYTE_ORDER == BIG_ENDIAN
1965	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1966	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1967	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1968	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1969#else /* BYTE_ORDER */
1970	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1971	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1972	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1973#endif /* BYTE_ORDER */
1974
1975	/*
1976	 * Only allow 1 DMA channel to be active at a time.
1977	 * I don't think this is a good idea, but without it
1978	 * the firmware racks up lots of nicDmaReadRingFull
1979	 * errors.  This is not compatible with hardware checksums.
1980	 */
1981	if ((sc->ti_ifp->if_capenable & (IFCAP_TXCSUM | IFCAP_RXCSUM)) == 0)
1982		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1983
1984	/* Recommended settings from Tigon manual. */
1985	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1986	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1987
1988	if (ti_64bitslot_war(sc)) {
1989		device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
1990		    "but we aren't");
1991		return (EINVAL);
1992	}
1993
1994	return (0);
1995}
1996
1997/*
1998 * Initialize the general information block and firmware, and
1999 * start the CPU(s) running.
2000 */
2001static int
2002ti_gibinit(struct ti_softc *sc)
2003{
2004	struct ifnet *ifp;
2005	struct ti_rcb *rcb;
2006	uint32_t rdphys;
2007	int i;
2008
2009	TI_LOCK_ASSERT(sc);
2010
2011	ifp = sc->ti_ifp;
2012	rdphys = sc->ti_rdata_phys;
2013
2014	/* Disable interrupts for now. */
2015	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2016
2017	/*
2018	 * Tell the chip where to find the general information block.
2019	 * While this struct could go into >4GB memory, we allocate it in a
2020	 * single slab with the other descriptors, and those don't seem to
2021	 * support being located in a 64-bit region.
2022	 */
2023	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
2024	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
2025
2026	/* Load the firmware into SRAM. */
2027	ti_loadfw(sc);
2028
2029	/* Set up the contents of the general info and ring control blocks. */
2030
2031	/* Set up the event ring and producer pointer. */
2032	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
2033
2034	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
2035	rcb->ti_flags = 0;
2036	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
2037	    rdphys + TI_RD_OFF(ti_ev_prodidx_r);
2038	sc->ti_ev_prodidx.ti_idx = 0;
2039	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2040	sc->ti_ev_saved_considx = 0;
2041
2042	/* Set up the command ring and producer mailbox. */
2043	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
2044
2045	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
2046	rcb->ti_flags = 0;
2047	rcb->ti_max_len = 0;
2048	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2049		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2050	}
2051	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2052	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2053	sc->ti_cmd_saved_prodidx = 0;
2054
2055	/*
2056	 * Assign the address of the stats refresh buffer.
2057	 * We re-use the current stats buffer for this to
2058	 * conserve memory.
2059	 */
2060	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
2061	    rdphys + TI_RD_OFF(ti_info.ti_stats);
2062
2063	/* Set up the standard receive ring. */
2064	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
2065	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
2066	rcb->ti_max_len = TI_FRAMELEN;
2067	rcb->ti_flags = 0;
2068	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2069		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2070		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2071	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2072		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2073
2074	/* Set up the jumbo receive ring. */
2075	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
2076	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
2077
2078#ifdef TI_PRIVATE_JUMBOS
2079	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
2080	rcb->ti_flags = 0;
2081#else
2082	rcb->ti_max_len = PAGE_SIZE;
2083	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2084#endif
2085	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2086		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2087		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2088	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2089		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2090
2091	/*
2092	 * Set up the mini ring. Only activated on the
2093	 * Tigon 2 but the slot in the config block is
2094	 * still there on the Tigon 1.
2095	 */
2096	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
2097	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
2098	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2099	if (sc->ti_hwrev == TI_HWREV_TIGON)
2100		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2101	else
2102		rcb->ti_flags = 0;
2103	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2104		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2105		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2106	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2107		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2108
2109	/*
2110	 * Set up the receive return ring.
2111	 */
2112	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
2113	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
2114	rcb->ti_flags = 0;
2115	rcb->ti_max_len = TI_RETURN_RING_CNT;
2116	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
2117	    rdphys + TI_RD_OFF(ti_return_prodidx_r);
2118
2119	/*
2120	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2121	 * of putting the transmit ring in the host's address space and
2122	 * letting the chip DMA it instead of leaving the ring in the NIC's
2123	 * memory and accessing it through the shared memory region. We
2124	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2125	 * so we have to revert to the shared memory scheme if we detect
2126	 * a Tigon 1 chip.
2127	 */
2128	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2129	bzero((char *)sc->ti_rdata->ti_tx_ring,
2130	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
2131	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
2132	if (sc->ti_hwrev == TI_HWREV_TIGON)
2133		rcb->ti_flags = 0;
2134	else
2135		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2136	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2137		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2138	if (sc->ti_ifp->if_capenable & IFCAP_TXCSUM)
2139		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2140		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2141	rcb->ti_max_len = TI_TX_RING_CNT;
2142	if (sc->ti_hwrev == TI_HWREV_TIGON)
2143		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
2144	else
2145		TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
2146	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
2147	    rdphys + TI_RD_OFF(ti_tx_considx_r);
2148
2149	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2150	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2151
2152	/* Set up tuneables */
2153#if 0
2154	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2155		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2156		    (sc->ti_rx_coal_ticks / 10));
2157	else
2158#endif
2159		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2160	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2161	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2162	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2163	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2164	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2165
2166	/* Turn interrupts on. */
2167	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2168	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2169
2170	/* Start CPU. */
2171	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2172
2173	return (0);
2174}
2175
2176static void
2177ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2178{
2179	struct ti_softc *sc;
2180
2181	sc = arg;
2182	if (error || nseg != 1)
2183		return;
2184
2185	/*
2186	 * All of the Tigon data structures need to live at <4GB.  This
2187	 * cast is fine since busdma was told about this constraint.
2188	 */
2189	sc->ti_rdata_phys = segs[0].ds_addr;
2190	return;
2191}
2192
2193/*
2194 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2195 * against our list and return its name if we find a match.
2196 */
2197static int
2198ti_probe(device_t dev)
2199{
2200	const struct ti_type *t;
2201
2202	t = ti_devs;
2203
2204	while (t->ti_name != NULL) {
2205		if ((pci_get_vendor(dev) == t->ti_vid) &&
2206		    (pci_get_device(dev) == t->ti_did)) {
2207			device_set_desc(dev, t->ti_name);
2208			return (BUS_PROBE_DEFAULT);
2209		}
2210		t++;
2211	}
2212
2213	return (ENXIO);
2214}
2215
2216static int
2217ti_attach(device_t dev)
2218{
2219	struct ifnet *ifp;
2220	struct ti_softc *sc;
2221	int error = 0, rid;
2222	u_char eaddr[6];
2223
2224	sc = device_get_softc(dev);
2225	sc->ti_unit = device_get_unit(dev);
2226	sc->ti_dev = dev;
2227
2228	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2229	    MTX_DEF);
2230	callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2231	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2232	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2233	if (ifp == NULL) {
2234		device_printf(dev, "can not if_alloc()\n");
2235		error = ENOSPC;
2236		goto fail;
2237	}
2238	sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
2239	sc->ti_ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
2240	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2241
2242	/*
2243	 * Map control/status registers.
2244	 */
2245	pci_enable_busmaster(dev);
2246
2247	rid = TI_PCI_LOMEM;
2248	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2249	    RF_ACTIVE);
2250
2251	if (sc->ti_res == NULL) {
2252		device_printf(dev, "couldn't map memory\n");
2253		error = ENXIO;
2254		goto fail;
2255	}
2256
2257	sc->ti_btag = rman_get_bustag(sc->ti_res);
2258	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2259
2260	/* Allocate interrupt */
2261	rid = 0;
2262
2263	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2264	    RF_SHAREABLE | RF_ACTIVE);
2265
2266	if (sc->ti_irq == NULL) {
2267		device_printf(dev, "couldn't map interrupt\n");
2268		error = ENXIO;
2269		goto fail;
2270	}
2271
2272	if (ti_chipinit(sc)) {
2273		device_printf(dev, "chip initialization failed\n");
2274		error = ENXIO;
2275		goto fail;
2276	}
2277
2278	/* Zero out the NIC's on-board SRAM. */
2279	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2280
2281	/* Init again -- zeroing memory may have clobbered some registers. */
2282	if (ti_chipinit(sc)) {
2283		device_printf(dev, "chip initialization failed\n");
2284		error = ENXIO;
2285		goto fail;
2286	}
2287
2288	/*
2289	 * Get station address from the EEPROM. Note: the manual states
2290	 * that the MAC address is at offset 0x8c, however the data is
2291	 * stored as two longwords (since that's how it's loaded into
2292	 * the NIC). This means the MAC address is actually preceded
2293	 * by two zero bytes. We need to skip over those.
2294	 */
2295	if (ti_read_eeprom(sc, eaddr,
2296				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2297		device_printf(dev, "failed to read station address\n");
2298		error = ENXIO;
2299		goto fail;
2300	}
2301
2302	/* Allocate the general information block and ring buffers. */
2303	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
2304				1, 0,			/* algnmnt, boundary */
2305				BUS_SPACE_MAXADDR,	/* lowaddr */
2306				BUS_SPACE_MAXADDR,	/* highaddr */
2307				NULL, NULL,		/* filter, filterarg */
2308				BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2309				0,			/* nsegments */
2310				BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2311				0,			/* flags */
2312				NULL, NULL,		/* lockfunc, lockarg */
2313				&sc->ti_parent_dmat) != 0) {
2314		device_printf(dev, "Failed to allocate parent dmat\n");
2315		error = ENOMEM;
2316		goto fail;
2317	}
2318
2319	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2320				PAGE_SIZE, 0,		/* algnmnt, boundary */
2321				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2322				BUS_SPACE_MAXADDR,	/* highaddr */
2323				NULL, NULL,		/* filter, filterarg */
2324				sizeof(struct ti_ring_data),	/* maxsize */
2325				1,			/* nsegments */
2326				sizeof(struct ti_ring_data),	/* maxsegsize */
2327				0,			/* flags */
2328				NULL, NULL,		/* lockfunc, lockarg */
2329				&sc->ti_rdata_dmat) != 0) {
2330		device_printf(dev, "Failed to allocate rdata dmat\n");
2331		error = ENOMEM;
2332		goto fail;
2333	}
2334
2335	if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2336			     BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2337			     &sc->ti_rdata_dmamap) != 0) {
2338		device_printf(dev, "Failed to allocate rdata memory\n");
2339		error = ENOMEM;
2340		goto fail;
2341	}
2342
2343	if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2344			    sc->ti_rdata, sizeof(struct ti_ring_data),
2345			    ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2346		device_printf(dev, "Failed to load rdata segments\n");
2347		error = ENOMEM;
2348		goto fail;
2349	}
2350
2351	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2352
2353	/* Try to allocate memory for jumbo buffers. */
2354	if (ti_alloc_jumbo_mem(sc)) {
2355		device_printf(dev, "jumbo buffer allocation failed\n");
2356		error = ENXIO;
2357		goto fail;
2358	}
2359
2360	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2361				1, 0,			/* algnmnt, boundary */
2362				BUS_SPACE_MAXADDR,	/* lowaddr */
2363				BUS_SPACE_MAXADDR,	/* highaddr */
2364				NULL, NULL,		/* filter, filterarg */
2365				MCLBYTES * TI_MAXTXSEGS,/* maxsize */
2366				TI_MAXTXSEGS,		/* nsegments */
2367				MCLBYTES,		/* maxsegsize */
2368				0,			/* flags */
2369				NULL, NULL,		/* lockfunc, lockarg */
2370				&sc->ti_mbuftx_dmat) != 0) {
2371		device_printf(dev, "Failed to allocate rdata dmat\n");
2372		error = ENOMEM;
2373		goto fail;
2374	}
2375
2376	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2377				1, 0,			/* algnmnt, boundary */
2378				BUS_SPACE_MAXADDR,	/* lowaddr */
2379				BUS_SPACE_MAXADDR,	/* highaddr */
2380				NULL, NULL,		/* filter, filterarg */
2381				MCLBYTES,		/* maxsize */
2382				1,			/* nsegments */
2383				MCLBYTES,		/* maxsegsize */
2384				0,			/* flags */
2385				NULL, NULL,		/* lockfunc, lockarg */
2386				&sc->ti_mbufrx_dmat) != 0) {
2387		device_printf(dev, "Failed to allocate rdata dmat\n");
2388		error = ENOMEM;
2389		goto fail;
2390	}
2391
2392	if (ti_alloc_dmamaps(sc)) {
2393		device_printf(dev, "dma map creation failed\n");
2394		error = ENXIO;
2395		goto fail;
2396	}
2397
2398	/*
2399	 * We really need a better way to tell a 1000baseTX card
2400	 * from a 1000baseSX one, since in theory there could be
2401	 * OEMed 1000baseTX cards from lame vendors who aren't
2402	 * clever enough to change the PCI ID. For the moment
2403	 * though, the AceNIC is the only copper card available.
2404	 */
2405	if (pci_get_vendor(dev) == ALT_VENDORID &&
2406	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2407		sc->ti_copper = 1;
2408	/* Ok, it's not the only copper card available. */
2409	if (pci_get_vendor(dev) == NG_VENDORID &&
2410	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2411		sc->ti_copper = 1;
2412
2413	/* Set default tuneable values. */
2414	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2415#if 0
2416	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2417#endif
2418	sc->ti_rx_coal_ticks = 170;
2419	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2420	sc->ti_rx_max_coal_bds = 64;
2421#if 0
2422	sc->ti_tx_max_coal_bds = 128;
2423#endif
2424	sc->ti_tx_max_coal_bds = 32;
2425	sc->ti_tx_buf_ratio = 21;
2426
2427	/* Set up ifnet structure */
2428	ifp->if_softc = sc;
2429	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2430	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2431	ifp->if_ioctl = ti_ioctl;
2432	ifp->if_start = ti_start;
2433	ifp->if_init = ti_init;
2434	ifp->if_baudrate = IF_Gbps(1UL);
2435	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2436
2437	/* Set up ifmedia support. */
2438	if (sc->ti_copper) {
2439		/*
2440		 * Copper cards allow manual 10/100 mode selection,
2441		 * but not manual 1000baseTX mode selection. Why?
2442		 * Becuase currently there's no way to specify the
2443		 * master/slave setting through the firmware interface,
2444		 * so Alteon decided to just bag it and handle it
2445		 * via autonegotiation.
2446		 */
2447		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2448		ifmedia_add(&sc->ifmedia,
2449		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2450		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2451		ifmedia_add(&sc->ifmedia,
2452		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2453		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2454		ifmedia_add(&sc->ifmedia,
2455		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2456	} else {
2457		/* Fiber cards don't support 10/100 modes. */
2458		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2459		ifmedia_add(&sc->ifmedia,
2460		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2461	}
2462	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2463	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2464
2465	/*
2466	 * We're assuming here that card initialization is a sequential
2467	 * thing.  If it isn't, multiple cards probing at the same time
2468	 * could stomp on the list of softcs here.
2469	 */
2470
2471	/* Register the device */
2472	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2473			   0600, "ti%d", sc->ti_unit);
2474	sc->dev->si_drv1 = sc;
2475
2476	/*
2477	 * Call MI attach routine.
2478	 */
2479	ether_ifattach(ifp, eaddr);
2480
2481	/* VLAN capability setup. */
2482	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM |
2483	    IFCAP_VLAN_HWTAGGING;
2484	ifp->if_capenable = ifp->if_capabilities;
2485	/* Tell the upper layer we support VLAN over-sized frames. */
2486	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
2487
2488	/* Driver supports link state tracking. */
2489	ifp->if_capabilities |= IFCAP_LINKSTATE;
2490	ifp->if_capenable |= IFCAP_LINKSTATE;
2491
2492	/* Hook interrupt last to avoid having to lock softc */
2493	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2494	   NULL, ti_intr, sc, &sc->ti_intrhand);
2495
2496	if (error) {
2497		device_printf(dev, "couldn't set up irq\n");
2498		goto fail;
2499	}
2500
2501fail:
2502	if (error)
2503		ti_detach(dev);
2504
2505	return (error);
2506}
2507
2508/*
2509 * Shutdown hardware and free up resources. This can be called any
2510 * time after the mutex has been initialized. It is called in both
2511 * the error case in attach and the normal detach case so it needs
2512 * to be careful about only freeing resources that have actually been
2513 * allocated.
2514 */
2515static int
2516ti_detach(device_t dev)
2517{
2518	struct ti_softc *sc;
2519	struct ifnet *ifp;
2520
2521	sc = device_get_softc(dev);
2522	if (sc->dev)
2523		destroy_dev(sc->dev);
2524	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2525	ifp = sc->ti_ifp;
2526	if (device_is_attached(dev)) {
2527		ether_ifdetach(ifp);
2528		TI_LOCK(sc);
2529		ti_stop(sc);
2530		TI_UNLOCK(sc);
2531	}
2532
2533	/* These should only be active if attach succeeded */
2534	callout_drain(&sc->ti_watchdog);
2535	bus_generic_detach(dev);
2536	ti_free_dmamaps(sc);
2537	ifmedia_removeall(&sc->ifmedia);
2538
2539#ifdef TI_PRIVATE_JUMBOS
2540	if (sc->ti_cdata.ti_jumbo_buf)
2541		bus_dmamem_free(sc->ti_jumbo_dmat, sc->ti_cdata.ti_jumbo_buf,
2542		    sc->ti_jumbo_dmamap);
2543#endif
2544	if (sc->ti_jumbo_dmat)
2545		bus_dma_tag_destroy(sc->ti_jumbo_dmat);
2546	if (sc->ti_mbuftx_dmat)
2547		bus_dma_tag_destroy(sc->ti_mbuftx_dmat);
2548	if (sc->ti_mbufrx_dmat)
2549		bus_dma_tag_destroy(sc->ti_mbufrx_dmat);
2550	if (sc->ti_rdata && sc->ti_rdata_dmamap)
2551		bus_dmamap_unload(sc->ti_rdata_dmat, sc->ti_rdata_dmamap);
2552	if (sc->ti_rdata)
2553		bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2554				sc->ti_rdata_dmamap);
2555	if (sc->ti_rdata_dmat)
2556		bus_dma_tag_destroy(sc->ti_rdata_dmat);
2557	if (sc->ti_parent_dmat)
2558		bus_dma_tag_destroy(sc->ti_parent_dmat);
2559	if (sc->ti_intrhand)
2560		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2561	if (sc->ti_irq)
2562		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2563	if (sc->ti_res) {
2564		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2565		    sc->ti_res);
2566	}
2567	if (ifp)
2568		if_free(ifp);
2569
2570	mtx_destroy(&sc->ti_mtx);
2571
2572	return (0);
2573}
2574
2575#ifdef TI_JUMBO_HDRSPLIT
2576/*
2577 * If hdr_len is 0, that means that header splitting wasn't done on
2578 * this packet for some reason.  The two most likely reasons are that
2579 * the protocol isn't a supported protocol for splitting, or this
2580 * packet had a fragment offset that wasn't 0.
2581 *
2582 * The header length, if it is non-zero, will always be the length of
2583 * the headers on the packet, but that length could be longer than the
2584 * first mbuf.  So we take the minimum of the two as the actual
2585 * length.
2586 */
2587static __inline void
2588ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2589{
2590	int i = 0;
2591	int lengths[4] = {0, 0, 0, 0};
2592	struct mbuf *m, *mp;
2593
2594	if (hdr_len != 0)
2595		top->m_len = min(hdr_len, top->m_len);
2596	pkt_len -= top->m_len;
2597	lengths[i++] = top->m_len;
2598
2599	mp = top;
2600	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2601		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2602		pkt_len -= m->m_len;
2603		lengths[i++] = m->m_len;
2604		mp = m;
2605	}
2606
2607#if 0
2608	if (hdr_len != 0)
2609		printf("got split packet: ");
2610	else
2611		printf("got non-split packet: ");
2612
2613	printf("%d,%d,%d,%d = %d\n", lengths[0],
2614	    lengths[1], lengths[2], lengths[3],
2615	    lengths[0] + lengths[1] + lengths[2] +
2616	    lengths[3]);
2617#endif
2618
2619	if (pkt_len)
2620		panic("header splitting didn't");
2621
2622	if (m) {
2623		m_freem(m);
2624		mp->m_next = NULL;
2625
2626	}
2627	if (mp->m_next != NULL)
2628		panic("ti_hdr_split: last mbuf in chain should be null");
2629}
2630#endif /* TI_JUMBO_HDRSPLIT */
2631
2632/*
2633 * Frame reception handling. This is called if there's a frame
2634 * on the receive return list.
2635 *
2636 * Note: we have to be able to handle three possibilities here:
2637 * 1) the frame is from the mini receive ring (can only happen)
2638 *    on Tigon 2 boards)
2639 * 2) the frame is from the jumbo recieve ring
2640 * 3) the frame is from the standard receive ring
2641 */
2642
2643static void
2644ti_rxeof(struct ti_softc *sc)
2645{
2646	struct ifnet *ifp;
2647	bus_dmamap_t map;
2648	struct ti_cmd_desc cmd;
2649
2650	TI_LOCK_ASSERT(sc);
2651
2652	ifp = sc->ti_ifp;
2653
2654	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2655		struct ti_rx_desc *cur_rx;
2656		struct mbuf *m = NULL;
2657		uint32_t rxidx;
2658		uint16_t vlan_tag = 0;
2659		int have_tag = 0;
2660
2661		cur_rx =
2662		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2663		rxidx = cur_rx->ti_idx;
2664		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2665
2666		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2667			have_tag = 1;
2668			vlan_tag = cur_rx->ti_vlan_tag;
2669		}
2670
2671		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2672
2673			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2674			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2675			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2676			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2677			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
2678			    BUS_DMASYNC_POSTREAD);
2679			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
2680			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2681				ifp->if_ierrors++;
2682				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2683				continue;
2684			}
2685			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2686				ifp->if_ierrors++;
2687				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2688				continue;
2689			}
2690#ifdef TI_PRIVATE_JUMBOS
2691			m->m_len = cur_rx->ti_len;
2692#else /* TI_PRIVATE_JUMBOS */
2693#ifdef TI_JUMBO_HDRSPLIT
2694			if (sc->ti_hdrsplit)
2695				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2696					     cur_rx->ti_len, rxidx);
2697			else
2698#endif /* TI_JUMBO_HDRSPLIT */
2699			m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2700#endif /* TI_PRIVATE_JUMBOS */
2701		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2702			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2703			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2704			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2705			map = sc->ti_cdata.ti_rx_mini_maps[rxidx];
2706			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2707			    BUS_DMASYNC_POSTREAD);
2708			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2709			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2710				ifp->if_ierrors++;
2711				ti_newbuf_mini(sc, sc->ti_mini, m);
2712				continue;
2713			}
2714			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2715				ifp->if_ierrors++;
2716				ti_newbuf_mini(sc, sc->ti_mini, m);
2717				continue;
2718			}
2719			m->m_len = cur_rx->ti_len;
2720		} else {
2721			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2722			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2723			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2724			map = sc->ti_cdata.ti_rx_std_maps[rxidx];
2725			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2726			    BUS_DMASYNC_POSTREAD);
2727			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2728			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2729				ifp->if_ierrors++;
2730				ti_newbuf_std(sc, sc->ti_std, m);
2731				continue;
2732			}
2733			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2734				ifp->if_ierrors++;
2735				ti_newbuf_std(sc, sc->ti_std, m);
2736				continue;
2737			}
2738			m->m_len = cur_rx->ti_len;
2739		}
2740
2741		m->m_pkthdr.len = cur_rx->ti_len;
2742		ifp->if_ipackets++;
2743		m->m_pkthdr.rcvif = ifp;
2744
2745		if (ifp->if_capenable & IFCAP_RXCSUM) {
2746			if (cur_rx->ti_flags & TI_BDFLAG_IP_CKSUM) {
2747				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2748				if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2749					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2750			}
2751			if (cur_rx->ti_flags & TI_BDFLAG_TCP_UDP_CKSUM) {
2752				m->m_pkthdr.csum_data =
2753				    cur_rx->ti_tcp_udp_cksum;
2754				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2755			}
2756		}
2757
2758		/*
2759		 * If we received a packet with a vlan tag,
2760		 * tag it before passing the packet upward.
2761		 */
2762		if (have_tag) {
2763			m->m_pkthdr.ether_vtag = vlan_tag;
2764			m->m_flags |= M_VLANTAG;
2765		}
2766		TI_UNLOCK(sc);
2767		(*ifp->if_input)(ifp, m);
2768		TI_LOCK(sc);
2769	}
2770
2771	/* Only necessary on the Tigon 1. */
2772	if (sc->ti_hwrev == TI_HWREV_TIGON)
2773		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2774		    sc->ti_rx_saved_considx);
2775
2776	TI_UPDATE_STDPROD(sc, sc->ti_std);
2777	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2778	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2779}
2780
2781static void
2782ti_txeof(struct ti_softc *sc)
2783{
2784	struct ti_txdesc *txd;
2785	struct ti_tx_desc txdesc;
2786	struct ti_tx_desc *cur_tx = NULL;
2787	struct ifnet *ifp;
2788	int idx;
2789
2790	ifp = sc->ti_ifp;
2791
2792	txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2793	if (txd == NULL)
2794		return;
2795	/*
2796	 * Go through our tx ring and free mbufs for those
2797	 * frames that have been sent.
2798	 */
2799	for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2800	    TI_INC(idx, TI_TX_RING_CNT)) {
2801		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2802			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2803			    sizeof(txdesc), &txdesc);
2804			cur_tx = &txdesc;
2805		} else
2806			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2807		sc->ti_txcnt--;
2808		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2809		if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2810			continue;
2811		bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2812		    BUS_DMASYNC_POSTWRITE);
2813		bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2814
2815		ifp->if_opackets++;
2816		m_freem(txd->tx_m);
2817		txd->tx_m = NULL;
2818		STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2819		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2820		txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2821	}
2822	sc->ti_tx_saved_considx = idx;
2823
2824	sc->ti_timer = sc->ti_txcnt > 0 ? 5 : 0;
2825}
2826
2827static void
2828ti_intr(void *xsc)
2829{
2830	struct ti_softc *sc;
2831	struct ifnet *ifp;
2832
2833	sc = xsc;
2834	TI_LOCK(sc);
2835	ifp = sc->ti_ifp;
2836
2837/*#ifdef notdef*/
2838	/* Avoid this for now -- checking this register is expensive. */
2839	/* Make sure this is really our interrupt. */
2840	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2841		TI_UNLOCK(sc);
2842		return;
2843	}
2844/*#endif*/
2845
2846	/* Ack interrupt and stop others from occuring. */
2847	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2848
2849	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2850		/* Check RX return ring producer/consumer */
2851		ti_rxeof(sc);
2852
2853		/* Check TX ring producer/consumer */
2854		ti_txeof(sc);
2855	}
2856
2857	ti_handle_events(sc);
2858
2859	/* Re-enable interrupts. */
2860	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2861
2862	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2863	    ifp->if_snd.ifq_head != NULL)
2864		ti_start_locked(ifp);
2865
2866	TI_UNLOCK(sc);
2867}
2868
2869static void
2870ti_stats_update(struct ti_softc *sc)
2871{
2872	struct ifnet *ifp;
2873
2874	ifp = sc->ti_ifp;
2875
2876	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2877	    BUS_DMASYNC_POSTREAD);
2878
2879	ifp->if_collisions +=
2880	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2881	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2882	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2883	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2884	   ifp->if_collisions;
2885
2886	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2887	    BUS_DMASYNC_PREREAD);
2888}
2889
2890/*
2891 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2892 * pointers to descriptors.
2893 */
2894static int
2895ti_encap(struct ti_softc *sc, struct mbuf **m_head)
2896{
2897	struct ti_txdesc *txd;
2898	struct ti_tx_desc *f;
2899	struct ti_tx_desc txdesc;
2900	struct mbuf *m;
2901	bus_dma_segment_t txsegs[TI_MAXTXSEGS];
2902	uint16_t csum_flags;
2903	int error, frag, i, nseg;
2904
2905	if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
2906		return (ENOBUFS);
2907
2908	error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2909	    *m_head, txsegs, &nseg, 0);
2910	if (error == EFBIG) {
2911		m = m_defrag(*m_head, M_DONTWAIT);
2912		if (m == NULL) {
2913			m_freem(*m_head);
2914			*m_head = NULL;
2915			return (ENOMEM);
2916		}
2917		*m_head = m;
2918		error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat,
2919		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2920		if (error) {
2921			m_freem(*m_head);
2922			*m_head = NULL;
2923			return (error);
2924		}
2925	} else if (error != 0)
2926		return (error);
2927	if (nseg == 0) {
2928		m_freem(*m_head);
2929		*m_head = NULL;
2930		return (EIO);
2931	}
2932
2933	if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
2934		bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2935		return (ENOBUFS);
2936	}
2937
2938	m = *m_head;
2939	csum_flags = 0;
2940	if (m->m_pkthdr.csum_flags) {
2941		if (m->m_pkthdr.csum_flags & CSUM_IP)
2942			csum_flags |= TI_BDFLAG_IP_CKSUM;
2943		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2944			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2945		if (m->m_flags & M_LASTFRAG)
2946			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2947		else if (m->m_flags & M_FRAG)
2948			csum_flags |= TI_BDFLAG_IP_FRAG;
2949	}
2950
2951	bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2952	    BUS_DMASYNC_PREWRITE);
2953	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2954	    BUS_DMASYNC_PREWRITE);
2955
2956	frag = sc->ti_tx_saved_prodidx;
2957	for (i = 0; i < nseg; i++) {
2958		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2959			bzero(&txdesc, sizeof(txdesc));
2960			f = &txdesc;
2961		} else
2962			f = &sc->ti_rdata->ti_tx_ring[frag];
2963		ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
2964		f->ti_len = txsegs[i].ds_len;
2965		f->ti_flags = csum_flags;
2966		if (m->m_flags & M_VLANTAG) {
2967			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2968			f->ti_vlan_tag = m->m_pkthdr.ether_vtag;
2969		} else {
2970			f->ti_vlan_tag = 0;
2971		}
2972
2973		if (sc->ti_hwrev == TI_HWREV_TIGON)
2974			ti_mem_write(sc, TI_TX_RING_BASE + frag *
2975			    sizeof(txdesc), sizeof(txdesc), &txdesc);
2976		TI_INC(frag, TI_TX_RING_CNT);
2977	}
2978
2979	sc->ti_tx_saved_prodidx = frag;
2980	/* set TI_BDFLAG_END on the last descriptor */
2981	frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
2982	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2983		txdesc.ti_flags |= TI_BDFLAG_END;
2984		ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
2985		    sizeof(txdesc), &txdesc);
2986	} else
2987		sc->ti_rdata->ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
2988
2989	STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
2990	STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
2991	txd->tx_m = m;
2992	sc->ti_txcnt += nseg;
2993
2994	return (0);
2995}
2996
2997static void
2998ti_start(struct ifnet *ifp)
2999{
3000	struct ti_softc *sc;
3001
3002	sc = ifp->if_softc;
3003	TI_LOCK(sc);
3004	ti_start_locked(ifp);
3005	TI_UNLOCK(sc);
3006}
3007
3008/*
3009 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3010 * to the mbuf data regions directly in the transmit descriptors.
3011 */
3012static void
3013ti_start_locked(struct ifnet *ifp)
3014{
3015	struct ti_softc *sc;
3016	struct mbuf *m_head = NULL;
3017	int enq = 0;
3018
3019	sc = ifp->if_softc;
3020
3021	for (; ifp->if_snd.ifq_head != NULL &&
3022	    sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3023		IF_DEQUEUE(&ifp->if_snd, m_head);
3024		if (m_head == NULL)
3025			break;
3026
3027		/*
3028		 * XXX
3029		 * safety overkill.  If this is a fragmented packet chain
3030		 * with delayed TCP/UDP checksums, then only encapsulate
3031		 * it if we have enough descriptors to handle the entire
3032		 * chain at once.
3033		 * (paranoia -- may not actually be needed)
3034		 */
3035		if (m_head->m_flags & M_FIRSTFRAG &&
3036		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3037			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
3038			    m_head->m_pkthdr.csum_data + 16) {
3039				IF_PREPEND(&ifp->if_snd, m_head);
3040				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3041				break;
3042			}
3043		}
3044
3045		/*
3046		 * Pack the data into the transmit ring. If we
3047		 * don't have room, set the OACTIVE flag and wait
3048		 * for the NIC to drain the ring.
3049		 */
3050		if (ti_encap(sc, &m_head)) {
3051			if (m_head == NULL)
3052				break;
3053			IF_PREPEND(&ifp->if_snd, m_head);
3054			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3055			break;
3056		}
3057
3058		enq++;
3059		/*
3060		 * If there's a BPF listener, bounce a copy of this frame
3061		 * to him.
3062		 */
3063		ETHER_BPF_MTAP(ifp, m_head);
3064	}
3065
3066	if (enq > 0) {
3067		/* Transmit */
3068		CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3069
3070		/*
3071		 * Set a timeout in case the chip goes out to lunch.
3072		 */
3073		sc->ti_timer = 5;
3074	}
3075}
3076
3077static void
3078ti_init(void *xsc)
3079{
3080	struct ti_softc *sc;
3081
3082	sc = xsc;
3083	TI_LOCK(sc);
3084	ti_init_locked(sc);
3085	TI_UNLOCK(sc);
3086}
3087
3088static void
3089ti_init_locked(void *xsc)
3090{
3091	struct ti_softc *sc = xsc;
3092
3093	/* Cancel pending I/O and flush buffers. */
3094	ti_stop(sc);
3095
3096	/* Init the gen info block, ring control blocks and firmware. */
3097	if (ti_gibinit(sc)) {
3098		device_printf(sc->ti_dev, "initialization failure\n");
3099		return;
3100	}
3101}
3102
3103static void ti_init2(struct ti_softc *sc)
3104{
3105	struct ti_cmd_desc cmd;
3106	struct ifnet *ifp;
3107	uint8_t *ea;
3108	struct ifmedia *ifm;
3109	int tmp;
3110
3111	TI_LOCK_ASSERT(sc);
3112
3113	ifp = sc->ti_ifp;
3114
3115	/* Specify MTU and interface index. */
3116	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
3117	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3118	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3119	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3120
3121	/* Load our MAC address. */
3122	ea = IF_LLADDR(sc->ti_ifp);
3123	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3124	CSR_WRITE_4(sc, TI_GCR_PAR1,
3125	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3126	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3127
3128	/* Enable or disable promiscuous mode as needed. */
3129	if (ifp->if_flags & IFF_PROMISC) {
3130		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3131	} else {
3132		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3133	}
3134
3135	/* Program multicast filter. */
3136	ti_setmulti(sc);
3137
3138	/*
3139	 * If this is a Tigon 1, we should tell the
3140	 * firmware to use software packet filtering.
3141	 */
3142	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3143		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3144	}
3145
3146	/* Init RX ring. */
3147	ti_init_rx_ring_std(sc);
3148
3149	/* Init jumbo RX ring. */
3150	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3151		ti_init_rx_ring_jumbo(sc);
3152
3153	/*
3154	 * If this is a Tigon 2, we can also configure the
3155	 * mini ring.
3156	 */
3157	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
3158		ti_init_rx_ring_mini(sc);
3159
3160	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3161	sc->ti_rx_saved_considx = 0;
3162
3163	/* Init TX ring. */
3164	ti_init_tx_ring(sc);
3165
3166	/* Tell firmware we're alive. */
3167	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3168
3169	/* Enable host interrupts. */
3170	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3171
3172	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3173	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3174	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3175
3176	/*
3177	 * Make sure to set media properly. We have to do this
3178	 * here since we have to issue commands in order to set
3179	 * the link negotiation and we can't issue commands until
3180	 * the firmware is running.
3181	 */
3182	ifm = &sc->ifmedia;
3183	tmp = ifm->ifm_media;
3184	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3185	ti_ifmedia_upd_locked(sc);
3186	ifm->ifm_media = tmp;
3187}
3188
3189/*
3190 * Set media options.
3191 */
3192static int
3193ti_ifmedia_upd(struct ifnet *ifp)
3194{
3195	struct ti_softc *sc;
3196	int error;
3197
3198	sc = ifp->if_softc;
3199	TI_LOCK(sc);
3200	error = ti_ifmedia_upd(ifp);
3201	TI_UNLOCK(sc);
3202
3203	return (error);
3204}
3205
3206static int
3207ti_ifmedia_upd_locked(struct ti_softc *sc)
3208{
3209	struct ifmedia *ifm;
3210	struct ti_cmd_desc cmd;
3211	uint32_t flowctl;
3212
3213	ifm = &sc->ifmedia;
3214
3215	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3216		return (EINVAL);
3217
3218	flowctl = 0;
3219
3220	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3221	case IFM_AUTO:
3222		/*
3223		 * Transmit flow control doesn't work on the Tigon 1.
3224		 */
3225		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3226
3227		/*
3228		 * Transmit flow control can also cause problems on the
3229		 * Tigon 2, apparantly with both the copper and fiber
3230		 * boards.  The symptom is that the interface will just
3231		 * hang.  This was reproduced with Alteon 180 switches.
3232		 */
3233#if 0
3234		if (sc->ti_hwrev != TI_HWREV_TIGON)
3235			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3236#endif
3237
3238		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3239		    TI_GLNK_FULL_DUPLEX| flowctl |
3240		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3241
3242		flowctl = TI_LNK_RX_FLOWCTL_Y;
3243#if 0
3244		if (sc->ti_hwrev != TI_HWREV_TIGON)
3245			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3246#endif
3247
3248		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3249		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3250		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3251		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3252		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3253		break;
3254	case IFM_1000_SX:
3255	case IFM_1000_T:
3256		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3257#if 0
3258		if (sc->ti_hwrev != TI_HWREV_TIGON)
3259			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3260#endif
3261
3262		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3263		    flowctl |TI_GLNK_ENB);
3264		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3265		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3266			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3267		}
3268		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3269		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3270		break;
3271	case IFM_100_FX:
3272	case IFM_10_FL:
3273	case IFM_100_TX:
3274	case IFM_10_T:
3275		flowctl = TI_LNK_RX_FLOWCTL_Y;
3276#if 0
3277		if (sc->ti_hwrev != TI_HWREV_TIGON)
3278			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3279#endif
3280
3281		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3282		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3283		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3284		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3285			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3286		} else {
3287			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3288		}
3289		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3290			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3291		} else {
3292			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3293		}
3294		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3295		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3296		break;
3297	}
3298
3299	return (0);
3300}
3301
3302/*
3303 * Report current media status.
3304 */
3305static void
3306ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3307{
3308	struct ti_softc *sc;
3309	uint32_t media = 0;
3310
3311	sc = ifp->if_softc;
3312
3313	TI_LOCK(sc);
3314
3315	ifmr->ifm_status = IFM_AVALID;
3316	ifmr->ifm_active = IFM_ETHER;
3317
3318	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
3319		TI_UNLOCK(sc);
3320		return;
3321	}
3322
3323	ifmr->ifm_status |= IFM_ACTIVE;
3324
3325	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3326		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3327		if (sc->ti_copper)
3328			ifmr->ifm_active |= IFM_1000_T;
3329		else
3330			ifmr->ifm_active |= IFM_1000_SX;
3331		if (media & TI_GLNK_FULL_DUPLEX)
3332			ifmr->ifm_active |= IFM_FDX;
3333		else
3334			ifmr->ifm_active |= IFM_HDX;
3335	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3336		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3337		if (sc->ti_copper) {
3338			if (media & TI_LNK_100MB)
3339				ifmr->ifm_active |= IFM_100_TX;
3340			if (media & TI_LNK_10MB)
3341				ifmr->ifm_active |= IFM_10_T;
3342		} else {
3343			if (media & TI_LNK_100MB)
3344				ifmr->ifm_active |= IFM_100_FX;
3345			if (media & TI_LNK_10MB)
3346				ifmr->ifm_active |= IFM_10_FL;
3347		}
3348		if (media & TI_LNK_FULL_DUPLEX)
3349			ifmr->ifm_active |= IFM_FDX;
3350		if (media & TI_LNK_HALF_DUPLEX)
3351			ifmr->ifm_active |= IFM_HDX;
3352	}
3353	TI_UNLOCK(sc);
3354}
3355
3356static int
3357ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3358{
3359	struct ti_softc *sc = ifp->if_softc;
3360	struct ifreq *ifr = (struct ifreq *) data;
3361	struct ti_cmd_desc cmd;
3362	int mask, error = 0;
3363
3364	switch (command) {
3365	case SIOCSIFMTU:
3366		TI_LOCK(sc);
3367		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3368			error = EINVAL;
3369		else {
3370			ifp->if_mtu = ifr->ifr_mtu;
3371			ti_init_locked(sc);
3372		}
3373		TI_UNLOCK(sc);
3374		break;
3375	case SIOCSIFFLAGS:
3376		TI_LOCK(sc);
3377		if (ifp->if_flags & IFF_UP) {
3378			/*
3379			 * If only the state of the PROMISC flag changed,
3380			 * then just use the 'set promisc mode' command
3381			 * instead of reinitializing the entire NIC. Doing
3382			 * a full re-init means reloading the firmware and
3383			 * waiting for it to start up, which may take a
3384			 * second or two.
3385			 */
3386			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3387			    ifp->if_flags & IFF_PROMISC &&
3388			    !(sc->ti_if_flags & IFF_PROMISC)) {
3389				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3390				    TI_CMD_CODE_PROMISC_ENB, 0);
3391			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3392			    !(ifp->if_flags & IFF_PROMISC) &&
3393			    sc->ti_if_flags & IFF_PROMISC) {
3394				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3395				    TI_CMD_CODE_PROMISC_DIS, 0);
3396			} else
3397				ti_init_locked(sc);
3398		} else {
3399			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3400				ti_stop(sc);
3401			}
3402		}
3403		sc->ti_if_flags = ifp->if_flags;
3404		TI_UNLOCK(sc);
3405		break;
3406	case SIOCADDMULTI:
3407	case SIOCDELMULTI:
3408		TI_LOCK(sc);
3409		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3410			ti_setmulti(sc);
3411		TI_UNLOCK(sc);
3412		break;
3413	case SIOCSIFMEDIA:
3414	case SIOCGIFMEDIA:
3415		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3416		break;
3417	case SIOCSIFCAP:
3418		TI_LOCK(sc);
3419		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3420		if ((mask & IFCAP_TXCSUM) != 0 &&
3421		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3422			ifp->if_capenable ^= IFCAP_TXCSUM;
3423			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
3424				ifp->if_hwassist |= TI_CSUM_FEATURES;
3425                        else
3426				ifp->if_hwassist &= ~TI_CSUM_FEATURES;
3427                }
3428		if ((mask & IFCAP_RXCSUM) != 0 &&
3429		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
3430			ifp->if_capenable ^= IFCAP_RXCSUM;
3431		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3432		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0)
3433                        ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3434		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
3435		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
3436			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
3437		if ((mask & (IFCAP_TXCSUM | IFCAP_RXCSUM |
3438		    IFCAP_VLAN_HWTAGGING)) != 0) {
3439			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3440				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3441				ti_init_locked(sc);
3442			}
3443		}
3444		TI_UNLOCK(sc);
3445		VLAN_CAPABILITIES(ifp);
3446		break;
3447	default:
3448		error = ether_ioctl(ifp, command, data);
3449		break;
3450	}
3451
3452	return (error);
3453}
3454
3455static int
3456ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3457{
3458	struct ti_softc *sc;
3459
3460	sc = dev->si_drv1;
3461	if (sc == NULL)
3462		return (ENODEV);
3463
3464	TI_LOCK(sc);
3465	sc->ti_flags |= TI_FLAG_DEBUGING;
3466	TI_UNLOCK(sc);
3467
3468	return (0);
3469}
3470
3471static int
3472ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3473{
3474	struct ti_softc *sc;
3475
3476	sc = dev->si_drv1;
3477	if (sc == NULL)
3478		return (ENODEV);
3479
3480	TI_LOCK(sc);
3481	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3482	TI_UNLOCK(sc);
3483
3484	return (0);
3485}
3486
3487/*
3488 * This ioctl routine goes along with the Tigon character device.
3489 */
3490static int
3491ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3492    struct thread *td)
3493{
3494	struct ti_softc *sc;
3495	int error;
3496
3497	sc = dev->si_drv1;
3498	if (sc == NULL)
3499		return (ENODEV);
3500
3501	error = 0;
3502
3503	switch (cmd) {
3504	case TIIOCGETSTATS:
3505	{
3506		struct ti_stats *outstats;
3507
3508		outstats = (struct ti_stats *)addr;
3509
3510		TI_LOCK(sc);
3511		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3512		      sizeof(struct ti_stats));
3513		TI_UNLOCK(sc);
3514		break;
3515	}
3516	case TIIOCGETPARAMS:
3517	{
3518		struct ti_params *params;
3519
3520		params = (struct ti_params *)addr;
3521
3522		TI_LOCK(sc);
3523		params->ti_stat_ticks = sc->ti_stat_ticks;
3524		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3525		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3526		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3527		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3528		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3529		params->param_mask = TI_PARAM_ALL;
3530		TI_UNLOCK(sc);
3531
3532		error = 0;
3533
3534		break;
3535	}
3536	case TIIOCSETPARAMS:
3537	{
3538		struct ti_params *params;
3539
3540		params = (struct ti_params *)addr;
3541
3542		TI_LOCK(sc);
3543		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3544			sc->ti_stat_ticks = params->ti_stat_ticks;
3545			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3546		}
3547
3548		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3549			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3550			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3551				    sc->ti_rx_coal_ticks);
3552		}
3553
3554		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3555			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3556			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3557				    sc->ti_tx_coal_ticks);
3558		}
3559
3560		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3561			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3562			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3563				    sc->ti_rx_max_coal_bds);
3564		}
3565
3566		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3567			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3568			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3569				    sc->ti_tx_max_coal_bds);
3570		}
3571
3572		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3573			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3574			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3575				    sc->ti_tx_buf_ratio);
3576		}
3577		TI_UNLOCK(sc);
3578
3579		error = 0;
3580
3581		break;
3582	}
3583	case TIIOCSETTRACE: {
3584		ti_trace_type	trace_type;
3585
3586		trace_type = *(ti_trace_type *)addr;
3587
3588		/*
3589		 * Set tracing to whatever the user asked for.  Setting
3590		 * this register to 0 should have the effect of disabling
3591		 * tracing.
3592		 */
3593		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3594
3595		error = 0;
3596
3597		break;
3598	}
3599	case TIIOCGETTRACE: {
3600		struct ti_trace_buf *trace_buf;
3601		uint32_t trace_start, cur_trace_ptr, trace_len;
3602
3603		trace_buf = (struct ti_trace_buf *)addr;
3604
3605		TI_LOCK(sc);
3606		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3607		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3608		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3609
3610#if 0
3611		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3612		       "trace_len = %d\n", trace_start,
3613		       cur_trace_ptr, trace_len);
3614		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3615		       trace_buf->buf_len);
3616#endif
3617
3618		error = ti_copy_mem(sc, trace_start, min(trace_len,
3619				    trace_buf->buf_len),
3620				    (caddr_t)trace_buf->buf, 1, 1);
3621
3622		if (error == 0) {
3623			trace_buf->fill_len = min(trace_len,
3624						  trace_buf->buf_len);
3625			if (cur_trace_ptr < trace_start)
3626				trace_buf->cur_trace_ptr =
3627					trace_start - cur_trace_ptr;
3628			else
3629				trace_buf->cur_trace_ptr =
3630					cur_trace_ptr - trace_start;
3631		} else
3632			trace_buf->fill_len = 0;
3633		TI_UNLOCK(sc);
3634
3635		break;
3636	}
3637
3638	/*
3639	 * For debugging, five ioctls are needed:
3640	 * ALT_ATTACH
3641	 * ALT_READ_TG_REG
3642	 * ALT_WRITE_TG_REG
3643	 * ALT_READ_TG_MEM
3644	 * ALT_WRITE_TG_MEM
3645	 */
3646	case ALT_ATTACH:
3647		/*
3648		 * From what I can tell, Alteon's Solaris Tigon driver
3649		 * only has one character device, so you have to attach
3650		 * to the Tigon board you're interested in.  This seems
3651		 * like a not-so-good way to do things, since unless you
3652		 * subsequently specify the unit number of the device
3653		 * you're interested in every ioctl, you'll only be
3654		 * able to debug one board at a time.
3655		 */
3656		error = 0;
3657		break;
3658	case ALT_READ_TG_MEM:
3659	case ALT_WRITE_TG_MEM:
3660	{
3661		struct tg_mem *mem_param;
3662		uint32_t sram_end, scratch_end;
3663
3664		mem_param = (struct tg_mem *)addr;
3665
3666		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3667			sram_end = TI_END_SRAM_I;
3668			scratch_end = TI_END_SCRATCH_I;
3669		} else {
3670			sram_end = TI_END_SRAM_II;
3671			scratch_end = TI_END_SCRATCH_II;
3672		}
3673
3674		/*
3675		 * For now, we'll only handle accessing regular SRAM,
3676		 * nothing else.
3677		 */
3678		TI_LOCK(sc);
3679		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3680		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3681			/*
3682			 * In this instance, we always copy to/from user
3683			 * space, so the user space argument is set to 1.
3684			 */
3685			error = ti_copy_mem(sc, mem_param->tgAddr,
3686					    mem_param->len,
3687					    mem_param->userAddr, 1,
3688					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3689		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3690			&& (mem_param->tgAddr <= scratch_end)) {
3691			error = ti_copy_scratch(sc, mem_param->tgAddr,
3692						mem_param->len,
3693						mem_param->userAddr, 1,
3694						(cmd == ALT_READ_TG_MEM) ?
3695						1 : 0, TI_PROCESSOR_A);
3696		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3697			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3698			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3699				if_printf(sc->ti_ifp,
3700				    "invalid memory range for Tigon I\n");
3701				error = EINVAL;
3702				break;
3703			}
3704			error = ti_copy_scratch(sc, mem_param->tgAddr -
3705						TI_SCRATCH_DEBUG_OFF,
3706						mem_param->len,
3707						mem_param->userAddr, 1,
3708						(cmd == ALT_READ_TG_MEM) ?
3709						1 : 0, TI_PROCESSOR_B);
3710		} else {
3711			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3712			        "out of supported range\n",
3713			        mem_param->tgAddr, mem_param->len);
3714			error = EINVAL;
3715		}
3716		TI_UNLOCK(sc);
3717
3718		break;
3719	}
3720	case ALT_READ_TG_REG:
3721	case ALT_WRITE_TG_REG:
3722	{
3723		struct tg_reg	*regs;
3724		uint32_t	tmpval;
3725
3726		regs = (struct tg_reg *)addr;
3727
3728		/*
3729		 * Make sure the address in question isn't out of range.
3730		 */
3731		if (regs->addr > TI_REG_MAX) {
3732			error = EINVAL;
3733			break;
3734		}
3735		TI_LOCK(sc);
3736		if (cmd == ALT_READ_TG_REG) {
3737			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3738						regs->addr, &tmpval, 1);
3739			regs->data = ntohl(tmpval);
3740#if 0
3741			if ((regs->addr == TI_CPU_STATE)
3742			 || (regs->addr == TI_CPU_CTL_B)) {
3743				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3744				       regs->addr, tmpval);
3745			}
3746#endif
3747		} else {
3748			tmpval = htonl(regs->data);
3749			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3750						 regs->addr, &tmpval, 1);
3751		}
3752		TI_UNLOCK(sc);
3753
3754		break;
3755	}
3756	default:
3757		error = ENOTTY;
3758		break;
3759	}
3760	return (error);
3761}
3762
3763static void
3764ti_watchdog(void *arg)
3765{
3766	struct ti_softc *sc;
3767	struct ifnet *ifp;
3768
3769	sc = arg;
3770	TI_LOCK_ASSERT(sc);
3771	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3772	if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3773		return;
3774
3775	/*
3776	 * When we're debugging, the chip is often stopped for long periods
3777	 * of time, and that would normally cause the watchdog timer to fire.
3778	 * Since that impedes debugging, we don't want to do that.
3779	 */
3780	if (sc->ti_flags & TI_FLAG_DEBUGING)
3781		return;
3782
3783	ifp = sc->ti_ifp;
3784	if_printf(ifp, "watchdog timeout -- resetting\n");
3785	ti_stop(sc);
3786	ti_init_locked(sc);
3787
3788	ifp->if_oerrors++;
3789}
3790
3791/*
3792 * Stop the adapter and free any mbufs allocated to the
3793 * RX and TX lists.
3794 */
3795static void
3796ti_stop(struct ti_softc *sc)
3797{
3798	struct ifnet *ifp;
3799	struct ti_cmd_desc cmd;
3800
3801	TI_LOCK_ASSERT(sc);
3802
3803	ifp = sc->ti_ifp;
3804
3805	/* Disable host interrupts. */
3806	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3807	/*
3808	 * Tell firmware we're shutting down.
3809	 */
3810	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3811
3812	/* Halt and reinitialize. */
3813	if (ti_chipinit(sc) != 0)
3814		return;
3815	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3816	if (ti_chipinit(sc) != 0)
3817		return;
3818
3819	/* Free the RX lists. */
3820	ti_free_rx_ring_std(sc);
3821
3822	/* Free jumbo RX list. */
3823	ti_free_rx_ring_jumbo(sc);
3824
3825	/* Free mini RX list. */
3826	ti_free_rx_ring_mini(sc);
3827
3828	/* Free TX buffers. */
3829	ti_free_tx_ring(sc);
3830
3831	sc->ti_ev_prodidx.ti_idx = 0;
3832	sc->ti_return_prodidx.ti_idx = 0;
3833	sc->ti_tx_considx.ti_idx = 0;
3834	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3835
3836	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3837	callout_stop(&sc->ti_watchdog);
3838}
3839
3840/*
3841 * Stop all chip I/O so that the kernel's probe routines don't
3842 * get confused by errant DMAs when rebooting.
3843 */
3844static int
3845ti_shutdown(device_t dev)
3846{
3847	struct ti_softc *sc;
3848
3849	sc = device_get_softc(dev);
3850	TI_LOCK(sc);
3851	ti_chipinit(sc);
3852	TI_UNLOCK(sc);
3853
3854	return (0);
3855}
3856