if_ti.c revision 148654
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35 * Manuals, sample driver and firmware source kits are available
36 * from http://www.alteon.com/support/openkits.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48 * filtering and jumbo (9014 byte) frames. The hardware is largely
49 * controlled by firmware, which must be loaded into the NIC during
50 * initialization.
51 *
52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53 * revision, which supports new features such as extended commands,
54 * extended jumbo receive ring desciptors and a mini receive ring.
55 *
56 * Alteon Networks is to be commended for releasing such a vast amount
57 * of development material for the Tigon NIC without requiring an NDA
58 * (although they really should have done it a long time ago). With
59 * any luck, the other vendors will finally wise up and follow Alteon's
60 * stellar example.
61 *
62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63 * this driver by #including it as a C header file. This bloats the
64 * driver somewhat, but it's the easiest method considering that the
65 * driver code and firmware code need to be kept in sync. The source
66 * for the firmware is not provided with the FreeBSD distribution since
67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68 *
69 * The following people deserve special thanks:
70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71 *   for testing
72 * - Raymond Lee of Netgear, for providing a pair of Netgear
73 *   GA620 Tigon 2 boards for testing
74 * - Ulf Zimmermann, for bringing the GA260 to my attention and
75 *   convincing me to write this driver.
76 * - Andrew Gallatin for providing FreeBSD/Alpha support.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/dev/ti/if_ti.c 148654 2005-08-03 00:18:35Z rwatson $");
81
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/module.h>
91#include <sys/socket.h>
92#include <sys/queue.h>
93#include <sys/conf.h>
94
95#include <net/if.h>
96#include <net/if_arp.h>
97#include <net/ethernet.h>
98#include <net/if_dl.h>
99#include <net/if_media.h>
100#include <net/if_types.h>
101#include <net/if_vlan_var.h>
102
103#include <net/bpf.h>
104
105#include <netinet/in_systm.h>
106#include <netinet/in.h>
107#include <netinet/ip.h>
108
109#include <vm/vm.h>		/* for vtophys */
110#include <vm/pmap.h>		/* for vtophys */
111#include <machine/bus.h>
112#include <machine/resource.h>
113#include <sys/bus.h>
114#include <sys/rman.h>
115
116/* #define TI_PRIVATE_JUMBOS */
117
118#if !defined(TI_PRIVATE_JUMBOS)
119#include <sys/sockio.h>
120#include <sys/uio.h>
121#include <sys/lock.h>
122#include <sys/sf_buf.h>
123#include <vm/vm_extern.h>
124#include <vm/pmap.h>
125#include <vm/vm_map.h>
126#include <vm/vm_map.h>
127#include <vm/vm_param.h>
128#include <vm/vm_pageout.h>
129#include <sys/vmmeter.h>
130#include <vm/vm_page.h>
131#include <vm/vm_object.h>
132#include <vm/vm_kern.h>
133#include <sys/proc.h>
134#endif /* !TI_PRIVATE_JUMBOS */
135
136#include <dev/pci/pcireg.h>
137#include <dev/pci/pcivar.h>
138
139#include <sys/tiio.h>
140#include <pci/if_tireg.h>
141#include <pci/ti_fw.h>
142#include <pci/ti_fw2.h>
143
144#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
145/*
146 * We can only turn on header splitting if we're using extended receive
147 * BDs.
148 */
149#if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
150#error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
151#endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
152
153struct ti_softc *tis[8];
154
155typedef enum {
156	TI_SWAP_HTON,
157	TI_SWAP_NTOH
158} ti_swap_type;
159
160
161/*
162 * Various supported device vendors/types and their names.
163 */
164
165static struct ti_type ti_devs[] = {
166	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
167		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
168	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
169		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
170	{ TC_VENDORID,	TC_DEVICEID_3C985,
171		"3Com 3c985-SX Gigabit Ethernet" },
172	{ NG_VENDORID, NG_DEVICEID_GA620,
173		"Netgear GA620 1000baseSX Gigabit Ethernet" },
174	{ NG_VENDORID, NG_DEVICEID_GA620T,
175		"Netgear GA620 1000baseT Gigabit Ethernet" },
176	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
177		"Silicon Graphics Gigabit Ethernet" },
178	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
179		"Farallon PN9000SX Gigabit Ethernet" },
180	{ 0, 0, NULL }
181};
182
183
184static	d_open_t	ti_open;
185static	d_close_t	ti_close;
186static	d_ioctl_t	ti_ioctl2;
187
188static struct cdevsw ti_cdevsw = {
189	.d_version =	D_VERSION,
190	.d_flags =	D_NEEDGIANT,
191	.d_open =	ti_open,
192	.d_close =	ti_close,
193	.d_ioctl =	ti_ioctl2,
194	.d_name =	"ti",
195};
196
197static int ti_probe(device_t);
198static int ti_attach(device_t);
199static int ti_detach(device_t);
200static void ti_txeof(struct ti_softc *);
201static void ti_rxeof(struct ti_softc *);
202
203static void ti_stats_update(struct ti_softc *);
204static int ti_encap(struct ti_softc *, struct mbuf *, u_int32_t *);
205
206static void ti_intr(void *);
207static void ti_start(struct ifnet *);
208static int ti_ioctl(struct ifnet *, u_long, caddr_t);
209static void ti_init(void *);
210static void ti_init2(struct ti_softc *);
211static void ti_stop(struct ti_softc *);
212static void ti_watchdog(struct ifnet *);
213static void ti_shutdown(device_t);
214static int ti_ifmedia_upd(struct ifnet *);
215static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216
217static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
218static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
219static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
220
221static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
222static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
223static void ti_setmulti(struct ti_softc *);
224
225static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t);
226static int ti_copy_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t, int, int);
227static int ti_copy_scratch(struct ti_softc *, u_int32_t, u_int32_t, caddr_t,
228		int, int, int);
229static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
230static void ti_loadfw(struct ti_softc *);
231static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
232static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
233static void ti_handle_events(struct ti_softc *);
234#ifdef TI_PRIVATE_JUMBOS
235static int ti_alloc_jumbo_mem(struct ti_softc *);
236static void *ti_jalloc(struct ti_softc *);
237static void ti_jfree(void *, void *);
238#endif /* TI_PRIVATE_JUMBOS */
239static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
240static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
241static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
242static int ti_init_rx_ring_std(struct ti_softc *);
243static void ti_free_rx_ring_std(struct ti_softc *);
244static int ti_init_rx_ring_jumbo(struct ti_softc *);
245static void ti_free_rx_ring_jumbo(struct ti_softc *);
246static int ti_init_rx_ring_mini(struct ti_softc *);
247static void ti_free_rx_ring_mini(struct ti_softc *);
248static void ti_free_tx_ring(struct ti_softc *);
249static int ti_init_tx_ring(struct ti_softc *);
250
251static int ti_64bitslot_war(struct ti_softc *);
252static int ti_chipinit(struct ti_softc *);
253static int ti_gibinit(struct ti_softc *);
254
255#ifdef TI_JUMBO_HDRSPLIT
256static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
257					     int pkt_len, int idx);
258#endif /* TI_JUMBO_HDRSPLIT */
259
260static device_method_t ti_methods[] = {
261	/* Device interface */
262	DEVMETHOD(device_probe,		ti_probe),
263	DEVMETHOD(device_attach,	ti_attach),
264	DEVMETHOD(device_detach,	ti_detach),
265	DEVMETHOD(device_shutdown,	ti_shutdown),
266	{ 0, 0 }
267};
268
269static driver_t ti_driver = {
270	"ti",
271	ti_methods,
272	sizeof(struct ti_softc)
273};
274
275static devclass_t ti_devclass;
276
277DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
278MODULE_DEPEND(ti, pci, 1, 1, 1);
279MODULE_DEPEND(ti, ether, 1, 1, 1);
280
281/*
282 * Send an instruction or address to the EEPROM, check for ACK.
283 */
284static u_int32_t ti_eeprom_putbyte(sc, byte)
285	struct ti_softc		*sc;
286	int			byte;
287{
288	register int		i, ack = 0;
289
290	/*
291	 * Make sure we're in TX mode.
292	 */
293	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
294
295	/*
296	 * Feed in each bit and stobe the clock.
297	 */
298	for (i = 0x80; i; i >>= 1) {
299		if (byte & i) {
300			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
301		} else {
302			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
303		}
304		DELAY(1);
305		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
306		DELAY(1);
307		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
308	}
309
310	/*
311	 * Turn off TX mode.
312	 */
313	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
314
315	/*
316	 * Check for ack.
317	 */
318	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
319	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
320	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
321
322	return (ack);
323}
324
325/*
326 * Read a byte of data stored in the EEPROM at address 'addr.'
327 * We have to send two address bytes since the EEPROM can hold
328 * more than 256 bytes of data.
329 */
330static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
331	struct ti_softc		*sc;
332	int			addr;
333	u_int8_t		*dest;
334{
335	register int		i;
336	u_int8_t		byte = 0;
337
338	EEPROM_START;
339
340	/*
341	 * Send write control code to EEPROM.
342	 */
343	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
344		printf("ti%d: failed to send write command, status: %x\n",
345		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
346		return (1);
347	}
348
349	/*
350	 * Send first byte of address of byte we want to read.
351	 */
352	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
353		printf("ti%d: failed to send address, status: %x\n",
354		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
355		return (1);
356	}
357	/*
358	 * Send second byte address of byte we want to read.
359	 */
360	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
361		printf("ti%d: failed to send address, status: %x\n",
362		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
363		return (1);
364	}
365
366	EEPROM_STOP;
367	EEPROM_START;
368	/*
369	 * Send read control code to EEPROM.
370	 */
371	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
372		printf("ti%d: failed to send read command, status: %x\n",
373		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
374		return (1);
375	}
376
377	/*
378	 * Start reading bits from EEPROM.
379	 */
380	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
381	for (i = 0x80; i; i >>= 1) {
382		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
383		DELAY(1);
384		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
385			byte |= i;
386		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
387		DELAY(1);
388	}
389
390	EEPROM_STOP;
391
392	/*
393	 * No ACK generated for read, so just return byte.
394	 */
395
396	*dest = byte;
397
398	return (0);
399}
400
401/*
402 * Read a sequence of bytes from the EEPROM.
403 */
404static int
405ti_read_eeprom(sc, dest, off, cnt)
406	struct ti_softc		*sc;
407	caddr_t			dest;
408	int			off;
409	int			cnt;
410{
411	int			err = 0, i;
412	u_int8_t		byte = 0;
413
414	for (i = 0; i < cnt; i++) {
415		err = ti_eeprom_getbyte(sc, off + i, &byte);
416		if (err)
417			break;
418		*(dest + i) = byte;
419	}
420
421	return (err ? 1 : 0);
422}
423
424/*
425 * NIC memory access function. Can be used to either clear a section
426 * of NIC local memory or (if buf is non-NULL) copy data into it.
427 */
428static void
429ti_mem(sc, addr, len, buf)
430	struct ti_softc		*sc;
431	u_int32_t		addr, len;
432	caddr_t			buf;
433{
434	int			segptr, segsize, cnt;
435	caddr_t			ti_winbase, ptr;
436
437	segptr = addr;
438	cnt = len;
439	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
440	ptr = buf;
441
442	while (cnt) {
443		if (cnt < TI_WINLEN)
444			segsize = cnt;
445		else
446			segsize = TI_WINLEN - (segptr % TI_WINLEN);
447		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
448		if (buf == NULL)
449			bzero((char *)ti_winbase + (segptr &
450			    (TI_WINLEN - 1)), segsize);
451		else {
452			bcopy((char *)ptr, (char *)ti_winbase +
453			    (segptr & (TI_WINLEN - 1)), segsize);
454			ptr += segsize;
455		}
456		segptr += segsize;
457		cnt -= segsize;
458	}
459}
460
461static int
462ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
463	struct ti_softc		*sc;
464	u_int32_t		tigon_addr, len;
465	caddr_t			buf;
466	int			useraddr, readdata;
467{
468	int		segptr, segsize, cnt;
469	caddr_t		ptr;
470	u_int32_t	origwin;
471	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
472	int		resid, segresid;
473	int		first_pass;
474
475	/*
476	 * At the moment, we don't handle non-aligned cases, we just bail.
477	 * If this proves to be a problem, it will be fixed.
478	 */
479	if ((readdata == 0)
480	 && (tigon_addr & 0x3)) {
481		printf("ti%d: ti_copy_mem: tigon address %#x isn't "
482		       "word-aligned\n", sc->ti_unit, tigon_addr);
483		printf("ti%d: ti_copy_mem: unaligned writes aren't yet "
484		       "supported\n", sc->ti_unit);
485		return (EINVAL);
486	}
487
488	segptr = tigon_addr & ~0x3;
489	segresid = tigon_addr - segptr;
490
491	/*
492	 * This is the non-aligned amount left over that we'll need to
493	 * copy.
494	 */
495	resid = len & 0x3;
496
497	/* Add in the left over amount at the front of the buffer */
498	resid += segresid;
499
500	cnt = len & ~0x3;
501	/*
502	 * If resid + segresid is >= 4, add multiples of 4 to the count and
503	 * decrease the residual by that much.
504	 */
505	cnt += resid & ~0x3;
506	resid -= resid & ~0x3;
507
508	ptr = buf;
509
510	first_pass = 1;
511
512	/*
513	 * Make sure we aren't interrupted while we're changing the window
514	 * pointer.
515	 */
516	TI_LOCK(sc);
517
518	/*
519	 * Save the old window base value.
520	 */
521	origwin = CSR_READ_4(sc, TI_WINBASE);
522
523	while (cnt) {
524		bus_size_t ti_offset;
525
526		if (cnt < TI_WINLEN)
527			segsize = cnt;
528		else
529			segsize = TI_WINLEN - (segptr % TI_WINLEN);
530		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
531
532		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
533
534		if (readdata) {
535
536			bus_space_read_region_4(sc->ti_btag,
537						sc->ti_bhandle, ti_offset,
538						(u_int32_t *)tmparray,
539						segsize >> 2);
540			if (useraddr) {
541				/*
542				 * Yeah, this is a little on the kludgy
543				 * side, but at least this code is only
544				 * used for debugging.
545				 */
546				ti_bcopy_swap(tmparray, tmparray2, segsize,
547					      TI_SWAP_NTOH);
548
549				if (first_pass) {
550					copyout(&tmparray2[segresid], ptr,
551						segsize - segresid);
552					first_pass = 0;
553				} else
554					copyout(tmparray2, ptr, segsize);
555			} else {
556				if (first_pass) {
557
558					ti_bcopy_swap(tmparray, tmparray2,
559						      segsize, TI_SWAP_NTOH);
560					bcopy(&tmparray2[segresid], ptr,
561					      segsize - segresid);
562					first_pass = 0;
563				} else
564					ti_bcopy_swap(tmparray, ptr, segsize,
565						      TI_SWAP_NTOH);
566			}
567
568		} else {
569			if (useraddr) {
570				copyin(ptr, tmparray2, segsize);
571				ti_bcopy_swap(tmparray2, tmparray, segsize,
572					      TI_SWAP_HTON);
573			} else
574				ti_bcopy_swap(ptr, tmparray, segsize,
575					      TI_SWAP_HTON);
576
577			bus_space_write_region_4(sc->ti_btag,
578						 sc->ti_bhandle, ti_offset,
579						 (u_int32_t *)tmparray,
580						 segsize >> 2);
581		}
582		segptr += segsize;
583		ptr += segsize;
584		cnt -= segsize;
585	}
586
587	/*
588	 * Handle leftover, non-word-aligned bytes.
589	 */
590	if (resid != 0) {
591		u_int32_t	tmpval, tmpval2;
592		bus_size_t	ti_offset;
593
594		/*
595		 * Set the segment pointer.
596		 */
597		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
598
599		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
600
601		/*
602		 * First, grab whatever is in our source/destination.
603		 * We'll obviously need this for reads, but also for
604		 * writes, since we'll be doing read/modify/write.
605		 */
606		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
607					ti_offset, &tmpval, 1);
608
609		/*
610		 * Next, translate this from little-endian to big-endian
611		 * (at least on i386 boxes).
612		 */
613		tmpval2 = ntohl(tmpval);
614
615		if (readdata) {
616			/*
617			 * If we're reading, just copy the leftover number
618			 * of bytes from the host byte order buffer to
619			 * the user's buffer.
620			 */
621			if (useraddr)
622				copyout(&tmpval2, ptr, resid);
623			else
624				bcopy(&tmpval2, ptr, resid);
625		} else {
626			/*
627			 * If we're writing, first copy the bytes to be
628			 * written into the network byte order buffer,
629			 * leaving the rest of the buffer with whatever was
630			 * originally in there.  Then, swap the bytes
631			 * around into host order and write them out.
632			 *
633			 * XXX KDM the read side of this has been verified
634			 * to work, but the write side of it has not been
635			 * verified.  So user beware.
636			 */
637			if (useraddr)
638				copyin(ptr, &tmpval2, resid);
639			else
640				bcopy(ptr, &tmpval2, resid);
641
642			tmpval = htonl(tmpval2);
643
644			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
645						 ti_offset, &tmpval, 1);
646		}
647	}
648
649	CSR_WRITE_4(sc, TI_WINBASE, origwin);
650
651	TI_UNLOCK(sc);
652
653	return (0);
654}
655
656static int
657ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
658	struct ti_softc		*sc;
659	u_int32_t		tigon_addr, len;
660	caddr_t			buf;
661	int			useraddr, readdata;
662	int			cpu;
663{
664	u_int32_t	segptr;
665	int		cnt;
666	u_int32_t	tmpval, tmpval2;
667	caddr_t		ptr;
668
669	/*
670	 * At the moment, we don't handle non-aligned cases, we just bail.
671	 * If this proves to be a problem, it will be fixed.
672	 */
673	if (tigon_addr & 0x3) {
674		printf("ti%d: ti_copy_scratch: tigon address %#x isn't "
675		       "word-aligned\n", sc->ti_unit, tigon_addr);
676		return (EINVAL);
677	}
678
679	if (len & 0x3) {
680		printf("ti%d: ti_copy_scratch: transfer length %d isn't "
681		       "word-aligned\n", sc->ti_unit, len);
682		return (EINVAL);
683	}
684
685	segptr = tigon_addr;
686	cnt = len;
687	ptr = buf;
688
689	TI_LOCK(sc);
690
691	while (cnt) {
692		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
693
694		if (readdata) {
695			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
696
697			tmpval = ntohl(tmpval2);
698
699			/*
700			 * Note:  I've used this debugging interface
701			 * extensively with Alteon's 12.3.15 firmware,
702			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
703			 *
704			 * When you compile the firmware without
705			 * optimization, which is necessary sometimes in
706			 * order to properly step through it, you sometimes
707			 * read out a bogus value of 0xc0017c instead of
708			 * whatever was supposed to be in that scratchpad
709			 * location.  That value is on the stack somewhere,
710			 * but I've never been able to figure out what was
711			 * causing the problem.
712			 *
713			 * The address seems to pop up in random places,
714			 * often not in the same place on two subsequent
715			 * reads.
716			 *
717			 * In any case, the underlying data doesn't seem
718			 * to be affected, just the value read out.
719			 *
720			 * KDM, 3/7/2000
721			 */
722
723			if (tmpval2 == 0xc0017c)
724				printf("ti%d: found 0xc0017c at %#x "
725				       "(tmpval2)\n", sc->ti_unit, segptr);
726
727			if (tmpval == 0xc0017c)
728				printf("ti%d: found 0xc0017c at %#x "
729				       "(tmpval)\n", sc->ti_unit, segptr);
730
731			if (useraddr)
732				copyout(&tmpval, ptr, 4);
733			else
734				bcopy(&tmpval, ptr, 4);
735		} else {
736			if (useraddr)
737				copyin(ptr, &tmpval2, 4);
738			else
739				bcopy(ptr, &tmpval2, 4);
740
741			tmpval = htonl(tmpval2);
742
743			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
744		}
745
746		cnt -= 4;
747		segptr += 4;
748		ptr += 4;
749	}
750
751	TI_UNLOCK(sc);
752
753	return (0);
754}
755
756static int
757ti_bcopy_swap(src, dst, len, swap_type)
758	const void	*src;
759	void		*dst;
760	size_t		len;
761	ti_swap_type	swap_type;
762{
763	const u_int8_t *tmpsrc;
764	u_int8_t *tmpdst;
765	size_t tmplen;
766
767	if (len & 0x3) {
768		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
769		       len);
770		return (-1);
771	}
772
773	tmpsrc = src;
774	tmpdst = dst;
775	tmplen = len;
776
777	while (tmplen) {
778		if (swap_type == TI_SWAP_NTOH)
779			*(u_int32_t *)tmpdst =
780				ntohl(*(const u_int32_t *)tmpsrc);
781		else
782			*(u_int32_t *)tmpdst =
783				htonl(*(const u_int32_t *)tmpsrc);
784
785		tmpsrc += 4;
786		tmpdst += 4;
787		tmplen -= 4;
788	}
789
790	return (0);
791}
792
793/*
794 * Load firmware image into the NIC. Check that the firmware revision
795 * is acceptable and see if we want the firmware for the Tigon 1 or
796 * Tigon 2.
797 */
798static void
799ti_loadfw(sc)
800	struct ti_softc		*sc;
801{
802	switch (sc->ti_hwrev) {
803	case TI_HWREV_TIGON:
804		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
805		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
806		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
807			printf("ti%d: firmware revision mismatch; want "
808			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
809			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
810			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
811			    tigonFwReleaseMinor, tigonFwReleaseFix);
812			return;
813		}
814		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
815		    (caddr_t)tigonFwText);
816		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
817		    (caddr_t)tigonFwData);
818		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
819		    (caddr_t)tigonFwRodata);
820		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
821		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
822		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
823		break;
824	case TI_HWREV_TIGON_II:
825		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
826		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
827		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
828			printf("ti%d: firmware revision mismatch; want "
829			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
830			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
831			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
832			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
833			return;
834		}
835		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
836		    (caddr_t)tigon2FwText);
837		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
838		    (caddr_t)tigon2FwData);
839		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
840		    (caddr_t)tigon2FwRodata);
841		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
842		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
843		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
844		break;
845	default:
846		printf("ti%d: can't load firmware: unknown hardware rev\n",
847		    sc->ti_unit);
848		break;
849	}
850}
851
852/*
853 * Send the NIC a command via the command ring.
854 */
855static void
856ti_cmd(sc, cmd)
857	struct ti_softc		*sc;
858	struct ti_cmd_desc	*cmd;
859{
860	u_int32_t		index;
861
862	if (sc->ti_rdata->ti_cmd_ring == NULL)
863		return;
864
865	index = sc->ti_cmd_saved_prodidx;
866	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
867	TI_INC(index, TI_CMD_RING_CNT);
868	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
869	sc->ti_cmd_saved_prodidx = index;
870}
871
872/*
873 * Send the NIC an extended command. The 'len' parameter specifies the
874 * number of command slots to include after the initial command.
875 */
876static void
877ti_cmd_ext(sc, cmd, arg, len)
878	struct ti_softc		*sc;
879	struct ti_cmd_desc	*cmd;
880	caddr_t			arg;
881	int			len;
882{
883	u_int32_t		index;
884	register int		i;
885
886	if (sc->ti_rdata->ti_cmd_ring == NULL)
887		return;
888
889	index = sc->ti_cmd_saved_prodidx;
890	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
891	TI_INC(index, TI_CMD_RING_CNT);
892	for (i = 0; i < len; i++) {
893		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
894		    *(u_int32_t *)(&arg[i * 4]));
895		TI_INC(index, TI_CMD_RING_CNT);
896	}
897	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
898	sc->ti_cmd_saved_prodidx = index;
899}
900
901/*
902 * Handle events that have triggered interrupts.
903 */
904static void
905ti_handle_events(sc)
906	struct ti_softc		*sc;
907{
908	struct ti_event_desc	*e;
909
910	if (sc->ti_rdata->ti_event_ring == NULL)
911		return;
912
913	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
914		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
915		switch (e->ti_event) {
916		case TI_EV_LINKSTAT_CHANGED:
917			sc->ti_linkstat = e->ti_code;
918			if (e->ti_code == TI_EV_CODE_LINK_UP)
919				printf("ti%d: 10/100 link up\n", sc->ti_unit);
920			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
921				printf("ti%d: gigabit link up\n", sc->ti_unit);
922			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
923				printf("ti%d: link down\n", sc->ti_unit);
924			break;
925		case TI_EV_ERROR:
926			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
927				printf("ti%d: invalid command\n", sc->ti_unit);
928			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
929				printf("ti%d: unknown command\n", sc->ti_unit);
930			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
931				printf("ti%d: bad config data\n", sc->ti_unit);
932			break;
933		case TI_EV_FIRMWARE_UP:
934			ti_init2(sc);
935			break;
936		case TI_EV_STATS_UPDATED:
937			ti_stats_update(sc);
938			break;
939		case TI_EV_RESET_JUMBO_RING:
940		case TI_EV_MCAST_UPDATED:
941			/* Who cares. */
942			break;
943		default:
944			printf("ti%d: unknown event: %d\n",
945			    sc->ti_unit, e->ti_event);
946			break;
947		}
948		/* Advance the consumer index. */
949		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
950		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
951	}
952}
953
954#ifdef TI_PRIVATE_JUMBOS
955
956/*
957 * Memory management for the jumbo receive ring is a pain in the
958 * butt. We need to allocate at least 9018 bytes of space per frame,
959 * _and_ it has to be contiguous (unless you use the extended
960 * jumbo descriptor format). Using malloc() all the time won't
961 * work: malloc() allocates memory in powers of two, which means we
962 * would end up wasting a considerable amount of space by allocating
963 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
964 * to do our own memory management.
965 *
966 * The driver needs to allocate a contiguous chunk of memory at boot
967 * time. We then chop this up ourselves into 9K pieces and use them
968 * as external mbuf storage.
969 *
970 * One issue here is how much memory to allocate. The jumbo ring has
971 * 256 slots in it, but at 9K per slot than can consume over 2MB of
972 * RAM. This is a bit much, especially considering we also need
973 * RAM for the standard ring and mini ring (on the Tigon 2). To
974 * save space, we only actually allocate enough memory for 64 slots
975 * by default, which works out to between 500 and 600K. This can
976 * be tuned by changing a #define in if_tireg.h.
977 */
978
979static int
980ti_alloc_jumbo_mem(sc)
981	struct ti_softc		*sc;
982{
983	caddr_t			ptr;
984	register int		i;
985	struct ti_jpool_entry   *entry;
986
987	/* Grab a big chunk o' storage. */
988	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
989		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
990
991	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
992		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
993		return (ENOBUFS);
994	}
995
996	SLIST_INIT(&sc->ti_jfree_listhead);
997	SLIST_INIT(&sc->ti_jinuse_listhead);
998
999	/*
1000	 * Now divide it up into 9K pieces and save the addresses
1001	 * in an array.
1002	 */
1003	ptr = sc->ti_cdata.ti_jumbo_buf;
1004	for (i = 0; i < TI_JSLOTS; i++) {
1005		sc->ti_cdata.ti_jslots[i] = ptr;
1006		ptr += TI_JLEN;
1007		entry = malloc(sizeof(struct ti_jpool_entry),
1008			       M_DEVBUF, M_NOWAIT);
1009		if (entry == NULL) {
1010			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
1011			           M_DEVBUF);
1012			sc->ti_cdata.ti_jumbo_buf = NULL;
1013			printf("ti%d: no memory for jumbo "
1014			    "buffer queue!\n", sc->ti_unit);
1015			return (ENOBUFS);
1016		}
1017		entry->slot = i;
1018		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1019	}
1020
1021	return (0);
1022}
1023
1024/*
1025 * Allocate a jumbo buffer.
1026 */
1027static void *ti_jalloc(sc)
1028	struct ti_softc		*sc;
1029{
1030	struct ti_jpool_entry	*entry;
1031
1032	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1033
1034	if (entry == NULL) {
1035		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
1036		return (NULL);
1037	}
1038
1039	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1040	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1041	return (sc->ti_cdata.ti_jslots[entry->slot]);
1042}
1043
1044/*
1045 * Release a jumbo buffer.
1046 */
1047static void
1048ti_jfree(buf, args)
1049	void			*buf;
1050	void			*args;
1051{
1052	struct ti_softc		*sc;
1053	int			i;
1054	struct ti_jpool_entry	*entry;
1055
1056	/* Extract the softc struct pointer. */
1057	sc = (struct ti_softc *)args;
1058
1059	if (sc == NULL)
1060		panic("ti_jfree: didn't get softc pointer!");
1061
1062	/* calculate the slot this buffer belongs to */
1063	i = ((vm_offset_t)buf
1064	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1065
1066	if ((i < 0) || (i >= TI_JSLOTS))
1067		panic("ti_jfree: asked to free buffer that we don't manage!");
1068
1069	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1070	if (entry == NULL)
1071		panic("ti_jfree: buffer not in use!");
1072	entry->slot = i;
1073	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1074	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1075}
1076
1077#endif /* TI_PRIVATE_JUMBOS */
1078
1079/*
1080 * Intialize a standard receive ring descriptor.
1081 */
1082static int
1083ti_newbuf_std(sc, i, m)
1084	struct ti_softc		*sc;
1085	int			i;
1086	struct mbuf		*m;
1087{
1088	struct mbuf		*m_new = NULL;
1089	struct ti_rx_desc	*r;
1090
1091	if (m == NULL) {
1092		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1093		if (m_new == NULL)
1094			return (ENOBUFS);
1095
1096		MCLGET(m_new, M_DONTWAIT);
1097		if (!(m_new->m_flags & M_EXT)) {
1098			m_freem(m_new);
1099			return (ENOBUFS);
1100		}
1101		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1102	} else {
1103		m_new = m;
1104		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1105		m_new->m_data = m_new->m_ext.ext_buf;
1106	}
1107
1108	m_adj(m_new, ETHER_ALIGN);
1109	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1110	r = &sc->ti_rdata->ti_rx_std_ring[i];
1111	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1112	r->ti_type = TI_BDTYPE_RECV_BD;
1113	r->ti_flags = 0;
1114	if (sc->ti_ifp->if_hwassist)
1115		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1116	r->ti_len = m_new->m_len;
1117	r->ti_idx = i;
1118
1119	return (0);
1120}
1121
1122/*
1123 * Intialize a mini receive ring descriptor. This only applies to
1124 * the Tigon 2.
1125 */
1126static int
1127ti_newbuf_mini(sc, i, m)
1128	struct ti_softc		*sc;
1129	int			i;
1130	struct mbuf		*m;
1131{
1132	struct mbuf		*m_new = NULL;
1133	struct ti_rx_desc	*r;
1134
1135	if (m == NULL) {
1136		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1137		if (m_new == NULL) {
1138			return (ENOBUFS);
1139		}
1140		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1141	} else {
1142		m_new = m;
1143		m_new->m_data = m_new->m_pktdat;
1144		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1145	}
1146
1147	m_adj(m_new, ETHER_ALIGN);
1148	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1149	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1150	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1151	r->ti_type = TI_BDTYPE_RECV_BD;
1152	r->ti_flags = TI_BDFLAG_MINI_RING;
1153	if (sc->ti_ifp->if_hwassist)
1154		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1155	r->ti_len = m_new->m_len;
1156	r->ti_idx = i;
1157
1158	return (0);
1159}
1160
1161#ifdef TI_PRIVATE_JUMBOS
1162
1163/*
1164 * Initialize a jumbo receive ring descriptor. This allocates
1165 * a jumbo buffer from the pool managed internally by the driver.
1166 */
1167static int
1168ti_newbuf_jumbo(sc, i, m)
1169	struct ti_softc		*sc;
1170	int			i;
1171	struct mbuf		*m;
1172{
1173	struct mbuf		*m_new = NULL;
1174	struct ti_rx_desc	*r;
1175
1176	if (m == NULL) {
1177		caddr_t			*buf = NULL;
1178
1179		/* Allocate the mbuf. */
1180		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1181		if (m_new == NULL) {
1182			return (ENOBUFS);
1183		}
1184
1185		/* Allocate the jumbo buffer */
1186		buf = ti_jalloc(sc);
1187		if (buf == NULL) {
1188			m_freem(m_new);
1189			printf("ti%d: jumbo allocation failed "
1190			    "-- packet dropped!\n", sc->ti_unit);
1191			return (ENOBUFS);
1192		}
1193
1194		/* Attach the buffer to the mbuf. */
1195		m_new->m_data = (void *) buf;
1196		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1197		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1198		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1199	} else {
1200		m_new = m;
1201		m_new->m_data = m_new->m_ext.ext_buf;
1202		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1203	}
1204
1205	m_adj(m_new, ETHER_ALIGN);
1206	/* Set up the descriptor. */
1207	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1208	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1209	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1210	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1211	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1212	if (sc->ti_ifp->if_hwassist)
1213		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1214	r->ti_len = m_new->m_len;
1215	r->ti_idx = i;
1216
1217	return (0);
1218}
1219
1220#else
1221#include <vm/vm_page.h>
1222
1223#if (PAGE_SIZE == 4096)
1224#define NPAYLOAD 2
1225#else
1226#define NPAYLOAD 1
1227#endif
1228
1229#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1230#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1231#define NFS_HDR_LEN (UDP_HDR_LEN)
1232static int HDR_LEN =  TCP_HDR_LEN;
1233
1234
1235/*
1236 * Initialize a jumbo receive ring descriptor. This allocates
1237 * a jumbo buffer from the pool managed internally by the driver.
1238 */
1239static int
1240ti_newbuf_jumbo(sc, idx, m_old)
1241	struct ti_softc		*sc;
1242	int			idx;
1243	struct mbuf		*m_old;
1244{
1245	struct mbuf		*cur, *m_new = NULL;
1246	struct mbuf		*m[3] = {NULL, NULL, NULL};
1247	struct ti_rx_desc_ext	*r;
1248	vm_page_t		frame;
1249	static int		color;
1250				/* 1 extra buf to make nobufs easy*/
1251	struct sf_buf		*sf[3] = {NULL, NULL, NULL};
1252	int			i;
1253
1254	if (m_old != NULL) {
1255		m_new = m_old;
1256		cur = m_old->m_next;
1257		for (i = 0; i <= NPAYLOAD; i++){
1258			m[i] = cur;
1259			cur = cur->m_next;
1260		}
1261	} else {
1262		/* Allocate the mbufs. */
1263		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1264		if (m_new == NULL) {
1265			printf("ti%d: mbuf allocation failed "
1266			       "-- packet dropped!\n", sc->ti_unit);
1267			goto nobufs;
1268		}
1269		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1270		if (m[NPAYLOAD] == NULL) {
1271			printf("ti%d: cluster mbuf allocation failed "
1272			       "-- packet dropped!\n", sc->ti_unit);
1273			goto nobufs;
1274		}
1275		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1276		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1277			printf("ti%d: mbuf allocation failed "
1278			       "-- packet dropped!\n", sc->ti_unit);
1279			goto nobufs;
1280		}
1281		m[NPAYLOAD]->m_len = MCLBYTES;
1282
1283		for (i = 0; i < NPAYLOAD; i++){
1284			MGET(m[i], M_DONTWAIT, MT_DATA);
1285			if (m[i] == NULL) {
1286				printf("ti%d: mbuf allocation failed "
1287				       "-- packet dropped!\n", sc->ti_unit);
1288				goto nobufs;
1289			}
1290			frame = vm_page_alloc(NULL, color++,
1291			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1292			    VM_ALLOC_WIRED);
1293			if (frame == NULL) {
1294				printf("ti%d: buffer allocation failed "
1295				       "-- packet dropped!\n", sc->ti_unit);
1296				printf("      index %d page %d\n", idx, i);
1297				goto nobufs;
1298			}
1299			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1300			if (sf[i] == NULL) {
1301				vm_page_lock_queues();
1302				vm_page_unwire(frame, 0);
1303				vm_page_free(frame);
1304				vm_page_unlock_queues();
1305				printf("ti%d: buffer allocation failed "
1306				       "-- packet dropped!\n", sc->ti_unit);
1307				printf("      index %d page %d\n", idx, i);
1308				goto nobufs;
1309			}
1310		}
1311		for (i = 0; i < NPAYLOAD; i++){
1312		/* Attach the buffer to the mbuf. */
1313			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1314			m[i]->m_len = PAGE_SIZE;
1315			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1316			    sf_buf_mext, sf[i], 0, EXT_DISPOSABLE);
1317			m[i]->m_next = m[i+1];
1318		}
1319		/* link the buffers to the header */
1320		m_new->m_next = m[0];
1321		m_new->m_data += ETHER_ALIGN;
1322		if (sc->ti_hdrsplit)
1323			m_new->m_len = MHLEN - ETHER_ALIGN;
1324		else
1325			m_new->m_len = HDR_LEN;
1326		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1327	}
1328
1329	/* Set up the descriptor. */
1330	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1331	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1332	TI_HOSTADDR(r->ti_addr0) = vtophys(mtod(m_new, caddr_t));
1333	r->ti_len0 = m_new->m_len;
1334
1335	TI_HOSTADDR(r->ti_addr1) = vtophys(mtod(m[0], caddr_t));
1336	r->ti_len1 = PAGE_SIZE;
1337
1338	TI_HOSTADDR(r->ti_addr2) = vtophys(mtod(m[1], caddr_t));
1339	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1340
1341	if (PAGE_SIZE == 4096) {
1342		TI_HOSTADDR(r->ti_addr3) = vtophys(mtod(m[2], caddr_t));
1343		r->ti_len3 = MCLBYTES;
1344	} else {
1345		r->ti_len3 = 0;
1346	}
1347	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1348
1349	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1350
1351	if (sc->ti_ifp->if_hwassist)
1352		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1353
1354	r->ti_idx = idx;
1355
1356	return (0);
1357
1358nobufs:
1359
1360	/*
1361	 * Warning! :
1362	 * This can only be called before the mbufs are strung together.
1363	 * If the mbufs are strung together, m_freem() will free the chain,
1364	 * so that the later mbufs will be freed multiple times.
1365	 */
1366	if (m_new)
1367		m_freem(m_new);
1368
1369	for (i = 0; i < 3; i++) {
1370		if (m[i])
1371			m_freem(m[i]);
1372		if (sf[i])
1373			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1374	}
1375	return (ENOBUFS);
1376}
1377#endif
1378
1379
1380
1381/*
1382 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1383 * that's 1MB or memory, which is a lot. For now, we fill only the first
1384 * 256 ring entries and hope that our CPU is fast enough to keep up with
1385 * the NIC.
1386 */
1387static int
1388ti_init_rx_ring_std(sc)
1389	struct ti_softc		*sc;
1390{
1391	register int		i;
1392	struct ti_cmd_desc	cmd;
1393
1394	for (i = 0; i < TI_SSLOTS; i++) {
1395		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1396			return (ENOBUFS);
1397	};
1398
1399	TI_UPDATE_STDPROD(sc, i - 1);
1400	sc->ti_std = i - 1;
1401
1402	return (0);
1403}
1404
1405static void
1406ti_free_rx_ring_std(sc)
1407	struct ti_softc		*sc;
1408{
1409	register int		i;
1410
1411	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1412		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1413			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1414			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1415		}
1416		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1417		    sizeof(struct ti_rx_desc));
1418	}
1419}
1420
1421static int
1422ti_init_rx_ring_jumbo(sc)
1423	struct ti_softc		*sc;
1424{
1425	register int		i;
1426	struct ti_cmd_desc	cmd;
1427
1428	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1429		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1430			return (ENOBUFS);
1431	};
1432
1433	TI_UPDATE_JUMBOPROD(sc, i - 1);
1434	sc->ti_jumbo = i - 1;
1435
1436	return (0);
1437}
1438
1439static void
1440ti_free_rx_ring_jumbo(sc)
1441	struct ti_softc		*sc;
1442{
1443	register int		i;
1444
1445	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1446		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1447			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1448			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1449		}
1450		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1451		    sizeof(struct ti_rx_desc));
1452	}
1453}
1454
1455static int
1456ti_init_rx_ring_mini(sc)
1457	struct ti_softc		*sc;
1458{
1459	register int		i;
1460
1461	for (i = 0; i < TI_MSLOTS; i++) {
1462		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1463			return (ENOBUFS);
1464	};
1465
1466	TI_UPDATE_MINIPROD(sc, i - 1);
1467	sc->ti_mini = i - 1;
1468
1469	return (0);
1470}
1471
1472static void
1473ti_free_rx_ring_mini(sc)
1474	struct ti_softc		*sc;
1475{
1476	register int		i;
1477
1478	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1479		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1480			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1481			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1482		}
1483		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1484		    sizeof(struct ti_rx_desc));
1485	}
1486}
1487
1488static void
1489ti_free_tx_ring(sc)
1490	struct ti_softc		*sc;
1491{
1492	register int		i;
1493
1494	if (sc->ti_rdata->ti_tx_ring == NULL)
1495		return;
1496
1497	for (i = 0; i < TI_TX_RING_CNT; i++) {
1498		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1499			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1500			sc->ti_cdata.ti_tx_chain[i] = NULL;
1501		}
1502		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1503		    sizeof(struct ti_tx_desc));
1504	}
1505}
1506
1507static int
1508ti_init_tx_ring(sc)
1509	struct ti_softc		*sc;
1510{
1511	sc->ti_txcnt = 0;
1512	sc->ti_tx_saved_considx = 0;
1513	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1514	return (0);
1515}
1516
1517/*
1518 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1519 * but we have to support the old way too so that Tigon 1 cards will
1520 * work.
1521 */
1522static void
1523ti_add_mcast(sc, addr)
1524	struct ti_softc		*sc;
1525	struct ether_addr	*addr;
1526{
1527	struct ti_cmd_desc	cmd;
1528	u_int16_t		*m;
1529	u_int32_t		ext[2] = {0, 0};
1530
1531	m = (u_int16_t *)&addr->octet[0];
1532
1533	switch (sc->ti_hwrev) {
1534	case TI_HWREV_TIGON:
1535		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1536		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1537		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1538		break;
1539	case TI_HWREV_TIGON_II:
1540		ext[0] = htons(m[0]);
1541		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1542		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1543		break;
1544	default:
1545		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1546		break;
1547	}
1548}
1549
1550static void
1551ti_del_mcast(sc, addr)
1552	struct ti_softc		*sc;
1553	struct ether_addr	*addr;
1554{
1555	struct ti_cmd_desc	cmd;
1556	u_int16_t		*m;
1557	u_int32_t		ext[2] = {0, 0};
1558
1559	m = (u_int16_t *)&addr->octet[0];
1560
1561	switch (sc->ti_hwrev) {
1562	case TI_HWREV_TIGON:
1563		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1564		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1565		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1566		break;
1567	case TI_HWREV_TIGON_II:
1568		ext[0] = htons(m[0]);
1569		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1570		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1571		break;
1572	default:
1573		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1574		break;
1575	}
1576}
1577
1578/*
1579 * Configure the Tigon's multicast address filter.
1580 *
1581 * The actual multicast table management is a bit of a pain, thanks to
1582 * slight brain damage on the part of both Alteon and us. With our
1583 * multicast code, we are only alerted when the multicast address table
1584 * changes and at that point we only have the current list of addresses:
1585 * we only know the current state, not the previous state, so we don't
1586 * actually know what addresses were removed or added. The firmware has
1587 * state, but we can't get our grubby mits on it, and there is no 'delete
1588 * all multicast addresses' command. Hence, we have to maintain our own
1589 * state so we know what addresses have been programmed into the NIC at
1590 * any given time.
1591 */
1592static void
1593ti_setmulti(sc)
1594	struct ti_softc		*sc;
1595{
1596	struct ifnet		*ifp;
1597	struct ifmultiaddr	*ifma;
1598	struct ti_cmd_desc	cmd;
1599	struct ti_mc_entry	*mc;
1600	u_int32_t		intrs;
1601
1602	ifp = sc->ti_ifp;
1603
1604	if (ifp->if_flags & IFF_ALLMULTI) {
1605		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1606		return;
1607	} else {
1608		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1609	}
1610
1611	/* Disable interrupts. */
1612	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1613	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1614
1615	/* First, zot all the existing filters. */
1616	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1617		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1618		ti_del_mcast(sc, &mc->mc_addr);
1619		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1620		free(mc, M_DEVBUF);
1621	}
1622
1623	/* Now program new ones. */
1624	IF_ADDR_LOCK(ifp);
1625	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1626		if (ifma->ifma_addr->sa_family != AF_LINK)
1627			continue;
1628		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1629		if (mc == NULL) {
1630			if_printf(ifp, "no memory for mcast filter entry\n");
1631			continue;
1632		}
1633		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1634		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1635		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1636		ti_add_mcast(sc, &mc->mc_addr);
1637	}
1638	IF_ADDR_UNLOCK(ifp);
1639
1640	/* Re-enable interrupts. */
1641	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1642}
1643
1644/*
1645 * Check to see if the BIOS has configured us for a 64 bit slot when
1646 * we aren't actually in one. If we detect this condition, we can work
1647 * around it on the Tigon 2 by setting a bit in the PCI state register,
1648 * but for the Tigon 1 we must give up and abort the interface attach.
1649 */
1650static int ti_64bitslot_war(sc)
1651	struct ti_softc		*sc;
1652{
1653	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1654		CSR_WRITE_4(sc, 0x600, 0);
1655		CSR_WRITE_4(sc, 0x604, 0);
1656		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1657		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1658			if (sc->ti_hwrev == TI_HWREV_TIGON)
1659				return (EINVAL);
1660			else {
1661				TI_SETBIT(sc, TI_PCI_STATE,
1662				    TI_PCISTATE_32BIT_BUS);
1663				return (0);
1664			}
1665		}
1666	}
1667
1668	return (0);
1669}
1670
1671/*
1672 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1673 * self-test results.
1674 */
1675static int
1676ti_chipinit(sc)
1677	struct ti_softc		*sc;
1678{
1679	u_int32_t		cacheline;
1680	u_int32_t		pci_writemax = 0;
1681	u_int32_t		hdrsplit;
1682
1683	/* Initialize link to down state. */
1684	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1685
1686	if (sc->ti_ifp->if_capenable & IFCAP_HWCSUM)
1687		sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
1688	else
1689		sc->ti_ifp->if_hwassist = 0;
1690
1691	/* Set endianness before we access any non-PCI registers. */
1692#if BYTE_ORDER == BIG_ENDIAN
1693	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1694	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1695#else
1696	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1697	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1698#endif
1699
1700	/* Check the ROM failed bit to see if self-tests passed. */
1701	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1702		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1703		return (ENODEV);
1704	}
1705
1706	/* Halt the CPU. */
1707	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1708
1709	/* Figure out the hardware revision. */
1710	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1711	case TI_REV_TIGON_I:
1712		sc->ti_hwrev = TI_HWREV_TIGON;
1713		break;
1714	case TI_REV_TIGON_II:
1715		sc->ti_hwrev = TI_HWREV_TIGON_II;
1716		break;
1717	default:
1718		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1719		return (ENODEV);
1720	}
1721
1722	/* Do special setup for Tigon 2. */
1723	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1724		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1725		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1726		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1727	}
1728
1729	/*
1730	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1731	 * can't do header splitting.
1732	 */
1733#ifdef TI_JUMBO_HDRSPLIT
1734	if (sc->ti_hwrev != TI_HWREV_TIGON)
1735		sc->ti_hdrsplit = 1;
1736	else
1737		printf("ti%d: can't do header splitting on a Tigon I board\n",
1738		       sc->ti_unit);
1739#endif /* TI_JUMBO_HDRSPLIT */
1740
1741	/* Set up the PCI state register. */
1742	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1743	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1744		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1745	}
1746
1747	/* Clear the read/write max DMA parameters. */
1748	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1749	    TI_PCISTATE_READ_MAXDMA));
1750
1751	/* Get cache line size. */
1752	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1753
1754	/*
1755	 * If the system has set enabled the PCI memory write
1756	 * and invalidate command in the command register, set
1757	 * the write max parameter accordingly. This is necessary
1758	 * to use MWI with the Tigon 2.
1759	 */
1760	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1761		switch (cacheline) {
1762		case 1:
1763		case 4:
1764		case 8:
1765		case 16:
1766		case 32:
1767		case 64:
1768			break;
1769		default:
1770		/* Disable PCI memory write and invalidate. */
1771			if (bootverbose)
1772				printf("ti%d: cache line size %d not "
1773				    "supported; disabling PCI MWI\n",
1774				    sc->ti_unit, cacheline);
1775			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1776			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1777			break;
1778		}
1779	}
1780
1781#ifdef __brokenalpha__
1782	/*
1783	 * From the Alteon sample driver:
1784	 * Must insure that we do not cross an 8K (bytes) boundary
1785	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1786	 * restriction on some ALPHA platforms with early revision
1787	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1788	 */
1789	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1790#else
1791	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1792#endif
1793
1794	/* This sets the min dma param all the way up (0xff). */
1795	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1796
1797	if (sc->ti_hdrsplit)
1798		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1799	else
1800		hdrsplit = 0;
1801
1802	/* Configure DMA variables. */
1803#if BYTE_ORDER == BIG_ENDIAN
1804	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1805	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1806	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1807	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1808#else /* BYTE_ORDER */
1809	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1810	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1811	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1812#endif /* BYTE_ORDER */
1813
1814	/*
1815	 * Only allow 1 DMA channel to be active at a time.
1816	 * I don't think this is a good idea, but without it
1817	 * the firmware racks up lots of nicDmaReadRingFull
1818	 * errors.  This is not compatible with hardware checksums.
1819	 */
1820	if (sc->ti_ifp->if_hwassist == 0)
1821		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1822
1823	/* Recommended settings from Tigon manual. */
1824	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1825	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1826
1827	if (ti_64bitslot_war(sc)) {
1828		printf("ti%d: bios thinks we're in a 64 bit slot, "
1829		    "but we aren't", sc->ti_unit);
1830		return (EINVAL);
1831	}
1832
1833	return (0);
1834}
1835
1836#define	TI_RD_OFF(x)	offsetof(struct ti_ring_data, x)
1837
1838/*
1839 * Initialize the general information block and firmware, and
1840 * start the CPU(s) running.
1841 */
1842static int
1843ti_gibinit(sc)
1844	struct ti_softc		*sc;
1845{
1846	struct ti_rcb		*rcb;
1847	int			i;
1848	struct ifnet		*ifp;
1849	uint32_t		rdphys;
1850
1851	ifp = sc->ti_ifp;
1852	rdphys = sc->ti_rdata_phys;
1853
1854	/* Disable interrupts for now. */
1855	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1856
1857	/*
1858	 * Tell the chip where to find the general information block.
1859	 * While this struct could go into >4GB memory, we allocate it in a
1860	 * single slab with the other descriptors, and those don't seem to
1861	 * support being located in a 64-bit region.
1862	 */
1863	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1864	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
1865
1866	/* Load the firmware into SRAM. */
1867	ti_loadfw(sc);
1868
1869	/* Set up the contents of the general info and ring control blocks. */
1870
1871	/* Set up the event ring and producer pointer. */
1872	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1873
1874	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
1875	rcb->ti_flags = 0;
1876	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1877	    rdphys + TI_RD_OFF(ti_ev_prodidx_r);
1878	sc->ti_ev_prodidx.ti_idx = 0;
1879	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1880	sc->ti_ev_saved_considx = 0;
1881
1882	/* Set up the command ring and producer mailbox. */
1883	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1884
1885	sc->ti_rdata->ti_cmd_ring =
1886	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1887	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1888	rcb->ti_flags = 0;
1889	rcb->ti_max_len = 0;
1890	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1891		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1892	}
1893	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1894	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1895	sc->ti_cmd_saved_prodidx = 0;
1896
1897	/*
1898	 * Assign the address of the stats refresh buffer.
1899	 * We re-use the current stats buffer for this to
1900	 * conserve memory.
1901	 */
1902	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1903	    rdphys + TI_RD_OFF(ti_info.ti_stats);
1904
1905	/* Set up the standard receive ring. */
1906	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1907	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
1908	rcb->ti_max_len = TI_FRAMELEN;
1909	rcb->ti_flags = 0;
1910	if (sc->ti_ifp->if_hwassist)
1911		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1912		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1913	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1914
1915	/* Set up the jumbo receive ring. */
1916	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1917	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
1918
1919#ifdef TI_PRIVATE_JUMBOS
1920	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1921	rcb->ti_flags = 0;
1922#else
1923	rcb->ti_max_len = PAGE_SIZE;
1924	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
1925#endif
1926	if (sc->ti_ifp->if_hwassist)
1927		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1928		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1929	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1930
1931	/*
1932	 * Set up the mini ring. Only activated on the
1933	 * Tigon 2 but the slot in the config block is
1934	 * still there on the Tigon 1.
1935	 */
1936	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1937	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
1938	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1939	if (sc->ti_hwrev == TI_HWREV_TIGON)
1940		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1941	else
1942		rcb->ti_flags = 0;
1943	if (sc->ti_ifp->if_hwassist)
1944		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1945		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1946	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1947
1948	/*
1949	 * Set up the receive return ring.
1950	 */
1951	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1952	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
1953	rcb->ti_flags = 0;
1954	rcb->ti_max_len = TI_RETURN_RING_CNT;
1955	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1956	    rdphys + TI_RD_OFF(ti_return_prodidx_r);
1957
1958	/*
1959	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1960	 * of putting the transmit ring in the host's address space and
1961	 * letting the chip DMA it instead of leaving the ring in the NIC's
1962	 * memory and accessing it through the shared memory region. We
1963	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1964	 * so we have to revert to the shared memory scheme if we detect
1965	 * a Tigon 1 chip.
1966	 */
1967	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1968	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1969		sc->ti_rdata->ti_tx_ring_nic =
1970		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1971	}
1972	bzero((char *)sc->ti_rdata->ti_tx_ring,
1973	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1974	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1975	if (sc->ti_hwrev == TI_HWREV_TIGON)
1976		rcb->ti_flags = 0;
1977	else
1978		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1979	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1980	if (sc->ti_ifp->if_hwassist)
1981		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1982		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1983	rcb->ti_max_len = TI_TX_RING_CNT;
1984	if (sc->ti_hwrev == TI_HWREV_TIGON)
1985		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1986	else
1987		TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
1988	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1989	    rdphys + TI_RD_OFF(ti_tx_considx_r);
1990
1991	/* Set up tuneables */
1992#if 0
1993	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1994		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1995		    (sc->ti_rx_coal_ticks / 10));
1996	else
1997#endif
1998		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1999	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2000	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2001	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2002	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2003	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2004
2005	/* Turn interrupts on. */
2006	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2007	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2008
2009	/* Start CPU. */
2010	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2011
2012	return (0);
2013}
2014
2015static void
2016ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2017{
2018	struct ti_softc *sc;
2019
2020	sc = arg;
2021	if (error || nseg != 1)
2022		return;
2023
2024	/*
2025	 * All of the Tigon data structures need to live at <4GB.  This
2026	 * cast is fine since busdma was told about this constraint.
2027	 */
2028	sc->ti_rdata_phys = (uint32_t)segs[0].ds_addr;
2029	return;
2030}
2031
2032/*
2033 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2034 * against our list and return its name if we find a match.
2035 */
2036static int
2037ti_probe(dev)
2038	device_t		dev;
2039{
2040	struct ti_type		*t;
2041
2042	t = ti_devs;
2043
2044	while (t->ti_name != NULL) {
2045		if ((pci_get_vendor(dev) == t->ti_vid) &&
2046		    (pci_get_device(dev) == t->ti_did)) {
2047			device_set_desc(dev, t->ti_name);
2048			return (BUS_PROBE_DEFAULT);
2049		}
2050		t++;
2051	}
2052
2053	return (ENXIO);
2054}
2055
2056static int
2057ti_attach(dev)
2058	device_t		dev;
2059{
2060	struct ifnet		*ifp;
2061	struct ti_softc		*sc;
2062	int			unit, error = 0, rid;
2063	u_char			eaddr[6];
2064
2065	sc = device_get_softc(dev);
2066	unit = device_get_unit(dev);
2067	sc->ti_unit = unit;
2068
2069	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2070	    MTX_DEF | MTX_RECURSE);
2071	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2072	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2073	if (ifp == NULL) {
2074		printf("ti%d: can not if_alloc()\n", sc->ti_unit);
2075		error = ENOSPC;
2076		goto fail;
2077	}
2078	sc->ti_ifp->if_capabilities = IFCAP_HWCSUM |
2079	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2080	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2081
2082	/*
2083	 * Map control/status registers.
2084	 */
2085	pci_enable_busmaster(dev);
2086
2087	rid = TI_PCI_LOMEM;
2088	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2089	    RF_ACTIVE|PCI_RF_DENSE);
2090
2091	if (sc->ti_res == NULL) {
2092		printf ("ti%d: couldn't map memory\n", unit);
2093		error = ENXIO;
2094		goto fail;
2095	}
2096
2097	sc->ti_btag = rman_get_bustag(sc->ti_res);
2098	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2099	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
2100
2101	/* Allocate interrupt */
2102	rid = 0;
2103
2104	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2105	    RF_SHAREABLE | RF_ACTIVE);
2106
2107	if (sc->ti_irq == NULL) {
2108		printf("ti%d: couldn't map interrupt\n", unit);
2109		error = ENXIO;
2110		goto fail;
2111	}
2112
2113	if (ti_chipinit(sc)) {
2114		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2115		error = ENXIO;
2116		goto fail;
2117	}
2118
2119	/* Zero out the NIC's on-board SRAM. */
2120	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
2121
2122	/* Init again -- zeroing memory may have clobbered some registers. */
2123	if (ti_chipinit(sc)) {
2124		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2125		error = ENXIO;
2126		goto fail;
2127	}
2128
2129	/*
2130	 * Get station address from the EEPROM. Note: the manual states
2131	 * that the MAC address is at offset 0x8c, however the data is
2132	 * stored as two longwords (since that's how it's loaded into
2133	 * the NIC). This means the MAC address is actually preceded
2134	 * by two zero bytes. We need to skip over those.
2135	 */
2136	if (ti_read_eeprom(sc, eaddr,
2137				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2138		printf("ti%d: failed to read station address\n", unit);
2139		error = ENXIO;
2140		goto fail;
2141	}
2142
2143	/* Allocate the general information block and ring buffers. */
2144	if (bus_dma_tag_create(NULL,			/* parent */
2145				1, 0,			/* algnmnt, boundary */
2146				BUS_SPACE_MAXADDR,	/* lowaddr */
2147				BUS_SPACE_MAXADDR,	/* highaddr */
2148				NULL, NULL,		/* filter, filterarg */
2149				BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2150				0,			/* nsegments */
2151				BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2152				0,			/* flags */
2153				NULL, NULL,		/* lockfunc, lockarg */
2154				&sc->ti_parent_dmat) != 0) {
2155		printf("ti%d: Failed to allocate parent dmat\n", sc->ti_unit);
2156		error = ENOMEM;
2157		goto fail;
2158	}
2159
2160	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2161				PAGE_SIZE, 0,		/* algnmnt, boundary */
2162				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2163				BUS_SPACE_MAXADDR,	/* highaddr */
2164				NULL, NULL,		/* filter, filterarg */
2165				sizeof(struct ti_ring_data),	/* maxsize */
2166				1,			/* nsegments */
2167				sizeof(struct ti_ring_data),	/* maxsegsize */
2168				0,			/* flags */
2169				NULL, NULL,		/* lockfunc, lockarg */
2170				&sc->ti_rdata_dmat) != 0) {
2171		printf("ti%d: Failed to allocate rdata dmat\n", sc->ti_unit);
2172		error = ENOMEM;
2173		goto fail;
2174	}
2175
2176	if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2177			     BUS_DMA_NOWAIT, &sc->ti_rdata_dmamap) != 0) {
2178		printf("ti%d: Failed to allocate rdata memory\n", sc->ti_unit);
2179		error = ENOMEM;
2180		goto fail;
2181	}
2182
2183	if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2184			    sc->ti_rdata, sizeof(struct ti_ring_data),
2185			    ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2186		printf("ti%d: Failed to load rdata segments\n", sc->ti_unit);
2187		error = ENOMEM;
2188		goto fail;
2189	}
2190
2191	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2192
2193	/* Try to allocate memory for jumbo buffers. */
2194#ifdef TI_PRIVATE_JUMBOS
2195	if (ti_alloc_jumbo_mem(sc)) {
2196		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
2197		error = ENXIO;
2198		goto fail;
2199	}
2200#endif
2201
2202	/*
2203	 * We really need a better way to tell a 1000baseTX card
2204	 * from a 1000baseSX one, since in theory there could be
2205	 * OEMed 1000baseTX cards from lame vendors who aren't
2206	 * clever enough to change the PCI ID. For the moment
2207	 * though, the AceNIC is the only copper card available.
2208	 */
2209	if (pci_get_vendor(dev) == ALT_VENDORID &&
2210	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2211		sc->ti_copper = 1;
2212	/* Ok, it's not the only copper card available. */
2213	if (pci_get_vendor(dev) == NG_VENDORID &&
2214	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2215		sc->ti_copper = 1;
2216
2217	/* Set default tuneable values. */
2218	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2219#if 0
2220	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2221#endif
2222	sc->ti_rx_coal_ticks = 170;
2223	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2224	sc->ti_rx_max_coal_bds = 64;
2225#if 0
2226	sc->ti_tx_max_coal_bds = 128;
2227#endif
2228	sc->ti_tx_max_coal_bds = 32;
2229	sc->ti_tx_buf_ratio = 21;
2230
2231	/* Set up ifnet structure */
2232	ifp->if_softc = sc;
2233	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2234	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
2235	    IFF_NEEDSGIANT;
2236	tis[unit] = sc;
2237	ifp->if_ioctl = ti_ioctl;
2238	ifp->if_start = ti_start;
2239	ifp->if_watchdog = ti_watchdog;
2240	ifp->if_init = ti_init;
2241	ifp->if_mtu = ETHERMTU;
2242	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2243
2244	/* Set up ifmedia support. */
2245	if (sc->ti_copper) {
2246		/*
2247		 * Copper cards allow manual 10/100 mode selection,
2248		 * but not manual 1000baseTX mode selection. Why?
2249		 * Becuase currently there's no way to specify the
2250		 * master/slave setting through the firmware interface,
2251		 * so Alteon decided to just bag it and handle it
2252		 * via autonegotiation.
2253		 */
2254		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2255		ifmedia_add(&sc->ifmedia,
2256		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2257		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2258		ifmedia_add(&sc->ifmedia,
2259		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2260		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2261		ifmedia_add(&sc->ifmedia,
2262		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2263	} else {
2264		/* Fiber cards don't support 10/100 modes. */
2265		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2266		ifmedia_add(&sc->ifmedia,
2267		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2268	}
2269	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2270	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2271
2272	/*
2273	 * We're assuming here that card initialization is a sequential
2274	 * thing.  If it isn't, multiple cards probing at the same time
2275	 * could stomp on the list of softcs here.
2276	 */
2277
2278	/* Register the device */
2279	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2280			   0600, "ti%d", sc->ti_unit);
2281	sc->dev->si_drv1 = sc;
2282
2283	/*
2284	 * Call MI attach routine.
2285	 */
2286	ether_ifattach(ifp, eaddr);
2287
2288	/* Hook interrupt last to avoid having to lock softc */
2289	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
2290	   ti_intr, sc, &sc->ti_intrhand);
2291
2292	if (error) {
2293		printf("ti%d: couldn't set up irq\n", unit);
2294		ether_ifdetach(ifp);
2295		if_free(ifp);
2296		goto fail;
2297	}
2298
2299fail:
2300	if (sc && error)
2301		ti_detach(dev);
2302
2303	return (error);
2304}
2305
2306/*
2307 * Shutdown hardware and free up resources. This can be called any
2308 * time after the mutex has been initialized. It is called in both
2309 * the error case in attach and the normal detach case so it needs
2310 * to be careful about only freeing resources that have actually been
2311 * allocated.
2312 */
2313static int
2314ti_detach(dev)
2315	device_t		dev;
2316{
2317	struct ti_softc		*sc;
2318	struct ifnet		*ifp;
2319
2320	sc = device_get_softc(dev);
2321	if (sc->dev)
2322		destroy_dev(sc->dev);
2323	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2324	TI_LOCK(sc);
2325	ifp = sc->ti_ifp;
2326
2327	/* These should only be active if attach succeeded */
2328	if (device_is_attached(dev)) {
2329		ti_stop(sc);
2330		ether_ifdetach(ifp);
2331		if_free(ifp);
2332		bus_generic_detach(dev);
2333	}
2334	ifmedia_removeall(&sc->ifmedia);
2335
2336	if (sc->ti_rdata)
2337		bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2338				sc->ti_rdata_dmamap);
2339	if (sc->ti_rdata_dmat)
2340		bus_dma_tag_destroy(sc->ti_rdata_dmat);
2341	if (sc->ti_parent_dmat)
2342		bus_dma_tag_destroy(sc->ti_parent_dmat);
2343	if (sc->ti_intrhand)
2344		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2345	if (sc->ti_irq)
2346		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2347	if (sc->ti_res) {
2348		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2349		    sc->ti_res);
2350	}
2351
2352#ifdef TI_PRIVATE_JUMBOS
2353	if (sc->ti_cdata.ti_jumbo_buf)
2354		contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
2355#endif
2356	if (sc->ti_rdata)
2357		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
2358
2359	TI_UNLOCK(sc);
2360	mtx_destroy(&sc->ti_mtx);
2361
2362	return (0);
2363}
2364
2365#ifdef TI_JUMBO_HDRSPLIT
2366/*
2367 * If hdr_len is 0, that means that header splitting wasn't done on
2368 * this packet for some reason.  The two most likely reasons are that
2369 * the protocol isn't a supported protocol for splitting, or this
2370 * packet had a fragment offset that wasn't 0.
2371 *
2372 * The header length, if it is non-zero, will always be the length of
2373 * the headers on the packet, but that length could be longer than the
2374 * first mbuf.  So we take the minimum of the two as the actual
2375 * length.
2376 */
2377static __inline void
2378ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2379{
2380	int i = 0;
2381	int lengths[4] = {0, 0, 0, 0};
2382	struct mbuf *m, *mp;
2383
2384	if (hdr_len != 0)
2385		top->m_len = min(hdr_len, top->m_len);
2386	pkt_len -= top->m_len;
2387	lengths[i++] = top->m_len;
2388
2389	mp = top;
2390	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2391		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2392		pkt_len -= m->m_len;
2393		lengths[i++] = m->m_len;
2394		mp = m;
2395	}
2396
2397#if 0
2398	if (hdr_len != 0)
2399		printf("got split packet: ");
2400	else
2401		printf("got non-split packet: ");
2402
2403	printf("%d,%d,%d,%d = %d\n", lengths[0],
2404	    lengths[1], lengths[2], lengths[3],
2405	    lengths[0] + lengths[1] + lengths[2] +
2406	    lengths[3]);
2407#endif
2408
2409	if (pkt_len)
2410		panic("header splitting didn't");
2411
2412	if (m) {
2413		m_freem(m);
2414		mp->m_next = NULL;
2415
2416	}
2417	if (mp->m_next != NULL)
2418		panic("ti_hdr_split: last mbuf in chain should be null");
2419}
2420#endif /* TI_JUMBO_HDRSPLIT */
2421
2422/*
2423 * Frame reception handling. This is called if there's a frame
2424 * on the receive return list.
2425 *
2426 * Note: we have to be able to handle three possibilities here:
2427 * 1) the frame is from the mini receive ring (can only happen)
2428 *    on Tigon 2 boards)
2429 * 2) the frame is from the jumbo recieve ring
2430 * 3) the frame is from the standard receive ring
2431 */
2432
2433static void
2434ti_rxeof(sc)
2435	struct ti_softc		*sc;
2436{
2437	struct ifnet		*ifp;
2438	struct ti_cmd_desc	cmd;
2439
2440	TI_LOCK_ASSERT(sc);
2441
2442	ifp = sc->ti_ifp;
2443
2444	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2445		struct ti_rx_desc	*cur_rx;
2446		u_int32_t		rxidx;
2447		struct mbuf		*m = NULL;
2448		u_int16_t		vlan_tag = 0;
2449		int			have_tag = 0;
2450
2451		cur_rx =
2452		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2453		rxidx = cur_rx->ti_idx;
2454		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2455
2456		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2457			have_tag = 1;
2458			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2459		}
2460
2461		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2462
2463			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2464			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2465			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2466			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2467				ifp->if_ierrors++;
2468				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2469				continue;
2470			}
2471			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2472				ifp->if_ierrors++;
2473				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2474				continue;
2475			}
2476#ifdef TI_PRIVATE_JUMBOS
2477			m->m_len = cur_rx->ti_len;
2478#else /* TI_PRIVATE_JUMBOS */
2479#ifdef TI_JUMBO_HDRSPLIT
2480			if (sc->ti_hdrsplit)
2481				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2482					     cur_rx->ti_len, rxidx);
2483			else
2484#endif /* TI_JUMBO_HDRSPLIT */
2485			m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2486#endif /* TI_PRIVATE_JUMBOS */
2487		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2488			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2489			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2490			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2491			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2492				ifp->if_ierrors++;
2493				ti_newbuf_mini(sc, sc->ti_mini, m);
2494				continue;
2495			}
2496			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2497				ifp->if_ierrors++;
2498				ti_newbuf_mini(sc, sc->ti_mini, m);
2499				continue;
2500			}
2501			m->m_len = cur_rx->ti_len;
2502		} else {
2503			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2504			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2505			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2506			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2507				ifp->if_ierrors++;
2508				ti_newbuf_std(sc, sc->ti_std, m);
2509				continue;
2510			}
2511			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2512				ifp->if_ierrors++;
2513				ti_newbuf_std(sc, sc->ti_std, m);
2514				continue;
2515			}
2516			m->m_len = cur_rx->ti_len;
2517		}
2518
2519		m->m_pkthdr.len = cur_rx->ti_len;
2520		ifp->if_ipackets++;
2521		m->m_pkthdr.rcvif = ifp;
2522
2523		if (ifp->if_hwassist) {
2524			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2525			    CSUM_DATA_VALID;
2526			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2527				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2528			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2529		}
2530
2531		/*
2532		 * If we received a packet with a vlan tag,
2533		 * tag it before passing the packet upward.
2534		 */
2535		if (have_tag)
2536			VLAN_INPUT_TAG(ifp, m, vlan_tag, continue);
2537		TI_UNLOCK(sc);
2538		(*ifp->if_input)(ifp, m);
2539		TI_LOCK(sc);
2540	}
2541
2542	/* Only necessary on the Tigon 1. */
2543	if (sc->ti_hwrev == TI_HWREV_TIGON)
2544		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2545		    sc->ti_rx_saved_considx);
2546
2547	TI_UPDATE_STDPROD(sc, sc->ti_std);
2548	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2549	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2550}
2551
2552static void
2553ti_txeof(sc)
2554	struct ti_softc		*sc;
2555{
2556	struct ti_tx_desc	*cur_tx = NULL;
2557	struct ifnet		*ifp;
2558
2559	ifp = sc->ti_ifp;
2560
2561	/*
2562	 * Go through our tx ring and free mbufs for those
2563	 * frames that have been sent.
2564	 */
2565	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2566		u_int32_t		idx = 0;
2567
2568		idx = sc->ti_tx_saved_considx;
2569		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2570			if (idx > 383)
2571				CSR_WRITE_4(sc, TI_WINBASE,
2572				    TI_TX_RING_BASE + 6144);
2573			else if (idx > 255)
2574				CSR_WRITE_4(sc, TI_WINBASE,
2575				    TI_TX_RING_BASE + 4096);
2576			else if (idx > 127)
2577				CSR_WRITE_4(sc, TI_WINBASE,
2578				    TI_TX_RING_BASE + 2048);
2579			else
2580				CSR_WRITE_4(sc, TI_WINBASE,
2581				    TI_TX_RING_BASE);
2582			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2583		} else
2584			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2585		if (cur_tx->ti_flags & TI_BDFLAG_END)
2586			ifp->if_opackets++;
2587		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2588			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2589			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2590		}
2591		sc->ti_txcnt--;
2592		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2593		ifp->if_timer = 0;
2594	}
2595
2596	if (cur_tx != NULL)
2597		ifp->if_flags &= ~IFF_OACTIVE;
2598}
2599
2600static void
2601ti_intr(xsc)
2602	void			*xsc;
2603{
2604	struct ti_softc		*sc;
2605	struct ifnet		*ifp;
2606
2607	sc = xsc;
2608	TI_LOCK(sc);
2609	ifp = sc->ti_ifp;
2610
2611/*#ifdef notdef*/
2612	/* Avoid this for now -- checking this register is expensive. */
2613	/* Make sure this is really our interrupt. */
2614	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2615		TI_UNLOCK(sc);
2616		return;
2617	}
2618/*#endif*/
2619
2620	/* Ack interrupt and stop others from occuring. */
2621	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2622
2623	if (ifp->if_flags & IFF_RUNNING) {
2624		/* Check RX return ring producer/consumer */
2625		ti_rxeof(sc);
2626
2627		/* Check TX ring producer/consumer */
2628		ti_txeof(sc);
2629	}
2630
2631	ti_handle_events(sc);
2632
2633	/* Re-enable interrupts. */
2634	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2635
2636	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2637		ti_start(ifp);
2638
2639	TI_UNLOCK(sc);
2640}
2641
2642static void
2643ti_stats_update(sc)
2644	struct ti_softc		*sc;
2645{
2646	struct ifnet		*ifp;
2647
2648	ifp = sc->ti_ifp;
2649
2650	ifp->if_collisions +=
2651	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2652	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2653	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2654	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2655	   ifp->if_collisions;
2656}
2657
2658/*
2659 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2660 * pointers to descriptors.
2661 */
2662static int
2663ti_encap(sc, m_head, txidx)
2664	struct ti_softc		*sc;
2665	struct mbuf		*m_head;
2666	u_int32_t		*txidx;
2667{
2668	struct ti_tx_desc	*f = NULL;
2669	struct mbuf		*m;
2670	u_int32_t		frag, cur, cnt = 0;
2671	u_int16_t		csum_flags = 0;
2672	struct m_tag		*mtag;
2673
2674	m = m_head;
2675	cur = frag = *txidx;
2676
2677	if (m_head->m_pkthdr.csum_flags) {
2678		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2679			csum_flags |= TI_BDFLAG_IP_CKSUM;
2680		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2681			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2682		if (m_head->m_flags & M_LASTFRAG)
2683			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2684		else if (m_head->m_flags & M_FRAG)
2685			csum_flags |= TI_BDFLAG_IP_FRAG;
2686	}
2687
2688	mtag = VLAN_OUTPUT_TAG(sc->ti_ifp, m);
2689
2690	/*
2691	 * Start packing the mbufs in this chain into
2692	 * the fragment pointers. Stop when we run out
2693	 * of fragments or hit the end of the mbuf chain.
2694	 */
2695	for (m = m_head; m != NULL; m = m->m_next) {
2696		if (m->m_len != 0) {
2697			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2698				if (frag > 383)
2699					CSR_WRITE_4(sc, TI_WINBASE,
2700					    TI_TX_RING_BASE + 6144);
2701				else if (frag > 255)
2702					CSR_WRITE_4(sc, TI_WINBASE,
2703					    TI_TX_RING_BASE + 4096);
2704				else if (frag > 127)
2705					CSR_WRITE_4(sc, TI_WINBASE,
2706					    TI_TX_RING_BASE + 2048);
2707				else
2708					CSR_WRITE_4(sc, TI_WINBASE,
2709					    TI_TX_RING_BASE);
2710				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2711			} else
2712				f = &sc->ti_rdata->ti_tx_ring[frag];
2713			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2714				break;
2715			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2716			f->ti_len = m->m_len;
2717			f->ti_flags = csum_flags;
2718
2719			if (mtag != NULL) {
2720				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2721				f->ti_vlan_tag = VLAN_TAG_VALUE(mtag) & 0xfff;
2722			} else {
2723				f->ti_vlan_tag = 0;
2724			}
2725
2726			/*
2727			 * Sanity check: avoid coming within 16 descriptors
2728			 * of the end of the ring.
2729			 */
2730			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2731				return (ENOBUFS);
2732			cur = frag;
2733			TI_INC(frag, TI_TX_RING_CNT);
2734			cnt++;
2735		}
2736	}
2737
2738	if (m != NULL)
2739		return (ENOBUFS);
2740
2741	if (frag == sc->ti_tx_saved_considx)
2742		return (ENOBUFS);
2743
2744	if (sc->ti_hwrev == TI_HWREV_TIGON)
2745		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2746	            TI_BDFLAG_END;
2747	else
2748		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2749	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2750	sc->ti_txcnt += cnt;
2751
2752	*txidx = frag;
2753
2754	return (0);
2755}
2756
2757/*
2758 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2759 * to the mbuf data regions directly in the transmit descriptors.
2760 */
2761static void
2762ti_start(ifp)
2763	struct ifnet		*ifp;
2764{
2765	struct ti_softc		*sc;
2766	struct mbuf		*m_head = NULL;
2767	u_int32_t		prodidx = 0;
2768
2769	sc = ifp->if_softc;
2770	TI_LOCK(sc);
2771
2772	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2773
2774	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2775		IF_DEQUEUE(&ifp->if_snd, m_head);
2776		if (m_head == NULL)
2777			break;
2778
2779		/*
2780		 * XXX
2781		 * safety overkill.  If this is a fragmented packet chain
2782		 * with delayed TCP/UDP checksums, then only encapsulate
2783		 * it if we have enough descriptors to handle the entire
2784		 * chain at once.
2785		 * (paranoia -- may not actually be needed)
2786		 */
2787		if (m_head->m_flags & M_FIRSTFRAG &&
2788		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2789			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2790			    m_head->m_pkthdr.csum_data + 16) {
2791				IF_PREPEND(&ifp->if_snd, m_head);
2792				ifp->if_flags |= IFF_OACTIVE;
2793				break;
2794			}
2795		}
2796
2797		/*
2798		 * Pack the data into the transmit ring. If we
2799		 * don't have room, set the OACTIVE flag and wait
2800		 * for the NIC to drain the ring.
2801		 */
2802		if (ti_encap(sc, m_head, &prodidx)) {
2803			IF_PREPEND(&ifp->if_snd, m_head);
2804			ifp->if_flags |= IFF_OACTIVE;
2805			break;
2806		}
2807
2808		/*
2809		 * If there's a BPF listener, bounce a copy of this frame
2810		 * to him.
2811		 */
2812		BPF_MTAP(ifp, m_head);
2813	}
2814
2815	/* Transmit */
2816	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2817
2818	/*
2819	 * Set a timeout in case the chip goes out to lunch.
2820	 */
2821	ifp->if_timer = 5;
2822	TI_UNLOCK(sc);
2823}
2824
2825static void
2826ti_init(xsc)
2827	void			*xsc;
2828{
2829	struct ti_softc		*sc = xsc;
2830
2831	/* Cancel pending I/O and flush buffers. */
2832	ti_stop(sc);
2833
2834	TI_LOCK(sc);
2835	/* Init the gen info block, ring control blocks and firmware. */
2836	if (ti_gibinit(sc)) {
2837		printf("ti%d: initialization failure\n", sc->ti_unit);
2838		TI_UNLOCK(sc);
2839		return;
2840	}
2841
2842	TI_UNLOCK(sc);
2843}
2844
2845static void ti_init2(sc)
2846	struct ti_softc		*sc;
2847{
2848	struct ti_cmd_desc	cmd;
2849	struct ifnet		*ifp;
2850	u_int16_t		*m;
2851	struct ifmedia		*ifm;
2852	int			tmp;
2853
2854	ifp = sc->ti_ifp;
2855
2856	/* Specify MTU and interface index. */
2857	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
2858	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2859	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
2860	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2861
2862	/* Load our MAC address. */
2863	m = (u_int16_t *)&IFP2ENADDR(sc->ti_ifp)[0];
2864	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2865	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2866	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2867
2868	/* Enable or disable promiscuous mode as needed. */
2869	if (ifp->if_flags & IFF_PROMISC) {
2870		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2871	} else {
2872		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2873	}
2874
2875	/* Program multicast filter. */
2876	ti_setmulti(sc);
2877
2878	/*
2879	 * If this is a Tigon 1, we should tell the
2880	 * firmware to use software packet filtering.
2881	 */
2882	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2883		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2884	}
2885
2886	/* Init RX ring. */
2887	ti_init_rx_ring_std(sc);
2888
2889	/* Init jumbo RX ring. */
2890	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2891		ti_init_rx_ring_jumbo(sc);
2892
2893	/*
2894	 * If this is a Tigon 2, we can also configure the
2895	 * mini ring.
2896	 */
2897	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2898		ti_init_rx_ring_mini(sc);
2899
2900	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2901	sc->ti_rx_saved_considx = 0;
2902
2903	/* Init TX ring. */
2904	ti_init_tx_ring(sc);
2905
2906	/* Tell firmware we're alive. */
2907	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2908
2909	/* Enable host interrupts. */
2910	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2911
2912	ifp->if_flags |= IFF_RUNNING;
2913	ifp->if_flags &= ~IFF_OACTIVE;
2914
2915	/*
2916	 * Make sure to set media properly. We have to do this
2917	 * here since we have to issue commands in order to set
2918	 * the link negotiation and we can't issue commands until
2919	 * the firmware is running.
2920	 */
2921	ifm = &sc->ifmedia;
2922	tmp = ifm->ifm_media;
2923	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2924	ti_ifmedia_upd(ifp);
2925	ifm->ifm_media = tmp;
2926}
2927
2928/*
2929 * Set media options.
2930 */
2931static int
2932ti_ifmedia_upd(ifp)
2933	struct ifnet		*ifp;
2934{
2935	struct ti_softc		*sc;
2936	struct ifmedia		*ifm;
2937	struct ti_cmd_desc	cmd;
2938	u_int32_t		flowctl;
2939
2940	sc = ifp->if_softc;
2941	ifm = &sc->ifmedia;
2942
2943	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2944		return (EINVAL);
2945
2946	flowctl = 0;
2947
2948	switch (IFM_SUBTYPE(ifm->ifm_media)) {
2949	case IFM_AUTO:
2950		/*
2951		 * Transmit flow control doesn't work on the Tigon 1.
2952		 */
2953		flowctl = TI_GLNK_RX_FLOWCTL_Y;
2954
2955		/*
2956		 * Transmit flow control can also cause problems on the
2957		 * Tigon 2, apparantly with both the copper and fiber
2958		 * boards.  The symptom is that the interface will just
2959		 * hang.  This was reproduced with Alteon 180 switches.
2960		 */
2961#if 0
2962		if (sc->ti_hwrev != TI_HWREV_TIGON)
2963			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
2964#endif
2965
2966		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2967		    TI_GLNK_FULL_DUPLEX| flowctl |
2968		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2969
2970		flowctl = TI_LNK_RX_FLOWCTL_Y;
2971#if 0
2972		if (sc->ti_hwrev != TI_HWREV_TIGON)
2973			flowctl |= TI_LNK_TX_FLOWCTL_Y;
2974#endif
2975
2976		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2977		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
2978		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2979		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2980		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2981		break;
2982	case IFM_1000_SX:
2983	case IFM_1000_T:
2984		flowctl = TI_GLNK_RX_FLOWCTL_Y;
2985#if 0
2986		if (sc->ti_hwrev != TI_HWREV_TIGON)
2987			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
2988#endif
2989
2990		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2991		    flowctl |TI_GLNK_ENB);
2992		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2993		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2994			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2995		}
2996		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2997		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2998		break;
2999	case IFM_100_FX:
3000	case IFM_10_FL:
3001	case IFM_100_TX:
3002	case IFM_10_T:
3003		flowctl = TI_LNK_RX_FLOWCTL_Y;
3004#if 0
3005		if (sc->ti_hwrev != TI_HWREV_TIGON)
3006			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3007#endif
3008
3009		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3010		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3011		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3012		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3013			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3014		} else {
3015			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3016		}
3017		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3018			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3019		} else {
3020			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3021		}
3022		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3023		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3024		break;
3025	}
3026
3027	return (0);
3028}
3029
3030/*
3031 * Report current media status.
3032 */
3033static void
3034ti_ifmedia_sts(ifp, ifmr)
3035	struct ifnet		*ifp;
3036	struct ifmediareq	*ifmr;
3037{
3038	struct ti_softc		*sc;
3039	u_int32_t		media = 0;
3040
3041	sc = ifp->if_softc;
3042
3043	ifmr->ifm_status = IFM_AVALID;
3044	ifmr->ifm_active = IFM_ETHER;
3045
3046	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3047		return;
3048
3049	ifmr->ifm_status |= IFM_ACTIVE;
3050
3051	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3052		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3053		if (sc->ti_copper)
3054			ifmr->ifm_active |= IFM_1000_T;
3055		else
3056			ifmr->ifm_active |= IFM_1000_SX;
3057		if (media & TI_GLNK_FULL_DUPLEX)
3058			ifmr->ifm_active |= IFM_FDX;
3059		else
3060			ifmr->ifm_active |= IFM_HDX;
3061	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3062		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3063		if (sc->ti_copper) {
3064			if (media & TI_LNK_100MB)
3065				ifmr->ifm_active |= IFM_100_TX;
3066			if (media & TI_LNK_10MB)
3067				ifmr->ifm_active |= IFM_10_T;
3068		} else {
3069			if (media & TI_LNK_100MB)
3070				ifmr->ifm_active |= IFM_100_FX;
3071			if (media & TI_LNK_10MB)
3072				ifmr->ifm_active |= IFM_10_FL;
3073		}
3074		if (media & TI_LNK_FULL_DUPLEX)
3075			ifmr->ifm_active |= IFM_FDX;
3076		if (media & TI_LNK_HALF_DUPLEX)
3077			ifmr->ifm_active |= IFM_HDX;
3078	}
3079}
3080
3081static int
3082ti_ioctl(ifp, command, data)
3083	struct ifnet		*ifp;
3084	u_long			command;
3085	caddr_t			data;
3086{
3087	struct ti_softc		*sc = ifp->if_softc;
3088	struct ifreq		*ifr = (struct ifreq *) data;
3089	int			mask, error = 0;
3090	struct ti_cmd_desc	cmd;
3091
3092	TI_LOCK(sc);
3093
3094	switch (command) {
3095	case SIOCSIFMTU:
3096		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3097			error = EINVAL;
3098		else {
3099			ifp->if_mtu = ifr->ifr_mtu;
3100			ti_init(sc);
3101		}
3102		break;
3103	case SIOCSIFFLAGS:
3104		if (ifp->if_flags & IFF_UP) {
3105			/*
3106			 * If only the state of the PROMISC flag changed,
3107			 * then just use the 'set promisc mode' command
3108			 * instead of reinitializing the entire NIC. Doing
3109			 * a full re-init means reloading the firmware and
3110			 * waiting for it to start up, which may take a
3111			 * second or two.
3112			 */
3113			if (ifp->if_flags & IFF_RUNNING &&
3114			    ifp->if_flags & IFF_PROMISC &&
3115			    !(sc->ti_if_flags & IFF_PROMISC)) {
3116				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3117				    TI_CMD_CODE_PROMISC_ENB, 0);
3118			} else if (ifp->if_flags & IFF_RUNNING &&
3119			    !(ifp->if_flags & IFF_PROMISC) &&
3120			    sc->ti_if_flags & IFF_PROMISC) {
3121				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3122				    TI_CMD_CODE_PROMISC_DIS, 0);
3123			} else
3124				ti_init(sc);
3125		} else {
3126			if (ifp->if_flags & IFF_RUNNING) {
3127				ti_stop(sc);
3128			}
3129		}
3130		sc->ti_if_flags = ifp->if_flags;
3131		error = 0;
3132		break;
3133	case SIOCADDMULTI:
3134	case SIOCDELMULTI:
3135		if (ifp->if_flags & IFF_RUNNING) {
3136			ti_setmulti(sc);
3137			error = 0;
3138		}
3139		break;
3140	case SIOCSIFMEDIA:
3141	case SIOCGIFMEDIA:
3142		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3143		break;
3144	case SIOCSIFCAP:
3145		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3146		if (mask & IFCAP_HWCSUM) {
3147			if (IFCAP_HWCSUM & ifp->if_capenable)
3148				ifp->if_capenable &= ~IFCAP_HWCSUM;
3149			else
3150				ifp->if_capenable |= IFCAP_HWCSUM;
3151			if (ifp->if_flags & IFF_RUNNING)
3152				ti_init(sc);
3153		}
3154		error = 0;
3155		break;
3156	default:
3157		error = ether_ioctl(ifp, command, data);
3158		break;
3159	}
3160
3161	TI_UNLOCK(sc);
3162
3163	return (error);
3164}
3165
3166static int
3167ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3168{
3169	struct ti_softc *sc;
3170
3171	sc = dev->si_drv1;
3172	if (sc == NULL)
3173		return (ENODEV);
3174
3175	TI_LOCK(sc);
3176	sc->ti_flags |= TI_FLAG_DEBUGING;
3177	TI_UNLOCK(sc);
3178
3179	return (0);
3180}
3181
3182static int
3183ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3184{
3185	struct ti_softc *sc;
3186
3187	sc = dev->si_drv1;
3188	if (sc == NULL)
3189		return (ENODEV);
3190
3191	TI_LOCK(sc);
3192	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3193	TI_UNLOCK(sc);
3194
3195	return (0);
3196}
3197
3198/*
3199 * This ioctl routine goes along with the Tigon character device.
3200 */
3201static int
3202ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
3203{
3204	int error;
3205	struct ti_softc *sc;
3206
3207	sc = dev->si_drv1;
3208	if (sc == NULL)
3209		return (ENODEV);
3210
3211	error = 0;
3212
3213	switch (cmd) {
3214	case TIIOCGETSTATS:
3215	{
3216		struct ti_stats *outstats;
3217
3218		outstats = (struct ti_stats *)addr;
3219
3220		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3221		      sizeof(struct ti_stats));
3222		break;
3223	}
3224	case TIIOCGETPARAMS:
3225	{
3226		struct ti_params	*params;
3227
3228		params = (struct ti_params *)addr;
3229
3230		params->ti_stat_ticks = sc->ti_stat_ticks;
3231		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3232		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3233		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3234		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3235		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3236		params->param_mask = TI_PARAM_ALL;
3237
3238		error = 0;
3239
3240		break;
3241	}
3242	case TIIOCSETPARAMS:
3243	{
3244		struct ti_params *params;
3245
3246		params = (struct ti_params *)addr;
3247
3248		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3249			sc->ti_stat_ticks = params->ti_stat_ticks;
3250			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3251		}
3252
3253		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3254			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3255			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3256				    sc->ti_rx_coal_ticks);
3257		}
3258
3259		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3260			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3261			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3262				    sc->ti_tx_coal_ticks);
3263		}
3264
3265		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3266			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3267			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3268				    sc->ti_rx_max_coal_bds);
3269		}
3270
3271		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3272			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3273			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3274				    sc->ti_tx_max_coal_bds);
3275		}
3276
3277		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3278			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3279			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3280				    sc->ti_tx_buf_ratio);
3281		}
3282
3283		error = 0;
3284
3285		break;
3286	}
3287	case TIIOCSETTRACE: {
3288		ti_trace_type	trace_type;
3289
3290		trace_type = *(ti_trace_type *)addr;
3291
3292		/*
3293		 * Set tracing to whatever the user asked for.  Setting
3294		 * this register to 0 should have the effect of disabling
3295		 * tracing.
3296		 */
3297		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3298
3299		error = 0;
3300
3301		break;
3302	}
3303	case TIIOCGETTRACE: {
3304		struct ti_trace_buf	*trace_buf;
3305		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3306
3307		trace_buf = (struct ti_trace_buf *)addr;
3308
3309		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3310		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3311		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3312
3313#if 0
3314		printf("ti%d: trace_start = %#x, cur_trace_ptr = %#x, "
3315		       "trace_len = %d\n", sc->ti_unit, trace_start,
3316		       cur_trace_ptr, trace_len);
3317		printf("ti%d: trace_buf->buf_len = %d\n", sc->ti_unit,
3318		       trace_buf->buf_len);
3319#endif
3320
3321		error = ti_copy_mem(sc, trace_start, min(trace_len,
3322				    trace_buf->buf_len),
3323				    (caddr_t)trace_buf->buf, 1, 1);
3324
3325		if (error == 0) {
3326			trace_buf->fill_len = min(trace_len,
3327						  trace_buf->buf_len);
3328			if (cur_trace_ptr < trace_start)
3329				trace_buf->cur_trace_ptr =
3330					trace_start - cur_trace_ptr;
3331			else
3332				trace_buf->cur_trace_ptr =
3333					cur_trace_ptr - trace_start;
3334		} else
3335			trace_buf->fill_len = 0;
3336
3337		break;
3338	}
3339
3340	/*
3341	 * For debugging, five ioctls are needed:
3342	 * ALT_ATTACH
3343	 * ALT_READ_TG_REG
3344	 * ALT_WRITE_TG_REG
3345	 * ALT_READ_TG_MEM
3346	 * ALT_WRITE_TG_MEM
3347	 */
3348	case ALT_ATTACH:
3349		/*
3350		 * From what I can tell, Alteon's Solaris Tigon driver
3351		 * only has one character device, so you have to attach
3352		 * to the Tigon board you're interested in.  This seems
3353		 * like a not-so-good way to do things, since unless you
3354		 * subsequently specify the unit number of the device
3355		 * you're interested in in every ioctl, you'll only be
3356		 * able to debug one board at a time.
3357		 */
3358		error = 0;
3359		break;
3360	case ALT_READ_TG_MEM:
3361	case ALT_WRITE_TG_MEM:
3362	{
3363		struct tg_mem *mem_param;
3364		u_int32_t sram_end, scratch_end;
3365
3366		mem_param = (struct tg_mem *)addr;
3367
3368		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3369			sram_end = TI_END_SRAM_I;
3370			scratch_end = TI_END_SCRATCH_I;
3371		} else {
3372			sram_end = TI_END_SRAM_II;
3373			scratch_end = TI_END_SCRATCH_II;
3374		}
3375
3376		/*
3377		 * For now, we'll only handle accessing regular SRAM,
3378		 * nothing else.
3379		 */
3380		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3381		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3382			/*
3383			 * In this instance, we always copy to/from user
3384			 * space, so the user space argument is set to 1.
3385			 */
3386			error = ti_copy_mem(sc, mem_param->tgAddr,
3387					    mem_param->len,
3388					    mem_param->userAddr, 1,
3389					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3390		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3391			&& (mem_param->tgAddr <= scratch_end)) {
3392			error = ti_copy_scratch(sc, mem_param->tgAddr,
3393						mem_param->len,
3394						mem_param->userAddr, 1,
3395						(cmd == ALT_READ_TG_MEM) ?
3396						1 : 0, TI_PROCESSOR_A);
3397		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3398			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3399			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3400				printf("ti%d:  invalid memory range for "
3401				       "Tigon I\n", sc->ti_unit);
3402				error = EINVAL;
3403				break;
3404			}
3405			error = ti_copy_scratch(sc, mem_param->tgAddr -
3406						TI_SCRATCH_DEBUG_OFF,
3407						mem_param->len,
3408						mem_param->userAddr, 1,
3409						(cmd == ALT_READ_TG_MEM) ?
3410						1 : 0, TI_PROCESSOR_B);
3411		} else {
3412			printf("ti%d: memory address %#x len %d is out of "
3413			       "supported range\n", sc->ti_unit,
3414			        mem_param->tgAddr, mem_param->len);
3415			error = EINVAL;
3416		}
3417
3418		break;
3419	}
3420	case ALT_READ_TG_REG:
3421	case ALT_WRITE_TG_REG:
3422	{
3423		struct tg_reg	*regs;
3424		u_int32_t	tmpval;
3425
3426		regs = (struct tg_reg *)addr;
3427
3428		/*
3429		 * Make sure the address in question isn't out of range.
3430		 */
3431		if (regs->addr > TI_REG_MAX) {
3432			error = EINVAL;
3433			break;
3434		}
3435		if (cmd == ALT_READ_TG_REG) {
3436			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3437						regs->addr, &tmpval, 1);
3438			regs->data = ntohl(tmpval);
3439#if 0
3440			if ((regs->addr == TI_CPU_STATE)
3441			 || (regs->addr == TI_CPU_CTL_B)) {
3442				printf("ti%d: register %#x = %#x\n",
3443				       sc->ti_unit, regs->addr, tmpval);
3444			}
3445#endif
3446		} else {
3447			tmpval = htonl(regs->data);
3448			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3449						 regs->addr, &tmpval, 1);
3450		}
3451
3452		break;
3453	}
3454	default:
3455		error = ENOTTY;
3456		break;
3457	}
3458	return (error);
3459}
3460
3461static void
3462ti_watchdog(ifp)
3463	struct ifnet		*ifp;
3464{
3465	struct ti_softc		*sc;
3466
3467	sc = ifp->if_softc;
3468	TI_LOCK(sc);
3469
3470	/*
3471	 * When we're debugging, the chip is often stopped for long periods
3472	 * of time, and that would normally cause the watchdog timer to fire.
3473	 * Since that impedes debugging, we don't want to do that.
3474	 */
3475	if (sc->ti_flags & TI_FLAG_DEBUGING) {
3476		TI_UNLOCK(sc);
3477		return;
3478	}
3479
3480	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
3481	ti_stop(sc);
3482	ti_init(sc);
3483
3484	ifp->if_oerrors++;
3485	TI_UNLOCK(sc);
3486}
3487
3488/*
3489 * Stop the adapter and free any mbufs allocated to the
3490 * RX and TX lists.
3491 */
3492static void
3493ti_stop(sc)
3494	struct ti_softc		*sc;
3495{
3496	struct ifnet		*ifp;
3497	struct ti_cmd_desc	cmd;
3498
3499	TI_LOCK(sc);
3500
3501	ifp = sc->ti_ifp;
3502
3503	/* Disable host interrupts. */
3504	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3505	/*
3506	 * Tell firmware we're shutting down.
3507	 */
3508	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3509
3510	/* Halt and reinitialize. */
3511	ti_chipinit(sc);
3512	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
3513	ti_chipinit(sc);
3514
3515	/* Free the RX lists. */
3516	ti_free_rx_ring_std(sc);
3517
3518	/* Free jumbo RX list. */
3519	ti_free_rx_ring_jumbo(sc);
3520
3521	/* Free mini RX list. */
3522	ti_free_rx_ring_mini(sc);
3523
3524	/* Free TX buffers. */
3525	ti_free_tx_ring(sc);
3526
3527	sc->ti_ev_prodidx.ti_idx = 0;
3528	sc->ti_return_prodidx.ti_idx = 0;
3529	sc->ti_tx_considx.ti_idx = 0;
3530	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3531
3532	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3533	TI_UNLOCK(sc);
3534}
3535
3536/*
3537 * Stop all chip I/O so that the kernel's probe routines don't
3538 * get confused by errant DMAs when rebooting.
3539 */
3540static void
3541ti_shutdown(dev)
3542	device_t		dev;
3543{
3544	struct ti_softc		*sc;
3545
3546	sc = device_get_softc(dev);
3547	TI_LOCK(sc);
3548	ti_chipinit(sc);
3549	TI_UNLOCK(sc);
3550}
3551